mm owner: fix race between swapoff and exit
[linux-2.6/next.git] / kernel / exit.c
blob85a83c831856c193570e40a3b7d3e03ef8862d1c
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
56 static void exit_mm(struct task_struct * tsk);
58 static inline int task_detached(struct task_struct *p)
60 return p->exit_signal == -1;
63 static void __unhash_process(struct task_struct *p)
65 nr_threads--;
66 detach_pid(p, PIDTYPE_PID);
67 if (thread_group_leader(p)) {
68 detach_pid(p, PIDTYPE_PGID);
69 detach_pid(p, PIDTYPE_SID);
71 list_del_rcu(&p->tasks);
72 __get_cpu_var(process_counts)--;
74 list_del_rcu(&p->thread_group);
75 list_del_init(&p->sibling);
79 * This function expects the tasklist_lock write-locked.
81 static void __exit_signal(struct task_struct *tsk)
83 struct signal_struct *sig = tsk->signal;
84 struct sighand_struct *sighand;
86 BUG_ON(!sig);
87 BUG_ON(!atomic_read(&sig->count));
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
97 * If there is any task waiting for the group exit
98 * then notify it:
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
115 sig->utime = cputime_add(sig->utime, task_utime(tsk));
116 sig->stime = cputime_add(sig->stime, task_stime(tsk));
117 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 task_io_accounting_add(&sig->ioac, &tsk->ioac);
125 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
126 sig = NULL; /* Marker for below. */
129 __unhash_process(tsk);
132 * Do this under ->siglock, we can race with another thread
133 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 flush_sigqueue(&tsk->pending);
137 tsk->signal = NULL;
138 tsk->sighand = NULL;
139 spin_unlock(&sighand->siglock);
141 __cleanup_sighand(sighand);
142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 if (sig) {
144 flush_sigqueue(&sig->shared_pending);
145 taskstats_tgid_free(sig);
146 __cleanup_signal(sig);
150 static void delayed_put_task_struct(struct rcu_head *rhp)
152 put_task_struct(container_of(rhp, struct task_struct, rcu));
156 void release_task(struct task_struct * p)
158 struct task_struct *leader;
159 int zap_leader;
160 repeat:
161 tracehook_prepare_release_task(p);
162 atomic_dec(&p->user->processes);
163 proc_flush_task(p);
164 write_lock_irq(&tasklist_lock);
165 tracehook_finish_release_task(p);
166 __exit_signal(p);
169 * If we are the last non-leader member of the thread
170 * group, and the leader is zombie, then notify the
171 * group leader's parent process. (if it wants notification.)
173 zap_leader = 0;
174 leader = p->group_leader;
175 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
176 BUG_ON(task_detached(leader));
177 do_notify_parent(leader, leader->exit_signal);
179 * If we were the last child thread and the leader has
180 * exited already, and the leader's parent ignores SIGCHLD,
181 * then we are the one who should release the leader.
183 * do_notify_parent() will have marked it self-reaping in
184 * that case.
186 zap_leader = task_detached(leader);
189 * This maintains the invariant that release_task()
190 * only runs on a task in EXIT_DEAD, just for sanity.
192 if (zap_leader)
193 leader->exit_state = EXIT_DEAD;
196 write_unlock_irq(&tasklist_lock);
197 release_thread(p);
198 call_rcu(&p->rcu, delayed_put_task_struct);
200 p = leader;
201 if (unlikely(zap_leader))
202 goto repeat;
206 * This checks not only the pgrp, but falls back on the pid if no
207 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
208 * without this...
210 * The caller must hold rcu lock or the tasklist lock.
212 struct pid *session_of_pgrp(struct pid *pgrp)
214 struct task_struct *p;
215 struct pid *sid = NULL;
217 p = pid_task(pgrp, PIDTYPE_PGID);
218 if (p == NULL)
219 p = pid_task(pgrp, PIDTYPE_PID);
220 if (p != NULL)
221 sid = task_session(p);
223 return sid;
227 * Determine if a process group is "orphaned", according to the POSIX
228 * definition in 2.2.2.52. Orphaned process groups are not to be affected
229 * by terminal-generated stop signals. Newly orphaned process groups are
230 * to receive a SIGHUP and a SIGCONT.
232 * "I ask you, have you ever known what it is to be an orphan?"
234 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
236 struct task_struct *p;
238 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
239 if ((p == ignored_task) ||
240 (p->exit_state && thread_group_empty(p)) ||
241 is_global_init(p->real_parent))
242 continue;
244 if (task_pgrp(p->real_parent) != pgrp &&
245 task_session(p->real_parent) == task_session(p))
246 return 0;
247 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
249 return 1;
252 int is_current_pgrp_orphaned(void)
254 int retval;
256 read_lock(&tasklist_lock);
257 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
258 read_unlock(&tasklist_lock);
260 return retval;
263 static int has_stopped_jobs(struct pid *pgrp)
265 int retval = 0;
266 struct task_struct *p;
268 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
269 if (!task_is_stopped(p))
270 continue;
271 retval = 1;
272 break;
273 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
274 return retval;
278 * Check to see if any process groups have become orphaned as
279 * a result of our exiting, and if they have any stopped jobs,
280 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
282 static void
283 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
285 struct pid *pgrp = task_pgrp(tsk);
286 struct task_struct *ignored_task = tsk;
288 if (!parent)
289 /* exit: our father is in a different pgrp than
290 * we are and we were the only connection outside.
292 parent = tsk->real_parent;
293 else
294 /* reparent: our child is in a different pgrp than
295 * we are, and it was the only connection outside.
297 ignored_task = NULL;
299 if (task_pgrp(parent) != pgrp &&
300 task_session(parent) == task_session(tsk) &&
301 will_become_orphaned_pgrp(pgrp, ignored_task) &&
302 has_stopped_jobs(pgrp)) {
303 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
304 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
309 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
311 * If a kernel thread is launched as a result of a system call, or if
312 * it ever exits, it should generally reparent itself to kthreadd so it
313 * isn't in the way of other processes and is correctly cleaned up on exit.
315 * The various task state such as scheduling policy and priority may have
316 * been inherited from a user process, so we reset them to sane values here.
318 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
320 static void reparent_to_kthreadd(void)
322 write_lock_irq(&tasklist_lock);
324 ptrace_unlink(current);
325 /* Reparent to init */
326 current->real_parent = current->parent = kthreadd_task;
327 list_move_tail(&current->sibling, &current->real_parent->children);
329 /* Set the exit signal to SIGCHLD so we signal init on exit */
330 current->exit_signal = SIGCHLD;
332 if (task_nice(current) < 0)
333 set_user_nice(current, 0);
334 /* cpus_allowed? */
335 /* rt_priority? */
336 /* signals? */
337 security_task_reparent_to_init(current);
338 memcpy(current->signal->rlim, init_task.signal->rlim,
339 sizeof(current->signal->rlim));
340 atomic_inc(&(INIT_USER->__count));
341 write_unlock_irq(&tasklist_lock);
342 switch_uid(INIT_USER);
345 void __set_special_pids(struct pid *pid)
347 struct task_struct *curr = current->group_leader;
348 pid_t nr = pid_nr(pid);
350 if (task_session(curr) != pid) {
351 change_pid(curr, PIDTYPE_SID, pid);
352 set_task_session(curr, nr);
354 if (task_pgrp(curr) != pid) {
355 change_pid(curr, PIDTYPE_PGID, pid);
356 set_task_pgrp(curr, nr);
360 static void set_special_pids(struct pid *pid)
362 write_lock_irq(&tasklist_lock);
363 __set_special_pids(pid);
364 write_unlock_irq(&tasklist_lock);
368 * Let kernel threads use this to say that they
369 * allow a certain signal (since daemonize() will
370 * have disabled all of them by default).
372 int allow_signal(int sig)
374 if (!valid_signal(sig) || sig < 1)
375 return -EINVAL;
377 spin_lock_irq(&current->sighand->siglock);
378 sigdelset(&current->blocked, sig);
379 if (!current->mm) {
380 /* Kernel threads handle their own signals.
381 Let the signal code know it'll be handled, so
382 that they don't get converted to SIGKILL or
383 just silently dropped */
384 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 recalc_sigpending();
387 spin_unlock_irq(&current->sighand->siglock);
388 return 0;
391 EXPORT_SYMBOL(allow_signal);
393 int disallow_signal(int sig)
395 if (!valid_signal(sig) || sig < 1)
396 return -EINVAL;
398 spin_lock_irq(&current->sighand->siglock);
399 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
400 recalc_sigpending();
401 spin_unlock_irq(&current->sighand->siglock);
402 return 0;
405 EXPORT_SYMBOL(disallow_signal);
408 * Put all the gunge required to become a kernel thread without
409 * attached user resources in one place where it belongs.
412 void daemonize(const char *name, ...)
414 va_list args;
415 struct fs_struct *fs;
416 sigset_t blocked;
418 va_start(args, name);
419 vsnprintf(current->comm, sizeof(current->comm), name, args);
420 va_end(args);
423 * If we were started as result of loading a module, close all of the
424 * user space pages. We don't need them, and if we didn't close them
425 * they would be locked into memory.
427 exit_mm(current);
429 * We don't want to have TIF_FREEZE set if the system-wide hibernation
430 * or suspend transition begins right now.
432 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
434 if (current->nsproxy != &init_nsproxy) {
435 get_nsproxy(&init_nsproxy);
436 switch_task_namespaces(current, &init_nsproxy);
438 set_special_pids(&init_struct_pid);
439 proc_clear_tty(current);
441 /* Block and flush all signals */
442 sigfillset(&blocked);
443 sigprocmask(SIG_BLOCK, &blocked, NULL);
444 flush_signals(current);
446 /* Become as one with the init task */
448 exit_fs(current); /* current->fs->count--; */
449 fs = init_task.fs;
450 current->fs = fs;
451 atomic_inc(&fs->count);
453 exit_files(current);
454 current->files = init_task.files;
455 atomic_inc(&current->files->count);
457 reparent_to_kthreadd();
460 EXPORT_SYMBOL(daemonize);
462 static void close_files(struct files_struct * files)
464 int i, j;
465 struct fdtable *fdt;
467 j = 0;
470 * It is safe to dereference the fd table without RCU or
471 * ->file_lock because this is the last reference to the
472 * files structure.
474 fdt = files_fdtable(files);
475 for (;;) {
476 unsigned long set;
477 i = j * __NFDBITS;
478 if (i >= fdt->max_fds)
479 break;
480 set = fdt->open_fds->fds_bits[j++];
481 while (set) {
482 if (set & 1) {
483 struct file * file = xchg(&fdt->fd[i], NULL);
484 if (file) {
485 filp_close(file, files);
486 cond_resched();
489 i++;
490 set >>= 1;
495 struct files_struct *get_files_struct(struct task_struct *task)
497 struct files_struct *files;
499 task_lock(task);
500 files = task->files;
501 if (files)
502 atomic_inc(&files->count);
503 task_unlock(task);
505 return files;
508 void put_files_struct(struct files_struct *files)
510 struct fdtable *fdt;
512 if (atomic_dec_and_test(&files->count)) {
513 close_files(files);
515 * Free the fd and fdset arrays if we expanded them.
516 * If the fdtable was embedded, pass files for freeing
517 * at the end of the RCU grace period. Otherwise,
518 * you can free files immediately.
520 fdt = files_fdtable(files);
521 if (fdt != &files->fdtab)
522 kmem_cache_free(files_cachep, files);
523 free_fdtable(fdt);
527 void reset_files_struct(struct files_struct *files)
529 struct task_struct *tsk = current;
530 struct files_struct *old;
532 old = tsk->files;
533 task_lock(tsk);
534 tsk->files = files;
535 task_unlock(tsk);
536 put_files_struct(old);
539 void exit_files(struct task_struct *tsk)
541 struct files_struct * files = tsk->files;
543 if (files) {
544 task_lock(tsk);
545 tsk->files = NULL;
546 task_unlock(tsk);
547 put_files_struct(files);
551 void put_fs_struct(struct fs_struct *fs)
553 /* No need to hold fs->lock if we are killing it */
554 if (atomic_dec_and_test(&fs->count)) {
555 path_put(&fs->root);
556 path_put(&fs->pwd);
557 kmem_cache_free(fs_cachep, fs);
561 void exit_fs(struct task_struct *tsk)
563 struct fs_struct * fs = tsk->fs;
565 if (fs) {
566 task_lock(tsk);
567 tsk->fs = NULL;
568 task_unlock(tsk);
569 put_fs_struct(fs);
573 EXPORT_SYMBOL_GPL(exit_fs);
575 #ifdef CONFIG_MM_OWNER
577 * Task p is exiting and it owned mm, lets find a new owner for it
579 static inline int
580 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
583 * If there are other users of the mm and the owner (us) is exiting
584 * we need to find a new owner to take on the responsibility.
586 if (atomic_read(&mm->mm_users) <= 1)
587 return 0;
588 if (mm->owner != p)
589 return 0;
590 return 1;
593 void mm_update_next_owner(struct mm_struct *mm)
595 struct task_struct *c, *g, *p = current;
597 retry:
598 if (!mm_need_new_owner(mm, p))
599 return;
601 read_lock(&tasklist_lock);
603 * Search in the children
605 list_for_each_entry(c, &p->children, sibling) {
606 if (c->mm == mm)
607 goto assign_new_owner;
611 * Search in the siblings
613 list_for_each_entry(c, &p->parent->children, sibling) {
614 if (c->mm == mm)
615 goto assign_new_owner;
619 * Search through everything else. We should not get
620 * here often
622 do_each_thread(g, c) {
623 if (c->mm == mm)
624 goto assign_new_owner;
625 } while_each_thread(g, c);
627 read_unlock(&tasklist_lock);
629 * We found no owner yet mm_users > 1: this implies that we are
630 * most likely racing with swapoff (try_to_unuse()) or /proc or
631 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
632 * so that subsystems can understand the callback and take action.
634 down_write(&mm->mmap_sem);
635 cgroup_mm_owner_callbacks(mm->owner, NULL);
636 mm->owner = NULL;
637 up_write(&mm->mmap_sem);
638 return;
640 assign_new_owner:
641 BUG_ON(c == p);
642 get_task_struct(c);
644 * The task_lock protects c->mm from changing.
645 * We always want mm->owner->mm == mm
647 task_lock(c);
649 * Delay read_unlock() till we have the task_lock()
650 * to ensure that c does not slip away underneath us
652 read_unlock(&tasklist_lock);
653 if (c->mm != mm) {
654 task_unlock(c);
655 put_task_struct(c);
656 goto retry;
658 cgroup_mm_owner_callbacks(mm->owner, c);
659 mm->owner = c;
660 task_unlock(c);
661 put_task_struct(c);
663 #endif /* CONFIG_MM_OWNER */
666 * Turn us into a lazy TLB process if we
667 * aren't already..
669 static void exit_mm(struct task_struct * tsk)
671 struct mm_struct *mm = tsk->mm;
672 struct core_state *core_state;
674 mm_release(tsk, mm);
675 if (!mm)
676 return;
678 * Serialize with any possible pending coredump.
679 * We must hold mmap_sem around checking core_state
680 * and clearing tsk->mm. The core-inducing thread
681 * will increment ->nr_threads for each thread in the
682 * group with ->mm != NULL.
684 down_read(&mm->mmap_sem);
685 core_state = mm->core_state;
686 if (core_state) {
687 struct core_thread self;
688 up_read(&mm->mmap_sem);
690 self.task = tsk;
691 self.next = xchg(&core_state->dumper.next, &self);
693 * Implies mb(), the result of xchg() must be visible
694 * to core_state->dumper.
696 if (atomic_dec_and_test(&core_state->nr_threads))
697 complete(&core_state->startup);
699 for (;;) {
700 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
701 if (!self.task) /* see coredump_finish() */
702 break;
703 schedule();
705 __set_task_state(tsk, TASK_RUNNING);
706 down_read(&mm->mmap_sem);
708 atomic_inc(&mm->mm_count);
709 BUG_ON(mm != tsk->active_mm);
710 /* more a memory barrier than a real lock */
711 task_lock(tsk);
712 tsk->mm = NULL;
713 up_read(&mm->mmap_sem);
714 enter_lazy_tlb(mm, current);
715 /* We don't want this task to be frozen prematurely */
716 clear_freeze_flag(tsk);
717 task_unlock(tsk);
718 mm_update_next_owner(mm);
719 mmput(mm);
723 * Return nonzero if @parent's children should reap themselves.
725 * Called with write_lock_irq(&tasklist_lock) held.
727 static int ignoring_children(struct task_struct *parent)
729 int ret;
730 struct sighand_struct *psig = parent->sighand;
731 unsigned long flags;
732 spin_lock_irqsave(&psig->siglock, flags);
733 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
734 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
735 spin_unlock_irqrestore(&psig->siglock, flags);
736 return ret;
740 * Detach all tasks we were using ptrace on.
741 * Any that need to be release_task'd are put on the @dead list.
743 * Called with write_lock(&tasklist_lock) held.
745 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
747 struct task_struct *p, *n;
748 int ign = -1;
750 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
751 __ptrace_unlink(p);
753 if (p->exit_state != EXIT_ZOMBIE)
754 continue;
757 * If it's a zombie, our attachedness prevented normal
758 * parent notification or self-reaping. Do notification
759 * now if it would have happened earlier. If it should
760 * reap itself, add it to the @dead list. We can't call
761 * release_task() here because we already hold tasklist_lock.
763 * If it's our own child, there is no notification to do.
764 * But if our normal children self-reap, then this child
765 * was prevented by ptrace and we must reap it now.
767 if (!task_detached(p) && thread_group_empty(p)) {
768 if (!same_thread_group(p->real_parent, parent))
769 do_notify_parent(p, p->exit_signal);
770 else {
771 if (ign < 0)
772 ign = ignoring_children(parent);
773 if (ign)
774 p->exit_signal = -1;
778 if (task_detached(p)) {
780 * Mark it as in the process of being reaped.
782 p->exit_state = EXIT_DEAD;
783 list_add(&p->ptrace_entry, dead);
789 * Finish up exit-time ptrace cleanup.
791 * Called without locks.
793 static void ptrace_exit_finish(struct task_struct *parent,
794 struct list_head *dead)
796 struct task_struct *p, *n;
798 BUG_ON(!list_empty(&parent->ptraced));
800 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
801 list_del_init(&p->ptrace_entry);
802 release_task(p);
806 static void reparent_thread(struct task_struct *p, struct task_struct *father)
808 if (p->pdeath_signal)
809 /* We already hold the tasklist_lock here. */
810 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
812 list_move_tail(&p->sibling, &p->real_parent->children);
814 /* If this is a threaded reparent there is no need to
815 * notify anyone anything has happened.
817 if (same_thread_group(p->real_parent, father))
818 return;
820 /* We don't want people slaying init. */
821 if (!task_detached(p))
822 p->exit_signal = SIGCHLD;
824 /* If we'd notified the old parent about this child's death,
825 * also notify the new parent.
827 if (!ptrace_reparented(p) &&
828 p->exit_state == EXIT_ZOMBIE &&
829 !task_detached(p) && thread_group_empty(p))
830 do_notify_parent(p, p->exit_signal);
832 kill_orphaned_pgrp(p, father);
836 * When we die, we re-parent all our children.
837 * Try to give them to another thread in our thread
838 * group, and if no such member exists, give it to
839 * the child reaper process (ie "init") in our pid
840 * space.
842 static struct task_struct *find_new_reaper(struct task_struct *father)
844 struct pid_namespace *pid_ns = task_active_pid_ns(father);
845 struct task_struct *thread;
847 thread = father;
848 while_each_thread(father, thread) {
849 if (thread->flags & PF_EXITING)
850 continue;
851 if (unlikely(pid_ns->child_reaper == father))
852 pid_ns->child_reaper = thread;
853 return thread;
856 if (unlikely(pid_ns->child_reaper == father)) {
857 write_unlock_irq(&tasklist_lock);
858 if (unlikely(pid_ns == &init_pid_ns))
859 panic("Attempted to kill init!");
861 zap_pid_ns_processes(pid_ns);
862 write_lock_irq(&tasklist_lock);
864 * We can not clear ->child_reaper or leave it alone.
865 * There may by stealth EXIT_DEAD tasks on ->children,
866 * forget_original_parent() must move them somewhere.
868 pid_ns->child_reaper = init_pid_ns.child_reaper;
871 return pid_ns->child_reaper;
874 static void forget_original_parent(struct task_struct *father)
876 struct task_struct *p, *n, *reaper;
877 LIST_HEAD(ptrace_dead);
879 write_lock_irq(&tasklist_lock);
880 reaper = find_new_reaper(father);
882 * First clean up ptrace if we were using it.
884 ptrace_exit(father, &ptrace_dead);
886 list_for_each_entry_safe(p, n, &father->children, sibling) {
887 p->real_parent = reaper;
888 if (p->parent == father) {
889 BUG_ON(p->ptrace);
890 p->parent = p->real_parent;
892 reparent_thread(p, father);
895 write_unlock_irq(&tasklist_lock);
896 BUG_ON(!list_empty(&father->children));
898 ptrace_exit_finish(father, &ptrace_dead);
902 * Send signals to all our closest relatives so that they know
903 * to properly mourn us..
905 static void exit_notify(struct task_struct *tsk, int group_dead)
907 int signal;
908 void *cookie;
911 * This does two things:
913 * A. Make init inherit all the child processes
914 * B. Check to see if any process groups have become orphaned
915 * as a result of our exiting, and if they have any stopped
916 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
918 forget_original_parent(tsk);
919 exit_task_namespaces(tsk);
921 write_lock_irq(&tasklist_lock);
922 if (group_dead)
923 kill_orphaned_pgrp(tsk->group_leader, NULL);
925 /* Let father know we died
927 * Thread signals are configurable, but you aren't going to use
928 * that to send signals to arbitary processes.
929 * That stops right now.
931 * If the parent exec id doesn't match the exec id we saved
932 * when we started then we know the parent has changed security
933 * domain.
935 * If our self_exec id doesn't match our parent_exec_id then
936 * we have changed execution domain as these two values started
937 * the same after a fork.
939 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
940 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
941 tsk->self_exec_id != tsk->parent_exec_id) &&
942 !capable(CAP_KILL))
943 tsk->exit_signal = SIGCHLD;
945 signal = tracehook_notify_death(tsk, &cookie, group_dead);
946 if (signal >= 0)
947 signal = do_notify_parent(tsk, signal);
949 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
951 /* mt-exec, de_thread() is waiting for us */
952 if (thread_group_leader(tsk) &&
953 tsk->signal->group_exit_task &&
954 tsk->signal->notify_count < 0)
955 wake_up_process(tsk->signal->group_exit_task);
957 write_unlock_irq(&tasklist_lock);
959 tracehook_report_death(tsk, signal, cookie, group_dead);
961 /* If the process is dead, release it - nobody will wait for it */
962 if (signal == DEATH_REAP)
963 release_task(tsk);
966 #ifdef CONFIG_DEBUG_STACK_USAGE
967 static void check_stack_usage(void)
969 static DEFINE_SPINLOCK(low_water_lock);
970 static int lowest_to_date = THREAD_SIZE;
971 unsigned long *n = end_of_stack(current);
972 unsigned long free;
974 while (*n == 0)
975 n++;
976 free = (unsigned long)n - (unsigned long)end_of_stack(current);
978 if (free >= lowest_to_date)
979 return;
981 spin_lock(&low_water_lock);
982 if (free < lowest_to_date) {
983 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
984 "left\n",
985 current->comm, free);
986 lowest_to_date = free;
988 spin_unlock(&low_water_lock);
990 #else
991 static inline void check_stack_usage(void) {}
992 #endif
994 NORET_TYPE void do_exit(long code)
996 struct task_struct *tsk = current;
997 int group_dead;
999 profile_task_exit(tsk);
1001 WARN_ON(atomic_read(&tsk->fs_excl));
1003 if (unlikely(in_interrupt()))
1004 panic("Aiee, killing interrupt handler!");
1005 if (unlikely(!tsk->pid))
1006 panic("Attempted to kill the idle task!");
1008 tracehook_report_exit(&code);
1011 * We're taking recursive faults here in do_exit. Safest is to just
1012 * leave this task alone and wait for reboot.
1014 if (unlikely(tsk->flags & PF_EXITING)) {
1015 printk(KERN_ALERT
1016 "Fixing recursive fault but reboot is needed!\n");
1018 * We can do this unlocked here. The futex code uses
1019 * this flag just to verify whether the pi state
1020 * cleanup has been done or not. In the worst case it
1021 * loops once more. We pretend that the cleanup was
1022 * done as there is no way to return. Either the
1023 * OWNER_DIED bit is set by now or we push the blocked
1024 * task into the wait for ever nirwana as well.
1026 tsk->flags |= PF_EXITPIDONE;
1027 if (tsk->io_context)
1028 exit_io_context();
1029 set_current_state(TASK_UNINTERRUPTIBLE);
1030 schedule();
1033 exit_signals(tsk); /* sets PF_EXITING */
1035 * tsk->flags are checked in the futex code to protect against
1036 * an exiting task cleaning up the robust pi futexes.
1038 smp_mb();
1039 spin_unlock_wait(&tsk->pi_lock);
1041 if (unlikely(in_atomic()))
1042 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1043 current->comm, task_pid_nr(current),
1044 preempt_count());
1046 acct_update_integrals(tsk);
1047 if (tsk->mm) {
1048 update_hiwater_rss(tsk->mm);
1049 update_hiwater_vm(tsk->mm);
1051 group_dead = atomic_dec_and_test(&tsk->signal->live);
1052 if (group_dead) {
1053 hrtimer_cancel(&tsk->signal->real_timer);
1054 exit_itimers(tsk->signal);
1056 acct_collect(code, group_dead);
1057 #ifdef CONFIG_FUTEX
1058 if (unlikely(tsk->robust_list))
1059 exit_robust_list(tsk);
1060 #ifdef CONFIG_COMPAT
1061 if (unlikely(tsk->compat_robust_list))
1062 compat_exit_robust_list(tsk);
1063 #endif
1064 #endif
1065 if (group_dead)
1066 tty_audit_exit();
1067 if (unlikely(tsk->audit_context))
1068 audit_free(tsk);
1070 tsk->exit_code = code;
1071 taskstats_exit(tsk, group_dead);
1073 exit_mm(tsk);
1075 if (group_dead)
1076 acct_process();
1077 exit_sem(tsk);
1078 exit_files(tsk);
1079 exit_fs(tsk);
1080 check_stack_usage();
1081 exit_thread();
1082 cgroup_exit(tsk, 1);
1083 exit_keys(tsk);
1085 if (group_dead && tsk->signal->leader)
1086 disassociate_ctty(1);
1088 module_put(task_thread_info(tsk)->exec_domain->module);
1089 if (tsk->binfmt)
1090 module_put(tsk->binfmt->module);
1092 proc_exit_connector(tsk);
1093 exit_notify(tsk, group_dead);
1094 #ifdef CONFIG_NUMA
1095 mpol_put(tsk->mempolicy);
1096 tsk->mempolicy = NULL;
1097 #endif
1098 #ifdef CONFIG_FUTEX
1100 * This must happen late, after the PID is not
1101 * hashed anymore:
1103 if (unlikely(!list_empty(&tsk->pi_state_list)))
1104 exit_pi_state_list(tsk);
1105 if (unlikely(current->pi_state_cache))
1106 kfree(current->pi_state_cache);
1107 #endif
1109 * Make sure we are holding no locks:
1111 debug_check_no_locks_held(tsk);
1113 * We can do this unlocked here. The futex code uses this flag
1114 * just to verify whether the pi state cleanup has been done
1115 * or not. In the worst case it loops once more.
1117 tsk->flags |= PF_EXITPIDONE;
1119 if (tsk->io_context)
1120 exit_io_context();
1122 if (tsk->splice_pipe)
1123 __free_pipe_info(tsk->splice_pipe);
1125 preempt_disable();
1126 /* causes final put_task_struct in finish_task_switch(). */
1127 tsk->state = TASK_DEAD;
1129 schedule();
1130 BUG();
1131 /* Avoid "noreturn function does return". */
1132 for (;;)
1133 cpu_relax(); /* For when BUG is null */
1136 EXPORT_SYMBOL_GPL(do_exit);
1138 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1140 if (comp)
1141 complete(comp);
1143 do_exit(code);
1146 EXPORT_SYMBOL(complete_and_exit);
1148 asmlinkage long sys_exit(int error_code)
1150 do_exit((error_code&0xff)<<8);
1154 * Take down every thread in the group. This is called by fatal signals
1155 * as well as by sys_exit_group (below).
1157 NORET_TYPE void
1158 do_group_exit(int exit_code)
1160 struct signal_struct *sig = current->signal;
1162 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1164 if (signal_group_exit(sig))
1165 exit_code = sig->group_exit_code;
1166 else if (!thread_group_empty(current)) {
1167 struct sighand_struct *const sighand = current->sighand;
1168 spin_lock_irq(&sighand->siglock);
1169 if (signal_group_exit(sig))
1170 /* Another thread got here before we took the lock. */
1171 exit_code = sig->group_exit_code;
1172 else {
1173 sig->group_exit_code = exit_code;
1174 sig->flags = SIGNAL_GROUP_EXIT;
1175 zap_other_threads(current);
1177 spin_unlock_irq(&sighand->siglock);
1180 do_exit(exit_code);
1181 /* NOTREACHED */
1185 * this kills every thread in the thread group. Note that any externally
1186 * wait4()-ing process will get the correct exit code - even if this
1187 * thread is not the thread group leader.
1189 asmlinkage void sys_exit_group(int error_code)
1191 do_group_exit((error_code & 0xff) << 8);
1194 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1196 struct pid *pid = NULL;
1197 if (type == PIDTYPE_PID)
1198 pid = task->pids[type].pid;
1199 else if (type < PIDTYPE_MAX)
1200 pid = task->group_leader->pids[type].pid;
1201 return pid;
1204 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1205 struct task_struct *p)
1207 int err;
1209 if (type < PIDTYPE_MAX) {
1210 if (task_pid_type(p, type) != pid)
1211 return 0;
1214 /* Wait for all children (clone and not) if __WALL is set;
1215 * otherwise, wait for clone children *only* if __WCLONE is
1216 * set; otherwise, wait for non-clone children *only*. (Note:
1217 * A "clone" child here is one that reports to its parent
1218 * using a signal other than SIGCHLD.) */
1219 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1220 && !(options & __WALL))
1221 return 0;
1223 err = security_task_wait(p);
1224 if (err)
1225 return err;
1227 return 1;
1230 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1231 int why, int status,
1232 struct siginfo __user *infop,
1233 struct rusage __user *rusagep)
1235 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1237 put_task_struct(p);
1238 if (!retval)
1239 retval = put_user(SIGCHLD, &infop->si_signo);
1240 if (!retval)
1241 retval = put_user(0, &infop->si_errno);
1242 if (!retval)
1243 retval = put_user((short)why, &infop->si_code);
1244 if (!retval)
1245 retval = put_user(pid, &infop->si_pid);
1246 if (!retval)
1247 retval = put_user(uid, &infop->si_uid);
1248 if (!retval)
1249 retval = put_user(status, &infop->si_status);
1250 if (!retval)
1251 retval = pid;
1252 return retval;
1256 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1257 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1258 * the lock and this task is uninteresting. If we return nonzero, we have
1259 * released the lock and the system call should return.
1261 static int wait_task_zombie(struct task_struct *p, int options,
1262 struct siginfo __user *infop,
1263 int __user *stat_addr, struct rusage __user *ru)
1265 unsigned long state;
1266 int retval, status, traced;
1267 pid_t pid = task_pid_vnr(p);
1269 if (!likely(options & WEXITED))
1270 return 0;
1272 if (unlikely(options & WNOWAIT)) {
1273 uid_t uid = p->uid;
1274 int exit_code = p->exit_code;
1275 int why, status;
1277 get_task_struct(p);
1278 read_unlock(&tasklist_lock);
1279 if ((exit_code & 0x7f) == 0) {
1280 why = CLD_EXITED;
1281 status = exit_code >> 8;
1282 } else {
1283 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1284 status = exit_code & 0x7f;
1286 return wait_noreap_copyout(p, pid, uid, why,
1287 status, infop, ru);
1291 * Try to move the task's state to DEAD
1292 * only one thread is allowed to do this:
1294 state = xchg(&p->exit_state, EXIT_DEAD);
1295 if (state != EXIT_ZOMBIE) {
1296 BUG_ON(state != EXIT_DEAD);
1297 return 0;
1300 traced = ptrace_reparented(p);
1302 if (likely(!traced)) {
1303 struct signal_struct *psig;
1304 struct signal_struct *sig;
1307 * The resource counters for the group leader are in its
1308 * own task_struct. Those for dead threads in the group
1309 * are in its signal_struct, as are those for the child
1310 * processes it has previously reaped. All these
1311 * accumulate in the parent's signal_struct c* fields.
1313 * We don't bother to take a lock here to protect these
1314 * p->signal fields, because they are only touched by
1315 * __exit_signal, which runs with tasklist_lock
1316 * write-locked anyway, and so is excluded here. We do
1317 * need to protect the access to p->parent->signal fields,
1318 * as other threads in the parent group can be right
1319 * here reaping other children at the same time.
1321 spin_lock_irq(&p->parent->sighand->siglock);
1322 psig = p->parent->signal;
1323 sig = p->signal;
1324 psig->cutime =
1325 cputime_add(psig->cutime,
1326 cputime_add(p->utime,
1327 cputime_add(sig->utime,
1328 sig->cutime)));
1329 psig->cstime =
1330 cputime_add(psig->cstime,
1331 cputime_add(p->stime,
1332 cputime_add(sig->stime,
1333 sig->cstime)));
1334 psig->cgtime =
1335 cputime_add(psig->cgtime,
1336 cputime_add(p->gtime,
1337 cputime_add(sig->gtime,
1338 sig->cgtime)));
1339 psig->cmin_flt +=
1340 p->min_flt + sig->min_flt + sig->cmin_flt;
1341 psig->cmaj_flt +=
1342 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1343 psig->cnvcsw +=
1344 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1345 psig->cnivcsw +=
1346 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1347 psig->cinblock +=
1348 task_io_get_inblock(p) +
1349 sig->inblock + sig->cinblock;
1350 psig->coublock +=
1351 task_io_get_oublock(p) +
1352 sig->oublock + sig->coublock;
1353 task_io_accounting_add(&psig->ioac, &p->ioac);
1354 task_io_accounting_add(&psig->ioac, &sig->ioac);
1355 spin_unlock_irq(&p->parent->sighand->siglock);
1359 * Now we are sure this task is interesting, and no other
1360 * thread can reap it because we set its state to EXIT_DEAD.
1362 read_unlock(&tasklist_lock);
1364 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1365 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1366 ? p->signal->group_exit_code : p->exit_code;
1367 if (!retval && stat_addr)
1368 retval = put_user(status, stat_addr);
1369 if (!retval && infop)
1370 retval = put_user(SIGCHLD, &infop->si_signo);
1371 if (!retval && infop)
1372 retval = put_user(0, &infop->si_errno);
1373 if (!retval && infop) {
1374 int why;
1376 if ((status & 0x7f) == 0) {
1377 why = CLD_EXITED;
1378 status >>= 8;
1379 } else {
1380 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1381 status &= 0x7f;
1383 retval = put_user((short)why, &infop->si_code);
1384 if (!retval)
1385 retval = put_user(status, &infop->si_status);
1387 if (!retval && infop)
1388 retval = put_user(pid, &infop->si_pid);
1389 if (!retval && infop)
1390 retval = put_user(p->uid, &infop->si_uid);
1391 if (!retval)
1392 retval = pid;
1394 if (traced) {
1395 write_lock_irq(&tasklist_lock);
1396 /* We dropped tasklist, ptracer could die and untrace */
1397 ptrace_unlink(p);
1399 * If this is not a detached task, notify the parent.
1400 * If it's still not detached after that, don't release
1401 * it now.
1403 if (!task_detached(p)) {
1404 do_notify_parent(p, p->exit_signal);
1405 if (!task_detached(p)) {
1406 p->exit_state = EXIT_ZOMBIE;
1407 p = NULL;
1410 write_unlock_irq(&tasklist_lock);
1412 if (p != NULL)
1413 release_task(p);
1415 return retval;
1419 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1420 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1421 * the lock and this task is uninteresting. If we return nonzero, we have
1422 * released the lock and the system call should return.
1424 static int wait_task_stopped(int ptrace, struct task_struct *p,
1425 int options, struct siginfo __user *infop,
1426 int __user *stat_addr, struct rusage __user *ru)
1428 int retval, exit_code, why;
1429 uid_t uid = 0; /* unneeded, required by compiler */
1430 pid_t pid;
1432 if (!(options & WUNTRACED))
1433 return 0;
1435 exit_code = 0;
1436 spin_lock_irq(&p->sighand->siglock);
1438 if (unlikely(!task_is_stopped_or_traced(p)))
1439 goto unlock_sig;
1441 if (!ptrace && p->signal->group_stop_count > 0)
1443 * A group stop is in progress and this is the group leader.
1444 * We won't report until all threads have stopped.
1446 goto unlock_sig;
1448 exit_code = p->exit_code;
1449 if (!exit_code)
1450 goto unlock_sig;
1452 if (!unlikely(options & WNOWAIT))
1453 p->exit_code = 0;
1455 uid = p->uid;
1456 unlock_sig:
1457 spin_unlock_irq(&p->sighand->siglock);
1458 if (!exit_code)
1459 return 0;
1462 * Now we are pretty sure this task is interesting.
1463 * Make sure it doesn't get reaped out from under us while we
1464 * give up the lock and then examine it below. We don't want to
1465 * keep holding onto the tasklist_lock while we call getrusage and
1466 * possibly take page faults for user memory.
1468 get_task_struct(p);
1469 pid = task_pid_vnr(p);
1470 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1471 read_unlock(&tasklist_lock);
1473 if (unlikely(options & WNOWAIT))
1474 return wait_noreap_copyout(p, pid, uid,
1475 why, exit_code,
1476 infop, ru);
1478 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1479 if (!retval && stat_addr)
1480 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1481 if (!retval && infop)
1482 retval = put_user(SIGCHLD, &infop->si_signo);
1483 if (!retval && infop)
1484 retval = put_user(0, &infop->si_errno);
1485 if (!retval && infop)
1486 retval = put_user((short)why, &infop->si_code);
1487 if (!retval && infop)
1488 retval = put_user(exit_code, &infop->si_status);
1489 if (!retval && infop)
1490 retval = put_user(pid, &infop->si_pid);
1491 if (!retval && infop)
1492 retval = put_user(uid, &infop->si_uid);
1493 if (!retval)
1494 retval = pid;
1495 put_task_struct(p);
1497 BUG_ON(!retval);
1498 return retval;
1502 * Handle do_wait work for one task in a live, non-stopped state.
1503 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1504 * the lock and this task is uninteresting. If we return nonzero, we have
1505 * released the lock and the system call should return.
1507 static int wait_task_continued(struct task_struct *p, int options,
1508 struct siginfo __user *infop,
1509 int __user *stat_addr, struct rusage __user *ru)
1511 int retval;
1512 pid_t pid;
1513 uid_t uid;
1515 if (!unlikely(options & WCONTINUED))
1516 return 0;
1518 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1519 return 0;
1521 spin_lock_irq(&p->sighand->siglock);
1522 /* Re-check with the lock held. */
1523 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1524 spin_unlock_irq(&p->sighand->siglock);
1525 return 0;
1527 if (!unlikely(options & WNOWAIT))
1528 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1529 spin_unlock_irq(&p->sighand->siglock);
1531 pid = task_pid_vnr(p);
1532 uid = p->uid;
1533 get_task_struct(p);
1534 read_unlock(&tasklist_lock);
1536 if (!infop) {
1537 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1538 put_task_struct(p);
1539 if (!retval && stat_addr)
1540 retval = put_user(0xffff, stat_addr);
1541 if (!retval)
1542 retval = pid;
1543 } else {
1544 retval = wait_noreap_copyout(p, pid, uid,
1545 CLD_CONTINUED, SIGCONT,
1546 infop, ru);
1547 BUG_ON(retval == 0);
1550 return retval;
1554 * Consider @p for a wait by @parent.
1556 * -ECHILD should be in *@notask_error before the first call.
1557 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1558 * Returns zero if the search for a child should continue;
1559 * then *@notask_error is 0 if @p is an eligible child,
1560 * or another error from security_task_wait(), or still -ECHILD.
1562 static int wait_consider_task(struct task_struct *parent, int ptrace,
1563 struct task_struct *p, int *notask_error,
1564 enum pid_type type, struct pid *pid, int options,
1565 struct siginfo __user *infop,
1566 int __user *stat_addr, struct rusage __user *ru)
1568 int ret = eligible_child(type, pid, options, p);
1569 if (!ret)
1570 return ret;
1572 if (unlikely(ret < 0)) {
1574 * If we have not yet seen any eligible child,
1575 * then let this error code replace -ECHILD.
1576 * A permission error will give the user a clue
1577 * to look for security policy problems, rather
1578 * than for mysterious wait bugs.
1580 if (*notask_error)
1581 *notask_error = ret;
1584 if (likely(!ptrace) && unlikely(p->ptrace)) {
1586 * This child is hidden by ptrace.
1587 * We aren't allowed to see it now, but eventually we will.
1589 *notask_error = 0;
1590 return 0;
1593 if (p->exit_state == EXIT_DEAD)
1594 return 0;
1597 * We don't reap group leaders with subthreads.
1599 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1600 return wait_task_zombie(p, options, infop, stat_addr, ru);
1603 * It's stopped or running now, so it might
1604 * later continue, exit, or stop again.
1606 *notask_error = 0;
1608 if (task_is_stopped_or_traced(p))
1609 return wait_task_stopped(ptrace, p, options,
1610 infop, stat_addr, ru);
1612 return wait_task_continued(p, options, infop, stat_addr, ru);
1616 * Do the work of do_wait() for one thread in the group, @tsk.
1618 * -ECHILD should be in *@notask_error before the first call.
1619 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1620 * Returns zero if the search for a child should continue; then
1621 * *@notask_error is 0 if there were any eligible children,
1622 * or another error from security_task_wait(), or still -ECHILD.
1624 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1625 enum pid_type type, struct pid *pid, int options,
1626 struct siginfo __user *infop, int __user *stat_addr,
1627 struct rusage __user *ru)
1629 struct task_struct *p;
1631 list_for_each_entry(p, &tsk->children, sibling) {
1633 * Do not consider detached threads.
1635 if (!task_detached(p)) {
1636 int ret = wait_consider_task(tsk, 0, p, notask_error,
1637 type, pid, options,
1638 infop, stat_addr, ru);
1639 if (ret)
1640 return ret;
1644 return 0;
1647 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1648 enum pid_type type, struct pid *pid, int options,
1649 struct siginfo __user *infop, int __user *stat_addr,
1650 struct rusage __user *ru)
1652 struct task_struct *p;
1655 * Traditionally we see ptrace'd stopped tasks regardless of options.
1657 options |= WUNTRACED;
1659 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1660 int ret = wait_consider_task(tsk, 1, p, notask_error,
1661 type, pid, options,
1662 infop, stat_addr, ru);
1663 if (ret)
1664 return ret;
1667 return 0;
1670 static long do_wait(enum pid_type type, struct pid *pid, int options,
1671 struct siginfo __user *infop, int __user *stat_addr,
1672 struct rusage __user *ru)
1674 DECLARE_WAITQUEUE(wait, current);
1675 struct task_struct *tsk;
1676 int retval;
1678 add_wait_queue(&current->signal->wait_chldexit,&wait);
1679 repeat:
1681 * If there is nothing that can match our critiera just get out.
1682 * We will clear @retval to zero if we see any child that might later
1683 * match our criteria, even if we are not able to reap it yet.
1685 retval = -ECHILD;
1686 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1687 goto end;
1689 current->state = TASK_INTERRUPTIBLE;
1690 read_lock(&tasklist_lock);
1691 tsk = current;
1692 do {
1693 int tsk_result = do_wait_thread(tsk, &retval,
1694 type, pid, options,
1695 infop, stat_addr, ru);
1696 if (!tsk_result)
1697 tsk_result = ptrace_do_wait(tsk, &retval,
1698 type, pid, options,
1699 infop, stat_addr, ru);
1700 if (tsk_result) {
1702 * tasklist_lock is unlocked and we have a final result.
1704 retval = tsk_result;
1705 goto end;
1708 if (options & __WNOTHREAD)
1709 break;
1710 tsk = next_thread(tsk);
1711 BUG_ON(tsk->signal != current->signal);
1712 } while (tsk != current);
1713 read_unlock(&tasklist_lock);
1715 if (!retval && !(options & WNOHANG)) {
1716 retval = -ERESTARTSYS;
1717 if (!signal_pending(current)) {
1718 schedule();
1719 goto repeat;
1723 end:
1724 current->state = TASK_RUNNING;
1725 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1726 if (infop) {
1727 if (retval > 0)
1728 retval = 0;
1729 else {
1731 * For a WNOHANG return, clear out all the fields
1732 * we would set so the user can easily tell the
1733 * difference.
1735 if (!retval)
1736 retval = put_user(0, &infop->si_signo);
1737 if (!retval)
1738 retval = put_user(0, &infop->si_errno);
1739 if (!retval)
1740 retval = put_user(0, &infop->si_code);
1741 if (!retval)
1742 retval = put_user(0, &infop->si_pid);
1743 if (!retval)
1744 retval = put_user(0, &infop->si_uid);
1745 if (!retval)
1746 retval = put_user(0, &infop->si_status);
1749 return retval;
1752 asmlinkage long sys_waitid(int which, pid_t upid,
1753 struct siginfo __user *infop, int options,
1754 struct rusage __user *ru)
1756 struct pid *pid = NULL;
1757 enum pid_type type;
1758 long ret;
1760 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1761 return -EINVAL;
1762 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1763 return -EINVAL;
1765 switch (which) {
1766 case P_ALL:
1767 type = PIDTYPE_MAX;
1768 break;
1769 case P_PID:
1770 type = PIDTYPE_PID;
1771 if (upid <= 0)
1772 return -EINVAL;
1773 break;
1774 case P_PGID:
1775 type = PIDTYPE_PGID;
1776 if (upid <= 0)
1777 return -EINVAL;
1778 break;
1779 default:
1780 return -EINVAL;
1783 if (type < PIDTYPE_MAX)
1784 pid = find_get_pid(upid);
1785 ret = do_wait(type, pid, options, infop, NULL, ru);
1786 put_pid(pid);
1788 /* avoid REGPARM breakage on x86: */
1789 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1790 return ret;
1793 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1794 int options, struct rusage __user *ru)
1796 struct pid *pid = NULL;
1797 enum pid_type type;
1798 long ret;
1800 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1801 __WNOTHREAD|__WCLONE|__WALL))
1802 return -EINVAL;
1804 if (upid == -1)
1805 type = PIDTYPE_MAX;
1806 else if (upid < 0) {
1807 type = PIDTYPE_PGID;
1808 pid = find_get_pid(-upid);
1809 } else if (upid == 0) {
1810 type = PIDTYPE_PGID;
1811 pid = get_pid(task_pgrp(current));
1812 } else /* upid > 0 */ {
1813 type = PIDTYPE_PID;
1814 pid = find_get_pid(upid);
1817 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1818 put_pid(pid);
1820 /* avoid REGPARM breakage on x86: */
1821 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1822 return ret;
1825 #ifdef __ARCH_WANT_SYS_WAITPID
1828 * sys_waitpid() remains for compatibility. waitpid() should be
1829 * implemented by calling sys_wait4() from libc.a.
1831 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1833 return sys_wait4(pid, stat_addr, options, NULL);
1836 #endif