Revert "Merge branch 'ath6kl-next' of master.kernel.org:/pub/scm/linux/kernel/git...
[linux-2.6/next.git] / drivers / net / wireless / zd1211rw / zd_mac.c
blobcabfae1e70b14027e5e5d381783590869c23f0d8
1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
35 struct zd_reg_alpha2_map {
36 u32 reg;
37 char alpha2[2];
40 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41 { ZD_REGDOMAIN_FCC, "US" },
42 { ZD_REGDOMAIN_IC, "CA" },
43 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44 { ZD_REGDOMAIN_JAPAN, "JP" },
45 { ZD_REGDOMAIN_JAPAN_2, "JP" },
46 { ZD_REGDOMAIN_JAPAN_3, "JP" },
47 { ZD_REGDOMAIN_SPAIN, "ES" },
48 { ZD_REGDOMAIN_FRANCE, "FR" },
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates[] = {
53 { .bitrate = 10,
54 .hw_value = ZD_CCK_RATE_1M, },
55 { .bitrate = 20,
56 .hw_value = ZD_CCK_RATE_2M,
57 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
58 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
59 { .bitrate = 55,
60 .hw_value = ZD_CCK_RATE_5_5M,
61 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
62 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
63 { .bitrate = 110,
64 .hw_value = ZD_CCK_RATE_11M,
65 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
66 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
67 { .bitrate = 60,
68 .hw_value = ZD_OFDM_RATE_6M,
69 .flags = 0 },
70 { .bitrate = 90,
71 .hw_value = ZD_OFDM_RATE_9M,
72 .flags = 0 },
73 { .bitrate = 120,
74 .hw_value = ZD_OFDM_RATE_12M,
75 .flags = 0 },
76 { .bitrate = 180,
77 .hw_value = ZD_OFDM_RATE_18M,
78 .flags = 0 },
79 { .bitrate = 240,
80 .hw_value = ZD_OFDM_RATE_24M,
81 .flags = 0 },
82 { .bitrate = 360,
83 .hw_value = ZD_OFDM_RATE_36M,
84 .flags = 0 },
85 { .bitrate = 480,
86 .hw_value = ZD_OFDM_RATE_48M,
87 .flags = 0 },
88 { .bitrate = 540,
89 .hw_value = ZD_OFDM_RATE_54M,
90 .flags = 0 },
94 * Zydas retry rates table. Each line is listed in the same order as
95 * in zd_rates[] and contains all the rate used when a packet is sent
96 * starting with a given rates. Let's consider an example :
98 * "11 Mbits : 4, 3, 2, 1, 0" means :
99 * - packet is sent using 4 different rates
100 * - 1st rate is index 3 (ie 11 Mbits)
101 * - 2nd rate is index 2 (ie 5.5 Mbits)
102 * - 3rd rate is index 1 (ie 2 Mbits)
103 * - 4th rate is index 0 (ie 1 Mbits)
106 static const struct tx_retry_rate zd_retry_rates[] = {
107 { /* 1 Mbits */ 1, { 0 }},
108 { /* 2 Mbits */ 2, { 1, 0 }},
109 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
110 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
111 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
112 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
113 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
114 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
115 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
116 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
117 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
118 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
121 static const struct ieee80211_channel zd_channels[] = {
122 { .center_freq = 2412, .hw_value = 1 },
123 { .center_freq = 2417, .hw_value = 2 },
124 { .center_freq = 2422, .hw_value = 3 },
125 { .center_freq = 2427, .hw_value = 4 },
126 { .center_freq = 2432, .hw_value = 5 },
127 { .center_freq = 2437, .hw_value = 6 },
128 { .center_freq = 2442, .hw_value = 7 },
129 { .center_freq = 2447, .hw_value = 8 },
130 { .center_freq = 2452, .hw_value = 9 },
131 { .center_freq = 2457, .hw_value = 10 },
132 { .center_freq = 2462, .hw_value = 11 },
133 { .center_freq = 2467, .hw_value = 12 },
134 { .center_freq = 2472, .hw_value = 13 },
135 { .center_freq = 2484, .hw_value = 14 },
138 static void housekeeping_init(struct zd_mac *mac);
139 static void housekeeping_enable(struct zd_mac *mac);
140 static void housekeeping_disable(struct zd_mac *mac);
141 static void beacon_init(struct zd_mac *mac);
142 static void beacon_enable(struct zd_mac *mac);
143 static void beacon_disable(struct zd_mac *mac);
144 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
145 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
146 struct sk_buff *beacon, bool in_intr);
148 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
150 unsigned int i;
151 struct zd_reg_alpha2_map *reg_map;
152 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
153 reg_map = &reg_alpha2_map[i];
154 if (regdomain == reg_map->reg) {
155 alpha2[0] = reg_map->alpha2[0];
156 alpha2[1] = reg_map->alpha2[1];
157 return 0;
160 return 1;
163 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
165 struct zd_mac *mac = zd_hw_mac(hw);
167 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
168 "%s: signal value from device not in range 0..100, "
169 "but %d.\n", __func__, signal);
171 if (signal < 0)
172 signal = 0;
173 else if (signal > 100)
174 signal = 100;
176 return signal;
179 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
181 int r;
182 u8 addr[ETH_ALEN];
183 struct zd_mac *mac = zd_hw_mac(hw);
185 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
186 if (r)
187 return r;
189 SET_IEEE80211_PERM_ADDR(hw, addr);
191 return 0;
194 int zd_mac_init_hw(struct ieee80211_hw *hw)
196 int r;
197 struct zd_mac *mac = zd_hw_mac(hw);
198 struct zd_chip *chip = &mac->chip;
199 char alpha2[2];
200 u8 default_regdomain;
202 r = zd_chip_enable_int(chip);
203 if (r)
204 goto out;
205 r = zd_chip_init_hw(chip);
206 if (r)
207 goto disable_int;
209 ZD_ASSERT(!irqs_disabled());
211 r = zd_read_regdomain(chip, &default_regdomain);
212 if (r)
213 goto disable_int;
214 spin_lock_irq(&mac->lock);
215 mac->regdomain = mac->default_regdomain = default_regdomain;
216 spin_unlock_irq(&mac->lock);
218 /* We must inform the device that we are doing encryption/decryption in
219 * software at the moment. */
220 r = zd_set_encryption_type(chip, ENC_SNIFFER);
221 if (r)
222 goto disable_int;
224 r = zd_reg2alpha2(mac->regdomain, alpha2);
225 if (r)
226 goto disable_int;
228 r = regulatory_hint(hw->wiphy, alpha2);
229 disable_int:
230 zd_chip_disable_int(chip);
231 out:
232 return r;
235 void zd_mac_clear(struct zd_mac *mac)
237 flush_workqueue(zd_workqueue);
238 zd_chip_clear(&mac->chip);
239 ZD_ASSERT(!spin_is_locked(&mac->lock));
240 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
243 static int set_rx_filter(struct zd_mac *mac)
245 unsigned long flags;
246 u32 filter = STA_RX_FILTER;
248 spin_lock_irqsave(&mac->lock, flags);
249 if (mac->pass_ctrl)
250 filter |= RX_FILTER_CTRL;
251 spin_unlock_irqrestore(&mac->lock, flags);
253 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
256 static int set_mac_and_bssid(struct zd_mac *mac)
258 int r;
260 if (!mac->vif)
261 return -1;
263 r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
264 if (r)
265 return r;
267 /* Vendor driver after setting MAC either sets BSSID for AP or
268 * filter for other modes.
270 if (mac->type != NL80211_IFTYPE_AP)
271 return set_rx_filter(mac);
272 else
273 return zd_write_bssid(&mac->chip, mac->vif->addr);
276 static int set_mc_hash(struct zd_mac *mac)
278 struct zd_mc_hash hash;
279 zd_mc_clear(&hash);
280 return zd_chip_set_multicast_hash(&mac->chip, &hash);
283 int zd_op_start(struct ieee80211_hw *hw)
285 struct zd_mac *mac = zd_hw_mac(hw);
286 struct zd_chip *chip = &mac->chip;
287 struct zd_usb *usb = &chip->usb;
288 int r;
290 if (!usb->initialized) {
291 r = zd_usb_init_hw(usb);
292 if (r)
293 goto out;
296 r = zd_chip_enable_int(chip);
297 if (r < 0)
298 goto out;
300 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
301 if (r < 0)
302 goto disable_int;
303 r = set_rx_filter(mac);
304 if (r)
305 goto disable_int;
306 r = set_mc_hash(mac);
307 if (r)
308 goto disable_int;
309 r = zd_chip_switch_radio_on(chip);
310 if (r < 0)
311 goto disable_int;
312 r = zd_chip_enable_rxtx(chip);
313 if (r < 0)
314 goto disable_radio;
315 r = zd_chip_enable_hwint(chip);
316 if (r < 0)
317 goto disable_rxtx;
319 housekeeping_enable(mac);
320 beacon_enable(mac);
321 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
322 return 0;
323 disable_rxtx:
324 zd_chip_disable_rxtx(chip);
325 disable_radio:
326 zd_chip_switch_radio_off(chip);
327 disable_int:
328 zd_chip_disable_int(chip);
329 out:
330 return r;
333 void zd_op_stop(struct ieee80211_hw *hw)
335 struct zd_mac *mac = zd_hw_mac(hw);
336 struct zd_chip *chip = &mac->chip;
337 struct sk_buff *skb;
338 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
340 clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
342 /* The order here deliberately is a little different from the open()
343 * method, since we need to make sure there is no opportunity for RX
344 * frames to be processed by mac80211 after we have stopped it.
347 zd_chip_disable_rxtx(chip);
348 beacon_disable(mac);
349 housekeeping_disable(mac);
350 flush_workqueue(zd_workqueue);
352 zd_chip_disable_hwint(chip);
353 zd_chip_switch_radio_off(chip);
354 zd_chip_disable_int(chip);
357 while ((skb = skb_dequeue(ack_wait_queue)))
358 dev_kfree_skb_any(skb);
361 int zd_restore_settings(struct zd_mac *mac)
363 struct sk_buff *beacon;
364 struct zd_mc_hash multicast_hash;
365 unsigned int short_preamble;
366 int r, beacon_interval, beacon_period;
367 u8 channel;
369 dev_dbg_f(zd_mac_dev(mac), "\n");
371 spin_lock_irq(&mac->lock);
372 multicast_hash = mac->multicast_hash;
373 short_preamble = mac->short_preamble;
374 beacon_interval = mac->beacon.interval;
375 beacon_period = mac->beacon.period;
376 channel = mac->channel;
377 spin_unlock_irq(&mac->lock);
379 r = set_mac_and_bssid(mac);
380 if (r < 0) {
381 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
382 return r;
385 r = zd_chip_set_channel(&mac->chip, channel);
386 if (r < 0) {
387 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
389 return r;
392 set_rts_cts(mac, short_preamble);
394 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
395 if (r < 0) {
396 dev_dbg_f(zd_mac_dev(mac),
397 "zd_chip_set_multicast_hash failed, %d\n", r);
398 return r;
401 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
402 mac->type == NL80211_IFTYPE_ADHOC ||
403 mac->type == NL80211_IFTYPE_AP) {
404 if (mac->vif != NULL) {
405 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
406 if (beacon)
407 zd_mac_config_beacon(mac->hw, beacon, false);
410 zd_set_beacon_interval(&mac->chip, beacon_interval,
411 beacon_period, mac->type);
413 spin_lock_irq(&mac->lock);
414 mac->beacon.last_update = jiffies;
415 spin_unlock_irq(&mac->lock);
418 return 0;
422 * zd_mac_tx_status - reports tx status of a packet if required
423 * @hw - a &struct ieee80211_hw pointer
424 * @skb - a sk-buffer
425 * @flags: extra flags to set in the TX status info
426 * @ackssi: ACK signal strength
427 * @success - True for successful transmission of the frame
429 * This information calls ieee80211_tx_status_irqsafe() if required by the
430 * control information. It copies the control information into the status
431 * information.
433 * If no status information has been requested, the skb is freed.
435 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
436 int ackssi, struct tx_status *tx_status)
438 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
439 int i;
440 int success = 1, retry = 1;
441 int first_idx;
442 const struct tx_retry_rate *retries;
444 ieee80211_tx_info_clear_status(info);
446 if (tx_status) {
447 success = !tx_status->failure;
448 retry = tx_status->retry + success;
451 if (success) {
452 /* success */
453 info->flags |= IEEE80211_TX_STAT_ACK;
454 } else {
455 /* failure */
456 info->flags &= ~IEEE80211_TX_STAT_ACK;
459 first_idx = info->status.rates[0].idx;
460 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
461 retries = &zd_retry_rates[first_idx];
462 ZD_ASSERT(1 <= retry && retry <= retries->count);
464 info->status.rates[0].idx = retries->rate[0];
465 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
467 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
468 info->status.rates[i].idx = retries->rate[i];
469 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
471 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
472 info->status.rates[i].idx = retries->rate[retry - 1];
473 info->status.rates[i].count = 1; // (success ? 1:2);
475 if (i<IEEE80211_TX_MAX_RATES)
476 info->status.rates[i].idx = -1; /* terminate */
478 info->status.ack_signal = zd_check_signal(hw, ackssi);
479 ieee80211_tx_status_irqsafe(hw, skb);
483 * zd_mac_tx_failed - callback for failed frames
484 * @dev: the mac80211 wireless device
486 * This function is called if a frame couldn't be successfully
487 * transferred. The first frame from the tx queue, will be selected and
488 * reported as error to the upper layers.
490 void zd_mac_tx_failed(struct urb *urb)
492 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
493 struct zd_mac *mac = zd_hw_mac(hw);
494 struct sk_buff_head *q = &mac->ack_wait_queue;
495 struct sk_buff *skb;
496 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
497 unsigned long flags;
498 int success = !tx_status->failure;
499 int retry = tx_status->retry + success;
500 int found = 0;
501 int i, position = 0;
503 q = &mac->ack_wait_queue;
504 spin_lock_irqsave(&q->lock, flags);
506 skb_queue_walk(q, skb) {
507 struct ieee80211_hdr *tx_hdr;
508 struct ieee80211_tx_info *info;
509 int first_idx, final_idx;
510 const struct tx_retry_rate *retries;
511 u8 final_rate;
513 position ++;
515 /* if the hardware reports a failure and we had a 802.11 ACK
516 * pending, then we skip the first skb when searching for a
517 * matching frame */
518 if (tx_status->failure && mac->ack_pending &&
519 skb_queue_is_first(q, skb)) {
520 continue;
523 tx_hdr = (struct ieee80211_hdr *)skb->data;
525 /* we skip all frames not matching the reported destination */
526 if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
527 continue;
530 /* we skip all frames not matching the reported final rate */
532 info = IEEE80211_SKB_CB(skb);
533 first_idx = info->status.rates[0].idx;
534 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
535 retries = &zd_retry_rates[first_idx];
536 if (retry <= 0 || retry > retries->count)
537 continue;
539 final_idx = retries->rate[retry - 1];
540 final_rate = zd_rates[final_idx].hw_value;
542 if (final_rate != tx_status->rate) {
543 continue;
546 found = 1;
547 break;
550 if (found) {
551 for (i=1; i<=position; i++) {
552 skb = __skb_dequeue(q);
553 zd_mac_tx_status(hw, skb,
554 mac->ack_pending ? mac->ack_signal : 0,
555 i == position ? tx_status : NULL);
556 mac->ack_pending = 0;
560 spin_unlock_irqrestore(&q->lock, flags);
564 * zd_mac_tx_to_dev - callback for USB layer
565 * @skb: a &sk_buff pointer
566 * @error: error value, 0 if transmission successful
568 * Informs the MAC layer that the frame has successfully transferred to the
569 * device. If an ACK is required and the transfer to the device has been
570 * successful, the packets are put on the @ack_wait_queue with
571 * the control set removed.
573 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
575 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
576 struct ieee80211_hw *hw = info->rate_driver_data[0];
577 struct zd_mac *mac = zd_hw_mac(hw);
579 ieee80211_tx_info_clear_status(info);
581 skb_pull(skb, sizeof(struct zd_ctrlset));
582 if (unlikely(error ||
583 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
585 * FIXME : do we need to fill in anything ?
587 ieee80211_tx_status_irqsafe(hw, skb);
588 } else {
589 struct sk_buff_head *q = &mac->ack_wait_queue;
591 skb_queue_tail(q, skb);
592 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
593 zd_mac_tx_status(hw, skb_dequeue(q),
594 mac->ack_pending ? mac->ack_signal : 0,
595 NULL);
596 mac->ack_pending = 0;
601 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
603 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
604 * the zd-rate values.
606 static const u8 rate_divisor[] = {
607 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
608 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
609 /* Bits must be doubled. */
610 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
611 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
612 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
613 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
614 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
615 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
616 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
617 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
618 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
619 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
622 u32 bits = (u32)tx_length * 8;
623 u32 divisor;
625 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
626 if (divisor == 0)
627 return -EINVAL;
629 switch (zd_rate) {
630 case ZD_CCK_RATE_5_5M:
631 bits = (2*bits) + 10; /* round up to the next integer */
632 break;
633 case ZD_CCK_RATE_11M:
634 if (service) {
635 u32 t = bits % 11;
636 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
637 if (0 < t && t <= 3) {
638 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
641 bits += 10; /* round up to the next integer */
642 break;
645 return bits/divisor;
648 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
649 struct ieee80211_hdr *header,
650 struct ieee80211_tx_info *info)
653 * CONTROL TODO:
654 * - if backoff needed, enable bit 0
655 * - if burst (backoff not needed) disable bit 0
658 cs->control = 0;
660 /* First fragment */
661 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
662 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
664 /* No ACK expected (multicast, etc.) */
665 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
666 cs->control |= ZD_CS_NO_ACK;
668 /* PS-POLL */
669 if (ieee80211_is_pspoll(header->frame_control))
670 cs->control |= ZD_CS_PS_POLL_FRAME;
672 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
673 cs->control |= ZD_CS_RTS;
675 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
676 cs->control |= ZD_CS_SELF_CTS;
678 /* FIXME: Management frame? */
681 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
683 if (!mac->beacon.cur_beacon)
684 return false;
686 if (mac->beacon.cur_beacon->len != beacon->len)
687 return false;
689 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
692 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
694 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
696 kfree_skb(mac->beacon.cur_beacon);
697 mac->beacon.cur_beacon = NULL;
700 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
702 mutex_lock(&mac->chip.mutex);
703 zd_mac_free_cur_beacon_locked(mac);
704 mutex_unlock(&mac->chip.mutex);
707 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
708 bool in_intr)
710 struct zd_mac *mac = zd_hw_mac(hw);
711 int r, ret, num_cmds, req_pos = 0;
712 u32 tmp, j = 0;
713 /* 4 more bytes for tail CRC */
714 u32 full_len = beacon->len + 4;
715 unsigned long end_jiffies, message_jiffies;
716 struct zd_ioreq32 *ioreqs;
718 mutex_lock(&mac->chip.mutex);
720 /* Check if hw already has this beacon. */
721 if (zd_mac_match_cur_beacon(mac, beacon)) {
722 r = 0;
723 goto out_nofree;
726 /* Alloc memory for full beacon write at once. */
727 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
728 ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
729 if (!ioreqs) {
730 r = -ENOMEM;
731 goto out_nofree;
734 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
735 if (r < 0)
736 goto out;
737 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
738 if (r < 0)
739 goto release_sema;
740 if (in_intr && tmp & 0x2) {
741 r = -EBUSY;
742 goto release_sema;
745 end_jiffies = jiffies + HZ / 2; /*~500ms*/
746 message_jiffies = jiffies + HZ / 10; /*~100ms*/
747 while (tmp & 0x2) {
748 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
749 if (r < 0)
750 goto release_sema;
751 if (time_is_before_eq_jiffies(message_jiffies)) {
752 message_jiffies = jiffies + HZ / 10;
753 dev_err(zd_mac_dev(mac),
754 "CR_BCN_FIFO_SEMAPHORE not ready\n");
755 if (time_is_before_eq_jiffies(end_jiffies)) {
756 dev_err(zd_mac_dev(mac),
757 "Giving up beacon config.\n");
758 r = -ETIMEDOUT;
759 goto reset_device;
762 msleep(20);
765 ioreqs[req_pos].addr = CR_BCN_FIFO;
766 ioreqs[req_pos].value = full_len - 1;
767 req_pos++;
768 if (zd_chip_is_zd1211b(&mac->chip)) {
769 ioreqs[req_pos].addr = CR_BCN_LENGTH;
770 ioreqs[req_pos].value = full_len - 1;
771 req_pos++;
774 for (j = 0 ; j < beacon->len; j++) {
775 ioreqs[req_pos].addr = CR_BCN_FIFO;
776 ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
777 req_pos++;
780 for (j = 0; j < 4; j++) {
781 ioreqs[req_pos].addr = CR_BCN_FIFO;
782 ioreqs[req_pos].value = 0x0;
783 req_pos++;
786 BUG_ON(req_pos != num_cmds);
788 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
790 release_sema:
792 * Try very hard to release device beacon semaphore, as otherwise
793 * device/driver can be left in unusable state.
795 end_jiffies = jiffies + HZ / 2; /*~500ms*/
796 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
797 while (ret < 0) {
798 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
799 ret = -ETIMEDOUT;
800 break;
803 msleep(20);
804 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
807 if (ret < 0)
808 dev_err(zd_mac_dev(mac), "Could not release "
809 "CR_BCN_FIFO_SEMAPHORE!\n");
810 if (r < 0 || ret < 0) {
811 if (r >= 0)
812 r = ret;
814 /* We don't know if beacon was written successfully or not,
815 * so clear current. */
816 zd_mac_free_cur_beacon_locked(mac);
818 goto out;
821 /* Beacon has now been written successfully, update current. */
822 zd_mac_free_cur_beacon_locked(mac);
823 mac->beacon.cur_beacon = beacon;
824 beacon = NULL;
826 /* 802.11b/g 2.4G CCK 1Mb
827 * 802.11a, not yet implemented, uses different values (see GPL vendor
828 * driver)
830 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
831 CR_BCN_PLCP_CFG);
832 out:
833 kfree(ioreqs);
834 out_nofree:
835 kfree_skb(beacon);
836 mutex_unlock(&mac->chip.mutex);
838 return r;
840 reset_device:
841 zd_mac_free_cur_beacon_locked(mac);
842 kfree_skb(beacon);
844 mutex_unlock(&mac->chip.mutex);
845 kfree(ioreqs);
847 /* semaphore stuck, reset device to avoid fw freeze later */
848 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
849 "reseting device...");
850 usb_queue_reset_device(mac->chip.usb.intf);
852 return r;
855 static int fill_ctrlset(struct zd_mac *mac,
856 struct sk_buff *skb)
858 int r;
859 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
860 unsigned int frag_len = skb->len + FCS_LEN;
861 unsigned int packet_length;
862 struct ieee80211_rate *txrate;
863 struct zd_ctrlset *cs = (struct zd_ctrlset *)
864 skb_push(skb, sizeof(struct zd_ctrlset));
865 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
867 ZD_ASSERT(frag_len <= 0xffff);
869 txrate = ieee80211_get_tx_rate(mac->hw, info);
871 cs->modulation = txrate->hw_value;
872 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
873 cs->modulation = txrate->hw_value_short;
875 cs->tx_length = cpu_to_le16(frag_len);
877 cs_set_control(mac, cs, hdr, info);
879 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
880 ZD_ASSERT(packet_length <= 0xffff);
881 /* ZD1211B: Computing the length difference this way, gives us
882 * flexibility to compute the packet length.
884 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
885 packet_length - frag_len : packet_length);
888 * CURRENT LENGTH:
889 * - transmit frame length in microseconds
890 * - seems to be derived from frame length
891 * - see Cal_Us_Service() in zdinlinef.h
892 * - if macp->bTxBurstEnable is enabled, then multiply by 4
893 * - bTxBurstEnable is never set in the vendor driver
895 * SERVICE:
896 * - "for PLCP configuration"
897 * - always 0 except in some situations at 802.11b 11M
898 * - see line 53 of zdinlinef.h
900 cs->service = 0;
901 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
902 le16_to_cpu(cs->tx_length));
903 if (r < 0)
904 return r;
905 cs->current_length = cpu_to_le16(r);
906 cs->next_frame_length = 0;
908 return 0;
912 * zd_op_tx - transmits a network frame to the device
914 * @dev: mac80211 hardware device
915 * @skb: socket buffer
916 * @control: the control structure
918 * This function transmit an IEEE 802.11 network frame to the device. The
919 * control block of the skbuff will be initialized. If necessary the incoming
920 * mac80211 queues will be stopped.
922 static void zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
924 struct zd_mac *mac = zd_hw_mac(hw);
925 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
926 int r;
928 r = fill_ctrlset(mac, skb);
929 if (r)
930 goto fail;
932 info->rate_driver_data[0] = hw;
934 r = zd_usb_tx(&mac->chip.usb, skb);
935 if (r)
936 goto fail;
937 return;
939 fail:
940 dev_kfree_skb(skb);
944 * filter_ack - filters incoming packets for acknowledgements
945 * @dev: the mac80211 device
946 * @rx_hdr: received header
947 * @stats: the status for the received packet
949 * This functions looks for ACK packets and tries to match them with the
950 * frames in the tx queue. If a match is found the frame will be dequeued and
951 * the upper layers is informed about the successful transmission. If
952 * mac80211 queues have been stopped and the number of frames still to be
953 * transmitted is low the queues will be opened again.
955 * Returns 1 if the frame was an ACK, 0 if it was ignored.
957 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
958 struct ieee80211_rx_status *stats)
960 struct zd_mac *mac = zd_hw_mac(hw);
961 struct sk_buff *skb;
962 struct sk_buff_head *q;
963 unsigned long flags;
964 int found = 0;
965 int i, position = 0;
967 if (!ieee80211_is_ack(rx_hdr->frame_control))
968 return 0;
970 q = &mac->ack_wait_queue;
971 spin_lock_irqsave(&q->lock, flags);
972 skb_queue_walk(q, skb) {
973 struct ieee80211_hdr *tx_hdr;
975 position ++;
977 if (mac->ack_pending && skb_queue_is_first(q, skb))
978 continue;
980 tx_hdr = (struct ieee80211_hdr *)skb->data;
981 if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
983 found = 1;
984 break;
988 if (found) {
989 for (i=1; i<position; i++) {
990 skb = __skb_dequeue(q);
991 zd_mac_tx_status(hw, skb,
992 mac->ack_pending ? mac->ack_signal : 0,
993 NULL);
994 mac->ack_pending = 0;
997 mac->ack_pending = 1;
998 mac->ack_signal = stats->signal;
1000 /* Prevent pending tx-packet on AP-mode */
1001 if (mac->type == NL80211_IFTYPE_AP) {
1002 skb = __skb_dequeue(q);
1003 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1004 mac->ack_pending = 0;
1008 spin_unlock_irqrestore(&q->lock, flags);
1009 return 1;
1012 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1014 struct zd_mac *mac = zd_hw_mac(hw);
1015 struct ieee80211_rx_status stats;
1016 const struct rx_status *status;
1017 struct sk_buff *skb;
1018 int bad_frame = 0;
1019 __le16 fc;
1020 int need_padding;
1021 int i;
1022 u8 rate;
1024 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1025 FCS_LEN + sizeof(struct rx_status))
1026 return -EINVAL;
1028 memset(&stats, 0, sizeof(stats));
1030 /* Note about pass_failed_fcs and pass_ctrl access below:
1031 * mac locking intentionally omitted here, as this is the only unlocked
1032 * reader and the only writer is configure_filter. Plus, if there were
1033 * any races accessing these variables, it wouldn't really matter.
1034 * If mac80211 ever provides a way for us to access filter flags
1035 * from outside configure_filter, we could improve on this. Also, this
1036 * situation may change once we implement some kind of DMA-into-skb
1037 * RX path. */
1039 /* Caller has to ensure that length >= sizeof(struct rx_status). */
1040 status = (struct rx_status *)
1041 (buffer + (length - sizeof(struct rx_status)));
1042 if (status->frame_status & ZD_RX_ERROR) {
1043 if (mac->pass_failed_fcs &&
1044 (status->frame_status & ZD_RX_CRC32_ERROR)) {
1045 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1046 bad_frame = 1;
1047 } else {
1048 return -EINVAL;
1052 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1053 stats.band = IEEE80211_BAND_2GHZ;
1054 stats.signal = zd_check_signal(hw, status->signal_strength);
1056 rate = zd_rx_rate(buffer, status);
1058 /* todo: return index in the big switches in zd_rx_rate instead */
1059 for (i = 0; i < mac->band.n_bitrates; i++)
1060 if (rate == mac->band.bitrates[i].hw_value)
1061 stats.rate_idx = i;
1063 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1064 buffer += ZD_PLCP_HEADER_SIZE;
1066 /* Except for bad frames, filter each frame to see if it is an ACK, in
1067 * which case our internal TX tracking is updated. Normally we then
1068 * bail here as there's no need to pass ACKs on up to the stack, but
1069 * there is also the case where the stack has requested us to pass
1070 * control frames on up (pass_ctrl) which we must consider. */
1071 if (!bad_frame &&
1072 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1073 && !mac->pass_ctrl)
1074 return 0;
1076 fc = get_unaligned((__le16*)buffer);
1077 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1079 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1080 if (skb == NULL)
1081 return -ENOMEM;
1082 if (need_padding) {
1083 /* Make sure the payload data is 4 byte aligned. */
1084 skb_reserve(skb, 2);
1087 /* FIXME : could we avoid this big memcpy ? */
1088 memcpy(skb_put(skb, length), buffer, length);
1090 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1091 ieee80211_rx_irqsafe(hw, skb);
1092 return 0;
1095 static int zd_op_add_interface(struct ieee80211_hw *hw,
1096 struct ieee80211_vif *vif)
1098 struct zd_mac *mac = zd_hw_mac(hw);
1100 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1101 if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1102 return -EOPNOTSUPP;
1104 switch (vif->type) {
1105 case NL80211_IFTYPE_MONITOR:
1106 case NL80211_IFTYPE_MESH_POINT:
1107 case NL80211_IFTYPE_STATION:
1108 case NL80211_IFTYPE_ADHOC:
1109 case NL80211_IFTYPE_AP:
1110 mac->type = vif->type;
1111 break;
1112 default:
1113 return -EOPNOTSUPP;
1116 mac->vif = vif;
1118 return set_mac_and_bssid(mac);
1121 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1122 struct ieee80211_vif *vif)
1124 struct zd_mac *mac = zd_hw_mac(hw);
1125 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1126 mac->vif = NULL;
1127 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1128 zd_write_mac_addr(&mac->chip, NULL);
1130 zd_mac_free_cur_beacon(mac);
1133 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1135 struct zd_mac *mac = zd_hw_mac(hw);
1136 struct ieee80211_conf *conf = &hw->conf;
1138 spin_lock_irq(&mac->lock);
1139 mac->channel = conf->channel->hw_value;
1140 spin_unlock_irq(&mac->lock);
1142 return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
1145 static void zd_beacon_done(struct zd_mac *mac)
1147 struct sk_buff *skb, *beacon;
1149 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1150 return;
1151 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1152 return;
1155 * Send out buffered broad- and multicast frames.
1157 while (!ieee80211_queue_stopped(mac->hw, 0)) {
1158 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1159 if (!skb)
1160 break;
1161 zd_op_tx(mac->hw, skb);
1165 * Fetch next beacon so that tim_count is updated.
1167 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1168 if (beacon)
1169 zd_mac_config_beacon(mac->hw, beacon, true);
1171 spin_lock_irq(&mac->lock);
1172 mac->beacon.last_update = jiffies;
1173 spin_unlock_irq(&mac->lock);
1176 static void zd_process_intr(struct work_struct *work)
1178 u16 int_status;
1179 unsigned long flags;
1180 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1182 spin_lock_irqsave(&mac->lock, flags);
1183 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1184 spin_unlock_irqrestore(&mac->lock, flags);
1186 if (int_status & INT_CFG_NEXT_BCN) {
1187 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1188 zd_beacon_done(mac);
1189 } else {
1190 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1193 zd_chip_enable_hwint(&mac->chip);
1197 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1198 struct netdev_hw_addr_list *mc_list)
1200 struct zd_mac *mac = zd_hw_mac(hw);
1201 struct zd_mc_hash hash;
1202 struct netdev_hw_addr *ha;
1204 zd_mc_clear(&hash);
1206 netdev_hw_addr_list_for_each(ha, mc_list) {
1207 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1208 zd_mc_add_addr(&hash, ha->addr);
1211 return hash.low | ((u64)hash.high << 32);
1214 #define SUPPORTED_FIF_FLAGS \
1215 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1216 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1217 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1218 unsigned int changed_flags,
1219 unsigned int *new_flags,
1220 u64 multicast)
1222 struct zd_mc_hash hash = {
1223 .low = multicast,
1224 .high = multicast >> 32,
1226 struct zd_mac *mac = zd_hw_mac(hw);
1227 unsigned long flags;
1228 int r;
1230 /* Only deal with supported flags */
1231 changed_flags &= SUPPORTED_FIF_FLAGS;
1232 *new_flags &= SUPPORTED_FIF_FLAGS;
1235 * If multicast parameter (as returned by zd_op_prepare_multicast)
1236 * has changed, no bit in changed_flags is set. To handle this
1237 * situation, we do not return if changed_flags is 0. If we do so,
1238 * we will have some issue with IPv6 which uses multicast for link
1239 * layer address resolution.
1241 if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
1242 zd_mc_add_all(&hash);
1244 spin_lock_irqsave(&mac->lock, flags);
1245 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1246 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1247 mac->multicast_hash = hash;
1248 spin_unlock_irqrestore(&mac->lock, flags);
1250 zd_chip_set_multicast_hash(&mac->chip, &hash);
1252 if (changed_flags & FIF_CONTROL) {
1253 r = set_rx_filter(mac);
1254 if (r)
1255 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1258 /* no handling required for FIF_OTHER_BSS as we don't currently
1259 * do BSSID filtering */
1260 /* FIXME: in future it would be nice to enable the probe response
1261 * filter (so that the driver doesn't see them) until
1262 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1263 * have to schedule work to enable prbresp reception, which might
1264 * happen too late. For now we'll just listen and forward them all the
1265 * time. */
1268 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1270 mutex_lock(&mac->chip.mutex);
1271 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1272 mutex_unlock(&mac->chip.mutex);
1275 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1276 struct ieee80211_vif *vif,
1277 struct ieee80211_bss_conf *bss_conf,
1278 u32 changes)
1280 struct zd_mac *mac = zd_hw_mac(hw);
1281 int associated;
1283 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1285 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1286 mac->type == NL80211_IFTYPE_ADHOC ||
1287 mac->type == NL80211_IFTYPE_AP) {
1288 associated = true;
1289 if (changes & BSS_CHANGED_BEACON) {
1290 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1292 if (beacon) {
1293 zd_chip_disable_hwint(&mac->chip);
1294 zd_mac_config_beacon(hw, beacon, false);
1295 zd_chip_enable_hwint(&mac->chip);
1299 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1300 u16 interval = 0;
1301 u8 period = 0;
1303 if (bss_conf->enable_beacon) {
1304 period = bss_conf->dtim_period;
1305 interval = bss_conf->beacon_int;
1308 spin_lock_irq(&mac->lock);
1309 mac->beacon.period = period;
1310 mac->beacon.interval = interval;
1311 mac->beacon.last_update = jiffies;
1312 spin_unlock_irq(&mac->lock);
1314 zd_set_beacon_interval(&mac->chip, interval, period,
1315 mac->type);
1317 } else
1318 associated = is_valid_ether_addr(bss_conf->bssid);
1320 spin_lock_irq(&mac->lock);
1321 mac->associated = associated;
1322 spin_unlock_irq(&mac->lock);
1324 /* TODO: do hardware bssid filtering */
1326 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1327 spin_lock_irq(&mac->lock);
1328 mac->short_preamble = bss_conf->use_short_preamble;
1329 spin_unlock_irq(&mac->lock);
1331 set_rts_cts(mac, bss_conf->use_short_preamble);
1335 static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
1337 struct zd_mac *mac = zd_hw_mac(hw);
1338 return zd_chip_get_tsf(&mac->chip);
1341 static const struct ieee80211_ops zd_ops = {
1342 .tx = zd_op_tx,
1343 .start = zd_op_start,
1344 .stop = zd_op_stop,
1345 .add_interface = zd_op_add_interface,
1346 .remove_interface = zd_op_remove_interface,
1347 .config = zd_op_config,
1348 .prepare_multicast = zd_op_prepare_multicast,
1349 .configure_filter = zd_op_configure_filter,
1350 .bss_info_changed = zd_op_bss_info_changed,
1351 .get_tsf = zd_op_get_tsf,
1354 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1356 struct zd_mac *mac;
1357 struct ieee80211_hw *hw;
1359 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1360 if (!hw) {
1361 dev_dbg_f(&intf->dev, "out of memory\n");
1362 return NULL;
1365 mac = zd_hw_mac(hw);
1367 memset(mac, 0, sizeof(*mac));
1368 spin_lock_init(&mac->lock);
1369 mac->hw = hw;
1371 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1373 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1374 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1375 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1376 mac->band.bitrates = mac->rates;
1377 mac->band.n_channels = ARRAY_SIZE(zd_channels);
1378 mac->band.channels = mac->channels;
1380 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1382 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1383 IEEE80211_HW_SIGNAL_UNSPEC |
1384 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1386 hw->wiphy->interface_modes =
1387 BIT(NL80211_IFTYPE_MESH_POINT) |
1388 BIT(NL80211_IFTYPE_STATION) |
1389 BIT(NL80211_IFTYPE_ADHOC) |
1390 BIT(NL80211_IFTYPE_AP);
1392 hw->max_signal = 100;
1393 hw->queues = 1;
1394 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1397 * Tell mac80211 that we support multi rate retries
1399 hw->max_rates = IEEE80211_TX_MAX_RATES;
1400 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
1402 skb_queue_head_init(&mac->ack_wait_queue);
1403 mac->ack_pending = 0;
1405 zd_chip_init(&mac->chip, hw, intf);
1406 housekeeping_init(mac);
1407 beacon_init(mac);
1408 INIT_WORK(&mac->process_intr, zd_process_intr);
1410 SET_IEEE80211_DEV(hw, &intf->dev);
1411 return hw;
1414 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1416 static void beacon_watchdog_handler(struct work_struct *work)
1418 struct zd_mac *mac =
1419 container_of(work, struct zd_mac, beacon.watchdog_work.work);
1420 struct sk_buff *beacon;
1421 unsigned long timeout;
1422 int interval, period;
1424 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1425 goto rearm;
1426 if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1427 goto rearm;
1429 spin_lock_irq(&mac->lock);
1430 interval = mac->beacon.interval;
1431 period = mac->beacon.period;
1432 timeout = mac->beacon.last_update +
1433 msecs_to_jiffies(interval * 1024 / 1000) * 3;
1434 spin_unlock_irq(&mac->lock);
1436 if (interval > 0 && time_is_before_jiffies(timeout)) {
1437 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1438 "restarting. "
1439 "(interval: %d, dtim: %d)\n",
1440 interval, period);
1442 zd_chip_disable_hwint(&mac->chip);
1444 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1445 if (beacon) {
1446 zd_mac_free_cur_beacon(mac);
1448 zd_mac_config_beacon(mac->hw, beacon, false);
1451 zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1453 zd_chip_enable_hwint(&mac->chip);
1455 spin_lock_irq(&mac->lock);
1456 mac->beacon.last_update = jiffies;
1457 spin_unlock_irq(&mac->lock);
1460 rearm:
1461 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1462 BEACON_WATCHDOG_DELAY);
1465 static void beacon_init(struct zd_mac *mac)
1467 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1470 static void beacon_enable(struct zd_mac *mac)
1472 dev_dbg_f(zd_mac_dev(mac), "\n");
1474 mac->beacon.last_update = jiffies;
1475 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1476 BEACON_WATCHDOG_DELAY);
1479 static void beacon_disable(struct zd_mac *mac)
1481 dev_dbg_f(zd_mac_dev(mac), "\n");
1482 cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1484 zd_mac_free_cur_beacon(mac);
1487 #define LINK_LED_WORK_DELAY HZ
1489 static void link_led_handler(struct work_struct *work)
1491 struct zd_mac *mac =
1492 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1493 struct zd_chip *chip = &mac->chip;
1494 int is_associated;
1495 int r;
1497 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1498 goto requeue;
1500 spin_lock_irq(&mac->lock);
1501 is_associated = mac->associated;
1502 spin_unlock_irq(&mac->lock);
1504 r = zd_chip_control_leds(chip,
1505 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1506 if (r)
1507 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1509 requeue:
1510 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1511 LINK_LED_WORK_DELAY);
1514 static void housekeeping_init(struct zd_mac *mac)
1516 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1519 static void housekeeping_enable(struct zd_mac *mac)
1521 dev_dbg_f(zd_mac_dev(mac), "\n");
1522 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1526 static void housekeeping_disable(struct zd_mac *mac)
1528 dev_dbg_f(zd_mac_dev(mac), "\n");
1529 cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1530 zd_chip_control_leds(&mac->chip, ZD_LED_OFF);