mm owner: fix race between swapoff and exit
[linux-2.6/next.git] / arch / sparc / mm / srmmu.c
blobee30462598fc72b763da88077b72438be730cbf4
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/sbus.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
50 #include <asm/btfixup.h>
52 enum mbus_module srmmu_modtype;
53 static unsigned int hwbug_bitmask;
54 int vac_cache_size;
55 int vac_line_size;
57 extern struct resource sparc_iomap;
59 extern unsigned long last_valid_pfn;
61 extern unsigned long page_kernel;
63 static pgd_t *srmmu_swapper_pg_dir;
65 #ifdef CONFIG_SMP
66 #define FLUSH_BEGIN(mm)
67 #define FLUSH_END
68 #else
69 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
70 #define FLUSH_END }
71 #endif
73 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
74 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
76 int flush_page_for_dma_global = 1;
78 #ifdef CONFIG_SMP
79 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
80 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
81 #endif
83 char *srmmu_name;
85 ctxd_t *srmmu_ctx_table_phys;
86 static ctxd_t *srmmu_context_table;
88 int viking_mxcc_present;
89 static DEFINE_SPINLOCK(srmmu_context_spinlock);
91 static int is_hypersparc;
94 * In general all page table modifications should use the V8 atomic
95 * swap instruction. This insures the mmu and the cpu are in sync
96 * with respect to ref/mod bits in the page tables.
98 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
100 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
101 return value;
104 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
106 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
109 /* The very generic SRMMU page table operations. */
110 static inline int srmmu_device_memory(unsigned long x)
112 return ((x & 0xF0000000) != 0);
115 static int srmmu_cache_pagetables;
117 /* these will be initialized in srmmu_nocache_calcsize() */
118 static unsigned long srmmu_nocache_size;
119 static unsigned long srmmu_nocache_end;
121 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
122 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
124 /* The context table is a nocache user with the biggest alignment needs. */
125 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
127 void *srmmu_nocache_pool;
128 void *srmmu_nocache_bitmap;
129 static struct bit_map srmmu_nocache_map;
131 static unsigned long srmmu_pte_pfn(pte_t pte)
133 if (srmmu_device_memory(pte_val(pte))) {
134 /* Just return something that will cause
135 * pfn_valid() to return false. This makes
136 * copy_one_pte() to just directly copy to
137 * PTE over.
139 return ~0UL;
141 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
144 static struct page *srmmu_pmd_page(pmd_t pmd)
147 if (srmmu_device_memory(pmd_val(pmd)))
148 BUG();
149 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
152 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
153 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
156 static inline int srmmu_pte_none(pte_t pte)
157 { return !(pte_val(pte) & 0xFFFFFFF); }
159 static inline int srmmu_pte_present(pte_t pte)
160 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162 static inline void srmmu_pte_clear(pte_t *ptep)
163 { srmmu_set_pte(ptep, __pte(0)); }
165 static inline int srmmu_pmd_none(pmd_t pmd)
166 { return !(pmd_val(pmd) & 0xFFFFFFF); }
168 static inline int srmmu_pmd_bad(pmd_t pmd)
169 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
171 static inline int srmmu_pmd_present(pmd_t pmd)
172 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
174 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
175 int i;
176 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
177 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
180 static inline int srmmu_pgd_none(pgd_t pgd)
181 { return !(pgd_val(pgd) & 0xFFFFFFF); }
183 static inline int srmmu_pgd_bad(pgd_t pgd)
184 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
186 static inline int srmmu_pgd_present(pgd_t pgd)
187 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
189 static inline void srmmu_pgd_clear(pgd_t * pgdp)
190 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
192 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
193 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
195 static inline pte_t srmmu_pte_mkclean(pte_t pte)
196 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
198 static inline pte_t srmmu_pte_mkold(pte_t pte)
199 { return __pte(pte_val(pte) & ~SRMMU_REF);}
201 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
202 { return __pte(pte_val(pte) | SRMMU_WRITE);}
204 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
205 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
207 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
208 { return __pte(pte_val(pte) | SRMMU_REF);}
211 * Conversion functions: convert a page and protection to a page entry,
212 * and a page entry and page directory to the page they refer to.
214 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
215 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
217 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
218 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
220 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
221 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
223 /* XXX should we hyper_flush_whole_icache here - Anton */
224 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
225 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
227 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
228 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
230 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
232 unsigned long ptp; /* Physical address, shifted right by 4 */
233 int i;
235 ptp = __nocache_pa((unsigned long) ptep) >> 4;
236 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
237 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
238 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
242 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
244 unsigned long ptp; /* Physical address, shifted right by 4 */
245 int i;
247 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
248 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
249 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
250 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
254 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
255 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
257 /* to find an entry in a top-level page table... */
258 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
259 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
261 /* Find an entry in the second-level page table.. */
262 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
264 return (pmd_t *) srmmu_pgd_page(*dir) +
265 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
268 /* Find an entry in the third-level page table.. */
269 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
271 void *pte;
273 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
274 return (pte_t *) pte +
275 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
278 static unsigned long srmmu_swp_type(swp_entry_t entry)
280 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
283 static unsigned long srmmu_swp_offset(swp_entry_t entry)
285 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
288 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
290 return (swp_entry_t) {
291 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
292 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
296 * size: bytes to allocate in the nocache area.
297 * align: bytes, number to align at.
298 * Returns the virtual address of the allocated area.
300 static unsigned long __srmmu_get_nocache(int size, int align)
302 int offset;
304 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
305 printk("Size 0x%x too small for nocache request\n", size);
306 size = SRMMU_NOCACHE_BITMAP_SHIFT;
308 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
309 printk("Size 0x%x unaligned int nocache request\n", size);
310 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
312 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
314 offset = bit_map_string_get(&srmmu_nocache_map,
315 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
316 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317 if (offset == -1) {
318 printk("srmmu: out of nocache %d: %d/%d\n",
319 size, (int) srmmu_nocache_size,
320 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
321 return 0;
324 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
327 static unsigned long srmmu_get_nocache(int size, int align)
329 unsigned long tmp;
331 tmp = __srmmu_get_nocache(size, align);
333 if (tmp)
334 memset((void *)tmp, 0, size);
336 return tmp;
339 static void srmmu_free_nocache(unsigned long vaddr, int size)
341 int offset;
343 if (vaddr < SRMMU_NOCACHE_VADDR) {
344 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
345 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
346 BUG();
348 if (vaddr+size > srmmu_nocache_end) {
349 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
350 vaddr, srmmu_nocache_end);
351 BUG();
353 if (size & (size-1)) {
354 printk("Size 0x%x is not a power of 2\n", size);
355 BUG();
357 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
358 printk("Size 0x%x is too small\n", size);
359 BUG();
361 if (vaddr & (size-1)) {
362 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
363 BUG();
366 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
367 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
369 bit_map_clear(&srmmu_nocache_map, offset, size);
372 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
373 unsigned long end);
375 extern unsigned long probe_memory(void); /* in fault.c */
378 * Reserve nocache dynamically proportionally to the amount of
379 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
381 static void srmmu_nocache_calcsize(void)
383 unsigned long sysmemavail = probe_memory() / 1024;
384 int srmmu_nocache_npages;
386 srmmu_nocache_npages =
387 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
389 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
390 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
391 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
392 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
394 /* anything above 1280 blows up */
395 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
396 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
398 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
399 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
402 static void __init srmmu_nocache_init(void)
404 unsigned int bitmap_bits;
405 pgd_t *pgd;
406 pmd_t *pmd;
407 pte_t *pte;
408 unsigned long paddr, vaddr;
409 unsigned long pteval;
411 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
413 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
414 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
415 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
417 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
418 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
420 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
421 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
422 init_mm.pgd = srmmu_swapper_pg_dir;
424 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
426 paddr = __pa((unsigned long)srmmu_nocache_pool);
427 vaddr = SRMMU_NOCACHE_VADDR;
429 while (vaddr < srmmu_nocache_end) {
430 pgd = pgd_offset_k(vaddr);
431 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
432 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
434 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
436 if (srmmu_cache_pagetables)
437 pteval |= SRMMU_CACHE;
439 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
441 vaddr += PAGE_SIZE;
442 paddr += PAGE_SIZE;
445 flush_cache_all();
446 flush_tlb_all();
449 static inline pgd_t *srmmu_get_pgd_fast(void)
451 pgd_t *pgd = NULL;
453 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
454 if (pgd) {
455 pgd_t *init = pgd_offset_k(0);
456 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
457 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
458 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
461 return pgd;
464 static void srmmu_free_pgd_fast(pgd_t *pgd)
466 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
469 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
471 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
474 static void srmmu_pmd_free(pmd_t * pmd)
476 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
480 * Hardware needs alignment to 256 only, but we align to whole page size
481 * to reduce fragmentation problems due to the buddy principle.
482 * XXX Provide actual fragmentation statistics in /proc.
484 * Alignments up to the page size are the same for physical and virtual
485 * addresses of the nocache area.
487 static pte_t *
488 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
490 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
493 static pgtable_t
494 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
496 unsigned long pte;
497 struct page *page;
499 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
500 return NULL;
501 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
502 pgtable_page_ctor(page);
503 return page;
506 static void srmmu_free_pte_fast(pte_t *pte)
508 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
511 static void srmmu_pte_free(pgtable_t pte)
513 unsigned long p;
515 pgtable_page_dtor(pte);
516 p = (unsigned long)page_address(pte); /* Cached address (for test) */
517 if (p == 0)
518 BUG();
519 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
520 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
521 srmmu_free_nocache(p, PTE_SIZE);
526 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
528 struct ctx_list *ctxp;
530 ctxp = ctx_free.next;
531 if(ctxp != &ctx_free) {
532 remove_from_ctx_list(ctxp);
533 add_to_used_ctxlist(ctxp);
534 mm->context = ctxp->ctx_number;
535 ctxp->ctx_mm = mm;
536 return;
538 ctxp = ctx_used.next;
539 if(ctxp->ctx_mm == old_mm)
540 ctxp = ctxp->next;
541 if(ctxp == &ctx_used)
542 panic("out of mmu contexts");
543 flush_cache_mm(ctxp->ctx_mm);
544 flush_tlb_mm(ctxp->ctx_mm);
545 remove_from_ctx_list(ctxp);
546 add_to_used_ctxlist(ctxp);
547 ctxp->ctx_mm->context = NO_CONTEXT;
548 ctxp->ctx_mm = mm;
549 mm->context = ctxp->ctx_number;
552 static inline void free_context(int context)
554 struct ctx_list *ctx_old;
556 ctx_old = ctx_list_pool + context;
557 remove_from_ctx_list(ctx_old);
558 add_to_free_ctxlist(ctx_old);
562 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
563 struct task_struct *tsk, int cpu)
565 if(mm->context == NO_CONTEXT) {
566 spin_lock(&srmmu_context_spinlock);
567 alloc_context(old_mm, mm);
568 spin_unlock(&srmmu_context_spinlock);
569 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
572 if (is_hypersparc)
573 hyper_flush_whole_icache();
575 srmmu_set_context(mm->context);
578 /* Low level IO area allocation on the SRMMU. */
579 static inline void srmmu_mapioaddr(unsigned long physaddr,
580 unsigned long virt_addr, int bus_type)
582 pgd_t *pgdp;
583 pmd_t *pmdp;
584 pte_t *ptep;
585 unsigned long tmp;
587 physaddr &= PAGE_MASK;
588 pgdp = pgd_offset_k(virt_addr);
589 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
590 ptep = srmmu_pte_offset(pmdp, virt_addr);
591 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
594 * I need to test whether this is consistent over all
595 * sun4m's. The bus_type represents the upper 4 bits of
596 * 36-bit physical address on the I/O space lines...
598 tmp |= (bus_type << 28);
599 tmp |= SRMMU_PRIV;
600 __flush_page_to_ram(virt_addr);
601 srmmu_set_pte(ptep, __pte(tmp));
604 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
605 unsigned long xva, unsigned int len)
607 while (len != 0) {
608 len -= PAGE_SIZE;
609 srmmu_mapioaddr(xpa, xva, bus);
610 xva += PAGE_SIZE;
611 xpa += PAGE_SIZE;
613 flush_tlb_all();
616 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
618 pgd_t *pgdp;
619 pmd_t *pmdp;
620 pte_t *ptep;
622 pgdp = pgd_offset_k(virt_addr);
623 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
624 ptep = srmmu_pte_offset(pmdp, virt_addr);
626 /* No need to flush uncacheable page. */
627 srmmu_pte_clear(ptep);
630 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
632 while (len != 0) {
633 len -= PAGE_SIZE;
634 srmmu_unmapioaddr(virt_addr);
635 virt_addr += PAGE_SIZE;
637 flush_tlb_all();
641 * On the SRMMU we do not have the problems with limited tlb entries
642 * for mapping kernel pages, so we just take things from the free page
643 * pool. As a side effect we are putting a little too much pressure
644 * on the gfp() subsystem. This setup also makes the logic of the
645 * iommu mapping code a lot easier as we can transparently handle
646 * mappings on the kernel stack without any special code as we did
647 * need on the sun4c.
649 static struct thread_info *srmmu_alloc_thread_info(void)
651 struct thread_info *ret;
653 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
654 THREAD_INFO_ORDER);
655 #ifdef CONFIG_DEBUG_STACK_USAGE
656 if (ret)
657 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
658 #endif /* DEBUG_STACK_USAGE */
660 return ret;
663 static void srmmu_free_thread_info(struct thread_info *ti)
665 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
668 /* tsunami.S */
669 extern void tsunami_flush_cache_all(void);
670 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
671 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
672 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
673 extern void tsunami_flush_page_to_ram(unsigned long page);
674 extern void tsunami_flush_page_for_dma(unsigned long page);
675 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
676 extern void tsunami_flush_tlb_all(void);
677 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
678 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
679 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
680 extern void tsunami_setup_blockops(void);
683 * Workaround, until we find what's going on with Swift. When low on memory,
684 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
685 * out it is already in page tables/ fault again on the same instruction.
686 * I really don't understand it, have checked it and contexts
687 * are right, flush_tlb_all is done as well, and it faults again...
688 * Strange. -jj
690 * The following code is a deadwood that may be necessary when
691 * we start to make precise page flushes again. --zaitcev
693 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
695 #if 0
696 static unsigned long last;
697 unsigned int val;
698 /* unsigned int n; */
700 if (address == last) {
701 val = srmmu_hwprobe(address);
702 if (val != 0 && pte_val(pte) != val) {
703 printk("swift_update_mmu_cache: "
704 "addr %lx put %08x probed %08x from %p\n",
705 address, pte_val(pte), val,
706 __builtin_return_address(0));
707 srmmu_flush_whole_tlb();
710 last = address;
711 #endif
714 /* swift.S */
715 extern void swift_flush_cache_all(void);
716 extern void swift_flush_cache_mm(struct mm_struct *mm);
717 extern void swift_flush_cache_range(struct vm_area_struct *vma,
718 unsigned long start, unsigned long end);
719 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
720 extern void swift_flush_page_to_ram(unsigned long page);
721 extern void swift_flush_page_for_dma(unsigned long page);
722 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
723 extern void swift_flush_tlb_all(void);
724 extern void swift_flush_tlb_mm(struct mm_struct *mm);
725 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
726 unsigned long start, unsigned long end);
727 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
729 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
730 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
732 int cctx, ctx1;
734 page &= PAGE_MASK;
735 if ((ctx1 = vma->vm_mm->context) != -1) {
736 cctx = srmmu_get_context();
737 /* Is context # ever different from current context? P3 */
738 if (cctx != ctx1) {
739 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
740 srmmu_set_context(ctx1);
741 swift_flush_page(page);
742 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
743 "r" (page), "i" (ASI_M_FLUSH_PROBE));
744 srmmu_set_context(cctx);
745 } else {
746 /* Rm. prot. bits from virt. c. */
747 /* swift_flush_cache_all(); */
748 /* swift_flush_cache_page(vma, page); */
749 swift_flush_page(page);
751 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
752 "r" (page), "i" (ASI_M_FLUSH_PROBE));
753 /* same as above: srmmu_flush_tlb_page() */
757 #endif
760 * The following are all MBUS based SRMMU modules, and therefore could
761 * be found in a multiprocessor configuration. On the whole, these
762 * chips seems to be much more touchy about DVMA and page tables
763 * with respect to cache coherency.
766 /* Cypress flushes. */
767 static void cypress_flush_cache_all(void)
769 volatile unsigned long cypress_sucks;
770 unsigned long faddr, tagval;
772 flush_user_windows();
773 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
774 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
775 "=r" (tagval) :
776 "r" (faddr), "r" (0x40000),
777 "i" (ASI_M_DATAC_TAG));
779 /* If modified and valid, kick it. */
780 if((tagval & 0x60) == 0x60)
781 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
785 static void cypress_flush_cache_mm(struct mm_struct *mm)
787 register unsigned long a, b, c, d, e, f, g;
788 unsigned long flags, faddr;
789 int octx;
791 FLUSH_BEGIN(mm)
792 flush_user_windows();
793 local_irq_save(flags);
794 octx = srmmu_get_context();
795 srmmu_set_context(mm->context);
796 a = 0x20; b = 0x40; c = 0x60;
797 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
799 faddr = (0x10000 - 0x100);
800 goto inside;
801 do {
802 faddr -= 0x100;
803 inside:
804 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
805 "sta %%g0, [%0 + %2] %1\n\t"
806 "sta %%g0, [%0 + %3] %1\n\t"
807 "sta %%g0, [%0 + %4] %1\n\t"
808 "sta %%g0, [%0 + %5] %1\n\t"
809 "sta %%g0, [%0 + %6] %1\n\t"
810 "sta %%g0, [%0 + %7] %1\n\t"
811 "sta %%g0, [%0 + %8] %1\n\t" : :
812 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
813 "r" (a), "r" (b), "r" (c), "r" (d),
814 "r" (e), "r" (f), "r" (g));
815 } while(faddr);
816 srmmu_set_context(octx);
817 local_irq_restore(flags);
818 FLUSH_END
821 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
823 struct mm_struct *mm = vma->vm_mm;
824 register unsigned long a, b, c, d, e, f, g;
825 unsigned long flags, faddr;
826 int octx;
828 FLUSH_BEGIN(mm)
829 flush_user_windows();
830 local_irq_save(flags);
831 octx = srmmu_get_context();
832 srmmu_set_context(mm->context);
833 a = 0x20; b = 0x40; c = 0x60;
834 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
836 start &= SRMMU_REAL_PMD_MASK;
837 while(start < end) {
838 faddr = (start + (0x10000 - 0x100));
839 goto inside;
840 do {
841 faddr -= 0x100;
842 inside:
843 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
844 "sta %%g0, [%0 + %2] %1\n\t"
845 "sta %%g0, [%0 + %3] %1\n\t"
846 "sta %%g0, [%0 + %4] %1\n\t"
847 "sta %%g0, [%0 + %5] %1\n\t"
848 "sta %%g0, [%0 + %6] %1\n\t"
849 "sta %%g0, [%0 + %7] %1\n\t"
850 "sta %%g0, [%0 + %8] %1\n\t" : :
851 "r" (faddr),
852 "i" (ASI_M_FLUSH_SEG),
853 "r" (a), "r" (b), "r" (c), "r" (d),
854 "r" (e), "r" (f), "r" (g));
855 } while (faddr != start);
856 start += SRMMU_REAL_PMD_SIZE;
858 srmmu_set_context(octx);
859 local_irq_restore(flags);
860 FLUSH_END
863 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
865 register unsigned long a, b, c, d, e, f, g;
866 struct mm_struct *mm = vma->vm_mm;
867 unsigned long flags, line;
868 int octx;
870 FLUSH_BEGIN(mm)
871 flush_user_windows();
872 local_irq_save(flags);
873 octx = srmmu_get_context();
874 srmmu_set_context(mm->context);
875 a = 0x20; b = 0x40; c = 0x60;
876 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
878 page &= PAGE_MASK;
879 line = (page + PAGE_SIZE) - 0x100;
880 goto inside;
881 do {
882 line -= 0x100;
883 inside:
884 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
885 "sta %%g0, [%0 + %2] %1\n\t"
886 "sta %%g0, [%0 + %3] %1\n\t"
887 "sta %%g0, [%0 + %4] %1\n\t"
888 "sta %%g0, [%0 + %5] %1\n\t"
889 "sta %%g0, [%0 + %6] %1\n\t"
890 "sta %%g0, [%0 + %7] %1\n\t"
891 "sta %%g0, [%0 + %8] %1\n\t" : :
892 "r" (line),
893 "i" (ASI_M_FLUSH_PAGE),
894 "r" (a), "r" (b), "r" (c), "r" (d),
895 "r" (e), "r" (f), "r" (g));
896 } while(line != page);
897 srmmu_set_context(octx);
898 local_irq_restore(flags);
899 FLUSH_END
902 /* Cypress is copy-back, at least that is how we configure it. */
903 static void cypress_flush_page_to_ram(unsigned long page)
905 register unsigned long a, b, c, d, e, f, g;
906 unsigned long line;
908 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
909 page &= PAGE_MASK;
910 line = (page + PAGE_SIZE) - 0x100;
911 goto inside;
912 do {
913 line -= 0x100;
914 inside:
915 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
916 "sta %%g0, [%0 + %2] %1\n\t"
917 "sta %%g0, [%0 + %3] %1\n\t"
918 "sta %%g0, [%0 + %4] %1\n\t"
919 "sta %%g0, [%0 + %5] %1\n\t"
920 "sta %%g0, [%0 + %6] %1\n\t"
921 "sta %%g0, [%0 + %7] %1\n\t"
922 "sta %%g0, [%0 + %8] %1\n\t" : :
923 "r" (line),
924 "i" (ASI_M_FLUSH_PAGE),
925 "r" (a), "r" (b), "r" (c), "r" (d),
926 "r" (e), "r" (f), "r" (g));
927 } while(line != page);
930 /* Cypress is also IO cache coherent. */
931 static void cypress_flush_page_for_dma(unsigned long page)
935 /* Cypress has unified L2 VIPT, from which both instructions and data
936 * are stored. It does not have an onboard icache of any sort, therefore
937 * no flush is necessary.
939 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
943 static void cypress_flush_tlb_all(void)
945 srmmu_flush_whole_tlb();
948 static void cypress_flush_tlb_mm(struct mm_struct *mm)
950 FLUSH_BEGIN(mm)
951 __asm__ __volatile__(
952 "lda [%0] %3, %%g5\n\t"
953 "sta %2, [%0] %3\n\t"
954 "sta %%g0, [%1] %4\n\t"
955 "sta %%g5, [%0] %3\n"
956 : /* no outputs */
957 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
958 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
959 : "g5");
960 FLUSH_END
963 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
965 struct mm_struct *mm = vma->vm_mm;
966 unsigned long size;
968 FLUSH_BEGIN(mm)
969 start &= SRMMU_PGDIR_MASK;
970 size = SRMMU_PGDIR_ALIGN(end) - start;
971 __asm__ __volatile__(
972 "lda [%0] %5, %%g5\n\t"
973 "sta %1, [%0] %5\n"
974 "1:\n\t"
975 "subcc %3, %4, %3\n\t"
976 "bne 1b\n\t"
977 " sta %%g0, [%2 + %3] %6\n\t"
978 "sta %%g5, [%0] %5\n"
979 : /* no outputs */
980 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
981 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
982 "i" (ASI_M_FLUSH_PROBE)
983 : "g5", "cc");
984 FLUSH_END
987 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
989 struct mm_struct *mm = vma->vm_mm;
991 FLUSH_BEGIN(mm)
992 __asm__ __volatile__(
993 "lda [%0] %3, %%g5\n\t"
994 "sta %1, [%0] %3\n\t"
995 "sta %%g0, [%2] %4\n\t"
996 "sta %%g5, [%0] %3\n"
997 : /* no outputs */
998 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
999 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1000 : "g5");
1001 FLUSH_END
1004 /* viking.S */
1005 extern void viking_flush_cache_all(void);
1006 extern void viking_flush_cache_mm(struct mm_struct *mm);
1007 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1008 unsigned long end);
1009 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1010 extern void viking_flush_page_to_ram(unsigned long page);
1011 extern void viking_flush_page_for_dma(unsigned long page);
1012 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1013 extern void viking_flush_page(unsigned long page);
1014 extern void viking_mxcc_flush_page(unsigned long page);
1015 extern void viking_flush_tlb_all(void);
1016 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1017 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1018 unsigned long end);
1019 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1020 unsigned long page);
1021 extern void sun4dsmp_flush_tlb_all(void);
1022 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1023 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1024 unsigned long end);
1025 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1026 unsigned long page);
1028 /* hypersparc.S */
1029 extern void hypersparc_flush_cache_all(void);
1030 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1031 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1032 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1033 extern void hypersparc_flush_page_to_ram(unsigned long page);
1034 extern void hypersparc_flush_page_for_dma(unsigned long page);
1035 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1036 extern void hypersparc_flush_tlb_all(void);
1037 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1038 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1039 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1040 extern void hypersparc_setup_blockops(void);
1043 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1044 * kernel mappings are done with one single contiguous chunk of
1045 * ram. On small ram machines (classics mainly) we only get
1046 * around 8mb mapped for us.
1049 static void __init early_pgtable_allocfail(char *type)
1051 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1052 prom_halt();
1055 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1056 unsigned long end)
1058 pgd_t *pgdp;
1059 pmd_t *pmdp;
1060 pte_t *ptep;
1062 while(start < end) {
1063 pgdp = pgd_offset_k(start);
1064 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1065 pmdp = (pmd_t *) __srmmu_get_nocache(
1066 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1067 if (pmdp == NULL)
1068 early_pgtable_allocfail("pmd");
1069 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1070 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1072 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1073 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1074 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1075 if (ptep == NULL)
1076 early_pgtable_allocfail("pte");
1077 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1078 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1080 if (start > (0xffffffffUL - PMD_SIZE))
1081 break;
1082 start = (start + PMD_SIZE) & PMD_MASK;
1086 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1087 unsigned long end)
1089 pgd_t *pgdp;
1090 pmd_t *pmdp;
1091 pte_t *ptep;
1093 while(start < end) {
1094 pgdp = pgd_offset_k(start);
1095 if(srmmu_pgd_none(*pgdp)) {
1096 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1097 if (pmdp == NULL)
1098 early_pgtable_allocfail("pmd");
1099 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1100 srmmu_pgd_set(pgdp, pmdp);
1102 pmdp = srmmu_pmd_offset(pgdp, start);
1103 if(srmmu_pmd_none(*pmdp)) {
1104 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1105 PTE_SIZE);
1106 if (ptep == NULL)
1107 early_pgtable_allocfail("pte");
1108 memset(ptep, 0, PTE_SIZE);
1109 srmmu_pmd_set(pmdp, ptep);
1111 if (start > (0xffffffffUL - PMD_SIZE))
1112 break;
1113 start = (start + PMD_SIZE) & PMD_MASK;
1118 * This is much cleaner than poking around physical address space
1119 * looking at the prom's page table directly which is what most
1120 * other OS's do. Yuck... this is much better.
1122 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1123 unsigned long end)
1125 pgd_t *pgdp;
1126 pmd_t *pmdp;
1127 pte_t *ptep;
1128 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1129 unsigned long prompte;
1131 while(start <= end) {
1132 if (start == 0)
1133 break; /* probably wrap around */
1134 if(start == 0xfef00000)
1135 start = KADB_DEBUGGER_BEGVM;
1136 if(!(prompte = srmmu_hwprobe(start))) {
1137 start += PAGE_SIZE;
1138 continue;
1141 /* A red snapper, see what it really is. */
1142 what = 0;
1144 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1145 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1146 what = 1;
1149 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1150 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1151 prompte)
1152 what = 2;
1155 pgdp = pgd_offset_k(start);
1156 if(what == 2) {
1157 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1158 start += SRMMU_PGDIR_SIZE;
1159 continue;
1161 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1162 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1163 if (pmdp == NULL)
1164 early_pgtable_allocfail("pmd");
1165 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1166 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1168 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1169 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1170 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1171 PTE_SIZE);
1172 if (ptep == NULL)
1173 early_pgtable_allocfail("pte");
1174 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1175 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1177 if(what == 1) {
1179 * We bend the rule where all 16 PTPs in a pmd_t point
1180 * inside the same PTE page, and we leak a perfectly
1181 * good hardware PTE piece. Alternatives seem worse.
1183 unsigned int x; /* Index of HW PMD in soft cluster */
1184 x = (start >> PMD_SHIFT) & 15;
1185 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1186 start += SRMMU_REAL_PMD_SIZE;
1187 continue;
1189 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1190 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1191 start += PAGE_SIZE;
1195 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1197 /* Create a third-level SRMMU 16MB page mapping. */
1198 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1200 pgd_t *pgdp = pgd_offset_k(vaddr);
1201 unsigned long big_pte;
1203 big_pte = KERNEL_PTE(phys_base >> 4);
1204 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1207 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1208 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1210 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1211 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1212 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1213 /* Map "low" memory only */
1214 const unsigned long min_vaddr = PAGE_OFFSET;
1215 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1217 if (vstart < min_vaddr || vstart >= max_vaddr)
1218 return vstart;
1220 if (vend > max_vaddr || vend < min_vaddr)
1221 vend = max_vaddr;
1223 while(vstart < vend) {
1224 do_large_mapping(vstart, pstart);
1225 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1227 return vstart;
1230 static inline void memprobe_error(char *msg)
1232 prom_printf(msg);
1233 prom_printf("Halting now...\n");
1234 prom_halt();
1237 static inline void map_kernel(void)
1239 int i;
1241 if (phys_base > 0) {
1242 do_large_mapping(PAGE_OFFSET, phys_base);
1245 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1246 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1249 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1252 /* Paging initialization on the Sparc Reference MMU. */
1253 extern void sparc_context_init(int);
1255 void (*poke_srmmu)(void) __initdata = NULL;
1257 extern unsigned long bootmem_init(unsigned long *pages_avail);
1259 void __init srmmu_paging_init(void)
1261 int i, cpunode;
1262 char node_str[128];
1263 pgd_t *pgd;
1264 pmd_t *pmd;
1265 pte_t *pte;
1266 unsigned long pages_avail;
1268 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1270 if (sparc_cpu_model == sun4d)
1271 num_contexts = 65536; /* We know it is Viking */
1272 else {
1273 /* Find the number of contexts on the srmmu. */
1274 cpunode = prom_getchild(prom_root_node);
1275 num_contexts = 0;
1276 while(cpunode != 0) {
1277 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1278 if(!strcmp(node_str, "cpu")) {
1279 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1280 break;
1282 cpunode = prom_getsibling(cpunode);
1286 if(!num_contexts) {
1287 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1288 prom_halt();
1291 pages_avail = 0;
1292 last_valid_pfn = bootmem_init(&pages_avail);
1294 srmmu_nocache_calcsize();
1295 srmmu_nocache_init();
1296 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1297 map_kernel();
1299 /* ctx table has to be physically aligned to its size */
1300 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1301 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1303 for(i = 0; i < num_contexts; i++)
1304 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1306 flush_cache_all();
1307 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1308 #ifdef CONFIG_SMP
1309 /* Stop from hanging here... */
1310 local_flush_tlb_all();
1311 #else
1312 flush_tlb_all();
1313 #endif
1314 poke_srmmu();
1316 #ifdef CONFIG_SUN_IO
1317 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1318 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1319 #endif
1321 srmmu_allocate_ptable_skeleton(
1322 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1323 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1325 pgd = pgd_offset_k(PKMAP_BASE);
1326 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1327 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1328 pkmap_page_table = pte;
1330 flush_cache_all();
1331 flush_tlb_all();
1333 sparc_context_init(num_contexts);
1335 kmap_init();
1338 unsigned long zones_size[MAX_NR_ZONES];
1339 unsigned long zholes_size[MAX_NR_ZONES];
1340 unsigned long npages;
1341 int znum;
1343 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1344 zones_size[znum] = zholes_size[znum] = 0;
1346 npages = max_low_pfn - pfn_base;
1348 zones_size[ZONE_DMA] = npages;
1349 zholes_size[ZONE_DMA] = npages - pages_avail;
1351 npages = highend_pfn - max_low_pfn;
1352 zones_size[ZONE_HIGHMEM] = npages;
1353 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1355 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1359 static void srmmu_mmu_info(struct seq_file *m)
1361 seq_printf(m,
1362 "MMU type\t: %s\n"
1363 "contexts\t: %d\n"
1364 "nocache total\t: %ld\n"
1365 "nocache used\t: %d\n",
1366 srmmu_name,
1367 num_contexts,
1368 srmmu_nocache_size,
1369 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1372 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1376 static void srmmu_destroy_context(struct mm_struct *mm)
1379 if(mm->context != NO_CONTEXT) {
1380 flush_cache_mm(mm);
1381 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1382 flush_tlb_mm(mm);
1383 spin_lock(&srmmu_context_spinlock);
1384 free_context(mm->context);
1385 spin_unlock(&srmmu_context_spinlock);
1386 mm->context = NO_CONTEXT;
1390 /* Init various srmmu chip types. */
1391 static void __init srmmu_is_bad(void)
1393 prom_printf("Could not determine SRMMU chip type.\n");
1394 prom_halt();
1397 static void __init init_vac_layout(void)
1399 int nd, cache_lines;
1400 char node_str[128];
1401 #ifdef CONFIG_SMP
1402 int cpu = 0;
1403 unsigned long max_size = 0;
1404 unsigned long min_line_size = 0x10000000;
1405 #endif
1407 nd = prom_getchild(prom_root_node);
1408 while((nd = prom_getsibling(nd)) != 0) {
1409 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1410 if(!strcmp(node_str, "cpu")) {
1411 vac_line_size = prom_getint(nd, "cache-line-size");
1412 if (vac_line_size == -1) {
1413 prom_printf("can't determine cache-line-size, "
1414 "halting.\n");
1415 prom_halt();
1417 cache_lines = prom_getint(nd, "cache-nlines");
1418 if (cache_lines == -1) {
1419 prom_printf("can't determine cache-nlines, halting.\n");
1420 prom_halt();
1423 vac_cache_size = cache_lines * vac_line_size;
1424 #ifdef CONFIG_SMP
1425 if(vac_cache_size > max_size)
1426 max_size = vac_cache_size;
1427 if(vac_line_size < min_line_size)
1428 min_line_size = vac_line_size;
1429 //FIXME: cpus not contiguous!!
1430 cpu++;
1431 if (cpu >= NR_CPUS || !cpu_online(cpu))
1432 break;
1433 #else
1434 break;
1435 #endif
1438 if(nd == 0) {
1439 prom_printf("No CPU nodes found, halting.\n");
1440 prom_halt();
1442 #ifdef CONFIG_SMP
1443 vac_cache_size = max_size;
1444 vac_line_size = min_line_size;
1445 #endif
1446 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1447 (int)vac_cache_size, (int)vac_line_size);
1450 static void __init poke_hypersparc(void)
1452 volatile unsigned long clear;
1453 unsigned long mreg = srmmu_get_mmureg();
1455 hyper_flush_unconditional_combined();
1457 mreg &= ~(HYPERSPARC_CWENABLE);
1458 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1459 mreg |= (HYPERSPARC_CMODE);
1461 srmmu_set_mmureg(mreg);
1463 #if 0 /* XXX I think this is bad news... -DaveM */
1464 hyper_clear_all_tags();
1465 #endif
1467 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1468 hyper_flush_whole_icache();
1469 clear = srmmu_get_faddr();
1470 clear = srmmu_get_fstatus();
1473 static void __init init_hypersparc(void)
1475 srmmu_name = "ROSS HyperSparc";
1476 srmmu_modtype = HyperSparc;
1478 init_vac_layout();
1480 is_hypersparc = 1;
1482 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1483 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1486 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1488 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1491 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1492 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1493 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1495 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1496 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1497 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1500 poke_srmmu = poke_hypersparc;
1502 hypersparc_setup_blockops();
1505 static void __init poke_cypress(void)
1507 unsigned long mreg = srmmu_get_mmureg();
1508 unsigned long faddr, tagval;
1509 volatile unsigned long cypress_sucks;
1510 volatile unsigned long clear;
1512 clear = srmmu_get_faddr();
1513 clear = srmmu_get_fstatus();
1515 if (!(mreg & CYPRESS_CENABLE)) {
1516 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1517 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1518 "sta %%g0, [%0] %2\n\t" : :
1519 "r" (faddr), "r" (0x40000),
1520 "i" (ASI_M_DATAC_TAG));
1522 } else {
1523 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1524 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1525 "=r" (tagval) :
1526 "r" (faddr), "r" (0x40000),
1527 "i" (ASI_M_DATAC_TAG));
1529 /* If modified and valid, kick it. */
1530 if((tagval & 0x60) == 0x60)
1531 cypress_sucks = *(unsigned long *)
1532 (0xf0020000 + faddr);
1536 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1537 clear = srmmu_get_faddr();
1538 clear = srmmu_get_fstatus();
1540 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1541 srmmu_set_mmureg(mreg);
1544 static void __init init_cypress_common(void)
1546 init_vac_layout();
1548 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1549 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1550 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1552 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1554 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1557 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1558 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1559 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1562 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1563 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1564 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1566 poke_srmmu = poke_cypress;
1569 static void __init init_cypress_604(void)
1571 srmmu_name = "ROSS Cypress-604(UP)";
1572 srmmu_modtype = Cypress;
1573 init_cypress_common();
1576 static void __init init_cypress_605(unsigned long mrev)
1578 srmmu_name = "ROSS Cypress-605(MP)";
1579 if(mrev == 0xe) {
1580 srmmu_modtype = Cypress_vE;
1581 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1582 } else {
1583 if(mrev == 0xd) {
1584 srmmu_modtype = Cypress_vD;
1585 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1586 } else {
1587 srmmu_modtype = Cypress;
1590 init_cypress_common();
1593 static void __init poke_swift(void)
1595 unsigned long mreg;
1597 /* Clear any crap from the cache or else... */
1598 swift_flush_cache_all();
1600 /* Enable I & D caches */
1601 mreg = srmmu_get_mmureg();
1602 mreg |= (SWIFT_IE | SWIFT_DE);
1604 * The Swift branch folding logic is completely broken. At
1605 * trap time, if things are just right, if can mistakenly
1606 * think that a trap is coming from kernel mode when in fact
1607 * it is coming from user mode (it mis-executes the branch in
1608 * the trap code). So you see things like crashme completely
1609 * hosing your machine which is completely unacceptable. Turn
1610 * this shit off... nice job Fujitsu.
1612 mreg &= ~(SWIFT_BF);
1613 srmmu_set_mmureg(mreg);
1616 #define SWIFT_MASKID_ADDR 0x10003018
1617 static void __init init_swift(void)
1619 unsigned long swift_rev;
1621 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1622 "srl %0, 0x18, %0\n\t" :
1623 "=r" (swift_rev) :
1624 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1625 srmmu_name = "Fujitsu Swift";
1626 switch(swift_rev) {
1627 case 0x11:
1628 case 0x20:
1629 case 0x23:
1630 case 0x30:
1631 srmmu_modtype = Swift_lots_o_bugs;
1632 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1634 * Gee george, I wonder why Sun is so hush hush about
1635 * this hardware bug... really braindamage stuff going
1636 * on here. However I think we can find a way to avoid
1637 * all of the workaround overhead under Linux. Basically,
1638 * any page fault can cause kernel pages to become user
1639 * accessible (the mmu gets confused and clears some of
1640 * the ACC bits in kernel ptes). Aha, sounds pretty
1641 * horrible eh? But wait, after extensive testing it appears
1642 * that if you use pgd_t level large kernel pte's (like the
1643 * 4MB pages on the Pentium) the bug does not get tripped
1644 * at all. This avoids almost all of the major overhead.
1645 * Welcome to a world where your vendor tells you to,
1646 * "apply this kernel patch" instead of "sorry for the
1647 * broken hardware, send it back and we'll give you
1648 * properly functioning parts"
1650 break;
1651 case 0x25:
1652 case 0x31:
1653 srmmu_modtype = Swift_bad_c;
1654 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1656 * You see Sun allude to this hardware bug but never
1657 * admit things directly, they'll say things like,
1658 * "the Swift chip cache problems" or similar.
1660 break;
1661 default:
1662 srmmu_modtype = Swift_ok;
1663 break;
1666 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1667 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1668 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1669 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1674 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1675 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1677 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1678 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1679 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1681 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1683 flush_page_for_dma_global = 0;
1686 * Are you now convinced that the Swift is one of the
1687 * biggest VLSI abortions of all time? Bravo Fujitsu!
1688 * Fujitsu, the !#?!%$'d up processor people. I bet if
1689 * you examined the microcode of the Swift you'd find
1690 * XXX's all over the place.
1692 poke_srmmu = poke_swift;
1695 static void turbosparc_flush_cache_all(void)
1697 flush_user_windows();
1698 turbosparc_idflash_clear();
1701 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1703 FLUSH_BEGIN(mm)
1704 flush_user_windows();
1705 turbosparc_idflash_clear();
1706 FLUSH_END
1709 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1711 FLUSH_BEGIN(vma->vm_mm)
1712 flush_user_windows();
1713 turbosparc_idflash_clear();
1714 FLUSH_END
1717 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1719 FLUSH_BEGIN(vma->vm_mm)
1720 flush_user_windows();
1721 if (vma->vm_flags & VM_EXEC)
1722 turbosparc_flush_icache();
1723 turbosparc_flush_dcache();
1724 FLUSH_END
1727 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1728 static void turbosparc_flush_page_to_ram(unsigned long page)
1730 #ifdef TURBOSPARC_WRITEBACK
1731 volatile unsigned long clear;
1733 if (srmmu_hwprobe(page))
1734 turbosparc_flush_page_cache(page);
1735 clear = srmmu_get_fstatus();
1736 #endif
1739 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1743 static void turbosparc_flush_page_for_dma(unsigned long page)
1745 turbosparc_flush_dcache();
1748 static void turbosparc_flush_tlb_all(void)
1750 srmmu_flush_whole_tlb();
1753 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1755 FLUSH_BEGIN(mm)
1756 srmmu_flush_whole_tlb();
1757 FLUSH_END
1760 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1762 FLUSH_BEGIN(vma->vm_mm)
1763 srmmu_flush_whole_tlb();
1764 FLUSH_END
1767 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1769 FLUSH_BEGIN(vma->vm_mm)
1770 srmmu_flush_whole_tlb();
1771 FLUSH_END
1775 static void __init poke_turbosparc(void)
1777 unsigned long mreg = srmmu_get_mmureg();
1778 unsigned long ccreg;
1780 /* Clear any crap from the cache or else... */
1781 turbosparc_flush_cache_all();
1782 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1783 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1784 srmmu_set_mmureg(mreg);
1786 ccreg = turbosparc_get_ccreg();
1788 #ifdef TURBOSPARC_WRITEBACK
1789 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1790 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1791 /* Write-back D-cache, emulate VLSI
1792 * abortion number three, not number one */
1793 #else
1794 /* For now let's play safe, optimize later */
1795 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1796 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1797 ccreg &= ~(TURBOSPARC_uS2);
1798 /* Emulate VLSI abortion number three, not number one */
1799 #endif
1801 switch (ccreg & 7) {
1802 case 0: /* No SE cache */
1803 case 7: /* Test mode */
1804 break;
1805 default:
1806 ccreg |= (TURBOSPARC_SCENABLE);
1808 turbosparc_set_ccreg (ccreg);
1810 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1811 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1812 srmmu_set_mmureg(mreg);
1815 static void __init init_turbosparc(void)
1817 srmmu_name = "Fujitsu TurboSparc";
1818 srmmu_modtype = TurboSparc;
1820 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1821 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1822 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1823 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1826 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1827 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1828 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1830 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1832 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1833 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1835 poke_srmmu = poke_turbosparc;
1838 static void __init poke_tsunami(void)
1840 unsigned long mreg = srmmu_get_mmureg();
1842 tsunami_flush_icache();
1843 tsunami_flush_dcache();
1844 mreg &= ~TSUNAMI_ITD;
1845 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1846 srmmu_set_mmureg(mreg);
1849 static void __init init_tsunami(void)
1852 * Tsunami's pretty sane, Sun and TI actually got it
1853 * somewhat right this time. Fujitsu should have
1854 * taken some lessons from them.
1857 srmmu_name = "TI Tsunami";
1858 srmmu_modtype = Tsunami;
1860 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1861 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1862 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1863 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1868 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1869 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1871 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1872 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1873 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1875 poke_srmmu = poke_tsunami;
1877 tsunami_setup_blockops();
1880 static void __init poke_viking(void)
1882 unsigned long mreg = srmmu_get_mmureg();
1883 static int smp_catch;
1885 if(viking_mxcc_present) {
1886 unsigned long mxcc_control = mxcc_get_creg();
1888 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1889 mxcc_control &= ~(MXCC_CTL_RRC);
1890 mxcc_set_creg(mxcc_control);
1893 * We don't need memory parity checks.
1894 * XXX This is a mess, have to dig out later. ecd.
1895 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1898 /* We do cache ptables on MXCC. */
1899 mreg |= VIKING_TCENABLE;
1900 } else {
1901 unsigned long bpreg;
1903 mreg &= ~(VIKING_TCENABLE);
1904 if(smp_catch++) {
1905 /* Must disable mixed-cmd mode here for other cpu's. */
1906 bpreg = viking_get_bpreg();
1907 bpreg &= ~(VIKING_ACTION_MIX);
1908 viking_set_bpreg(bpreg);
1910 /* Just in case PROM does something funny. */
1911 msi_set_sync();
1915 mreg |= VIKING_SPENABLE;
1916 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1917 mreg |= VIKING_SBENABLE;
1918 mreg &= ~(VIKING_ACENABLE);
1919 srmmu_set_mmureg(mreg);
1921 #ifdef CONFIG_SMP
1922 /* Avoid unnecessary cross calls. */
1923 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1924 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1925 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1926 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1927 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1928 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1929 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1930 btfixup();
1931 #endif
1934 static void __init init_viking(void)
1936 unsigned long mreg = srmmu_get_mmureg();
1938 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1939 if(mreg & VIKING_MMODE) {
1940 srmmu_name = "TI Viking";
1941 viking_mxcc_present = 0;
1942 msi_set_sync();
1944 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1945 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1946 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1949 * We need this to make sure old viking takes no hits
1950 * on it's cache for dma snoops to workaround the
1951 * "load from non-cacheable memory" interrupt bug.
1952 * This is only necessary because of the new way in
1953 * which we use the IOMMU.
1955 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1957 flush_page_for_dma_global = 0;
1958 } else {
1959 srmmu_name = "TI Viking/MXCC";
1960 viking_mxcc_present = 1;
1962 srmmu_cache_pagetables = 1;
1964 /* MXCC vikings lack the DMA snooping bug. */
1965 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1968 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1971 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1973 #ifdef CONFIG_SMP
1974 if (sparc_cpu_model == sun4d) {
1975 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1976 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1978 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1979 } else
1980 #endif
1982 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1983 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1984 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1985 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1988 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1989 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1991 poke_srmmu = poke_viking;
1994 /* Probe for the srmmu chip version. */
1995 static void __init get_srmmu_type(void)
1997 unsigned long mreg, psr;
1998 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2000 srmmu_modtype = SRMMU_INVAL_MOD;
2001 hwbug_bitmask = 0;
2003 mreg = srmmu_get_mmureg(); psr = get_psr();
2004 mod_typ = (mreg & 0xf0000000) >> 28;
2005 mod_rev = (mreg & 0x0f000000) >> 24;
2006 psr_typ = (psr >> 28) & 0xf;
2007 psr_vers = (psr >> 24) & 0xf;
2009 /* First, check for HyperSparc or Cypress. */
2010 if(mod_typ == 1) {
2011 switch(mod_rev) {
2012 case 7:
2013 /* UP or MP Hypersparc */
2014 init_hypersparc();
2015 break;
2016 case 0:
2017 case 2:
2018 /* Uniprocessor Cypress */
2019 init_cypress_604();
2020 break;
2021 case 10:
2022 case 11:
2023 case 12:
2024 /* _REALLY OLD_ Cypress MP chips... */
2025 case 13:
2026 case 14:
2027 case 15:
2028 /* MP Cypress mmu/cache-controller */
2029 init_cypress_605(mod_rev);
2030 break;
2031 default:
2032 /* Some other Cypress revision, assume a 605. */
2033 init_cypress_605(mod_rev);
2034 break;
2036 return;
2040 * Now Fujitsu TurboSparc. It might happen that it is
2041 * in Swift emulation mode, so we will check later...
2043 if (psr_typ == 0 && psr_vers == 5) {
2044 init_turbosparc();
2045 return;
2048 /* Next check for Fujitsu Swift. */
2049 if(psr_typ == 0 && psr_vers == 4) {
2050 int cpunode;
2051 char node_str[128];
2053 /* Look if it is not a TurboSparc emulating Swift... */
2054 cpunode = prom_getchild(prom_root_node);
2055 while((cpunode = prom_getsibling(cpunode)) != 0) {
2056 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2057 if(!strcmp(node_str, "cpu")) {
2058 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2059 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2060 init_turbosparc();
2061 return;
2063 break;
2067 init_swift();
2068 return;
2071 /* Now the Viking family of srmmu. */
2072 if(psr_typ == 4 &&
2073 ((psr_vers == 0) ||
2074 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2075 init_viking();
2076 return;
2079 /* Finally the Tsunami. */
2080 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2081 init_tsunami();
2082 return;
2085 /* Oh well */
2086 srmmu_is_bad();
2089 /* don't laugh, static pagetables */
2090 static void srmmu_check_pgt_cache(int low, int high)
2094 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2095 tsetup_mmu_patchme, rtrap_mmu_patchme;
2097 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2098 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2100 extern unsigned long srmmu_fault;
2102 #define PATCH_BRANCH(insn, dest) do { \
2103 iaddr = &(insn); \
2104 daddr = &(dest); \
2105 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2106 } while(0)
2108 static void __init patch_window_trap_handlers(void)
2110 unsigned long *iaddr, *daddr;
2112 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2113 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2114 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2115 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2116 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2117 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2118 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2121 #ifdef CONFIG_SMP
2122 /* Local cross-calls. */
2123 static void smp_flush_page_for_dma(unsigned long page)
2125 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2126 local_flush_page_for_dma(page);
2129 #endif
2131 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2133 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2136 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2138 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2141 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2143 prot &= ~__pgprot(SRMMU_CACHE);
2145 return prot;
2148 /* Load up routines and constants for sun4m and sun4d mmu */
2149 void __init ld_mmu_srmmu(void)
2151 extern void ld_mmu_iommu(void);
2152 extern void ld_mmu_iounit(void);
2153 extern void ___xchg32_sun4md(void);
2155 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2156 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2157 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2159 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2160 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2162 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2163 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2164 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2165 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2166 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2167 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2169 /* Functions */
2170 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2171 #ifndef CONFIG_SMP
2172 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2173 #endif
2174 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2176 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2177 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2179 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2180 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2181 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2183 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2185 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2186 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2188 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2189 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2190 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2192 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2193 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2194 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2195 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2197 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2198 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2199 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2201 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2202 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2204 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2205 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2206 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2208 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2209 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2210 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2211 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2212 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2213 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2214 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2215 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2217 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2218 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2219 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2220 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2221 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2222 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2223 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2224 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2225 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2226 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2227 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2228 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2230 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2231 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2234 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2235 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2237 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2239 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2240 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2242 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2243 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2245 get_srmmu_type();
2246 patch_window_trap_handlers();
2248 #ifdef CONFIG_SMP
2249 /* El switcheroo... */
2251 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2252 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2253 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2254 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2255 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2256 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2257 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2258 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2259 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2260 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2261 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2263 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2264 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2265 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2266 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2267 if (sparc_cpu_model != sun4d) {
2268 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2270 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2271 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2273 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2274 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2275 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2276 #endif
2278 if (sparc_cpu_model == sun4d)
2279 ld_mmu_iounit();
2280 else
2281 ld_mmu_iommu();
2282 #ifdef CONFIG_SMP
2283 if (sparc_cpu_model == sun4d)
2284 sun4d_init_smp();
2285 else
2286 sun4m_init_smp();
2287 #endif