1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
144 #define I82579_EMI_ADDR 0x10
145 #define I82579_EMI_DATA 0x11
146 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
148 /* Strapping Option Register - RO */
149 #define E1000_STRAP 0x0000C
150 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
151 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153 /* OEM Bits Phy Register */
154 #define HV_OEM_BITS PHY_REG(768, 25)
155 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
156 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
157 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
160 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
162 /* KMRN Mode Control */
163 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
164 #define HV_KMRN_MDIO_SLOW 0x0400
166 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
167 /* Offset 04h HSFSTS */
168 union ich8_hws_flash_status
{
170 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
171 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
172 u16 dael
:1; /* bit 2 Direct Access error Log */
173 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
174 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
175 u16 reserved1
:2; /* bit 13:6 Reserved */
176 u16 reserved2
:6; /* bit 13:6 Reserved */
177 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
178 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
183 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
184 /* Offset 06h FLCTL */
185 union ich8_hws_flash_ctrl
{
186 struct ich8_hsflctl
{
187 u16 flcgo
:1; /* 0 Flash Cycle Go */
188 u16 flcycle
:2; /* 2:1 Flash Cycle */
189 u16 reserved
:5; /* 7:3 Reserved */
190 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
191 u16 flockdn
:6; /* 15:10 Reserved */
196 /* ICH Flash Region Access Permissions */
197 union ich8_hws_flash_regacc
{
199 u32 grra
:8; /* 0:7 GbE region Read Access */
200 u32 grwa
:8; /* 8:15 GbE region Write Access */
201 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
202 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
207 /* ICH Flash Protected Region */
208 union ich8_flash_protected_range
{
210 u32 base
:13; /* 0:12 Protected Range Base */
211 u32 reserved1
:2; /* 13:14 Reserved */
212 u32 rpe
:1; /* 15 Read Protection Enable */
213 u32 limit
:13; /* 16:28 Protected Range Limit */
214 u32 reserved2
:2; /* 29:30 Reserved */
215 u32 wpe
:1; /* 31 Write Protection Enable */
220 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
221 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
222 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
223 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
224 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
225 u32 offset
, u8 byte
);
226 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
228 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
230 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
232 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
233 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
234 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
235 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
236 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
237 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
238 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
239 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
240 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
241 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
242 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
243 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
244 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
245 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
246 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
247 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
248 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
249 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
250 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
251 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
253 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
255 return readw(hw
->flash_address
+ reg
);
258 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
260 return readl(hw
->flash_address
+ reg
);
263 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
265 writew(val
, hw
->flash_address
+ reg
);
268 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
270 writel(val
, hw
->flash_address
+ reg
);
273 #define er16flash(reg) __er16flash(hw, (reg))
274 #define er32flash(reg) __er32flash(hw, (reg))
275 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
276 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
278 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw
*hw
)
283 ctrl
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
284 ctrl
&= ~E1000_CTRL_LANPHYPC_VALUE
;
288 ctrl
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
293 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
294 * @hw: pointer to the HW structure
296 * Initialize family-specific PHY parameters and function pointers.
298 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
300 struct e1000_phy_info
*phy
= &hw
->phy
;
305 phy
->reset_delay_us
= 100;
307 phy
->ops
.set_page
= e1000_set_page_igp
;
308 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
309 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
310 phy
->ops
.read_reg_page
= e1000_read_phy_reg_page_hv
;
311 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
312 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
313 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
314 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
315 phy
->ops
.write_reg_page
= e1000_write_phy_reg_page_hv
;
316 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
317 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
318 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
321 * The MAC-PHY interconnect may still be in SMBus mode
322 * after Sx->S0. If the manageability engine (ME) is
323 * disabled, then toggle the LANPHYPC Value bit to force
324 * the interconnect to PCIe mode.
327 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) && !e1000_check_reset_block(hw
)) {
328 e1000_toggle_lanphypc_value_ich8lan(hw
);
332 * Gate automatic PHY configuration by hardware on
335 if (hw
->mac
.type
== e1000_pch2lan
)
336 e1000_gate_hw_phy_config_ich8lan(hw
, true);
340 * Reset the PHY before any access to it. Doing so, ensures that
341 * the PHY is in a known good state before we read/write PHY registers.
342 * The generic reset is sufficient here, because we haven't determined
345 ret_val
= e1000e_phy_hw_reset_generic(hw
);
349 /* Ungate automatic PHY configuration on non-managed 82579 */
350 if ((hw
->mac
.type
== e1000_pch2lan
) &&
351 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
352 usleep_range(10000, 20000);
353 e1000_gate_hw_phy_config_ich8lan(hw
, false);
356 phy
->id
= e1000_phy_unknown
;
357 switch (hw
->mac
.type
) {
359 ret_val
= e1000e_get_phy_id(hw
);
362 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
367 * In case the PHY needs to be in mdio slow mode,
368 * set slow mode and try to get the PHY id again.
370 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
373 ret_val
= e1000e_get_phy_id(hw
);
378 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
381 case e1000_phy_82577
:
382 case e1000_phy_82579
:
383 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
384 phy
->ops
.force_speed_duplex
=
385 e1000_phy_force_speed_duplex_82577
;
386 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
387 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
388 phy
->ops
.commit
= e1000e_phy_sw_reset
;
390 case e1000_phy_82578
:
391 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
392 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
393 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
394 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
397 ret_val
= -E1000_ERR_PHY
;
406 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
407 * @hw: pointer to the HW structure
409 * Initialize family-specific PHY parameters and function pointers.
411 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
413 struct e1000_phy_info
*phy
= &hw
->phy
;
418 phy
->reset_delay_us
= 100;
420 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
421 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
424 * We may need to do this twice - once for IGP and if that fails,
425 * we'll set BM func pointers and try again
427 ret_val
= e1000e_determine_phy_address(hw
);
429 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
430 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
431 ret_val
= e1000e_determine_phy_address(hw
);
433 e_dbg("Cannot determine PHY addr. Erroring out\n");
439 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
441 usleep_range(1000, 2000);
442 ret_val
= e1000e_get_phy_id(hw
);
449 case IGP03E1000_E_PHY_ID
:
450 phy
->type
= e1000_phy_igp_3
;
451 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
452 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
453 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
454 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
455 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
456 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
459 case IFE_PLUS_E_PHY_ID
:
461 phy
->type
= e1000_phy_ife
;
462 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
463 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
464 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
465 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
467 case BME1000_E_PHY_ID
:
468 phy
->type
= e1000_phy_bm
;
469 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
470 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
471 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
472 phy
->ops
.commit
= e1000e_phy_sw_reset
;
473 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
474 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
475 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
478 return -E1000_ERR_PHY
;
486 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
487 * @hw: pointer to the HW structure
489 * Initialize family-specific NVM parameters and function
492 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
494 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
495 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
496 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
499 /* Can't read flash registers if the register set isn't mapped. */
500 if (!hw
->flash_address
) {
501 e_dbg("ERROR: Flash registers not mapped\n");
502 return -E1000_ERR_CONFIG
;
505 nvm
->type
= e1000_nvm_flash_sw
;
507 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
510 * sector_X_addr is a "sector"-aligned address (4096 bytes)
511 * Add 1 to sector_end_addr since this sector is included in
514 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
515 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
517 /* flash_base_addr is byte-aligned */
518 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
521 * find total size of the NVM, then cut in half since the total
522 * size represents two separate NVM banks.
524 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
525 << FLASH_SECTOR_ADDR_SHIFT
;
526 nvm
->flash_bank_size
/= 2;
527 /* Adjust to word count */
528 nvm
->flash_bank_size
/= sizeof(u16
);
530 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
532 /* Clear shadow ram */
533 for (i
= 0; i
< nvm
->word_size
; i
++) {
534 dev_spec
->shadow_ram
[i
].modified
= false;
535 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
542 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
543 * @hw: pointer to the HW structure
545 * Initialize family-specific MAC parameters and function
548 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
550 struct e1000_hw
*hw
= &adapter
->hw
;
551 struct e1000_mac_info
*mac
= &hw
->mac
;
553 /* Set media type function pointer */
554 hw
->phy
.media_type
= e1000_media_type_copper
;
556 /* Set mta register count */
557 mac
->mta_reg_count
= 32;
558 /* Set rar entry count */
559 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
560 if (mac
->type
== e1000_ich8lan
)
561 mac
->rar_entry_count
--;
563 mac
->has_fwsm
= true;
564 /* ARC subsystem not supported */
565 mac
->arc_subsystem_valid
= false;
566 /* Adaptive IFS supported */
567 mac
->adaptive_ifs
= true;
574 /* check management mode */
575 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
577 mac
->ops
.id_led_init
= e1000e_id_led_init
;
579 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
581 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
583 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
584 /* turn on/off LED */
585 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
586 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
590 /* check management mode */
591 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
593 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
595 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
597 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
598 /* turn on/off LED */
599 mac
->ops
.led_on
= e1000_led_on_pchlan
;
600 mac
->ops
.led_off
= e1000_led_off_pchlan
;
606 /* Enable PCS Lock-loss workaround for ICH8 */
607 if (mac
->type
== e1000_ich8lan
)
608 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
610 /* Gate automatic PHY configuration by hardware on managed 82579 */
611 if ((mac
->type
== e1000_pch2lan
) &&
612 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
613 e1000_gate_hw_phy_config_ich8lan(hw
, true);
619 * e1000_set_eee_pchlan - Enable/disable EEE support
620 * @hw: pointer to the HW structure
622 * Enable/disable EEE based on setting in dev_spec structure. The bits in
623 * the LPI Control register will remain set only if/when link is up.
625 static s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
630 if (hw
->phy
.type
!= e1000_phy_82579
)
633 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
637 if (hw
->dev_spec
.ich8lan
.eee_disable
)
638 phy_reg
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
640 phy_reg
|= I82579_LPI_CTRL_ENABLE_MASK
;
642 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
648 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
649 * @hw: pointer to the HW structure
651 * Checks to see of the link status of the hardware has changed. If a
652 * change in link status has been detected, then we read the PHY registers
653 * to get the current speed/duplex if link exists.
655 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
657 struct e1000_mac_info
*mac
= &hw
->mac
;
662 * We only want to go out to the PHY registers to see if Auto-Neg
663 * has completed and/or if our link status has changed. The
664 * get_link_status flag is set upon receiving a Link Status
665 * Change or Rx Sequence Error interrupt.
667 if (!mac
->get_link_status
) {
673 * First we want to see if the MII Status Register reports
674 * link. If so, then we want to get the current speed/duplex
677 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
681 if (hw
->mac
.type
== e1000_pchlan
) {
682 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
688 goto out
; /* No link detected */
690 mac
->get_link_status
= false;
692 if (hw
->phy
.type
== e1000_phy_82578
) {
693 ret_val
= e1000_link_stall_workaround_hv(hw
);
698 if (hw
->mac
.type
== e1000_pch2lan
) {
699 ret_val
= e1000_k1_workaround_lv(hw
);
705 * Check if there was DownShift, must be checked
706 * immediately after link-up
708 e1000e_check_downshift(hw
);
710 /* Enable/Disable EEE after link up */
711 ret_val
= e1000_set_eee_pchlan(hw
);
716 * If we are forcing speed/duplex, then we simply return since
717 * we have already determined whether we have link or not.
720 ret_val
= -E1000_ERR_CONFIG
;
725 * Auto-Neg is enabled. Auto Speed Detection takes care
726 * of MAC speed/duplex configuration. So we only need to
727 * configure Collision Distance in the MAC.
729 e1000e_config_collision_dist(hw
);
732 * Configure Flow Control now that Auto-Neg has completed.
733 * First, we need to restore the desired flow control
734 * settings because we may have had to re-autoneg with a
735 * different link partner.
737 ret_val
= e1000e_config_fc_after_link_up(hw
);
739 e_dbg("Error configuring flow control\n");
745 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
747 struct e1000_hw
*hw
= &adapter
->hw
;
750 rc
= e1000_init_mac_params_ich8lan(adapter
);
754 rc
= e1000_init_nvm_params_ich8lan(hw
);
758 switch (hw
->mac
.type
) {
762 rc
= e1000_init_phy_params_ich8lan(hw
);
766 rc
= e1000_init_phy_params_pchlan(hw
);
775 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
776 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
778 if ((adapter
->hw
.phy
.type
== e1000_phy_ife
) ||
779 ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
780 (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LSECCK
)))) {
781 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
782 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
784 hw
->mac
.ops
.blink_led
= NULL
;
787 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
788 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
789 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
791 /* Disable EEE by default until IEEE802.3az spec is finalized */
792 if (adapter
->flags2
& FLAG2_HAS_EEE
)
793 adapter
->hw
.dev_spec
.ich8lan
.eee_disable
= true;
798 static DEFINE_MUTEX(nvm_mutex
);
801 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
802 * @hw: pointer to the HW structure
804 * Acquires the mutex for performing NVM operations.
806 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
808 mutex_lock(&nvm_mutex
);
814 * e1000_release_nvm_ich8lan - Release NVM mutex
815 * @hw: pointer to the HW structure
817 * Releases the mutex used while performing NVM operations.
819 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
821 mutex_unlock(&nvm_mutex
);
824 static DEFINE_MUTEX(swflag_mutex
);
827 * e1000_acquire_swflag_ich8lan - Acquire software control flag
828 * @hw: pointer to the HW structure
830 * Acquires the software control flag for performing PHY and select
833 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
835 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
838 mutex_lock(&swflag_mutex
);
841 extcnf_ctrl
= er32(EXTCNF_CTRL
);
842 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
850 e_dbg("SW/FW/HW has locked the resource for too long.\n");
851 ret_val
= -E1000_ERR_CONFIG
;
855 timeout
= SW_FLAG_TIMEOUT
;
857 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
858 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
861 extcnf_ctrl
= er32(EXTCNF_CTRL
);
862 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
870 e_dbg("Failed to acquire the semaphore.\n");
871 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
872 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
873 ret_val
= -E1000_ERR_CONFIG
;
879 mutex_unlock(&swflag_mutex
);
885 * e1000_release_swflag_ich8lan - Release software control flag
886 * @hw: pointer to the HW structure
888 * Releases the software control flag for performing PHY and select
891 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
895 extcnf_ctrl
= er32(EXTCNF_CTRL
);
897 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
) {
898 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
899 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
901 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
904 mutex_unlock(&swflag_mutex
);
908 * e1000_check_mng_mode_ich8lan - Checks management mode
909 * @hw: pointer to the HW structure
911 * This checks if the adapter has any manageability enabled.
912 * This is a function pointer entry point only called by read/write
913 * routines for the PHY and NVM parts.
915 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
920 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
921 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
922 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
926 * e1000_check_mng_mode_pchlan - Checks management mode
927 * @hw: pointer to the HW structure
929 * This checks if the adapter has iAMT enabled.
930 * This is a function pointer entry point only called by read/write
931 * routines for the PHY and NVM parts.
933 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
938 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
939 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
943 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
944 * @hw: pointer to the HW structure
946 * Checks if firmware is blocking the reset of the PHY.
947 * This is a function pointer entry point only called by
950 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
956 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
960 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
961 * @hw: pointer to the HW structure
963 * Assumes semaphore already acquired.
966 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
969 u32 strap
= er32(STRAP
);
972 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
974 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
978 phy_data
&= ~HV_SMB_ADDR_MASK
;
979 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
980 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
981 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
988 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
989 * @hw: pointer to the HW structure
991 * SW should configure the LCD from the NVM extended configuration region
992 * as a workaround for certain parts.
994 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
996 struct e1000_phy_info
*phy
= &hw
->phy
;
997 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
999 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
1002 * Initialize the PHY from the NVM on ICH platforms. This
1003 * is needed due to an issue where the NVM configuration is
1004 * not properly autoloaded after power transitions.
1005 * Therefore, after each PHY reset, we will load the
1006 * configuration data out of the NVM manually.
1008 switch (hw
->mac
.type
) {
1010 if (phy
->type
!= e1000_phy_igp_3
)
1013 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
1014 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
1015 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
1021 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
1027 ret_val
= hw
->phy
.ops
.acquire(hw
);
1031 data
= er32(FEXTNVM
);
1032 if (!(data
& sw_cfg_mask
))
1036 * Make sure HW does not configure LCD from PHY
1037 * extended configuration before SW configuration
1039 data
= er32(EXTCNF_CTRL
);
1040 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1041 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
1045 cnf_size
= er32(EXTCNF_SIZE
);
1046 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
1047 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
1051 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
1052 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
1054 if ((!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
1055 (hw
->mac
.type
== e1000_pchlan
)) ||
1056 (hw
->mac
.type
== e1000_pch2lan
)) {
1058 * HW configures the SMBus address and LEDs when the
1059 * OEM and LCD Write Enable bits are set in the NVM.
1060 * When both NVM bits are cleared, SW will configure
1063 ret_val
= e1000_write_smbus_addr(hw
);
1067 data
= er32(LEDCTL
);
1068 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
1074 /* Configure LCD from extended configuration region. */
1076 /* cnf_base_addr is in DWORD */
1077 word_addr
= (u16
)(cnf_base_addr
<< 1);
1079 for (i
= 0; i
< cnf_size
; i
++) {
1080 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
1085 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
1090 /* Save off the PHY page for future writes. */
1091 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
1092 phy_page
= reg_data
;
1096 reg_addr
&= PHY_REG_MASK
;
1097 reg_addr
|= phy_page
;
1099 ret_val
= phy
->ops
.write_reg_locked(hw
, (u32
)reg_addr
,
1106 hw
->phy
.ops
.release(hw
);
1111 * e1000_k1_gig_workaround_hv - K1 Si workaround
1112 * @hw: pointer to the HW structure
1113 * @link: link up bool flag
1115 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1116 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1117 * If link is down, the function will restore the default K1 setting located
1120 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
1124 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
1126 if (hw
->mac
.type
!= e1000_pchlan
)
1129 /* Wrap the whole flow with the sw flag */
1130 ret_val
= hw
->phy
.ops
.acquire(hw
);
1134 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1136 if (hw
->phy
.type
== e1000_phy_82578
) {
1137 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
1142 status_reg
&= BM_CS_STATUS_LINK_UP
|
1143 BM_CS_STATUS_RESOLVED
|
1144 BM_CS_STATUS_SPEED_MASK
;
1146 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
1147 BM_CS_STATUS_RESOLVED
|
1148 BM_CS_STATUS_SPEED_1000
))
1152 if (hw
->phy
.type
== e1000_phy_82577
) {
1153 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
1158 status_reg
&= HV_M_STATUS_LINK_UP
|
1159 HV_M_STATUS_AUTONEG_COMPLETE
|
1160 HV_M_STATUS_SPEED_MASK
;
1162 if (status_reg
== (HV_M_STATUS_LINK_UP
|
1163 HV_M_STATUS_AUTONEG_COMPLETE
|
1164 HV_M_STATUS_SPEED_1000
))
1168 /* Link stall fix for link up */
1169 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1175 /* Link stall fix for link down */
1176 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1182 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
1185 hw
->phy
.ops
.release(hw
);
1191 * e1000_configure_k1_ich8lan - Configure K1 power state
1192 * @hw: pointer to the HW structure
1193 * @enable: K1 state to configure
1195 * Configure the K1 power state based on the provided parameter.
1196 * Assumes semaphore already acquired.
1198 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1200 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1208 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1209 E1000_KMRNCTRLSTA_K1_CONFIG
,
1215 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1217 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1219 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1220 E1000_KMRNCTRLSTA_K1_CONFIG
,
1226 ctrl_ext
= er32(CTRL_EXT
);
1227 ctrl_reg
= er32(CTRL
);
1229 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1230 reg
|= E1000_CTRL_FRCSPD
;
1233 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1236 ew32(CTRL
, ctrl_reg
);
1237 ew32(CTRL_EXT
, ctrl_ext
);
1246 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1247 * @hw: pointer to the HW structure
1248 * @d0_state: boolean if entering d0 or d3 device state
1250 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1251 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1252 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1254 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1260 if ((hw
->mac
.type
!= e1000_pch2lan
) && (hw
->mac
.type
!= e1000_pchlan
))
1263 ret_val
= hw
->phy
.ops
.acquire(hw
);
1267 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1268 mac_reg
= er32(EXTCNF_CTRL
);
1269 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1273 mac_reg
= er32(FEXTNVM
);
1274 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1277 mac_reg
= er32(PHY_CTRL
);
1279 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1283 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1286 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1287 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1289 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1290 oem_reg
|= HV_OEM_BITS_LPLU
;
1292 if (mac_reg
& E1000_PHY_CTRL_NOND0A_GBE_DISABLE
)
1293 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1295 if (mac_reg
& E1000_PHY_CTRL_NOND0A_LPLU
)
1296 oem_reg
|= HV_OEM_BITS_LPLU
;
1298 /* Restart auto-neg to activate the bits */
1299 if (!e1000_check_reset_block(hw
))
1300 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1301 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1304 hw
->phy
.ops
.release(hw
);
1311 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1312 * @hw: pointer to the HW structure
1314 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
1319 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
1323 data
|= HV_KMRN_MDIO_SLOW
;
1325 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
1331 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1332 * done after every PHY reset.
1334 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1339 if (hw
->mac
.type
!= e1000_pchlan
)
1342 /* Set MDIO slow mode before any other MDIO access */
1343 if (hw
->phy
.type
== e1000_phy_82577
) {
1344 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1349 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1350 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1351 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1352 /* Disable generation of early preamble */
1353 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1357 /* Preamble tuning for SSC */
1358 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
1363 if (hw
->phy
.type
== e1000_phy_82578
) {
1365 * Return registers to default by doing a soft reset then
1366 * writing 0x3140 to the control register.
1368 if (hw
->phy
.revision
< 2) {
1369 e1000e_phy_sw_reset(hw
);
1370 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1375 ret_val
= hw
->phy
.ops
.acquire(hw
);
1380 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1381 hw
->phy
.ops
.release(hw
);
1386 * Configure the K1 Si workaround during phy reset assuming there is
1387 * link so that it disables K1 if link is in 1Gbps.
1389 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1393 /* Workaround for link disconnects on a busy hub in half duplex */
1394 ret_val
= hw
->phy
.ops
.acquire(hw
);
1397 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_PORT_GEN_CFG
, &phy_data
);
1400 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, BM_PORT_GEN_CFG
,
1403 hw
->phy
.ops
.release(hw
);
1409 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1410 * @hw: pointer to the HW structure
1412 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
1418 ret_val
= hw
->phy
.ops
.acquire(hw
);
1421 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
1425 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1426 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1427 mac_reg
= er32(RAL(i
));
1428 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_L(i
),
1429 (u16
)(mac_reg
& 0xFFFF));
1430 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_M(i
),
1431 (u16
)((mac_reg
>> 16) & 0xFFFF));
1433 mac_reg
= er32(RAH(i
));
1434 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_H(i
),
1435 (u16
)(mac_reg
& 0xFFFF));
1436 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_CTRL(i
),
1437 (u16
)((mac_reg
& E1000_RAH_AV
)
1441 e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
1444 hw
->phy
.ops
.release(hw
);
1448 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1450 * @hw: pointer to the HW structure
1451 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1453 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
1460 if (hw
->mac
.type
!= e1000_pch2lan
)
1463 /* disable Rx path while enabling/disabling workaround */
1464 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1465 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| (1 << 14));
1471 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1472 * SHRAL/H) and initial CRC values to the MAC
1474 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1475 u8 mac_addr
[ETH_ALEN
] = {0};
1476 u32 addr_high
, addr_low
;
1478 addr_high
= er32(RAH(i
));
1479 if (!(addr_high
& E1000_RAH_AV
))
1481 addr_low
= er32(RAL(i
));
1482 mac_addr
[0] = (addr_low
& 0xFF);
1483 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
1484 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
1485 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
1486 mac_addr
[4] = (addr_high
& 0xFF);
1487 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
1489 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
1492 /* Write Rx addresses to the PHY */
1493 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
1495 /* Enable jumbo frame workaround in the MAC */
1496 mac_reg
= er32(FFLT_DBG
);
1497 mac_reg
&= ~(1 << 14);
1498 mac_reg
|= (7 << 15);
1499 ew32(FFLT_DBG
, mac_reg
);
1501 mac_reg
= er32(RCTL
);
1502 mac_reg
|= E1000_RCTL_SECRC
;
1503 ew32(RCTL
, mac_reg
);
1505 ret_val
= e1000e_read_kmrn_reg(hw
,
1506 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1510 ret_val
= e1000e_write_kmrn_reg(hw
,
1511 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1515 ret_val
= e1000e_read_kmrn_reg(hw
,
1516 E1000_KMRNCTRLSTA_HD_CTRL
,
1520 data
&= ~(0xF << 8);
1522 ret_val
= e1000e_write_kmrn_reg(hw
,
1523 E1000_KMRNCTRLSTA_HD_CTRL
,
1528 /* Enable jumbo frame workaround in the PHY */
1529 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1530 data
&= ~(0x7F << 5);
1531 data
|= (0x37 << 5);
1532 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1535 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1537 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1540 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1541 data
&= ~(0x3FF << 2);
1542 data
|= (0x1A << 2);
1543 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1546 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xFE00);
1549 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1550 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| (1 << 10));
1554 /* Write MAC register values back to h/w defaults */
1555 mac_reg
= er32(FFLT_DBG
);
1556 mac_reg
&= ~(0xF << 14);
1557 ew32(FFLT_DBG
, mac_reg
);
1559 mac_reg
= er32(RCTL
);
1560 mac_reg
&= ~E1000_RCTL_SECRC
;
1561 ew32(RCTL
, mac_reg
);
1563 ret_val
= e1000e_read_kmrn_reg(hw
,
1564 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1568 ret_val
= e1000e_write_kmrn_reg(hw
,
1569 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1573 ret_val
= e1000e_read_kmrn_reg(hw
,
1574 E1000_KMRNCTRLSTA_HD_CTRL
,
1578 data
&= ~(0xF << 8);
1580 ret_val
= e1000e_write_kmrn_reg(hw
,
1581 E1000_KMRNCTRLSTA_HD_CTRL
,
1586 /* Write PHY register values back to h/w defaults */
1587 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1588 data
&= ~(0x7F << 5);
1589 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1592 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1594 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1597 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1598 data
&= ~(0x3FF << 2);
1600 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1603 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
1606 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1607 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~(1 << 10));
1612 /* re-enable Rx path after enabling/disabling workaround */
1613 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~(1 << 14));
1620 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1621 * done after every PHY reset.
1623 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1627 if (hw
->mac
.type
!= e1000_pch2lan
)
1630 /* Set MDIO slow mode before any other MDIO access */
1631 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1638 * e1000_k1_gig_workaround_lv - K1 Si workaround
1639 * @hw: pointer to the HW structure
1641 * Workaround to set the K1 beacon duration for 82579 parts
1643 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
1649 if (hw
->mac
.type
!= e1000_pch2lan
)
1652 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1653 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
1657 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
1658 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
1659 mac_reg
= er32(FEXTNVM4
);
1660 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1662 if (status_reg
& HV_M_STATUS_SPEED_1000
)
1663 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1665 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
1667 ew32(FEXTNVM4
, mac_reg
);
1675 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1676 * @hw: pointer to the HW structure
1677 * @gate: boolean set to true to gate, false to ungate
1679 * Gate/ungate the automatic PHY configuration via hardware; perform
1680 * the configuration via software instead.
1682 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
1686 if (hw
->mac
.type
!= e1000_pch2lan
)
1689 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1692 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1694 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1696 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1701 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1702 * @hw: pointer to the HW structure
1704 * Check the appropriate indication the MAC has finished configuring the
1705 * PHY after a software reset.
1707 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1709 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1711 /* Wait for basic configuration completes before proceeding */
1713 data
= er32(STATUS
);
1714 data
&= E1000_STATUS_LAN_INIT_DONE
;
1716 } while ((!data
) && --loop
);
1719 * If basic configuration is incomplete before the above loop
1720 * count reaches 0, loading the configuration from NVM will
1721 * leave the PHY in a bad state possibly resulting in no link.
1724 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1726 /* Clear the Init Done bit for the next init event */
1727 data
= er32(STATUS
);
1728 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1733 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1734 * @hw: pointer to the HW structure
1736 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
1741 if (e1000_check_reset_block(hw
))
1744 /* Allow time for h/w to get to quiescent state after reset */
1745 usleep_range(10000, 20000);
1747 /* Perform any necessary post-reset workarounds */
1748 switch (hw
->mac
.type
) {
1750 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1755 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
1763 /* Clear the host wakeup bit after lcd reset */
1764 if (hw
->mac
.type
>= e1000_pchlan
) {
1765 e1e_rphy(hw
, BM_PORT_GEN_CFG
, ®
);
1766 reg
&= ~BM_WUC_HOST_WU_BIT
;
1767 e1e_wphy(hw
, BM_PORT_GEN_CFG
, reg
);
1770 /* Configure the LCD with the extended configuration region in NVM */
1771 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1775 /* Configure the LCD with the OEM bits in NVM */
1776 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1778 if (hw
->mac
.type
== e1000_pch2lan
) {
1779 /* Ungate automatic PHY configuration on non-managed 82579 */
1780 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
1781 usleep_range(10000, 20000);
1782 e1000_gate_hw_phy_config_ich8lan(hw
, false);
1785 /* Set EEE LPI Update Timer to 200usec */
1786 ret_val
= hw
->phy
.ops
.acquire(hw
);
1789 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_ADDR
,
1790 I82579_LPI_UPDATE_TIMER
);
1793 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_DATA
,
1796 hw
->phy
.ops
.release(hw
);
1804 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1805 * @hw: pointer to the HW structure
1808 * This is a function pointer entry point called by drivers
1809 * or other shared routines.
1811 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1815 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1816 if ((hw
->mac
.type
== e1000_pch2lan
) &&
1817 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1818 e1000_gate_hw_phy_config_ich8lan(hw
, true);
1820 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1824 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
1831 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1832 * @hw: pointer to the HW structure
1833 * @active: true to enable LPLU, false to disable
1835 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1836 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1837 * the phy speed. This function will manually set the LPLU bit and restart
1838 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1839 * since it configures the same bit.
1841 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1846 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1851 oem_reg
|= HV_OEM_BITS_LPLU
;
1853 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1855 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1856 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1863 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1864 * @hw: pointer to the HW structure
1865 * @active: true to enable LPLU, false to disable
1867 * Sets the LPLU D0 state according to the active flag. When
1868 * activating LPLU this function also disables smart speed
1869 * and vice versa. LPLU will not be activated unless the
1870 * device autonegotiation advertisement meets standards of
1871 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1872 * This is a function pointer entry point only called by
1873 * PHY setup routines.
1875 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1877 struct e1000_phy_info
*phy
= &hw
->phy
;
1882 if (phy
->type
== e1000_phy_ife
)
1885 phy_ctrl
= er32(PHY_CTRL
);
1888 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1889 ew32(PHY_CTRL
, phy_ctrl
);
1891 if (phy
->type
!= e1000_phy_igp_3
)
1895 * Call gig speed drop workaround on LPLU before accessing
1898 if (hw
->mac
.type
== e1000_ich8lan
)
1899 e1000e_gig_downshift_workaround_ich8lan(hw
);
1901 /* When LPLU is enabled, we should disable SmartSpeed */
1902 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1903 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1904 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1908 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1909 ew32(PHY_CTRL
, phy_ctrl
);
1911 if (phy
->type
!= e1000_phy_igp_3
)
1915 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1916 * during Dx states where the power conservation is most
1917 * important. During driver activity we should enable
1918 * SmartSpeed, so performance is maintained.
1920 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1921 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1926 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1927 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1931 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1932 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1937 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1938 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1949 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1950 * @hw: pointer to the HW structure
1951 * @active: true to enable LPLU, false to disable
1953 * Sets the LPLU D3 state according to the active flag. When
1954 * activating LPLU this function also disables smart speed
1955 * and vice versa. LPLU will not be activated unless the
1956 * device autonegotiation advertisement meets standards of
1957 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1958 * This is a function pointer entry point only called by
1959 * PHY setup routines.
1961 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1963 struct e1000_phy_info
*phy
= &hw
->phy
;
1968 phy_ctrl
= er32(PHY_CTRL
);
1971 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1972 ew32(PHY_CTRL
, phy_ctrl
);
1974 if (phy
->type
!= e1000_phy_igp_3
)
1978 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1979 * during Dx states where the power conservation is most
1980 * important. During driver activity we should enable
1981 * SmartSpeed, so performance is maintained.
1983 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1984 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1989 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1990 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1994 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1995 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2000 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2001 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2006 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
2007 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
2008 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
2009 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
2010 ew32(PHY_CTRL
, phy_ctrl
);
2012 if (phy
->type
!= e1000_phy_igp_3
)
2016 * Call gig speed drop workaround on LPLU before accessing
2019 if (hw
->mac
.type
== e1000_ich8lan
)
2020 e1000e_gig_downshift_workaround_ich8lan(hw
);
2022 /* When LPLU is enabled, we should disable SmartSpeed */
2023 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
2027 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2028 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
2035 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2036 * @hw: pointer to the HW structure
2037 * @bank: pointer to the variable that returns the active bank
2039 * Reads signature byte from the NVM using the flash access registers.
2040 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2042 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
2045 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2046 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
2047 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
2051 switch (hw
->mac
.type
) {
2055 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
2056 E1000_EECD_SEC1VAL_VALID_MASK
) {
2057 if (eecd
& E1000_EECD_SEC1VAL
)
2064 e_dbg("Unable to determine valid NVM bank via EEC - "
2065 "reading flash signature\n");
2068 /* set bank to 0 in case flash read fails */
2072 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
2076 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2077 E1000_ICH_NVM_SIG_VALUE
) {
2083 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
2088 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2089 E1000_ICH_NVM_SIG_VALUE
) {
2094 e_dbg("ERROR: No valid NVM bank present\n");
2095 return -E1000_ERR_NVM
;
2102 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2103 * @hw: pointer to the HW structure
2104 * @offset: The offset (in bytes) of the word(s) to read.
2105 * @words: Size of data to read in words
2106 * @data: Pointer to the word(s) to read at offset.
2108 * Reads a word(s) from the NVM using the flash access registers.
2110 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2113 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2114 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2120 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2122 e_dbg("nvm parameter(s) out of bounds\n");
2123 ret_val
= -E1000_ERR_NVM
;
2127 nvm
->ops
.acquire(hw
);
2129 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2131 e_dbg("Could not detect valid bank, assuming bank 0\n");
2135 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
2136 act_offset
+= offset
;
2139 for (i
= 0; i
< words
; i
++) {
2140 if (dev_spec
->shadow_ram
[offset
+i
].modified
) {
2141 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
2143 ret_val
= e1000_read_flash_word_ich8lan(hw
,
2152 nvm
->ops
.release(hw
);
2156 e_dbg("NVM read error: %d\n", ret_val
);
2162 * e1000_flash_cycle_init_ich8lan - Initialize flash
2163 * @hw: pointer to the HW structure
2165 * This function does initial flash setup so that a new read/write/erase cycle
2168 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
2170 union ich8_hws_flash_status hsfsts
;
2171 s32 ret_val
= -E1000_ERR_NVM
;
2173 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2175 /* Check if the flash descriptor is valid */
2176 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
2177 e_dbg("Flash descriptor invalid. "
2178 "SW Sequencing must be used.\n");
2179 return -E1000_ERR_NVM
;
2182 /* Clear FCERR and DAEL in hw status by writing 1 */
2183 hsfsts
.hsf_status
.flcerr
= 1;
2184 hsfsts
.hsf_status
.dael
= 1;
2186 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2189 * Either we should have a hardware SPI cycle in progress
2190 * bit to check against, in order to start a new cycle or
2191 * FDONE bit should be changed in the hardware so that it
2192 * is 1 after hardware reset, which can then be used as an
2193 * indication whether a cycle is in progress or has been
2197 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2199 * There is no cycle running at present,
2200 * so we can start a cycle.
2201 * Begin by setting Flash Cycle Done.
2203 hsfsts
.hsf_status
.flcdone
= 1;
2204 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2210 * Otherwise poll for sometime so the current
2211 * cycle has a chance to end before giving up.
2213 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
2214 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
2215 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2223 * Successful in waiting for previous cycle to timeout,
2224 * now set the Flash Cycle Done.
2226 hsfsts
.hsf_status
.flcdone
= 1;
2227 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2229 e_dbg("Flash controller busy, cannot get access\n");
2237 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2238 * @hw: pointer to the HW structure
2239 * @timeout: maximum time to wait for completion
2241 * This function starts a flash cycle and waits for its completion.
2243 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
2245 union ich8_hws_flash_ctrl hsflctl
;
2246 union ich8_hws_flash_status hsfsts
;
2247 s32 ret_val
= -E1000_ERR_NVM
;
2250 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2251 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2252 hsflctl
.hsf_ctrl
.flcgo
= 1;
2253 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2255 /* wait till FDONE bit is set to 1 */
2257 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2258 if (hsfsts
.hsf_status
.flcdone
== 1)
2261 } while (i
++ < timeout
);
2263 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
2270 * e1000_read_flash_word_ich8lan - Read word from flash
2271 * @hw: pointer to the HW structure
2272 * @offset: offset to data location
2273 * @data: pointer to the location for storing the data
2275 * Reads the flash word at offset into data. Offset is converted
2276 * to bytes before read.
2278 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2281 /* Must convert offset into bytes. */
2284 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
2288 * e1000_read_flash_byte_ich8lan - Read byte from flash
2289 * @hw: pointer to the HW structure
2290 * @offset: The offset of the byte to read.
2291 * @data: Pointer to a byte to store the value read.
2293 * Reads a single byte from the NVM using the flash access registers.
2295 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2301 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
2311 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2312 * @hw: pointer to the HW structure
2313 * @offset: The offset (in bytes) of the byte or word to read.
2314 * @size: Size of data to read, 1=byte 2=word
2315 * @data: Pointer to the word to store the value read.
2317 * Reads a byte or word from the NVM using the flash access registers.
2319 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2322 union ich8_hws_flash_status hsfsts
;
2323 union ich8_hws_flash_ctrl hsflctl
;
2324 u32 flash_linear_addr
;
2326 s32 ret_val
= -E1000_ERR_NVM
;
2329 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2330 return -E1000_ERR_NVM
;
2332 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2333 hw
->nvm
.flash_base_addr
;
2338 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2342 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2343 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2344 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
2345 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
2346 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2348 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2350 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2351 ICH_FLASH_READ_COMMAND_TIMEOUT
);
2354 * Check if FCERR is set to 1, if set to 1, clear it
2355 * and try the whole sequence a few more times, else
2356 * read in (shift in) the Flash Data0, the order is
2357 * least significant byte first msb to lsb
2360 flash_data
= er32flash(ICH_FLASH_FDATA0
);
2362 *data
= (u8
)(flash_data
& 0x000000FF);
2364 *data
= (u16
)(flash_data
& 0x0000FFFF);
2368 * If we've gotten here, then things are probably
2369 * completely hosed, but if the error condition is
2370 * detected, it won't hurt to give it another try...
2371 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2373 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2374 if (hsfsts
.hsf_status
.flcerr
== 1) {
2375 /* Repeat for some time before giving up. */
2377 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
2378 e_dbg("Timeout error - flash cycle "
2379 "did not complete.\n");
2383 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2389 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2390 * @hw: pointer to the HW structure
2391 * @offset: The offset (in bytes) of the word(s) to write.
2392 * @words: Size of data to write in words
2393 * @data: Pointer to the word(s) to write at offset.
2395 * Writes a byte or word to the NVM using the flash access registers.
2397 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2400 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2401 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2404 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2406 e_dbg("nvm parameter(s) out of bounds\n");
2407 return -E1000_ERR_NVM
;
2410 nvm
->ops
.acquire(hw
);
2412 for (i
= 0; i
< words
; i
++) {
2413 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
2414 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
2417 nvm
->ops
.release(hw
);
2423 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2424 * @hw: pointer to the HW structure
2426 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2427 * which writes the checksum to the shadow ram. The changes in the shadow
2428 * ram are then committed to the EEPROM by processing each bank at a time
2429 * checking for the modified bit and writing only the pending changes.
2430 * After a successful commit, the shadow ram is cleared and is ready for
2433 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2435 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2436 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2437 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
2441 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
2445 if (nvm
->type
!= e1000_nvm_flash_sw
)
2448 nvm
->ops
.acquire(hw
);
2451 * We're writing to the opposite bank so if we're on bank 1,
2452 * write to bank 0 etc. We also need to erase the segment that
2453 * is going to be written
2455 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2457 e_dbg("Could not detect valid bank, assuming bank 0\n");
2462 new_bank_offset
= nvm
->flash_bank_size
;
2463 old_bank_offset
= 0;
2464 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
2468 old_bank_offset
= nvm
->flash_bank_size
;
2469 new_bank_offset
= 0;
2470 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
2475 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2477 * Determine whether to write the value stored
2478 * in the other NVM bank or a modified value stored
2481 if (dev_spec
->shadow_ram
[i
].modified
) {
2482 data
= dev_spec
->shadow_ram
[i
].value
;
2484 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
2492 * If the word is 0x13, then make sure the signature bits
2493 * (15:14) are 11b until the commit has completed.
2494 * This will allow us to write 10b which indicates the
2495 * signature is valid. We want to do this after the write
2496 * has completed so that we don't mark the segment valid
2497 * while the write is still in progress
2499 if (i
== E1000_ICH_NVM_SIG_WORD
)
2500 data
|= E1000_ICH_NVM_SIG_MASK
;
2502 /* Convert offset to bytes. */
2503 act_offset
= (i
+ new_bank_offset
) << 1;
2506 /* Write the bytes to the new bank. */
2507 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2514 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2522 * Don't bother writing the segment valid bits if sector
2523 * programming failed.
2526 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2527 e_dbg("Flash commit failed.\n");
2532 * Finally validate the new segment by setting bit 15:14
2533 * to 10b in word 0x13 , this can be done without an
2534 * erase as well since these bits are 11 to start with
2535 * and we need to change bit 14 to 0b
2537 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
2538 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
2543 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2550 * And invalidate the previously valid segment by setting
2551 * its signature word (0x13) high_byte to 0b. This can be
2552 * done without an erase because flash erase sets all bits
2553 * to 1's. We can write 1's to 0's without an erase
2555 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2556 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2560 /* Great! Everything worked, we can now clear the cached entries. */
2561 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2562 dev_spec
->shadow_ram
[i
].modified
= false;
2563 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2567 nvm
->ops
.release(hw
);
2570 * Reload the EEPROM, or else modifications will not appear
2571 * until after the next adapter reset.
2574 e1000e_reload_nvm(hw
);
2575 usleep_range(10000, 20000);
2580 e_dbg("NVM update error: %d\n", ret_val
);
2586 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2587 * @hw: pointer to the HW structure
2589 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2590 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2591 * calculated, in which case we need to calculate the checksum and set bit 6.
2593 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2599 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2600 * needs to be fixed. This bit is an indication that the NVM
2601 * was prepared by OEM software and did not calculate the
2602 * checksum...a likely scenario.
2604 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2608 if ((data
& 0x40) == 0) {
2610 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2613 ret_val
= e1000e_update_nvm_checksum(hw
);
2618 return e1000e_validate_nvm_checksum_generic(hw
);
2622 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2623 * @hw: pointer to the HW structure
2625 * To prevent malicious write/erase of the NVM, set it to be read-only
2626 * so that the hardware ignores all write/erase cycles of the NVM via
2627 * the flash control registers. The shadow-ram copy of the NVM will
2628 * still be updated, however any updates to this copy will not stick
2629 * across driver reloads.
2631 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2633 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2634 union ich8_flash_protected_range pr0
;
2635 union ich8_hws_flash_status hsfsts
;
2638 nvm
->ops
.acquire(hw
);
2640 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2642 /* Write-protect GbE Sector of NVM */
2643 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2644 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2645 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2646 pr0
.range
.wpe
= true;
2647 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2650 * Lock down a subset of GbE Flash Control Registers, e.g.
2651 * PR0 to prevent the write-protection from being lifted.
2652 * Once FLOCKDN is set, the registers protected by it cannot
2653 * be written until FLOCKDN is cleared by a hardware reset.
2655 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2656 hsfsts
.hsf_status
.flockdn
= true;
2657 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2659 nvm
->ops
.release(hw
);
2663 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2664 * @hw: pointer to the HW structure
2665 * @offset: The offset (in bytes) of the byte/word to read.
2666 * @size: Size of data to read, 1=byte 2=word
2667 * @data: The byte(s) to write to the NVM.
2669 * Writes one/two bytes to the NVM using the flash access registers.
2671 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2674 union ich8_hws_flash_status hsfsts
;
2675 union ich8_hws_flash_ctrl hsflctl
;
2676 u32 flash_linear_addr
;
2681 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2682 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2683 return -E1000_ERR_NVM
;
2685 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2686 hw
->nvm
.flash_base_addr
;
2691 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2695 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2696 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2697 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2698 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2699 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2701 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2704 flash_data
= (u32
)data
& 0x00FF;
2706 flash_data
= (u32
)data
;
2708 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2711 * check if FCERR is set to 1 , if set to 1, clear it
2712 * and try the whole sequence a few more times else done
2714 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2715 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2720 * If we're here, then things are most likely
2721 * completely hosed, but if the error condition
2722 * is detected, it won't hurt to give it another
2723 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2725 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2726 if (hsfsts
.hsf_status
.flcerr
== 1)
2727 /* Repeat for some time before giving up. */
2729 if (hsfsts
.hsf_status
.flcdone
== 0) {
2730 e_dbg("Timeout error - flash cycle "
2731 "did not complete.");
2734 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2740 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2741 * @hw: pointer to the HW structure
2742 * @offset: The index of the byte to read.
2743 * @data: The byte to write to the NVM.
2745 * Writes a single byte to the NVM using the flash access registers.
2747 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2750 u16 word
= (u16
)data
;
2752 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2756 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2757 * @hw: pointer to the HW structure
2758 * @offset: The offset of the byte to write.
2759 * @byte: The byte to write to the NVM.
2761 * Writes a single byte to the NVM using the flash access registers.
2762 * Goes through a retry algorithm before giving up.
2764 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2765 u32 offset
, u8 byte
)
2768 u16 program_retries
;
2770 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2774 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2775 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2777 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2781 if (program_retries
== 100)
2782 return -E1000_ERR_NVM
;
2788 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2789 * @hw: pointer to the HW structure
2790 * @bank: 0 for first bank, 1 for second bank, etc.
2792 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2793 * bank N is 4096 * N + flash_reg_addr.
2795 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2797 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2798 union ich8_hws_flash_status hsfsts
;
2799 union ich8_hws_flash_ctrl hsflctl
;
2800 u32 flash_linear_addr
;
2801 /* bank size is in 16bit words - adjust to bytes */
2802 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2805 s32 j
, iteration
, sector_size
;
2807 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2810 * Determine HW Sector size: Read BERASE bits of hw flash status
2812 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2813 * consecutive sectors. The start index for the nth Hw sector
2814 * can be calculated as = bank * 4096 + n * 256
2815 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2816 * The start index for the nth Hw sector can be calculated
2818 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2819 * (ich9 only, otherwise error condition)
2820 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2822 switch (hsfsts
.hsf_status
.berasesz
) {
2824 /* Hw sector size 256 */
2825 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2826 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2829 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2833 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2837 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2841 return -E1000_ERR_NVM
;
2844 /* Start with the base address, then add the sector offset. */
2845 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2846 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2848 for (j
= 0; j
< iteration
; j
++) {
2851 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2856 * Write a value 11 (block Erase) in Flash
2857 * Cycle field in hw flash control
2859 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2860 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2861 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2864 * Write the last 24 bits of an index within the
2865 * block into Flash Linear address field in Flash
2868 flash_linear_addr
+= (j
* sector_size
);
2869 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2871 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2872 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2877 * Check if FCERR is set to 1. If 1,
2878 * clear it and try the whole sequence
2879 * a few more times else Done
2881 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2882 if (hsfsts
.hsf_status
.flcerr
== 1)
2883 /* repeat for some time before giving up */
2885 else if (hsfsts
.hsf_status
.flcdone
== 0)
2887 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2894 * e1000_valid_led_default_ich8lan - Set the default LED settings
2895 * @hw: pointer to the HW structure
2896 * @data: Pointer to the LED settings
2898 * Reads the LED default settings from the NVM to data. If the NVM LED
2899 * settings is all 0's or F's, set the LED default to a valid LED default
2902 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2906 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2908 e_dbg("NVM Read Error\n");
2912 if (*data
== ID_LED_RESERVED_0000
||
2913 *data
== ID_LED_RESERVED_FFFF
)
2914 *data
= ID_LED_DEFAULT_ICH8LAN
;
2920 * e1000_id_led_init_pchlan - store LED configurations
2921 * @hw: pointer to the HW structure
2923 * PCH does not control LEDs via the LEDCTL register, rather it uses
2924 * the PHY LED configuration register.
2926 * PCH also does not have an "always on" or "always off" mode which
2927 * complicates the ID feature. Instead of using the "on" mode to indicate
2928 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2929 * use "link_up" mode. The LEDs will still ID on request if there is no
2930 * link based on logic in e1000_led_[on|off]_pchlan().
2932 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2934 struct e1000_mac_info
*mac
= &hw
->mac
;
2936 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2937 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2938 u16 data
, i
, temp
, shift
;
2940 /* Get default ID LED modes */
2941 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2945 mac
->ledctl_default
= er32(LEDCTL
);
2946 mac
->ledctl_mode1
= mac
->ledctl_default
;
2947 mac
->ledctl_mode2
= mac
->ledctl_default
;
2949 for (i
= 0; i
< 4; i
++) {
2950 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2953 case ID_LED_ON1_DEF2
:
2954 case ID_LED_ON1_ON2
:
2955 case ID_LED_ON1_OFF2
:
2956 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2957 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2959 case ID_LED_OFF1_DEF2
:
2960 case ID_LED_OFF1_ON2
:
2961 case ID_LED_OFF1_OFF2
:
2962 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2963 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2970 case ID_LED_DEF1_ON2
:
2971 case ID_LED_ON1_ON2
:
2972 case ID_LED_OFF1_ON2
:
2973 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2974 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2976 case ID_LED_DEF1_OFF2
:
2977 case ID_LED_ON1_OFF2
:
2978 case ID_LED_OFF1_OFF2
:
2979 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2980 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2993 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2994 * @hw: pointer to the HW structure
2996 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2997 * register, so the the bus width is hard coded.
2999 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
3001 struct e1000_bus_info
*bus
= &hw
->bus
;
3004 ret_val
= e1000e_get_bus_info_pcie(hw
);
3007 * ICH devices are "PCI Express"-ish. They have
3008 * a configuration space, but do not contain
3009 * PCI Express Capability registers, so bus width
3010 * must be hardcoded.
3012 if (bus
->width
== e1000_bus_width_unknown
)
3013 bus
->width
= e1000_bus_width_pcie_x1
;
3019 * e1000_reset_hw_ich8lan - Reset the hardware
3020 * @hw: pointer to the HW structure
3022 * Does a full reset of the hardware which includes a reset of the PHY and
3025 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
3027 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3033 * Prevent the PCI-E bus from sticking if there is no TLP connection
3034 * on the last TLP read/write transaction when MAC is reset.
3036 ret_val
= e1000e_disable_pcie_master(hw
);
3038 e_dbg("PCI-E Master disable polling has failed.\n");
3040 e_dbg("Masking off all interrupts\n");
3041 ew32(IMC
, 0xffffffff);
3044 * Disable the Transmit and Receive units. Then delay to allow
3045 * any pending transactions to complete before we hit the MAC
3046 * with the global reset.
3049 ew32(TCTL
, E1000_TCTL_PSP
);
3052 usleep_range(10000, 20000);
3054 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3055 if (hw
->mac
.type
== e1000_ich8lan
) {
3056 /* Set Tx and Rx buffer allocation to 8k apiece. */
3057 ew32(PBA
, E1000_PBA_8K
);
3058 /* Set Packet Buffer Size to 16k. */
3059 ew32(PBS
, E1000_PBS_16K
);
3062 if (hw
->mac
.type
== e1000_pchlan
) {
3063 /* Save the NVM K1 bit setting*/
3064 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
3068 if (reg
& E1000_NVM_K1_ENABLE
)
3069 dev_spec
->nvm_k1_enabled
= true;
3071 dev_spec
->nvm_k1_enabled
= false;
3076 if (!e1000_check_reset_block(hw
)) {
3078 * Full-chip reset requires MAC and PHY reset at the same
3079 * time to make sure the interface between MAC and the
3080 * external PHY is reset.
3082 ctrl
|= E1000_CTRL_PHY_RST
;
3085 * Gate automatic PHY configuration by hardware on
3088 if ((hw
->mac
.type
== e1000_pch2lan
) &&
3089 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
3090 e1000_gate_hw_phy_config_ich8lan(hw
, true);
3092 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
3093 e_dbg("Issuing a global reset to ich8lan\n");
3094 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
3095 /* cannot issue a flush here because it hangs the hardware */
3099 mutex_unlock(&swflag_mutex
);
3101 if (ctrl
& E1000_CTRL_PHY_RST
) {
3102 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
3106 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
3112 * For PCH, this write will make sure that any noise
3113 * will be detected as a CRC error and be dropped rather than show up
3114 * as a bad packet to the DMA engine.
3116 if (hw
->mac
.type
== e1000_pchlan
)
3117 ew32(CRC_OFFSET
, 0x65656565);
3119 ew32(IMC
, 0xffffffff);
3122 kab
= er32(KABGTXD
);
3123 kab
|= E1000_KABGTXD_BGSQLBIAS
;
3131 * e1000_init_hw_ich8lan - Initialize the hardware
3132 * @hw: pointer to the HW structure
3134 * Prepares the hardware for transmit and receive by doing the following:
3135 * - initialize hardware bits
3136 * - initialize LED identification
3137 * - setup receive address registers
3138 * - setup flow control
3139 * - setup transmit descriptors
3140 * - clear statistics
3142 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
3144 struct e1000_mac_info
*mac
= &hw
->mac
;
3145 u32 ctrl_ext
, txdctl
, snoop
;
3149 e1000_initialize_hw_bits_ich8lan(hw
);
3151 /* Initialize identification LED */
3152 ret_val
= mac
->ops
.id_led_init(hw
);
3154 e_dbg("Error initializing identification LED\n");
3155 /* This is not fatal and we should not stop init due to this */
3157 /* Setup the receive address. */
3158 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
3160 /* Zero out the Multicast HASH table */
3161 e_dbg("Zeroing the MTA\n");
3162 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
3163 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
3166 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3167 * the ME. Disable wakeup by clearing the host wakeup bit.
3168 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3170 if (hw
->phy
.type
== e1000_phy_82578
) {
3171 e1e_rphy(hw
, BM_PORT_GEN_CFG
, &i
);
3172 i
&= ~BM_WUC_HOST_WU_BIT
;
3173 e1e_wphy(hw
, BM_PORT_GEN_CFG
, i
);
3174 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
3179 /* Setup link and flow control */
3180 ret_val
= e1000_setup_link_ich8lan(hw
);
3182 /* Set the transmit descriptor write-back policy for both queues */
3183 txdctl
= er32(TXDCTL(0));
3184 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3185 E1000_TXDCTL_FULL_TX_DESC_WB
;
3186 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3187 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3188 ew32(TXDCTL(0), txdctl
);
3189 txdctl
= er32(TXDCTL(1));
3190 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3191 E1000_TXDCTL_FULL_TX_DESC_WB
;
3192 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3193 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3194 ew32(TXDCTL(1), txdctl
);
3197 * ICH8 has opposite polarity of no_snoop bits.
3198 * By default, we should use snoop behavior.
3200 if (mac
->type
== e1000_ich8lan
)
3201 snoop
= PCIE_ICH8_SNOOP_ALL
;
3203 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
3204 e1000e_set_pcie_no_snoop(hw
, snoop
);
3206 ctrl_ext
= er32(CTRL_EXT
);
3207 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
3208 ew32(CTRL_EXT
, ctrl_ext
);
3211 * Clear all of the statistics registers (clear on read). It is
3212 * important that we do this after we have tried to establish link
3213 * because the symbol error count will increment wildly if there
3216 e1000_clear_hw_cntrs_ich8lan(hw
);
3221 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3222 * @hw: pointer to the HW structure
3224 * Sets/Clears required hardware bits necessary for correctly setting up the
3225 * hardware for transmit and receive.
3227 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
3231 /* Extended Device Control */
3232 reg
= er32(CTRL_EXT
);
3234 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3235 if (hw
->mac
.type
>= e1000_pchlan
)
3236 reg
|= E1000_CTRL_EXT_PHYPDEN
;
3237 ew32(CTRL_EXT
, reg
);
3239 /* Transmit Descriptor Control 0 */
3240 reg
= er32(TXDCTL(0));
3242 ew32(TXDCTL(0), reg
);
3244 /* Transmit Descriptor Control 1 */
3245 reg
= er32(TXDCTL(1));
3247 ew32(TXDCTL(1), reg
);
3249 /* Transmit Arbitration Control 0 */
3250 reg
= er32(TARC(0));
3251 if (hw
->mac
.type
== e1000_ich8lan
)
3252 reg
|= (1 << 28) | (1 << 29);
3253 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3256 /* Transmit Arbitration Control 1 */
3257 reg
= er32(TARC(1));
3258 if (er32(TCTL
) & E1000_TCTL_MULR
)
3262 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
3266 if (hw
->mac
.type
== e1000_ich8lan
) {
3273 * work-around descriptor data corruption issue during nfs v2 udp
3274 * traffic, just disable the nfs filtering capability
3277 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
3282 * e1000_setup_link_ich8lan - Setup flow control and link settings
3283 * @hw: pointer to the HW structure
3285 * Determines which flow control settings to use, then configures flow
3286 * control. Calls the appropriate media-specific link configuration
3287 * function. Assuming the adapter has a valid link partner, a valid link
3288 * should be established. Assumes the hardware has previously been reset
3289 * and the transmitter and receiver are not enabled.
3291 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
3295 if (e1000_check_reset_block(hw
))
3299 * ICH parts do not have a word in the NVM to determine
3300 * the default flow control setting, so we explicitly
3303 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
3304 /* Workaround h/w hang when Tx flow control enabled */
3305 if (hw
->mac
.type
== e1000_pchlan
)
3306 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
3308 hw
->fc
.requested_mode
= e1000_fc_full
;
3312 * Save off the requested flow control mode for use later. Depending
3313 * on the link partner's capabilities, we may or may not use this mode.
3315 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
3317 e_dbg("After fix-ups FlowControl is now = %x\n",
3318 hw
->fc
.current_mode
);
3320 /* Continue to configure the copper link. */
3321 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
3325 ew32(FCTTV
, hw
->fc
.pause_time
);
3326 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3327 (hw
->phy
.type
== e1000_phy_82579
) ||
3328 (hw
->phy
.type
== e1000_phy_82577
)) {
3329 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
3331 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
3337 return e1000e_set_fc_watermarks(hw
);
3341 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3342 * @hw: pointer to the HW structure
3344 * Configures the kumeran interface to the PHY to wait the appropriate time
3345 * when polling the PHY, then call the generic setup_copper_link to finish
3346 * configuring the copper link.
3348 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
3355 ctrl
|= E1000_CTRL_SLU
;
3356 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
3360 * Set the mac to wait the maximum time between each iteration
3361 * and increase the max iterations when polling the phy;
3362 * this fixes erroneous timeouts at 10Mbps.
3364 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
3367 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3372 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3377 switch (hw
->phy
.type
) {
3378 case e1000_phy_igp_3
:
3379 ret_val
= e1000e_copper_link_setup_igp(hw
);
3384 case e1000_phy_82578
:
3385 ret_val
= e1000e_copper_link_setup_m88(hw
);
3389 case e1000_phy_82577
:
3390 case e1000_phy_82579
:
3391 ret_val
= e1000_copper_link_setup_82577(hw
);
3396 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
3400 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
3402 switch (hw
->phy
.mdix
) {
3404 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
3407 reg_data
|= IFE_PMC_FORCE_MDIX
;
3411 reg_data
|= IFE_PMC_AUTO_MDIX
;
3414 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
3421 return e1000e_setup_copper_link(hw
);
3425 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3426 * @hw: pointer to the HW structure
3427 * @speed: pointer to store current link speed
3428 * @duplex: pointer to store the current link duplex
3430 * Calls the generic get_speed_and_duplex to retrieve the current link
3431 * information and then calls the Kumeran lock loss workaround for links at
3434 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
3439 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
3443 if ((hw
->mac
.type
== e1000_ich8lan
) &&
3444 (hw
->phy
.type
== e1000_phy_igp_3
) &&
3445 (*speed
== SPEED_1000
)) {
3446 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
3453 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3454 * @hw: pointer to the HW structure
3456 * Work-around for 82566 Kumeran PCS lock loss:
3457 * On link status change (i.e. PCI reset, speed change) and link is up and
3459 * 0) if workaround is optionally disabled do nothing
3460 * 1) wait 1ms for Kumeran link to come up
3461 * 2) check Kumeran Diagnostic register PCS lock loss bit
3462 * 3) if not set the link is locked (all is good), otherwise...
3464 * 5) repeat up to 10 times
3465 * Note: this is only called for IGP3 copper when speed is 1gb.
3467 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
3469 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3475 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
3479 * Make sure link is up before proceeding. If not just return.
3480 * Attempting this while link is negotiating fouled up link
3483 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3487 for (i
= 0; i
< 10; i
++) {
3488 /* read once to clear */
3489 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3492 /* and again to get new status */
3493 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3497 /* check for PCS lock */
3498 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
3501 /* Issue PHY reset */
3502 e1000_phy_hw_reset(hw
);
3505 /* Disable GigE link negotiation */
3506 phy_ctrl
= er32(PHY_CTRL
);
3507 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3508 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3509 ew32(PHY_CTRL
, phy_ctrl
);
3512 * Call gig speed drop workaround on Gig disable before accessing
3515 e1000e_gig_downshift_workaround_ich8lan(hw
);
3517 /* unable to acquire PCS lock */
3518 return -E1000_ERR_PHY
;
3522 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3523 * @hw: pointer to the HW structure
3524 * @state: boolean value used to set the current Kumeran workaround state
3526 * If ICH8, set the current Kumeran workaround state (enabled - true
3527 * /disabled - false).
3529 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3532 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3534 if (hw
->mac
.type
!= e1000_ich8lan
) {
3535 e_dbg("Workaround applies to ICH8 only.\n");
3539 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3543 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3544 * @hw: pointer to the HW structure
3546 * Workaround for 82566 power-down on D3 entry:
3547 * 1) disable gigabit link
3548 * 2) write VR power-down enable
3550 * Continue if successful, else issue LCD reset and repeat
3552 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3558 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3561 /* Try the workaround twice (if needed) */
3564 reg
= er32(PHY_CTRL
);
3565 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3566 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3567 ew32(PHY_CTRL
, reg
);
3570 * Call gig speed drop workaround on Gig disable before
3571 * accessing any PHY registers
3573 if (hw
->mac
.type
== e1000_ich8lan
)
3574 e1000e_gig_downshift_workaround_ich8lan(hw
);
3576 /* Write VR power-down enable */
3577 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3578 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3579 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3581 /* Read it back and test */
3582 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3583 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3584 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3587 /* Issue PHY reset and repeat at most one more time */
3589 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3595 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3596 * @hw: pointer to the HW structure
3598 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3599 * LPLU, Gig disable, MDIC PHY reset):
3600 * 1) Set Kumeran Near-end loopback
3601 * 2) Clear Kumeran Near-end loopback
3602 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3604 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3609 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
3610 (hw
->phy
.type
!= e1000_phy_igp_3
))
3613 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3617 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3618 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3622 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3623 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3628 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3629 * @hw: pointer to the HW structure
3631 * During S0 to Sx transition, it is possible the link remains at gig
3632 * instead of negotiating to a lower speed. Before going to Sx, set
3633 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3634 * to a lower speed. For PCH and newer parts, the OEM bits PHY register
3635 * (LED, GbE disable and LPLU configurations) also needs to be written.
3637 void e1000_suspend_workarounds_ich8lan(struct e1000_hw
*hw
)
3642 phy_ctrl
= er32(PHY_CTRL
);
3643 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
| E1000_PHY_CTRL_GBE_DISABLE
;
3644 ew32(PHY_CTRL
, phy_ctrl
);
3646 if (hw
->mac
.type
>= e1000_pchlan
) {
3647 e1000_oem_bits_config_ich8lan(hw
, false);
3648 ret_val
= hw
->phy
.ops
.acquire(hw
);
3651 e1000_write_smbus_addr(hw
);
3652 hw
->phy
.ops
.release(hw
);
3657 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3658 * @hw: pointer to the HW structure
3660 * During Sx to S0 transitions on non-managed devices or managed devices
3661 * on which PHY resets are not blocked, if the PHY registers cannot be
3662 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3665 void e1000_resume_workarounds_pchlan(struct e1000_hw
*hw
)
3669 if (hw
->mac
.type
!= e1000_pch2lan
)
3673 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) || !e1000_check_reset_block(hw
)) {
3674 u16 phy_id1
, phy_id2
;
3677 ret_val
= hw
->phy
.ops
.acquire(hw
);
3679 e_dbg("Failed to acquire PHY semaphore in resume\n");
3683 /* Test access to the PHY registers by reading the ID regs */
3684 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, PHY_ID1
, &phy_id1
);
3687 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, PHY_ID2
, &phy_id2
);
3691 if (hw
->phy
.id
== ((u32
)(phy_id1
<< 16) |
3692 (u32
)(phy_id2
& PHY_REVISION_MASK
)))
3695 e1000_toggle_lanphypc_value_ich8lan(hw
);
3697 hw
->phy
.ops
.release(hw
);
3699 e1000_phy_hw_reset(hw
);
3705 hw
->phy
.ops
.release(hw
);
3711 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3712 * @hw: pointer to the HW structure
3714 * Return the LED back to the default configuration.
3716 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3718 if (hw
->phy
.type
== e1000_phy_ife
)
3719 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3721 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3726 * e1000_led_on_ich8lan - Turn LEDs on
3727 * @hw: pointer to the HW structure
3731 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3733 if (hw
->phy
.type
== e1000_phy_ife
)
3734 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3735 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3737 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3742 * e1000_led_off_ich8lan - Turn LEDs off
3743 * @hw: pointer to the HW structure
3745 * Turn off the LEDs.
3747 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3749 if (hw
->phy
.type
== e1000_phy_ife
)
3750 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3751 (IFE_PSCL_PROBE_MODE
|
3752 IFE_PSCL_PROBE_LEDS_OFF
));
3754 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3759 * e1000_setup_led_pchlan - Configures SW controllable LED
3760 * @hw: pointer to the HW structure
3762 * This prepares the SW controllable LED for use.
3764 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3766 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
3770 * e1000_cleanup_led_pchlan - Restore the default LED operation
3771 * @hw: pointer to the HW structure
3773 * Return the LED back to the default configuration.
3775 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3777 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
3781 * e1000_led_on_pchlan - Turn LEDs on
3782 * @hw: pointer to the HW structure
3786 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3788 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3792 * If no link, then turn LED on by setting the invert bit
3793 * for each LED that's mode is "link_up" in ledctl_mode2.
3795 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3796 for (i
= 0; i
< 3; i
++) {
3797 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3798 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3799 E1000_LEDCTL_MODE_LINK_UP
)
3801 if (led
& E1000_PHY_LED0_IVRT
)
3802 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3804 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3808 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3812 * e1000_led_off_pchlan - Turn LEDs off
3813 * @hw: pointer to the HW structure
3815 * Turn off the LEDs.
3817 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3819 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3823 * If no link, then turn LED off by clearing the invert bit
3824 * for each LED that's mode is "link_up" in ledctl_mode1.
3826 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3827 for (i
= 0; i
< 3; i
++) {
3828 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3829 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3830 E1000_LEDCTL_MODE_LINK_UP
)
3832 if (led
& E1000_PHY_LED0_IVRT
)
3833 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3835 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3839 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3843 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3844 * @hw: pointer to the HW structure
3846 * Read appropriate register for the config done bit for completion status
3847 * and configure the PHY through s/w for EEPROM-less parts.
3849 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3850 * config done bit, so only an error is logged and continues. If we were
3851 * to return with error, EEPROM-less silicon would not be able to be reset
3854 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3860 e1000e_get_cfg_done(hw
);
3862 /* Wait for indication from h/w that it has completed basic config */
3863 if (hw
->mac
.type
>= e1000_ich10lan
) {
3864 e1000_lan_init_done_ich8lan(hw
);
3866 ret_val
= e1000e_get_auto_rd_done(hw
);
3869 * When auto config read does not complete, do not
3870 * return with an error. This can happen in situations
3871 * where there is no eeprom and prevents getting link.
3873 e_dbg("Auto Read Done did not complete\n");
3878 /* Clear PHY Reset Asserted bit */
3879 status
= er32(STATUS
);
3880 if (status
& E1000_STATUS_PHYRA
)
3881 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3883 e_dbg("PHY Reset Asserted not set - needs delay\n");
3885 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3886 if (hw
->mac
.type
<= e1000_ich9lan
) {
3887 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3888 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3889 e1000e_phy_init_script_igp3(hw
);
3892 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3893 /* Maybe we should do a basic PHY config */
3894 e_dbg("EEPROM not present\n");
3895 ret_val
= -E1000_ERR_CONFIG
;
3903 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3904 * @hw: pointer to the HW structure
3906 * In the case of a PHY power down to save power, or to turn off link during a
3907 * driver unload, or wake on lan is not enabled, remove the link.
3909 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3911 /* If the management interface is not enabled, then power down */
3912 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3913 hw
->phy
.ops
.check_reset_block(hw
)))
3914 e1000_power_down_phy_copper(hw
);
3918 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3919 * @hw: pointer to the HW structure
3921 * Clears hardware counters specific to the silicon family and calls
3922 * clear_hw_cntrs_generic to clear all general purpose counters.
3924 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3929 e1000e_clear_hw_cntrs_base(hw
);
3945 /* Clear PHY statistics registers */
3946 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3947 (hw
->phy
.type
== e1000_phy_82579
) ||
3948 (hw
->phy
.type
== e1000_phy_82577
)) {
3949 ret_val
= hw
->phy
.ops
.acquire(hw
);
3952 ret_val
= hw
->phy
.ops
.set_page(hw
,
3953 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
3956 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
3957 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
3958 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
3959 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
3960 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
3961 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
3962 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
3963 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
3964 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
3965 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
3966 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
3967 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
3968 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
3969 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
3971 hw
->phy
.ops
.release(hw
);
3975 static struct e1000_mac_operations ich8_mac_ops
= {
3976 .id_led_init
= e1000e_id_led_init
,
3977 /* check_mng_mode dependent on mac type */
3978 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
3979 /* cleanup_led dependent on mac type */
3980 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
3981 .get_bus_info
= e1000_get_bus_info_ich8lan
,
3982 .set_lan_id
= e1000_set_lan_id_single_port
,
3983 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
3984 /* led_on dependent on mac type */
3985 /* led_off dependent on mac type */
3986 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
3987 .reset_hw
= e1000_reset_hw_ich8lan
,
3988 .init_hw
= e1000_init_hw_ich8lan
,
3989 .setup_link
= e1000_setup_link_ich8lan
,
3990 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
3991 /* id_led_init dependent on mac type */
3994 static struct e1000_phy_operations ich8_phy_ops
= {
3995 .acquire
= e1000_acquire_swflag_ich8lan
,
3996 .check_reset_block
= e1000_check_reset_block_ich8lan
,
3998 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
3999 .get_cable_length
= e1000e_get_cable_length_igp_2
,
4000 .read_reg
= e1000e_read_phy_reg_igp
,
4001 .release
= e1000_release_swflag_ich8lan
,
4002 .reset
= e1000_phy_hw_reset_ich8lan
,
4003 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
4004 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
4005 .write_reg
= e1000e_write_phy_reg_igp
,
4008 static struct e1000_nvm_operations ich8_nvm_ops
= {
4009 .acquire
= e1000_acquire_nvm_ich8lan
,
4010 .read
= e1000_read_nvm_ich8lan
,
4011 .release
= e1000_release_nvm_ich8lan
,
4012 .update
= e1000_update_nvm_checksum_ich8lan
,
4013 .valid_led_default
= e1000_valid_led_default_ich8lan
,
4014 .validate
= e1000_validate_nvm_checksum_ich8lan
,
4015 .write
= e1000_write_nvm_ich8lan
,
4018 struct e1000_info e1000_ich8_info
= {
4019 .mac
= e1000_ich8lan
,
4020 .flags
= FLAG_HAS_WOL
4022 | FLAG_RX_CSUM_ENABLED
4023 | FLAG_HAS_CTRLEXT_ON_LOAD
4028 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
4029 .get_variants
= e1000_get_variants_ich8lan
,
4030 .mac_ops
= &ich8_mac_ops
,
4031 .phy_ops
= &ich8_phy_ops
,
4032 .nvm_ops
= &ich8_nvm_ops
,
4035 struct e1000_info e1000_ich9_info
= {
4036 .mac
= e1000_ich9lan
,
4037 .flags
= FLAG_HAS_JUMBO_FRAMES
4040 | FLAG_RX_CSUM_ENABLED
4041 | FLAG_HAS_CTRLEXT_ON_LOAD
4047 .max_hw_frame_size
= DEFAULT_JUMBO
,
4048 .get_variants
= e1000_get_variants_ich8lan
,
4049 .mac_ops
= &ich8_mac_ops
,
4050 .phy_ops
= &ich8_phy_ops
,
4051 .nvm_ops
= &ich8_nvm_ops
,
4054 struct e1000_info e1000_ich10_info
= {
4055 .mac
= e1000_ich10lan
,
4056 .flags
= FLAG_HAS_JUMBO_FRAMES
4059 | FLAG_RX_CSUM_ENABLED
4060 | FLAG_HAS_CTRLEXT_ON_LOAD
4066 .max_hw_frame_size
= DEFAULT_JUMBO
,
4067 .get_variants
= e1000_get_variants_ich8lan
,
4068 .mac_ops
= &ich8_mac_ops
,
4069 .phy_ops
= &ich8_phy_ops
,
4070 .nvm_ops
= &ich8_nvm_ops
,
4073 struct e1000_info e1000_pch_info
= {
4074 .mac
= e1000_pchlan
,
4075 .flags
= FLAG_IS_ICH
4077 | FLAG_RX_CSUM_ENABLED
4078 | FLAG_HAS_CTRLEXT_ON_LOAD
4081 | FLAG_HAS_JUMBO_FRAMES
4082 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
4084 .flags2
= FLAG2_HAS_PHY_STATS
,
4086 .max_hw_frame_size
= 4096,
4087 .get_variants
= e1000_get_variants_ich8lan
,
4088 .mac_ops
= &ich8_mac_ops
,
4089 .phy_ops
= &ich8_phy_ops
,
4090 .nvm_ops
= &ich8_nvm_ops
,
4093 struct e1000_info e1000_pch2_info
= {
4094 .mac
= e1000_pch2lan
,
4095 .flags
= FLAG_IS_ICH
4097 | FLAG_RX_CSUM_ENABLED
4098 | FLAG_HAS_CTRLEXT_ON_LOAD
4101 | FLAG_HAS_JUMBO_FRAMES
4103 .flags2
= FLAG2_HAS_PHY_STATS
4106 .max_hw_frame_size
= DEFAULT_JUMBO
,
4107 .get_variants
= e1000_get_variants_ich8lan
,
4108 .mac_ops
= &ich8_mac_ops
,
4109 .phy_ops
= &ich8_phy_ops
,
4110 .nvm_ops
= &ich8_nvm_ops
,