2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
33 #include "rt2x00lib.h"
36 * Radio control handlers.
38 int rt2x00lib_enable_radio(struct rt2x00_dev
*rt2x00dev
)
43 * Don't enable the radio twice.
44 * And check if the hardware button has been disabled.
46 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
50 * Initialize all data queues.
52 rt2x00queue_init_queues(rt2x00dev
);
58 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_ON
);
62 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_ON
);
64 rt2x00leds_led_radio(rt2x00dev
, true);
65 rt2x00led_led_activity(rt2x00dev
, true);
67 set_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
);
72 rt2x00queue_start_queues(rt2x00dev
);
73 rt2x00link_start_tuner(rt2x00dev
);
74 rt2x00link_start_agc(rt2x00dev
);
77 * Start watchdog monitoring.
79 rt2x00link_start_watchdog(rt2x00dev
);
84 void rt2x00lib_disable_radio(struct rt2x00_dev
*rt2x00dev
)
86 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
90 * Stop watchdog monitoring.
92 rt2x00link_stop_watchdog(rt2x00dev
);
97 rt2x00link_stop_agc(rt2x00dev
);
98 rt2x00link_stop_tuner(rt2x00dev
);
99 rt2x00queue_stop_queues(rt2x00dev
);
100 rt2x00queue_flush_queues(rt2x00dev
, true);
105 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_OFF
);
106 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
107 rt2x00led_led_activity(rt2x00dev
, false);
108 rt2x00leds_led_radio(rt2x00dev
, false);
111 static void rt2x00lib_intf_scheduled_iter(void *data
, u8
*mac
,
112 struct ieee80211_vif
*vif
)
114 struct rt2x00_dev
*rt2x00dev
= data
;
115 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
118 * It is possible the radio was disabled while the work had been
119 * scheduled. If that happens we should return here immediately,
120 * note that in the spinlock protected area above the delayed_flags
121 * have been cleared correctly.
123 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
126 if (test_and_clear_bit(DELAYED_UPDATE_BEACON
, &intf
->delayed_flags
))
127 rt2x00queue_update_beacon(rt2x00dev
, vif
);
130 static void rt2x00lib_intf_scheduled(struct work_struct
*work
)
132 struct rt2x00_dev
*rt2x00dev
=
133 container_of(work
, struct rt2x00_dev
, intf_work
);
136 * Iterate over each interface and perform the
137 * requested configurations.
139 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
140 rt2x00lib_intf_scheduled_iter
,
144 static void rt2x00lib_autowakeup(struct work_struct
*work
)
146 struct rt2x00_dev
*rt2x00dev
=
147 container_of(work
, struct rt2x00_dev
, autowakeup_work
.work
);
149 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
152 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
153 ERROR(rt2x00dev
, "Device failed to wakeup.\n");
154 clear_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
);
158 * Interrupt context handlers.
160 static void rt2x00lib_bc_buffer_iter(void *data
, u8
*mac
,
161 struct ieee80211_vif
*vif
)
163 struct rt2x00_dev
*rt2x00dev
= data
;
167 * Only AP mode interfaces do broad- and multicast buffering
169 if (vif
->type
!= NL80211_IFTYPE_AP
)
173 * Send out buffered broad- and multicast frames
175 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
177 rt2x00mac_tx(rt2x00dev
->hw
, skb
);
178 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
182 static void rt2x00lib_beaconupdate_iter(void *data
, u8
*mac
,
183 struct ieee80211_vif
*vif
)
185 struct rt2x00_dev
*rt2x00dev
= data
;
187 if (vif
->type
!= NL80211_IFTYPE_AP
&&
188 vif
->type
!= NL80211_IFTYPE_ADHOC
&&
189 vif
->type
!= NL80211_IFTYPE_MESH_POINT
&&
190 vif
->type
!= NL80211_IFTYPE_WDS
)
194 * Update the beacon without locking. This is safe on PCI devices
195 * as they only update the beacon periodically here. This should
196 * never be called for USB devices.
198 WARN_ON(rt2x00_is_usb(rt2x00dev
));
199 rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
202 void rt2x00lib_beacondone(struct rt2x00_dev
*rt2x00dev
)
204 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
207 /* send buffered bc/mc frames out for every bssid */
208 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
209 rt2x00lib_bc_buffer_iter
,
212 * Devices with pre tbtt interrupt don't need to update the beacon
213 * here as they will fetch the next beacon directly prior to
216 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT
, &rt2x00dev
->cap_flags
))
219 /* fetch next beacon */
220 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
221 rt2x00lib_beaconupdate_iter
,
224 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone
);
226 void rt2x00lib_pretbtt(struct rt2x00_dev
*rt2x00dev
)
228 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
231 /* fetch next beacon */
232 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
233 rt2x00lib_beaconupdate_iter
,
236 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt
);
238 void rt2x00lib_dmastart(struct queue_entry
*entry
)
240 set_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
241 rt2x00queue_index_inc(entry
, Q_INDEX
);
243 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart
);
245 void rt2x00lib_dmadone(struct queue_entry
*entry
)
247 set_bit(ENTRY_DATA_STATUS_PENDING
, &entry
->flags
);
248 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
249 rt2x00queue_index_inc(entry
, Q_INDEX_DMA_DONE
);
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone
);
253 void rt2x00lib_txdone(struct queue_entry
*entry
,
254 struct txdone_entry_desc
*txdesc
)
256 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
257 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
258 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
259 unsigned int header_length
, i
;
260 u8 rate_idx
, rate_flags
, retry_rates
;
261 u8 skbdesc_flags
= skbdesc
->flags
;
267 rt2x00queue_unmap_skb(entry
);
270 * Remove the extra tx headroom from the skb.
272 skb_pull(entry
->skb
, rt2x00dev
->ops
->extra_tx_headroom
);
275 * Signal that the TX descriptor is no longer in the skb.
277 skbdesc
->flags
&= ~SKBDESC_DESC_IN_SKB
;
280 * Determine the length of 802.11 header.
282 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
285 * Remove L2 padding which was added during
287 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
288 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
291 * If the IV/EIV data was stripped from the frame before it was
292 * passed to the hardware, we should now reinsert it again because
293 * mac80211 will expect the same data to be present it the
294 * frame as it was passed to us.
296 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
))
297 rt2x00crypto_tx_insert_iv(entry
->skb
, header_length
);
300 * Send frame to debugfs immediately, after this call is completed
301 * we are going to overwrite the skb->cb array.
303 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_TXDONE
, entry
->skb
);
306 * Determine if the frame has been successfully transmitted.
309 test_bit(TXDONE_SUCCESS
, &txdesc
->flags
) ||
310 test_bit(TXDONE_UNKNOWN
, &txdesc
->flags
);
313 * Update TX statistics.
315 rt2x00dev
->link
.qual
.tx_success
+= success
;
316 rt2x00dev
->link
.qual
.tx_failed
+= !success
;
318 rate_idx
= skbdesc
->tx_rate_idx
;
319 rate_flags
= skbdesc
->tx_rate_flags
;
320 retry_rates
= test_bit(TXDONE_FALLBACK
, &txdesc
->flags
) ?
321 (txdesc
->retry
+ 1) : 1;
324 * Initialize TX status
326 memset(&tx_info
->status
, 0, sizeof(tx_info
->status
));
327 tx_info
->status
.ack_signal
= 0;
330 * Frame was send with retries, hardware tried
331 * different rates to send out the frame, at each
332 * retry it lowered the rate 1 step except when the
333 * lowest rate was used.
335 for (i
= 0; i
< retry_rates
&& i
< IEEE80211_TX_MAX_RATES
; i
++) {
336 tx_info
->status
.rates
[i
].idx
= rate_idx
- i
;
337 tx_info
->status
.rates
[i
].flags
= rate_flags
;
339 if (rate_idx
- i
== 0) {
341 * The lowest rate (index 0) was used until the
342 * number of max retries was reached.
344 tx_info
->status
.rates
[i
].count
= retry_rates
- i
;
348 tx_info
->status
.rates
[i
].count
= 1;
350 if (i
< (IEEE80211_TX_MAX_RATES
- 1))
351 tx_info
->status
.rates
[i
].idx
= -1; /* terminate */
353 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)) {
355 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
357 rt2x00dev
->low_level_stats
.dot11ACKFailureCount
++;
361 * Every single frame has it's own tx status, hence report
362 * every frame as ampdu of size 1.
364 * TODO: if we can find out how many frames were aggregated
365 * by the hw we could provide the real ampdu_len to mac80211
366 * which would allow the rc algorithm to better decide on
367 * which rates are suitable.
369 if (test_bit(TXDONE_AMPDU
, &txdesc
->flags
) ||
370 tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
371 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
372 tx_info
->status
.ampdu_len
= 1;
373 tx_info
->status
.ampdu_ack_len
= success
? 1 : 0;
376 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU_NO_BACK
;
379 if (rate_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
381 rt2x00dev
->low_level_stats
.dot11RTSSuccessCount
++;
383 rt2x00dev
->low_level_stats
.dot11RTSFailureCount
++;
387 * Only send the status report to mac80211 when it's a frame
388 * that originated in mac80211. If this was a extra frame coming
389 * through a mac80211 library call (RTS/CTS) then we should not
390 * send the status report back.
392 if (!(skbdesc_flags
& SKBDESC_NOT_MAC80211
)) {
393 if (test_bit(REQUIRE_TASKLET_CONTEXT
, &rt2x00dev
->cap_flags
))
394 ieee80211_tx_status(rt2x00dev
->hw
, entry
->skb
);
396 ieee80211_tx_status_ni(rt2x00dev
->hw
, entry
->skb
);
398 dev_kfree_skb_any(entry
->skb
);
401 * Make this entry available for reuse.
406 rt2x00dev
->ops
->lib
->clear_entry(entry
);
408 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
411 * If the data queue was below the threshold before the txdone
412 * handler we must make sure the packet queue in the mac80211 stack
413 * is reenabled when the txdone handler has finished.
415 if (!rt2x00queue_threshold(entry
->queue
))
416 rt2x00queue_unpause_queue(entry
->queue
);
418 EXPORT_SYMBOL_GPL(rt2x00lib_txdone
);
420 void rt2x00lib_txdone_noinfo(struct queue_entry
*entry
, u32 status
)
422 struct txdone_entry_desc txdesc
;
425 __set_bit(status
, &txdesc
.flags
);
428 rt2x00lib_txdone(entry
, &txdesc
);
430 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo
);
432 static u8
*rt2x00lib_find_ie(u8
*data
, unsigned int len
, u8 ie
)
434 struct ieee80211_mgmt
*mgmt
= (void *)data
;
437 pos
= (u8
*)mgmt
->u
.beacon
.variable
;
440 if (pos
+ 2 + pos
[1] > end
)
452 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev
*rt2x00dev
,
454 struct rxdone_entry_desc
*rxdesc
)
456 struct ieee80211_hdr
*hdr
= (void *) skb
->data
;
457 struct ieee80211_tim_ie
*tim_ie
;
462 /* If this is not a beacon, or if mac80211 has no powersaving
463 * configured, or if the device is already in powersaving mode
464 * we can exit now. */
465 if (likely(!ieee80211_is_beacon(hdr
->frame_control
) ||
466 !(rt2x00dev
->hw
->conf
.flags
& IEEE80211_CONF_PS
)))
469 /* min. beacon length + FCS_LEN */
470 if (skb
->len
<= 40 + FCS_LEN
)
473 /* and only beacons from the associated BSSID, please */
474 if (!(rxdesc
->dev_flags
& RXDONE_MY_BSS
) ||
478 rt2x00dev
->last_beacon
= jiffies
;
480 tim
= rt2x00lib_find_ie(skb
->data
, skb
->len
- FCS_LEN
, WLAN_EID_TIM
);
484 if (tim
[1] < sizeof(*tim_ie
))
488 tim_ie
= (struct ieee80211_tim_ie
*) &tim
[2];
490 /* Check whenever the PHY can be turned off again. */
492 /* 1. What about buffered unicast traffic for our AID? */
493 cam
= ieee80211_check_tim(tim_ie
, tim_len
, rt2x00dev
->aid
);
495 /* 2. Maybe the AP wants to send multicast/broadcast data? */
496 cam
|= (tim_ie
->bitmap_ctrl
& 0x01);
498 if (!cam
&& !test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
499 rt2x00lib_config(rt2x00dev
, &rt2x00dev
->hw
->conf
,
500 IEEE80211_CONF_CHANGE_PS
);
503 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev
*rt2x00dev
,
504 struct rxdone_entry_desc
*rxdesc
)
506 struct ieee80211_supported_band
*sband
;
507 const struct rt2x00_rate
*rate
;
509 int signal
= rxdesc
->signal
;
510 int type
= (rxdesc
->dev_flags
& RXDONE_SIGNAL_MASK
);
512 switch (rxdesc
->rate_mode
) {
516 * For non-HT rates the MCS value needs to contain the
517 * actually used rate modulation (CCK or OFDM).
519 if (rxdesc
->dev_flags
& RXDONE_SIGNAL_MCS
)
520 signal
= RATE_MCS(rxdesc
->rate_mode
, signal
);
522 sband
= &rt2x00dev
->bands
[rt2x00dev
->curr_band
];
523 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
524 rate
= rt2x00_get_rate(sband
->bitrates
[i
].hw_value
);
525 if (((type
== RXDONE_SIGNAL_PLCP
) &&
526 (rate
->plcp
== signal
)) ||
527 ((type
== RXDONE_SIGNAL_BITRATE
) &&
528 (rate
->bitrate
== signal
)) ||
529 ((type
== RXDONE_SIGNAL_MCS
) &&
530 (rate
->mcs
== signal
))) {
535 case RATE_MODE_HT_MIX
:
536 case RATE_MODE_HT_GREENFIELD
:
537 if (signal
>= 0 && signal
<= 76)
544 WARNING(rt2x00dev
, "Frame received with unrecognized signal, "
545 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
546 rxdesc
->rate_mode
, signal
, type
);
550 void rt2x00lib_rxdone(struct queue_entry
*entry
)
552 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
553 struct rxdone_entry_desc rxdesc
;
555 struct ieee80211_rx_status
*rx_status
;
556 unsigned int header_length
;
559 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) ||
560 !test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
563 if (test_bit(ENTRY_DATA_IO_FAILED
, &entry
->flags
))
567 * Allocate a new sk_buffer. If no new buffer available, drop the
568 * received frame and reuse the existing buffer.
570 skb
= rt2x00queue_alloc_rxskb(entry
);
577 rt2x00queue_unmap_skb(entry
);
580 * Extract the RXD details.
582 memset(&rxdesc
, 0, sizeof(rxdesc
));
583 rt2x00dev
->ops
->lib
->fill_rxdone(entry
, &rxdesc
);
586 * Check for valid size in case we get corrupted descriptor from
589 if (unlikely(rxdesc
.size
== 0 ||
590 rxdesc
.size
> entry
->queue
->data_size
)) {
591 WARNING(rt2x00dev
, "Wrong frame size %d max %d.\n",
592 rxdesc
.size
, entry
->queue
->data_size
);
593 dev_kfree_skb(entry
->skb
);
598 * The data behind the ieee80211 header must be
599 * aligned on a 4 byte boundary.
601 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
604 * Hardware might have stripped the IV/EIV/ICV data,
605 * in that case it is possible that the data was
606 * provided separately (through hardware descriptor)
607 * in which case we should reinsert the data into the frame.
609 if ((rxdesc
.dev_flags
& RXDONE_CRYPTO_IV
) &&
610 (rxdesc
.flags
& RX_FLAG_IV_STRIPPED
))
611 rt2x00crypto_rx_insert_iv(entry
->skb
, header_length
,
613 else if (header_length
&&
614 (rxdesc
.size
> header_length
) &&
615 (rxdesc
.dev_flags
& RXDONE_L2PAD
))
616 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
618 /* Trim buffer to correct size */
619 skb_trim(entry
->skb
, rxdesc
.size
);
622 * Translate the signal to the correct bitrate index.
624 rate_idx
= rt2x00lib_rxdone_read_signal(rt2x00dev
, &rxdesc
);
625 if (rxdesc
.rate_mode
== RATE_MODE_HT_MIX
||
626 rxdesc
.rate_mode
== RATE_MODE_HT_GREENFIELD
)
627 rxdesc
.flags
|= RX_FLAG_HT
;
630 * Check if this is a beacon, and more frames have been
631 * buffered while we were in powersaving mode.
633 rt2x00lib_rxdone_check_ps(rt2x00dev
, entry
->skb
, &rxdesc
);
636 * Update extra components
638 rt2x00link_update_stats(rt2x00dev
, entry
->skb
, &rxdesc
);
639 rt2x00debug_update_crypto(rt2x00dev
, &rxdesc
);
640 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_RXDONE
, entry
->skb
);
643 * Initialize RX status information, and send frame
646 rx_status
= IEEE80211_SKB_RXCB(entry
->skb
);
647 rx_status
->mactime
= rxdesc
.timestamp
;
648 rx_status
->band
= rt2x00dev
->curr_band
;
649 rx_status
->freq
= rt2x00dev
->curr_freq
;
650 rx_status
->rate_idx
= rate_idx
;
651 rx_status
->signal
= rxdesc
.rssi
;
652 rx_status
->flag
= rxdesc
.flags
;
653 rx_status
->antenna
= rt2x00dev
->link
.ant
.active
.rx
;
655 ieee80211_rx_ni(rt2x00dev
->hw
, entry
->skb
);
659 * Replace the skb with the freshly allocated one.
665 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
666 if (test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) &&
667 test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
668 rt2x00dev
->ops
->lib
->clear_entry(entry
);
670 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone
);
673 * Driver initialization handlers.
675 const struct rt2x00_rate rt2x00_supported_rates
[12] = {
677 .flags
= DEV_RATE_CCK
,
681 .mcs
= RATE_MCS(RATE_MODE_CCK
, 0),
684 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
688 .mcs
= RATE_MCS(RATE_MODE_CCK
, 1),
691 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
695 .mcs
= RATE_MCS(RATE_MODE_CCK
, 2),
698 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
702 .mcs
= RATE_MCS(RATE_MODE_CCK
, 3),
705 .flags
= DEV_RATE_OFDM
,
709 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 0),
712 .flags
= DEV_RATE_OFDM
,
716 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 1),
719 .flags
= DEV_RATE_OFDM
,
723 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 2),
726 .flags
= DEV_RATE_OFDM
,
730 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 3),
733 .flags
= DEV_RATE_OFDM
,
737 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 4),
740 .flags
= DEV_RATE_OFDM
,
744 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 5),
747 .flags
= DEV_RATE_OFDM
,
751 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 6),
754 .flags
= DEV_RATE_OFDM
,
758 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 7),
762 static void rt2x00lib_channel(struct ieee80211_channel
*entry
,
763 const int channel
, const int tx_power
,
766 /* XXX: this assumption about the band is wrong for 802.11j */
767 entry
->band
= channel
<= 14 ? IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
768 entry
->center_freq
= ieee80211_channel_to_frequency(channel
,
770 entry
->hw_value
= value
;
771 entry
->max_power
= tx_power
;
772 entry
->max_antenna_gain
= 0xff;
775 static void rt2x00lib_rate(struct ieee80211_rate
*entry
,
776 const u16 index
, const struct rt2x00_rate
*rate
)
779 entry
->bitrate
= rate
->bitrate
;
780 entry
->hw_value
= index
;
781 entry
->hw_value_short
= index
;
783 if (rate
->flags
& DEV_RATE_SHORT_PREAMBLE
)
784 entry
->flags
|= IEEE80211_RATE_SHORT_PREAMBLE
;
787 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev
*rt2x00dev
,
788 struct hw_mode_spec
*spec
)
790 struct ieee80211_hw
*hw
= rt2x00dev
->hw
;
791 struct ieee80211_channel
*channels
;
792 struct ieee80211_rate
*rates
;
793 unsigned int num_rates
;
797 if (spec
->supported_rates
& SUPPORT_RATE_CCK
)
799 if (spec
->supported_rates
& SUPPORT_RATE_OFDM
)
802 channels
= kzalloc(sizeof(*channels
) * spec
->num_channels
, GFP_KERNEL
);
806 rates
= kzalloc(sizeof(*rates
) * num_rates
, GFP_KERNEL
);
808 goto exit_free_channels
;
811 * Initialize Rate list.
813 for (i
= 0; i
< num_rates
; i
++)
814 rt2x00lib_rate(&rates
[i
], i
, rt2x00_get_rate(i
));
817 * Initialize Channel list.
819 for (i
= 0; i
< spec
->num_channels
; i
++) {
820 rt2x00lib_channel(&channels
[i
],
821 spec
->channels
[i
].channel
,
822 spec
->channels_info
[i
].max_power
, i
);
826 * Intitialize 802.11b, 802.11g
830 if (spec
->supported_bands
& SUPPORT_BAND_2GHZ
) {
831 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_channels
= 14;
832 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_bitrates
= num_rates
;
833 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].channels
= channels
;
834 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].bitrates
= rates
;
835 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] =
836 &rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
];
837 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].ht_cap
,
838 &spec
->ht
, sizeof(spec
->ht
));
842 * Intitialize 802.11a
844 * Channels: OFDM, UNII, HiperLAN2.
846 if (spec
->supported_bands
& SUPPORT_BAND_5GHZ
) {
847 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_channels
=
848 spec
->num_channels
- 14;
849 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_bitrates
=
851 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].channels
= &channels
[14];
852 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].bitrates
= &rates
[4];
853 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] =
854 &rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
];
855 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].ht_cap
,
856 &spec
->ht
, sizeof(spec
->ht
));
863 ERROR(rt2x00dev
, "Allocation ieee80211 modes failed.\n");
867 static void rt2x00lib_remove_hw(struct rt2x00_dev
*rt2x00dev
)
869 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
870 ieee80211_unregister_hw(rt2x00dev
->hw
);
872 if (likely(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
])) {
873 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->channels
);
874 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->bitrates
);
875 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = NULL
;
876 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = NULL
;
879 kfree(rt2x00dev
->spec
.channels_info
);
882 static int rt2x00lib_probe_hw(struct rt2x00_dev
*rt2x00dev
)
884 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
887 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
891 * Initialize HW modes.
893 status
= rt2x00lib_probe_hw_modes(rt2x00dev
, spec
);
898 * Initialize HW fields.
900 rt2x00dev
->hw
->queues
= rt2x00dev
->ops
->tx_queues
;
903 * Initialize extra TX headroom required.
905 rt2x00dev
->hw
->extra_tx_headroom
=
906 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM
,
907 rt2x00dev
->ops
->extra_tx_headroom
);
910 * Take TX headroom required for alignment into account.
912 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
913 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_L2PAD_SIZE
;
914 else if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
))
915 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_ALIGN_SIZE
;
918 * Allocate tx status FIFO for driver use.
920 if (test_bit(REQUIRE_TXSTATUS_FIFO
, &rt2x00dev
->cap_flags
)) {
922 * Allocate the txstatus fifo. In the worst case the tx
923 * status fifo has to hold the tx status of all entries
924 * in all tx queues. Hence, calculate the kfifo size as
925 * tx_queues * entry_num and round up to the nearest
929 roundup_pow_of_two(rt2x00dev
->ops
->tx_queues
*
930 rt2x00dev
->ops
->tx
->entry_num
*
933 status
= kfifo_alloc(&rt2x00dev
->txstatus_fifo
, kfifo_size
,
940 * Initialize tasklets if used by the driver. Tasklets are
941 * disabled until the interrupts are turned on. The driver
942 * has to handle that.
944 #define RT2X00_TASKLET_INIT(taskletname) \
945 if (rt2x00dev->ops->lib->taskletname) { \
946 tasklet_init(&rt2x00dev->taskletname, \
947 rt2x00dev->ops->lib->taskletname, \
948 (unsigned long)rt2x00dev); \
951 RT2X00_TASKLET_INIT(txstatus_tasklet
);
952 RT2X00_TASKLET_INIT(pretbtt_tasklet
);
953 RT2X00_TASKLET_INIT(tbtt_tasklet
);
954 RT2X00_TASKLET_INIT(rxdone_tasklet
);
955 RT2X00_TASKLET_INIT(autowake_tasklet
);
957 #undef RT2X00_TASKLET_INIT
962 status
= ieee80211_register_hw(rt2x00dev
->hw
);
966 set_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
);
972 * Initialization/uninitialization handlers.
974 static void rt2x00lib_uninitialize(struct rt2x00_dev
*rt2x00dev
)
976 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
980 * Unregister extra components.
982 rt2x00rfkill_unregister(rt2x00dev
);
985 * Allow the HW to uninitialize.
987 rt2x00dev
->ops
->lib
->uninitialize(rt2x00dev
);
990 * Free allocated queue entries.
992 rt2x00queue_uninitialize(rt2x00dev
);
995 static int rt2x00lib_initialize(struct rt2x00_dev
*rt2x00dev
)
999 if (test_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1003 * Allocate all queue entries.
1005 status
= rt2x00queue_initialize(rt2x00dev
);
1010 * Initialize the device.
1012 status
= rt2x00dev
->ops
->lib
->initialize(rt2x00dev
);
1014 rt2x00queue_uninitialize(rt2x00dev
);
1018 set_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
);
1021 * Register the extra components.
1023 rt2x00rfkill_register(rt2x00dev
);
1028 int rt2x00lib_start(struct rt2x00_dev
*rt2x00dev
)
1032 if (test_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1036 * If this is the first interface which is added,
1037 * we should load the firmware now.
1039 retval
= rt2x00lib_load_firmware(rt2x00dev
);
1044 * Initialize the device.
1046 retval
= rt2x00lib_initialize(rt2x00dev
);
1050 rt2x00dev
->intf_ap_count
= 0;
1051 rt2x00dev
->intf_sta_count
= 0;
1052 rt2x00dev
->intf_associated
= 0;
1054 /* Enable the radio */
1055 retval
= rt2x00lib_enable_radio(rt2x00dev
);
1059 set_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
);
1064 void rt2x00lib_stop(struct rt2x00_dev
*rt2x00dev
)
1066 if (!test_and_clear_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1070 * Perhaps we can add something smarter here,
1071 * but for now just disabling the radio should do.
1073 rt2x00lib_disable_radio(rt2x00dev
);
1075 rt2x00dev
->intf_ap_count
= 0;
1076 rt2x00dev
->intf_sta_count
= 0;
1077 rt2x00dev
->intf_associated
= 0;
1081 * driver allocation handlers.
1083 int rt2x00lib_probe_dev(struct rt2x00_dev
*rt2x00dev
)
1085 int retval
= -ENOMEM
;
1087 spin_lock_init(&rt2x00dev
->irqmask_lock
);
1088 mutex_init(&rt2x00dev
->csr_mutex
);
1090 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1093 * Make room for rt2x00_intf inside the per-interface
1094 * structure ieee80211_vif.
1096 rt2x00dev
->hw
->vif_data_size
= sizeof(struct rt2x00_intf
);
1099 * Determine which operating modes are supported, all modes
1100 * which require beaconing, depend on the availability of
1103 rt2x00dev
->hw
->wiphy
->interface_modes
= BIT(NL80211_IFTYPE_STATION
);
1104 if (rt2x00dev
->ops
->bcn
->entry_num
> 0)
1105 rt2x00dev
->hw
->wiphy
->interface_modes
|=
1106 BIT(NL80211_IFTYPE_ADHOC
) |
1107 BIT(NL80211_IFTYPE_AP
) |
1108 BIT(NL80211_IFTYPE_MESH_POINT
) |
1109 BIT(NL80211_IFTYPE_WDS
);
1114 rt2x00dev
->workqueue
=
1115 alloc_ordered_workqueue(wiphy_name(rt2x00dev
->hw
->wiphy
), 0);
1116 if (!rt2x00dev
->workqueue
) {
1121 INIT_WORK(&rt2x00dev
->intf_work
, rt2x00lib_intf_scheduled
);
1122 INIT_DELAYED_WORK(&rt2x00dev
->autowakeup_work
, rt2x00lib_autowakeup
);
1125 * Let the driver probe the device to detect the capabilities.
1127 retval
= rt2x00dev
->ops
->lib
->probe_hw(rt2x00dev
);
1129 ERROR(rt2x00dev
, "Failed to allocate device.\n");
1134 * Allocate queue array.
1136 retval
= rt2x00queue_allocate(rt2x00dev
);
1141 * Initialize ieee80211 structure.
1143 retval
= rt2x00lib_probe_hw(rt2x00dev
);
1145 ERROR(rt2x00dev
, "Failed to initialize hw.\n");
1150 * Register extra components.
1152 rt2x00link_register(rt2x00dev
);
1153 rt2x00leds_register(rt2x00dev
);
1154 rt2x00debug_register(rt2x00dev
);
1159 rt2x00lib_remove_dev(rt2x00dev
);
1163 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev
);
1165 void rt2x00lib_remove_dev(struct rt2x00_dev
*rt2x00dev
)
1167 clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1172 rt2x00lib_disable_radio(rt2x00dev
);
1177 cancel_work_sync(&rt2x00dev
->intf_work
);
1178 cancel_delayed_work_sync(&rt2x00dev
->autowakeup_work
);
1179 if (rt2x00_is_usb(rt2x00dev
)) {
1180 del_timer_sync(&rt2x00dev
->txstatus_timer
);
1181 cancel_work_sync(&rt2x00dev
->rxdone_work
);
1182 cancel_work_sync(&rt2x00dev
->txdone_work
);
1184 destroy_workqueue(rt2x00dev
->workqueue
);
1187 * Free the tx status fifo.
1189 kfifo_free(&rt2x00dev
->txstatus_fifo
);
1192 * Kill the tx status tasklet.
1194 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1195 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
1196 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1197 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1198 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1201 * Uninitialize device.
1203 rt2x00lib_uninitialize(rt2x00dev
);
1206 * Free extra components
1208 rt2x00debug_deregister(rt2x00dev
);
1209 rt2x00leds_unregister(rt2x00dev
);
1212 * Free ieee80211_hw memory.
1214 rt2x00lib_remove_hw(rt2x00dev
);
1217 * Free firmware image.
1219 rt2x00lib_free_firmware(rt2x00dev
);
1222 * Free queue structures.
1224 rt2x00queue_free(rt2x00dev
);
1226 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev
);
1229 * Device state handlers
1232 int rt2x00lib_suspend(struct rt2x00_dev
*rt2x00dev
, pm_message_t state
)
1234 NOTICE(rt2x00dev
, "Going to sleep.\n");
1237 * Prevent mac80211 from accessing driver while suspended.
1239 if (!test_and_clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
1243 * Cleanup as much as possible.
1245 rt2x00lib_uninitialize(rt2x00dev
);
1248 * Suspend/disable extra components.
1250 rt2x00leds_suspend(rt2x00dev
);
1251 rt2x00debug_deregister(rt2x00dev
);
1254 * Set device mode to sleep for power management,
1255 * on some hardware this call seems to consistently fail.
1256 * From the specifications it is hard to tell why it fails,
1257 * and if this is a "bad thing".
1258 * Overall it is safe to just ignore the failure and
1259 * continue suspending. The only downside is that the
1260 * device will not be in optimal power save mode, but with
1261 * the radio and the other components already disabled the
1262 * device is as good as disabled.
1264 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_SLEEP
))
1265 WARNING(rt2x00dev
, "Device failed to enter sleep state, "
1266 "continue suspending.\n");
1270 EXPORT_SYMBOL_GPL(rt2x00lib_suspend
);
1272 int rt2x00lib_resume(struct rt2x00_dev
*rt2x00dev
)
1274 NOTICE(rt2x00dev
, "Waking up.\n");
1277 * Restore/enable extra components.
1279 rt2x00debug_register(rt2x00dev
);
1280 rt2x00leds_resume(rt2x00dev
);
1283 * We are ready again to receive requests from mac80211.
1285 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1289 EXPORT_SYMBOL_GPL(rt2x00lib_resume
);
1290 #endif /* CONFIG_PM */
1293 * rt2x00lib module information.
1295 MODULE_AUTHOR(DRV_PROJECT
);
1296 MODULE_VERSION(DRV_VERSION
);
1297 MODULE_DESCRIPTION("rt2x00 library");
1298 MODULE_LICENSE("GPL");