block: remove wrappers for request type/flags
[linux-2.6/next.git] / block / elevator.c
blobaa99b59c03d6748c17e948687a9e38a08c4224a4
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
39 #include <trace/events/block.h>
41 #include "blk.h"
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
47 * Merge hash stuff.
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
51 #define ELV_HASH_FN(sec) \
52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
62 struct request_queue *q = rq->q;
63 struct elevator_queue *e = q->elevator;
65 if (e->ops->elevator_allow_merge_fn)
66 return e->ops->elevator_allow_merge_fn(q, rq, bio);
68 return 1;
72 * can we safely merge with this request?
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
76 if (!rq_mergeable(rq))
77 return 0;
80 * Don't merge file system requests and discard requests
82 if (bio_rw_flagged(bio, BIO_RW_DISCARD) !=
83 bio_rw_flagged(rq->bio, BIO_RW_DISCARD))
84 return 0;
87 * different data direction or already started, don't merge
89 if (bio_data_dir(bio) != rq_data_dir(rq))
90 return 0;
93 * must be same device and not a special request
95 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
96 return 0;
99 * only merge integrity protected bio into ditto rq
101 if (bio_integrity(bio) != blk_integrity_rq(rq))
102 return 0;
104 if (!elv_iosched_allow_merge(rq, bio))
105 return 0;
107 return 1;
109 EXPORT_SYMBOL(elv_rq_merge_ok);
111 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
113 int ret = ELEVATOR_NO_MERGE;
116 * we can merge and sequence is ok, check if it's possible
118 if (elv_rq_merge_ok(__rq, bio)) {
119 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
120 ret = ELEVATOR_BACK_MERGE;
121 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
122 ret = ELEVATOR_FRONT_MERGE;
125 return ret;
128 static struct elevator_type *elevator_find(const char *name)
130 struct elevator_type *e;
132 list_for_each_entry(e, &elv_list, list) {
133 if (!strcmp(e->elevator_name, name))
134 return e;
137 return NULL;
140 static void elevator_put(struct elevator_type *e)
142 module_put(e->elevator_owner);
145 static struct elevator_type *elevator_get(const char *name)
147 struct elevator_type *e;
149 spin_lock(&elv_list_lock);
151 e = elevator_find(name);
152 if (!e) {
153 char elv[ELV_NAME_MAX + strlen("-iosched")];
155 spin_unlock(&elv_list_lock);
157 snprintf(elv, sizeof(elv), "%s-iosched", name);
159 request_module("%s", elv);
160 spin_lock(&elv_list_lock);
161 e = elevator_find(name);
164 if (e && !try_module_get(e->elevator_owner))
165 e = NULL;
167 spin_unlock(&elv_list_lock);
169 return e;
172 static void *elevator_init_queue(struct request_queue *q,
173 struct elevator_queue *eq)
175 return eq->ops->elevator_init_fn(q);
178 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
179 void *data)
181 q->elevator = eq;
182 eq->elevator_data = data;
185 static char chosen_elevator[16];
187 static int __init elevator_setup(char *str)
190 * Be backwards-compatible with previous kernels, so users
191 * won't get the wrong elevator.
193 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
194 return 1;
197 __setup("elevator=", elevator_setup);
199 static struct kobj_type elv_ktype;
201 static struct elevator_queue *elevator_alloc(struct request_queue *q,
202 struct elevator_type *e)
204 struct elevator_queue *eq;
205 int i;
207 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
208 if (unlikely(!eq))
209 goto err;
211 eq->ops = &e->ops;
212 eq->elevator_type = e;
213 kobject_init(&eq->kobj, &elv_ktype);
214 mutex_init(&eq->sysfs_lock);
216 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
217 GFP_KERNEL, q->node);
218 if (!eq->hash)
219 goto err;
221 for (i = 0; i < ELV_HASH_ENTRIES; i++)
222 INIT_HLIST_HEAD(&eq->hash[i]);
224 return eq;
225 err:
226 kfree(eq);
227 elevator_put(e);
228 return NULL;
231 static void elevator_release(struct kobject *kobj)
233 struct elevator_queue *e;
235 e = container_of(kobj, struct elevator_queue, kobj);
236 elevator_put(e->elevator_type);
237 kfree(e->hash);
238 kfree(e);
241 int elevator_init(struct request_queue *q, char *name)
243 struct elevator_type *e = NULL;
244 struct elevator_queue *eq;
245 void *data;
247 if (unlikely(q->elevator))
248 return 0;
250 INIT_LIST_HEAD(&q->queue_head);
251 q->last_merge = NULL;
252 q->end_sector = 0;
253 q->boundary_rq = NULL;
255 if (name) {
256 e = elevator_get(name);
257 if (!e)
258 return -EINVAL;
261 if (!e && *chosen_elevator) {
262 e = elevator_get(chosen_elevator);
263 if (!e)
264 printk(KERN_ERR "I/O scheduler %s not found\n",
265 chosen_elevator);
268 if (!e) {
269 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
270 if (!e) {
271 printk(KERN_ERR
272 "Default I/O scheduler not found. " \
273 "Using noop.\n");
274 e = elevator_get("noop");
278 eq = elevator_alloc(q, e);
279 if (!eq)
280 return -ENOMEM;
282 data = elevator_init_queue(q, eq);
283 if (!data) {
284 kobject_put(&eq->kobj);
285 return -ENOMEM;
288 elevator_attach(q, eq, data);
289 return 0;
291 EXPORT_SYMBOL(elevator_init);
293 void elevator_exit(struct elevator_queue *e)
295 mutex_lock(&e->sysfs_lock);
296 if (e->ops->elevator_exit_fn)
297 e->ops->elevator_exit_fn(e);
298 e->ops = NULL;
299 mutex_unlock(&e->sysfs_lock);
301 kobject_put(&e->kobj);
303 EXPORT_SYMBOL(elevator_exit);
305 static inline void __elv_rqhash_del(struct request *rq)
307 hlist_del_init(&rq->hash);
310 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
312 if (ELV_ON_HASH(rq))
313 __elv_rqhash_del(rq);
316 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
318 struct elevator_queue *e = q->elevator;
320 BUG_ON(ELV_ON_HASH(rq));
321 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
324 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
326 __elv_rqhash_del(rq);
327 elv_rqhash_add(q, rq);
330 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
332 struct elevator_queue *e = q->elevator;
333 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
334 struct hlist_node *entry, *next;
335 struct request *rq;
337 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
338 BUG_ON(!ELV_ON_HASH(rq));
340 if (unlikely(!rq_mergeable(rq))) {
341 __elv_rqhash_del(rq);
342 continue;
345 if (rq_hash_key(rq) == offset)
346 return rq;
349 return NULL;
353 * RB-tree support functions for inserting/lookup/removal of requests
354 * in a sorted RB tree.
356 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
358 struct rb_node **p = &root->rb_node;
359 struct rb_node *parent = NULL;
360 struct request *__rq;
362 while (*p) {
363 parent = *p;
364 __rq = rb_entry(parent, struct request, rb_node);
366 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
367 p = &(*p)->rb_left;
368 else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
369 p = &(*p)->rb_right;
370 else
371 return __rq;
374 rb_link_node(&rq->rb_node, parent, p);
375 rb_insert_color(&rq->rb_node, root);
376 return NULL;
378 EXPORT_SYMBOL(elv_rb_add);
380 void elv_rb_del(struct rb_root *root, struct request *rq)
382 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
383 rb_erase(&rq->rb_node, root);
384 RB_CLEAR_NODE(&rq->rb_node);
386 EXPORT_SYMBOL(elv_rb_del);
388 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
390 struct rb_node *n = root->rb_node;
391 struct request *rq;
393 while (n) {
394 rq = rb_entry(n, struct request, rb_node);
396 if (sector < blk_rq_pos(rq))
397 n = n->rb_left;
398 else if (sector > blk_rq_pos(rq))
399 n = n->rb_right;
400 else
401 return rq;
404 return NULL;
406 EXPORT_SYMBOL(elv_rb_find);
409 * Insert rq into dispatch queue of q. Queue lock must be held on
410 * entry. rq is sort instead into the dispatch queue. To be used by
411 * specific elevators.
413 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
415 sector_t boundary;
416 struct list_head *entry;
417 int stop_flags;
419 if (q->last_merge == rq)
420 q->last_merge = NULL;
422 elv_rqhash_del(q, rq);
424 q->nr_sorted--;
426 boundary = q->end_sector;
427 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
428 list_for_each_prev(entry, &q->queue_head) {
429 struct request *pos = list_entry_rq(entry);
431 if ((rq->cmd_flags & REQ_DISCARD) !=
432 (pos->cmd_flags & REQ_DISCARD))
433 break;
434 if (rq_data_dir(rq) != rq_data_dir(pos))
435 break;
436 if (pos->cmd_flags & stop_flags)
437 break;
438 if (blk_rq_pos(rq) >= boundary) {
439 if (blk_rq_pos(pos) < boundary)
440 continue;
441 } else {
442 if (blk_rq_pos(pos) >= boundary)
443 break;
445 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
446 break;
449 list_add(&rq->queuelist, entry);
451 EXPORT_SYMBOL(elv_dispatch_sort);
454 * Insert rq into dispatch queue of q. Queue lock must be held on
455 * entry. rq is added to the back of the dispatch queue. To be used by
456 * specific elevators.
458 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
460 if (q->last_merge == rq)
461 q->last_merge = NULL;
463 elv_rqhash_del(q, rq);
465 q->nr_sorted--;
467 q->end_sector = rq_end_sector(rq);
468 q->boundary_rq = rq;
469 list_add_tail(&rq->queuelist, &q->queue_head);
471 EXPORT_SYMBOL(elv_dispatch_add_tail);
473 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
475 struct elevator_queue *e = q->elevator;
476 struct request *__rq;
477 int ret;
480 * Levels of merges:
481 * nomerges: No merges at all attempted
482 * noxmerges: Only simple one-hit cache try
483 * merges: All merge tries attempted
485 if (blk_queue_nomerges(q))
486 return ELEVATOR_NO_MERGE;
489 * First try one-hit cache.
491 if (q->last_merge) {
492 ret = elv_try_merge(q->last_merge, bio);
493 if (ret != ELEVATOR_NO_MERGE) {
494 *req = q->last_merge;
495 return ret;
499 if (blk_queue_noxmerges(q))
500 return ELEVATOR_NO_MERGE;
503 * See if our hash lookup can find a potential backmerge.
505 __rq = elv_rqhash_find(q, bio->bi_sector);
506 if (__rq && elv_rq_merge_ok(__rq, bio)) {
507 *req = __rq;
508 return ELEVATOR_BACK_MERGE;
511 if (e->ops->elevator_merge_fn)
512 return e->ops->elevator_merge_fn(q, req, bio);
514 return ELEVATOR_NO_MERGE;
517 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
519 struct elevator_queue *e = q->elevator;
521 if (e->ops->elevator_merged_fn)
522 e->ops->elevator_merged_fn(q, rq, type);
524 if (type == ELEVATOR_BACK_MERGE)
525 elv_rqhash_reposition(q, rq);
527 q->last_merge = rq;
530 void elv_merge_requests(struct request_queue *q, struct request *rq,
531 struct request *next)
533 struct elevator_queue *e = q->elevator;
535 if (e->ops->elevator_merge_req_fn)
536 e->ops->elevator_merge_req_fn(q, rq, next);
538 elv_rqhash_reposition(q, rq);
539 elv_rqhash_del(q, next);
541 q->nr_sorted--;
542 q->last_merge = rq;
545 void elv_bio_merged(struct request_queue *q, struct request *rq,
546 struct bio *bio)
548 struct elevator_queue *e = q->elevator;
550 if (e->ops->elevator_bio_merged_fn)
551 e->ops->elevator_bio_merged_fn(q, rq, bio);
554 void elv_requeue_request(struct request_queue *q, struct request *rq)
557 * it already went through dequeue, we need to decrement the
558 * in_flight count again
560 if (blk_account_rq(rq)) {
561 q->in_flight[rq_is_sync(rq)]--;
562 if (rq->cmd_flags & REQ_SORTED)
563 elv_deactivate_rq(q, rq);
566 rq->cmd_flags &= ~REQ_STARTED;
568 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
571 void elv_drain_elevator(struct request_queue *q)
573 static int printed;
574 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
576 if (q->nr_sorted == 0)
577 return;
578 if (printed++ < 10) {
579 printk(KERN_ERR "%s: forced dispatching is broken "
580 "(nr_sorted=%u), please report this\n",
581 q->elevator->elevator_type->elevator_name, q->nr_sorted);
586 * Call with queue lock held, interrupts disabled
588 void elv_quiesce_start(struct request_queue *q)
590 if (!q->elevator)
591 return;
593 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
596 * make sure we don't have any requests in flight
598 elv_drain_elevator(q);
599 while (q->rq.elvpriv) {
600 __blk_run_queue(q);
601 spin_unlock_irq(q->queue_lock);
602 msleep(10);
603 spin_lock_irq(q->queue_lock);
604 elv_drain_elevator(q);
608 void elv_quiesce_end(struct request_queue *q)
610 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
613 void elv_insert(struct request_queue *q, struct request *rq, int where)
615 struct list_head *pos;
616 unsigned ordseq;
617 int unplug_it = 1;
619 trace_block_rq_insert(q, rq);
621 rq->q = q;
623 switch (where) {
624 case ELEVATOR_INSERT_FRONT:
625 rq->cmd_flags |= REQ_SOFTBARRIER;
627 list_add(&rq->queuelist, &q->queue_head);
628 break;
630 case ELEVATOR_INSERT_BACK:
631 rq->cmd_flags |= REQ_SOFTBARRIER;
632 elv_drain_elevator(q);
633 list_add_tail(&rq->queuelist, &q->queue_head);
635 * We kick the queue here for the following reasons.
636 * - The elevator might have returned NULL previously
637 * to delay requests and returned them now. As the
638 * queue wasn't empty before this request, ll_rw_blk
639 * won't run the queue on return, resulting in hang.
640 * - Usually, back inserted requests won't be merged
641 * with anything. There's no point in delaying queue
642 * processing.
644 __blk_run_queue(q);
645 break;
647 case ELEVATOR_INSERT_SORT:
648 BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
649 !(rq->cmd_flags & REQ_DISCARD));
650 rq->cmd_flags |= REQ_SORTED;
651 q->nr_sorted++;
652 if (rq_mergeable(rq)) {
653 elv_rqhash_add(q, rq);
654 if (!q->last_merge)
655 q->last_merge = rq;
659 * Some ioscheds (cfq) run q->request_fn directly, so
660 * rq cannot be accessed after calling
661 * elevator_add_req_fn.
663 q->elevator->ops->elevator_add_req_fn(q, rq);
664 break;
666 case ELEVATOR_INSERT_REQUEUE:
668 * If ordered flush isn't in progress, we do front
669 * insertion; otherwise, requests should be requeued
670 * in ordseq order.
672 rq->cmd_flags |= REQ_SOFTBARRIER;
675 * Most requeues happen because of a busy condition,
676 * don't force unplug of the queue for that case.
678 unplug_it = 0;
680 if (q->ordseq == 0) {
681 list_add(&rq->queuelist, &q->queue_head);
682 break;
685 ordseq = blk_ordered_req_seq(rq);
687 list_for_each(pos, &q->queue_head) {
688 struct request *pos_rq = list_entry_rq(pos);
689 if (ordseq <= blk_ordered_req_seq(pos_rq))
690 break;
693 list_add_tail(&rq->queuelist, pos);
694 break;
696 default:
697 printk(KERN_ERR "%s: bad insertion point %d\n",
698 __func__, where);
699 BUG();
702 if (unplug_it && blk_queue_plugged(q)) {
703 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
704 - queue_in_flight(q);
706 if (nrq >= q->unplug_thresh)
707 __generic_unplug_device(q);
711 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
712 int plug)
714 if (q->ordcolor)
715 rq->cmd_flags |= REQ_ORDERED_COLOR;
717 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
719 * toggle ordered color
721 if (rq->cmd_flags & REQ_HARDBARRIER)
722 q->ordcolor ^= 1;
725 * barriers implicitly indicate back insertion
727 if (where == ELEVATOR_INSERT_SORT)
728 where = ELEVATOR_INSERT_BACK;
731 * this request is scheduling boundary, update
732 * end_sector
734 if (rq->cmd_type == REQ_TYPE_FS ||
735 (rq->cmd_flags & REQ_DISCARD)) {
736 q->end_sector = rq_end_sector(rq);
737 q->boundary_rq = rq;
739 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
740 where == ELEVATOR_INSERT_SORT)
741 where = ELEVATOR_INSERT_BACK;
743 if (plug)
744 blk_plug_device(q);
746 elv_insert(q, rq, where);
748 EXPORT_SYMBOL(__elv_add_request);
750 void elv_add_request(struct request_queue *q, struct request *rq, int where,
751 int plug)
753 unsigned long flags;
755 spin_lock_irqsave(q->queue_lock, flags);
756 __elv_add_request(q, rq, where, plug);
757 spin_unlock_irqrestore(q->queue_lock, flags);
759 EXPORT_SYMBOL(elv_add_request);
761 int elv_queue_empty(struct request_queue *q)
763 struct elevator_queue *e = q->elevator;
765 if (!list_empty(&q->queue_head))
766 return 0;
768 if (e->ops->elevator_queue_empty_fn)
769 return e->ops->elevator_queue_empty_fn(q);
771 return 1;
773 EXPORT_SYMBOL(elv_queue_empty);
775 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
777 struct elevator_queue *e = q->elevator;
779 if (e->ops->elevator_latter_req_fn)
780 return e->ops->elevator_latter_req_fn(q, rq);
781 return NULL;
784 struct request *elv_former_request(struct request_queue *q, struct request *rq)
786 struct elevator_queue *e = q->elevator;
788 if (e->ops->elevator_former_req_fn)
789 return e->ops->elevator_former_req_fn(q, rq);
790 return NULL;
793 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
795 struct elevator_queue *e = q->elevator;
797 if (e->ops->elevator_set_req_fn)
798 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
800 rq->elevator_private = NULL;
801 return 0;
804 void elv_put_request(struct request_queue *q, struct request *rq)
806 struct elevator_queue *e = q->elevator;
808 if (e->ops->elevator_put_req_fn)
809 e->ops->elevator_put_req_fn(rq);
812 int elv_may_queue(struct request_queue *q, int rw)
814 struct elevator_queue *e = q->elevator;
816 if (e->ops->elevator_may_queue_fn)
817 return e->ops->elevator_may_queue_fn(q, rw);
819 return ELV_MQUEUE_MAY;
822 void elv_abort_queue(struct request_queue *q)
824 struct request *rq;
826 while (!list_empty(&q->queue_head)) {
827 rq = list_entry_rq(q->queue_head.next);
828 rq->cmd_flags |= REQ_QUIET;
829 trace_block_rq_abort(q, rq);
831 * Mark this request as started so we don't trigger
832 * any debug logic in the end I/O path.
834 blk_start_request(rq);
835 __blk_end_request_all(rq, -EIO);
838 EXPORT_SYMBOL(elv_abort_queue);
840 void elv_completed_request(struct request_queue *q, struct request *rq)
842 struct elevator_queue *e = q->elevator;
845 * request is released from the driver, io must be done
847 if (blk_account_rq(rq)) {
848 q->in_flight[rq_is_sync(rq)]--;
849 if ((rq->cmd_flags & REQ_SORTED) &&
850 e->ops->elevator_completed_req_fn)
851 e->ops->elevator_completed_req_fn(q, rq);
855 * Check if the queue is waiting for fs requests to be
856 * drained for flush sequence.
858 if (unlikely(q->ordseq)) {
859 struct request *next = NULL;
861 if (!list_empty(&q->queue_head))
862 next = list_entry_rq(q->queue_head.next);
864 if (!queue_in_flight(q) &&
865 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
866 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
867 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
868 __blk_run_queue(q);
873 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
875 static ssize_t
876 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
878 struct elv_fs_entry *entry = to_elv(attr);
879 struct elevator_queue *e;
880 ssize_t error;
882 if (!entry->show)
883 return -EIO;
885 e = container_of(kobj, struct elevator_queue, kobj);
886 mutex_lock(&e->sysfs_lock);
887 error = e->ops ? entry->show(e, page) : -ENOENT;
888 mutex_unlock(&e->sysfs_lock);
889 return error;
892 static ssize_t
893 elv_attr_store(struct kobject *kobj, struct attribute *attr,
894 const char *page, size_t length)
896 struct elv_fs_entry *entry = to_elv(attr);
897 struct elevator_queue *e;
898 ssize_t error;
900 if (!entry->store)
901 return -EIO;
903 e = container_of(kobj, struct elevator_queue, kobj);
904 mutex_lock(&e->sysfs_lock);
905 error = e->ops ? entry->store(e, page, length) : -ENOENT;
906 mutex_unlock(&e->sysfs_lock);
907 return error;
910 static const struct sysfs_ops elv_sysfs_ops = {
911 .show = elv_attr_show,
912 .store = elv_attr_store,
915 static struct kobj_type elv_ktype = {
916 .sysfs_ops = &elv_sysfs_ops,
917 .release = elevator_release,
920 int elv_register_queue(struct request_queue *q)
922 struct elevator_queue *e = q->elevator;
923 int error;
925 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
926 if (!error) {
927 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
928 if (attr) {
929 while (attr->attr.name) {
930 if (sysfs_create_file(&e->kobj, &attr->attr))
931 break;
932 attr++;
935 kobject_uevent(&e->kobj, KOBJ_ADD);
937 return error;
939 EXPORT_SYMBOL(elv_register_queue);
941 static void __elv_unregister_queue(struct elevator_queue *e)
943 kobject_uevent(&e->kobj, KOBJ_REMOVE);
944 kobject_del(&e->kobj);
947 void elv_unregister_queue(struct request_queue *q)
949 if (q)
950 __elv_unregister_queue(q->elevator);
952 EXPORT_SYMBOL(elv_unregister_queue);
954 void elv_register(struct elevator_type *e)
956 char *def = "";
958 spin_lock(&elv_list_lock);
959 BUG_ON(elevator_find(e->elevator_name));
960 list_add_tail(&e->list, &elv_list);
961 spin_unlock(&elv_list_lock);
963 if (!strcmp(e->elevator_name, chosen_elevator) ||
964 (!*chosen_elevator &&
965 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
966 def = " (default)";
968 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
969 def);
971 EXPORT_SYMBOL_GPL(elv_register);
973 void elv_unregister(struct elevator_type *e)
975 struct task_struct *g, *p;
978 * Iterate every thread in the process to remove the io contexts.
980 if (e->ops.trim) {
981 read_lock(&tasklist_lock);
982 do_each_thread(g, p) {
983 task_lock(p);
984 if (p->io_context)
985 e->ops.trim(p->io_context);
986 task_unlock(p);
987 } while_each_thread(g, p);
988 read_unlock(&tasklist_lock);
991 spin_lock(&elv_list_lock);
992 list_del_init(&e->list);
993 spin_unlock(&elv_list_lock);
995 EXPORT_SYMBOL_GPL(elv_unregister);
998 * switch to new_e io scheduler. be careful not to introduce deadlocks -
999 * we don't free the old io scheduler, before we have allocated what we
1000 * need for the new one. this way we have a chance of going back to the old
1001 * one, if the new one fails init for some reason.
1003 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1005 struct elevator_queue *old_elevator, *e;
1006 void *data;
1009 * Allocate new elevator
1011 e = elevator_alloc(q, new_e);
1012 if (!e)
1013 return 0;
1015 data = elevator_init_queue(q, e);
1016 if (!data) {
1017 kobject_put(&e->kobj);
1018 return 0;
1022 * Turn on BYPASS and drain all requests w/ elevator private data
1024 spin_lock_irq(q->queue_lock);
1025 elv_quiesce_start(q);
1028 * Remember old elevator.
1030 old_elevator = q->elevator;
1033 * attach and start new elevator
1035 elevator_attach(q, e, data);
1037 spin_unlock_irq(q->queue_lock);
1039 __elv_unregister_queue(old_elevator);
1041 if (elv_register_queue(q))
1042 goto fail_register;
1045 * finally exit old elevator and turn off BYPASS.
1047 elevator_exit(old_elevator);
1048 spin_lock_irq(q->queue_lock);
1049 elv_quiesce_end(q);
1050 spin_unlock_irq(q->queue_lock);
1052 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1054 return 1;
1056 fail_register:
1058 * switch failed, exit the new io scheduler and reattach the old
1059 * one again (along with re-adding the sysfs dir)
1061 elevator_exit(e);
1062 q->elevator = old_elevator;
1063 elv_register_queue(q);
1065 spin_lock_irq(q->queue_lock);
1066 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1067 spin_unlock_irq(q->queue_lock);
1069 return 0;
1072 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1073 size_t count)
1075 char elevator_name[ELV_NAME_MAX];
1076 struct elevator_type *e;
1078 if (!q->elevator)
1079 return count;
1081 strlcpy(elevator_name, name, sizeof(elevator_name));
1082 e = elevator_get(strstrip(elevator_name));
1083 if (!e) {
1084 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1085 return -EINVAL;
1088 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1089 elevator_put(e);
1090 return count;
1093 if (!elevator_switch(q, e))
1094 printk(KERN_ERR "elevator: switch to %s failed\n",
1095 elevator_name);
1096 return count;
1099 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1101 struct elevator_queue *e = q->elevator;
1102 struct elevator_type *elv;
1103 struct elevator_type *__e;
1104 int len = 0;
1106 if (!q->elevator || !blk_queue_stackable(q))
1107 return sprintf(name, "none\n");
1109 elv = e->elevator_type;
1111 spin_lock(&elv_list_lock);
1112 list_for_each_entry(__e, &elv_list, list) {
1113 if (!strcmp(elv->elevator_name, __e->elevator_name))
1114 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1115 else
1116 len += sprintf(name+len, "%s ", __e->elevator_name);
1118 spin_unlock(&elv_list_lock);
1120 len += sprintf(len+name, "\n");
1121 return len;
1124 struct request *elv_rb_former_request(struct request_queue *q,
1125 struct request *rq)
1127 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1129 if (rbprev)
1130 return rb_entry_rq(rbprev);
1132 return NULL;
1134 EXPORT_SYMBOL(elv_rb_former_request);
1136 struct request *elv_rb_latter_request(struct request_queue *q,
1137 struct request *rq)
1139 struct rb_node *rbnext = rb_next(&rq->rb_node);
1141 if (rbnext)
1142 return rb_entry_rq(rbnext);
1144 return NULL;
1146 EXPORT_SYMBOL(elv_rb_latter_request);