2 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 queue datastructures and routines
29 #include <linux/prefetch.h>
32 * DOC: Entry frame size
34 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
35 * for USB devices this restriction does not apply, but the value of
36 * 2432 makes sense since it is big enough to contain the maximum fragment
37 * size according to the ieee802.11 specs.
38 * The aggregation size depends on support from the driver, but should
39 * be something around 3840 bytes.
41 #define DATA_FRAME_SIZE 2432
42 #define MGMT_FRAME_SIZE 256
43 #define AGGREGATION_SIZE 3840
46 * enum data_queue_qid: Queue identification
48 * @QID_AC_VO: AC VO queue
49 * @QID_AC_VI: AC VI queue
50 * @QID_AC_BE: AC BE queue
51 * @QID_AC_BK: AC BK queue
52 * @QID_HCCA: HCCA queue
53 * @QID_MGMT: MGMT queue (prio queue)
55 * @QID_OTHER: None of the above (don't use, only present for completeness)
56 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
57 * @QID_ATIM: Atim queue (value unspecified, don't send it to device)
73 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
75 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
76 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
77 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
78 * mac80211 but was stripped for processing by the driver.
79 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
80 * don't try to pass it back.
81 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
82 * skb, instead of in the desc field.
84 enum skb_frame_desc_flags
{
85 SKBDESC_DMA_MAPPED_RX
= 1 << 0,
86 SKBDESC_DMA_MAPPED_TX
= 1 << 1,
87 SKBDESC_IV_STRIPPED
= 1 << 2,
88 SKBDESC_NOT_MAC80211
= 1 << 3,
89 SKBDESC_DESC_IN_SKB
= 1 << 4,
93 * struct skb_frame_desc: Descriptor information for the skb buffer
95 * This structure is placed over the driver_data array, this means that
96 * this structure should not exceed the size of that array (40 bytes).
98 * @flags: Frame flags, see &enum skb_frame_desc_flags.
99 * @desc_len: Length of the frame descriptor.
100 * @tx_rate_idx: the index of the TX rate, used for TX status reporting
101 * @tx_rate_flags: the TX rate flags, used for TX status reporting
102 * @desc: Pointer to descriptor part of the frame.
103 * Note that this pointer could point to something outside
104 * of the scope of the skb->data pointer.
105 * @iv: IV/EIV data used during encryption/decryption.
106 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
107 * @entry: The entry to which this sk buffer belongs.
109 struct skb_frame_desc
{
122 struct queue_entry
*entry
;
126 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
127 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
129 static inline struct skb_frame_desc
* get_skb_frame_desc(struct sk_buff
*skb
)
131 BUILD_BUG_ON(sizeof(struct skb_frame_desc
) >
132 IEEE80211_TX_INFO_DRIVER_DATA_SIZE
);
133 return (struct skb_frame_desc
*)&IEEE80211_SKB_CB(skb
)->driver_data
;
137 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
139 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
140 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
141 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
142 * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
143 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
144 * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
145 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
147 enum rxdone_entry_desc_flags
{
148 RXDONE_SIGNAL_PLCP
= BIT(0),
149 RXDONE_SIGNAL_BITRATE
= BIT(1),
150 RXDONE_SIGNAL_MCS
= BIT(2),
151 RXDONE_MY_BSS
= BIT(3),
152 RXDONE_CRYPTO_IV
= BIT(4),
153 RXDONE_CRYPTO_ICV
= BIT(5),
154 RXDONE_L2PAD
= BIT(6),
158 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
159 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
160 * from &rxdone_entry_desc to a signal value type.
162 #define RXDONE_SIGNAL_MASK \
163 ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
166 * struct rxdone_entry_desc: RX Entry descriptor
168 * Summary of information that has been read from the RX frame descriptor.
170 * @timestamp: RX Timestamp
171 * @signal: Signal of the received frame.
172 * @rssi: RSSI of the received frame.
173 * @size: Data size of the received frame.
174 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
175 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
176 * @rate_mode: Rate mode (See @enum rate_modulation).
177 * @cipher: Cipher type used during decryption.
178 * @cipher_status: Decryption status.
179 * @iv: IV/EIV data used during decryption.
180 * @icv: ICV data used during decryption.
182 struct rxdone_entry_desc
{
198 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
200 * Every txdone report has to contain the basic result of the
201 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
202 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
203 * conjunction with all of these flags but should only be set
204 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
205 * in conjunction with &TXDONE_FAILURE.
207 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
208 * @TXDONE_SUCCESS: Frame was successfully send
209 * @TXDONE_FALLBACK: Hardware used fallback rates for retries
210 * @TXDONE_FAILURE: Frame was not successfully send
211 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
212 * frame transmission failed due to excessive retries.
214 enum txdone_entry_desc_flags
{
219 TXDONE_EXCESSIVE_RETRY
,
224 * struct txdone_entry_desc: TX done entry descriptor
226 * Summary of information that has been read from the TX frame descriptor
227 * after the device is done with transmission.
229 * @flags: TX done flags (See &enum txdone_entry_desc_flags).
230 * @retry: Retry count.
232 struct txdone_entry_desc
{
238 * enum txentry_desc_flags: Status flags for TX entry descriptor
240 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
241 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
242 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
243 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
244 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
245 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
246 * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
247 * @ENTRY_TXD_ACK: An ACK is required for this frame.
248 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
249 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
250 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
251 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
252 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
253 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
254 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
255 * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
256 * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode.
258 enum txentry_desc_flags
{
261 ENTRY_TXD_GENERATE_SEQ
,
262 ENTRY_TXD_FIRST_FRAGMENT
,
264 ENTRY_TXD_REQ_TIMESTAMP
,
267 ENTRY_TXD_RETRY_MODE
,
269 ENTRY_TXD_ENCRYPT_PAIRWISE
,
270 ENTRY_TXD_ENCRYPT_IV
,
271 ENTRY_TXD_ENCRYPT_MMIC
,
274 ENTRY_TXD_HT_SHORT_GI
,
275 ENTRY_TXD_HT_MIMO_PS
,
279 * struct txentry_desc: TX Entry descriptor
281 * Summary of information for the frame descriptor before sending a TX frame.
283 * @flags: Descriptor flags (See &enum queue_entry_flags).
284 * @length: Length of the entire frame.
285 * @header_length: Length of 802.11 header.
286 * @length_high: PLCP length high word.
287 * @length_low: PLCP length low word.
288 * @signal: PLCP signal.
289 * @service: PLCP service.
293 * @rate_mode: Rate mode (See @enum rate_modulation).
294 * @mpdu_density: MDPU density.
295 * @retry_limit: Max number of retries.
297 * @txop: IFS value for 11n capable chips.
298 * @cipher: Cipher type used for encryption.
299 * @key_idx: Key index used for encryption.
300 * @iv_offset: Position where IV should be inserted by hardware.
301 * @iv_len: Length of IV data.
303 struct txentry_desc
{
327 enum rate_modulation rate_mode
;
338 * enum queue_entry_flags: Status flags for queue entry
340 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
341 * As long as this bit is set, this entry may only be touched
342 * through the interface structure.
343 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
344 * transfer (either TX or RX depending on the queue). The entry should
345 * only be touched after the device has signaled it is done with it.
346 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
347 * for the signal to start sending.
348 * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred
349 * while transferring the data to the hardware. No TX status report will
350 * be expected from the hardware.
351 * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and
352 * returned. It is now waiting for the status reporting before the
353 * entry can be reused again.
355 enum queue_entry_flags
{
357 ENTRY_OWNER_DEVICE_DATA
,
359 ENTRY_DATA_IO_FAILED
,
360 ENTRY_DATA_STATUS_PENDING
,
364 * struct queue_entry: Entry inside the &struct data_queue
366 * @flags: Entry flags, see &enum queue_entry_flags.
367 * @last_action: Timestamp of last change.
368 * @queue: The data queue (&struct data_queue) to which this entry belongs.
369 * @skb: The buffer which is currently being transmitted (for TX queue),
370 * or used to directly receive data in (for RX queue).
371 * @entry_idx: The entry index number.
372 * @priv_data: Private data belonging to this queue entry. The pointer
373 * points to data specific to a particular driver and queue type.
377 unsigned long last_action
;
379 struct data_queue
*queue
;
383 unsigned int entry_idx
;
389 * enum queue_index: Queue index type
391 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
392 * owned by the hardware then the queue is considered to be full.
393 * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been
394 * transferred to the hardware.
395 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
396 * the hardware and for which we need to run the txdone handler. If this
397 * entry is not owned by the hardware the queue is considered to be empty.
398 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
399 * of the index array.
409 * enum data_queue_flags: Status flags for data queues
411 * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the
412 * device might be DMA'ing skbuffers. TX queues will accept skbuffers to
413 * be transmitted and beacon queues will start beaconing the configured
415 * @QUEUE_PAUSED: The queue has been started but is currently paused.
416 * When this bit is set, the queue has been stopped in mac80211,
417 * preventing new frames to be enqueued. However, a few frames
418 * might still appear shortly after the pausing...
420 enum data_queue_flags
{
426 * struct data_queue: Data queue
428 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
429 * @entries: Base address of the &struct queue_entry which are
430 * part of this queue.
431 * @qid: The queue identification, see &enum data_queue_qid.
432 * @flags: Entry flags, see &enum queue_entry_flags.
433 * @status_lock: The mutex for protecting the start/stop/flush
434 * handling on this queue.
435 * @tx_lock: Spinlock to serialize tx operations on this queue.
436 * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or
437 * @index_crypt needs to be changed this lock should be grabbed to prevent
438 * index corruption due to concurrency.
439 * @count: Number of frames handled in the queue.
440 * @limit: Maximum number of entries in the queue.
441 * @threshold: Minimum number of free entries before queue is kicked by force.
442 * @length: Number of frames in queue.
443 * @index: Index pointers to entry positions in the queue,
444 * use &enum queue_index to get a specific index field.
445 * @txop: maximum burst time.
446 * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
447 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
448 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
449 * @data_size: Maximum data size for the frames in this queue.
450 * @desc_size: Hardware descriptor size for the data in this queue.
451 * @usb_endpoint: Device endpoint used for communication (USB only)
452 * @usb_maxpacket: Max packet size for given endpoint (USB only)
455 struct rt2x00_dev
*rt2x00dev
;
456 struct queue_entry
*entries
;
458 enum data_queue_qid qid
;
461 struct mutex status_lock
;
463 spinlock_t index_lock
;
466 unsigned short limit
;
467 unsigned short threshold
;
468 unsigned short length
;
469 unsigned short index
[Q_INDEX_MAX
];
473 unsigned short cw_min
;
474 unsigned short cw_max
;
476 unsigned short data_size
;
477 unsigned short desc_size
;
479 unsigned short usb_endpoint
;
480 unsigned short usb_maxpacket
;
484 * struct data_queue_desc: Data queue description
486 * The information in this structure is used by drivers
487 * to inform rt2x00lib about the creation of the data queue.
489 * @entry_num: Maximum number of entries for a queue.
490 * @data_size: Maximum data size for the frames in this queue.
491 * @desc_size: Hardware descriptor size for the data in this queue.
492 * @priv_size: Size of per-queue_entry private data.
494 struct data_queue_desc
{
495 unsigned short entry_num
;
496 unsigned short data_size
;
497 unsigned short desc_size
;
498 unsigned short priv_size
;
502 * queue_end - Return pointer to the last queue (HELPER MACRO).
503 * @__dev: Pointer to &struct rt2x00_dev
505 * Using the base rx pointer and the maximum number of available queues,
506 * this macro will return the address of 1 position beyond the end of the
509 #define queue_end(__dev) \
510 &(__dev)->rx[(__dev)->data_queues]
513 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
514 * @__dev: Pointer to &struct rt2x00_dev
516 * Using the base tx pointer and the maximum number of available TX
517 * queues, this macro will return the address of 1 position beyond
518 * the end of the TX queue array.
520 #define tx_queue_end(__dev) \
521 &(__dev)->tx[(__dev)->ops->tx_queues]
524 * queue_next - Return pointer to next queue in list (HELPER MACRO).
525 * @__queue: Current queue for which we need the next queue
527 * Using the current queue address we take the address directly
528 * after the queue to take the next queue. Note that this macro
529 * should be used carefully since it does not protect against
530 * moving past the end of the list. (See macros &queue_end and
531 * &tx_queue_end for determining the end of the queue).
533 #define queue_next(__queue) \
537 * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
538 * @__entry: Pointer where the current queue entry will be stored in.
539 * @__start: Start queue pointer.
540 * @__end: End queue pointer.
542 * This macro will loop through all queues between &__start and &__end.
544 #define queue_loop(__entry, __start, __end) \
545 for ((__entry) = (__start); \
546 prefetch(queue_next(__entry)), (__entry) != (__end);\
547 (__entry) = queue_next(__entry))
550 * queue_for_each - Loop through all queues
551 * @__dev: Pointer to &struct rt2x00_dev
552 * @__entry: Pointer where the current queue entry will be stored in.
554 * This macro will loop through all available queues.
556 #define queue_for_each(__dev, __entry) \
557 queue_loop(__entry, (__dev)->rx, queue_end(__dev))
560 * tx_queue_for_each - Loop through the TX queues
561 * @__dev: Pointer to &struct rt2x00_dev
562 * @__entry: Pointer where the current queue entry will be stored in.
564 * This macro will loop through all TX related queues excluding
565 * the Beacon and Atim queues.
567 #define tx_queue_for_each(__dev, __entry) \
568 queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
571 * txall_queue_for_each - Loop through all TX related queues
572 * @__dev: Pointer to &struct rt2x00_dev
573 * @__entry: Pointer where the current queue entry will be stored in.
575 * This macro will loop through all TX related queues including
576 * the Beacon and Atim queues.
578 #define txall_queue_for_each(__dev, __entry) \
579 queue_loop(__entry, (__dev)->tx, queue_end(__dev))
582 * rt2x00queue_for_each_entry - Loop through all entries in the queue
583 * @queue: Pointer to @data_queue
584 * @start: &enum queue_index Pointer to start index
585 * @end: &enum queue_index Pointer to end index
586 * @data: Data to pass to the callback function
587 * @fn: The function to call for each &struct queue_entry
589 * This will walk through all entries in the queue, in chronological
590 * order. This means it will start at the current @start pointer
591 * and will walk through the queue until it reaches the @end pointer.
593 * If fn returns true for an entry rt2x00queue_for_each_entry will stop
594 * processing and return true as well.
596 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
597 enum queue_index start
,
598 enum queue_index end
,
600 bool (*fn
)(struct queue_entry
*entry
,
604 * rt2x00queue_empty - Check if the queue is empty.
605 * @queue: Queue to check if empty.
607 static inline int rt2x00queue_empty(struct data_queue
*queue
)
609 return queue
->length
== 0;
613 * rt2x00queue_full - Check if the queue is full.
614 * @queue: Queue to check if full.
616 static inline int rt2x00queue_full(struct data_queue
*queue
)
618 return queue
->length
== queue
->limit
;
622 * rt2x00queue_free - Check the number of available entries in queue.
623 * @queue: Queue to check.
625 static inline int rt2x00queue_available(struct data_queue
*queue
)
627 return queue
->limit
- queue
->length
;
631 * rt2x00queue_threshold - Check if the queue is below threshold
632 * @queue: Queue to check.
634 static inline int rt2x00queue_threshold(struct data_queue
*queue
)
636 return rt2x00queue_available(queue
) < queue
->threshold
;
640 * rt2x00queue_status_timeout - Check if a timeout occurred for STATUS reports
641 * @entry: Queue entry to check.
643 static inline int rt2x00queue_status_timeout(struct queue_entry
*entry
)
645 if (!test_bit(ENTRY_DATA_STATUS_PENDING
, &entry
->flags
))
647 return time_after(jiffies
, entry
->last_action
+ msecs_to_jiffies(100));
651 * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers
652 * @entry: Queue entry to check.
654 static inline int rt2x00queue_dma_timeout(struct queue_entry
*entry
)
656 if (!test_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
))
658 return time_after(jiffies
, entry
->last_action
+ msecs_to_jiffies(100));
662 * _rt2x00_desc_read - Read a word from the hardware descriptor.
663 * @desc: Base descriptor address
664 * @word: Word index from where the descriptor should be read.
665 * @value: Address where the descriptor value should be written into.
667 static inline void _rt2x00_desc_read(__le32
*desc
, const u8 word
, __le32
*value
)
673 * rt2x00_desc_read - Read a word from the hardware descriptor, this
674 * function will take care of the byte ordering.
675 * @desc: Base descriptor address
676 * @word: Word index from where the descriptor should be read.
677 * @value: Address where the descriptor value should be written into.
679 static inline void rt2x00_desc_read(__le32
*desc
, const u8 word
, u32
*value
)
682 _rt2x00_desc_read(desc
, word
, &tmp
);
683 *value
= le32_to_cpu(tmp
);
687 * rt2x00_desc_write - write a word to the hardware descriptor, this
688 * function will take care of the byte ordering.
689 * @desc: Base descriptor address
690 * @word: Word index from where the descriptor should be written.
691 * @value: Value that should be written into the descriptor.
693 static inline void _rt2x00_desc_write(__le32
*desc
, const u8 word
, __le32 value
)
699 * rt2x00_desc_write - write a word to the hardware descriptor.
700 * @desc: Base descriptor address
701 * @word: Word index from where the descriptor should be written.
702 * @value: Value that should be written into the descriptor.
704 static inline void rt2x00_desc_write(__le32
*desc
, const u8 word
, u32 value
)
706 _rt2x00_desc_write(desc
, word
, cpu_to_le32(value
));
709 #endif /* RT2X00QUEUE_H */