2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool
{
41 struct kmem_cache
*slab
;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS
)
68 struct kmem_cache
*scsi_sdb_cache
;
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
75 #define SCSI_QUEUE_DELAY 3
78 * Function: scsi_unprep_request()
80 * Purpose: Remove all preparation done for a request, including its
81 * associated scsi_cmnd, so that it can be requeued.
83 * Arguments: req - request to unprepare
85 * Lock status: Assumed that no locks are held upon entry.
89 static void scsi_unprep_request(struct request
*req
)
91 struct scsi_cmnd
*cmd
= req
->special
;
93 blk_unprep_request(req
);
96 scsi_put_command(cmd
);
100 * __scsi_queue_insert - private queue insertion
101 * @cmd: The SCSI command being requeued
102 * @reason: The reason for the requeue
103 * @unbusy: Whether the queue should be unbusied
105 * This is a private queue insertion. The public interface
106 * scsi_queue_insert() always assumes the queue should be unbusied
107 * because it's always called before the completion. This function is
108 * for a requeue after completion, which should only occur in this
111 static int __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
113 struct Scsi_Host
*host
= cmd
->device
->host
;
114 struct scsi_device
*device
= cmd
->device
;
115 struct scsi_target
*starget
= scsi_target(device
);
116 struct request_queue
*q
= device
->request_queue
;
120 printk("Inserting command %p into mlqueue\n", cmd
));
123 * Set the appropriate busy bit for the device/host.
125 * If the host/device isn't busy, assume that something actually
126 * completed, and that we should be able to queue a command now.
128 * Note that the prior mid-layer assumption that any host could
129 * always queue at least one command is now broken. The mid-layer
130 * will implement a user specifiable stall (see
131 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132 * if a command is requeued with no other commands outstanding
133 * either for the device or for the host.
136 case SCSI_MLQUEUE_HOST_BUSY
:
137 host
->host_blocked
= host
->max_host_blocked
;
139 case SCSI_MLQUEUE_DEVICE_BUSY
:
140 device
->device_blocked
= device
->max_device_blocked
;
142 case SCSI_MLQUEUE_TARGET_BUSY
:
143 starget
->target_blocked
= starget
->max_target_blocked
;
148 * Decrement the counters, since these commands are no longer
149 * active on the host/device.
152 scsi_device_unbusy(device
);
155 * Requeue this command. It will go before all other commands
156 * that are already in the queue.
158 spin_lock_irqsave(q
->queue_lock
, flags
);
159 blk_requeue_request(q
, cmd
->request
);
160 spin_unlock_irqrestore(q
->queue_lock
, flags
);
162 kblockd_schedule_work(q
, &device
->requeue_work
);
168 * Function: scsi_queue_insert()
170 * Purpose: Insert a command in the midlevel queue.
172 * Arguments: cmd - command that we are adding to queue.
173 * reason - why we are inserting command to queue.
175 * Lock status: Assumed that lock is not held upon entry.
179 * Notes: We do this for one of two cases. Either the host is busy
180 * and it cannot accept any more commands for the time being,
181 * or the device returned QUEUE_FULL and can accept no more
183 * Notes: This could be called either from an interrupt context or a
184 * normal process context.
186 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
188 return __scsi_queue_insert(cmd
, reason
, 1);
191 * scsi_execute - insert request and wait for the result
194 * @data_direction: data direction
195 * @buffer: data buffer
196 * @bufflen: len of buffer
197 * @sense: optional sense buffer
198 * @timeout: request timeout in seconds
199 * @retries: number of times to retry request
200 * @flags: or into request flags;
201 * @resid: optional residual length
203 * returns the req->errors value which is the scsi_cmnd result
206 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
207 int data_direction
, void *buffer
, unsigned bufflen
,
208 unsigned char *sense
, int timeout
, int retries
, int flags
,
212 int write
= (data_direction
== DMA_TO_DEVICE
);
213 int ret
= DRIVER_ERROR
<< 24;
215 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
217 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
218 buffer
, bufflen
, __GFP_WAIT
))
221 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
222 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
225 req
->retries
= retries
;
226 req
->timeout
= timeout
;
227 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
228 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
231 * head injection *required* here otherwise quiesce won't work
233 blk_execute_rq(req
->q
, NULL
, req
, 1);
236 * Some devices (USB mass-storage in particular) may transfer
237 * garbage data together with a residue indicating that the data
238 * is invalid. Prevent the garbage from being misinterpreted
239 * and prevent security leaks by zeroing out the excess data.
241 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
242 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
245 *resid
= req
->resid_len
;
248 blk_put_request(req
);
252 EXPORT_SYMBOL(scsi_execute
);
255 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
256 int data_direction
, void *buffer
, unsigned bufflen
,
257 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
264 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
266 return DRIVER_ERROR
<< 24;
268 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
269 sense
, timeout
, retries
, 0, resid
);
271 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
276 EXPORT_SYMBOL(scsi_execute_req
);
279 * Function: scsi_init_cmd_errh()
281 * Purpose: Initialize cmd fields related to error handling.
283 * Arguments: cmd - command that is ready to be queued.
285 * Notes: This function has the job of initializing a number of
286 * fields related to error handling. Typically this will
287 * be called once for each command, as required.
289 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
291 cmd
->serial_number
= 0;
292 scsi_set_resid(cmd
, 0);
293 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
294 if (cmd
->cmd_len
== 0)
295 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
298 void scsi_device_unbusy(struct scsi_device
*sdev
)
300 struct Scsi_Host
*shost
= sdev
->host
;
301 struct scsi_target
*starget
= scsi_target(sdev
);
304 spin_lock_irqsave(shost
->host_lock
, flags
);
306 starget
->target_busy
--;
307 if (unlikely(scsi_host_in_recovery(shost
) &&
308 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
309 scsi_eh_wakeup(shost
);
310 spin_unlock(shost
->host_lock
);
311 spin_lock(sdev
->request_queue
->queue_lock
);
313 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
317 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
318 * and call blk_run_queue for all the scsi_devices on the target -
319 * including current_sdev first.
321 * Called with *no* scsi locks held.
323 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
325 struct Scsi_Host
*shost
= current_sdev
->host
;
326 struct scsi_device
*sdev
, *tmp
;
327 struct scsi_target
*starget
= scsi_target(current_sdev
);
330 spin_lock_irqsave(shost
->host_lock
, flags
);
331 starget
->starget_sdev_user
= NULL
;
332 spin_unlock_irqrestore(shost
->host_lock
, flags
);
335 * Call blk_run_queue for all LUNs on the target, starting with
336 * current_sdev. We race with others (to set starget_sdev_user),
337 * but in most cases, we will be first. Ideally, each LU on the
338 * target would get some limited time or requests on the target.
340 blk_run_queue(current_sdev
->request_queue
);
342 spin_lock_irqsave(shost
->host_lock
, flags
);
343 if (starget
->starget_sdev_user
)
345 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
346 same_target_siblings
) {
347 if (sdev
== current_sdev
)
349 if (scsi_device_get(sdev
))
352 spin_unlock_irqrestore(shost
->host_lock
, flags
);
353 blk_run_queue(sdev
->request_queue
);
354 spin_lock_irqsave(shost
->host_lock
, flags
);
356 scsi_device_put(sdev
);
359 spin_unlock_irqrestore(shost
->host_lock
, flags
);
362 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
364 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
370 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
372 return ((starget
->can_queue
> 0 &&
373 starget
->target_busy
>= starget
->can_queue
) ||
374 starget
->target_blocked
);
377 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
379 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
380 shost
->host_blocked
|| shost
->host_self_blocked
)
387 * Function: scsi_run_queue()
389 * Purpose: Select a proper request queue to serve next
391 * Arguments: q - last request's queue
395 * Notes: The previous command was completely finished, start
396 * a new one if possible.
398 static void scsi_run_queue(struct request_queue
*q
)
400 struct scsi_device
*sdev
= q
->queuedata
;
401 struct Scsi_Host
*shost
;
402 LIST_HEAD(starved_list
);
405 /* if the device is dead, sdev will be NULL, so no queue to run */
410 if (scsi_target(sdev
)->single_lun
)
411 scsi_single_lun_run(sdev
);
413 spin_lock_irqsave(shost
->host_lock
, flags
);
414 list_splice_init(&shost
->starved_list
, &starved_list
);
416 while (!list_empty(&starved_list
)) {
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
427 if (scsi_host_is_busy(shost
))
430 sdev
= list_entry(starved_list
.next
,
431 struct scsi_device
, starved_entry
);
432 list_del_init(&sdev
->starved_entry
);
433 if (scsi_target_is_busy(scsi_target(sdev
))) {
434 list_move_tail(&sdev
->starved_entry
,
435 &shost
->starved_list
);
439 spin_unlock(shost
->host_lock
);
440 spin_lock(sdev
->request_queue
->queue_lock
);
441 __blk_run_queue(sdev
->request_queue
);
442 spin_unlock(sdev
->request_queue
->queue_lock
);
443 spin_lock(shost
->host_lock
);
445 /* put any unprocessed entries back */
446 list_splice(&starved_list
, &shost
->starved_list
);
447 spin_unlock_irqrestore(shost
->host_lock
, flags
);
452 void scsi_requeue_run_queue(struct work_struct
*work
)
454 struct scsi_device
*sdev
;
455 struct request_queue
*q
;
457 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
458 q
= sdev
->request_queue
;
463 * Function: scsi_requeue_command()
465 * Purpose: Handle post-processing of completed commands.
467 * Arguments: q - queue to operate on
468 * cmd - command that may need to be requeued.
472 * Notes: After command completion, there may be blocks left
473 * over which weren't finished by the previous command
474 * this can be for a number of reasons - the main one is
475 * I/O errors in the middle of the request, in which case
476 * we need to request the blocks that come after the bad
478 * Notes: Upon return, cmd is a stale pointer.
480 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
482 struct request
*req
= cmd
->request
;
485 spin_lock_irqsave(q
->queue_lock
, flags
);
486 scsi_unprep_request(req
);
487 blk_requeue_request(q
, req
);
488 spin_unlock_irqrestore(q
->queue_lock
, flags
);
493 void scsi_next_command(struct scsi_cmnd
*cmd
)
495 struct scsi_device
*sdev
= cmd
->device
;
496 struct request_queue
*q
= sdev
->request_queue
;
498 /* need to hold a reference on the device before we let go of the cmd */
499 get_device(&sdev
->sdev_gendev
);
501 scsi_put_command(cmd
);
504 /* ok to remove device now */
505 put_device(&sdev
->sdev_gendev
);
508 void scsi_run_host_queues(struct Scsi_Host
*shost
)
510 struct scsi_device
*sdev
;
512 shost_for_each_device(sdev
, shost
)
513 scsi_run_queue(sdev
->request_queue
);
516 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
519 * Function: scsi_end_request()
521 * Purpose: Post-processing of completed commands (usually invoked at end
522 * of upper level post-processing and scsi_io_completion).
524 * Arguments: cmd - command that is complete.
525 * error - 0 if I/O indicates success, < 0 for I/O error.
526 * bytes - number of bytes of completed I/O
527 * requeue - indicates whether we should requeue leftovers.
529 * Lock status: Assumed that lock is not held upon entry.
531 * Returns: cmd if requeue required, NULL otherwise.
533 * Notes: This is called for block device requests in order to
534 * mark some number of sectors as complete.
536 * We are guaranteeing that the request queue will be goosed
537 * at some point during this call.
538 * Notes: If cmd was requeued, upon return it will be a stale pointer.
540 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
541 int bytes
, int requeue
)
543 struct request_queue
*q
= cmd
->device
->request_queue
;
544 struct request
*req
= cmd
->request
;
547 * If there are blocks left over at the end, set up the command
548 * to queue the remainder of them.
550 if (blk_end_request(req
, error
, bytes
)) {
551 /* kill remainder if no retrys */
552 if (error
&& scsi_noretry_cmd(cmd
))
553 blk_end_request_all(req
, error
);
557 * Bleah. Leftovers again. Stick the
558 * leftovers in the front of the
559 * queue, and goose the queue again.
561 scsi_release_buffers(cmd
);
562 scsi_requeue_command(q
, cmd
);
570 * This will goose the queue request function at the end, so we don't
571 * need to worry about launching another command.
573 __scsi_release_buffers(cmd
, 0);
574 scsi_next_command(cmd
);
578 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
582 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
587 index
= get_count_order(nents
) - 3;
592 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
594 struct scsi_host_sg_pool
*sgp
;
596 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
597 mempool_free(sgl
, sgp
->pool
);
600 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
602 struct scsi_host_sg_pool
*sgp
;
604 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
605 return mempool_alloc(sgp
->pool
, gfp_mask
);
608 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
615 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
616 gfp_mask
, scsi_sg_alloc
);
618 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
624 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
626 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
629 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
632 if (cmd
->sdb
.table
.nents
)
633 scsi_free_sgtable(&cmd
->sdb
);
635 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
637 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
638 struct scsi_data_buffer
*bidi_sdb
=
639 cmd
->request
->next_rq
->special
;
640 scsi_free_sgtable(bidi_sdb
);
641 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
642 cmd
->request
->next_rq
->special
= NULL
;
645 if (scsi_prot_sg_count(cmd
))
646 scsi_free_sgtable(cmd
->prot_sdb
);
650 * Function: scsi_release_buffers()
652 * Purpose: Completion processing for block device I/O requests.
654 * Arguments: cmd - command that we are bailing.
656 * Lock status: Assumed that no lock is held upon entry.
660 * Notes: In the event that an upper level driver rejects a
661 * command, we must release resources allocated during
662 * the __init_io() function. Primarily this would involve
663 * the scatter-gather table, and potentially any bounce
666 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
668 __scsi_release_buffers(cmd
, 1);
670 EXPORT_SYMBOL(scsi_release_buffers
);
672 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
676 switch(host_byte(result
)) {
677 case DID_TRANSPORT_FAILFAST
:
680 case DID_TARGET_FAILURE
:
681 cmd
->result
|= (DID_OK
<< 16);
684 case DID_NEXUS_FAILURE
:
685 cmd
->result
|= (DID_OK
<< 16);
697 * Function: scsi_io_completion()
699 * Purpose: Completion processing for block device I/O requests.
701 * Arguments: cmd - command that is finished.
703 * Lock status: Assumed that no lock is held upon entry.
707 * Notes: This function is matched in terms of capabilities to
708 * the function that created the scatter-gather list.
709 * In other words, if there are no bounce buffers
710 * (the normal case for most drivers), we don't need
711 * the logic to deal with cleaning up afterwards.
713 * We must call scsi_end_request(). This will finish off
714 * the specified number of sectors. If we are done, the
715 * command block will be released and the queue function
716 * will be goosed. If we are not done then we have to
717 * figure out what to do next:
719 * a) We can call scsi_requeue_command(). The request
720 * will be unprepared and put back on the queue. Then
721 * a new command will be created for it. This should
722 * be used if we made forward progress, or if we want
723 * to switch from READ(10) to READ(6) for example.
725 * b) We can call scsi_queue_insert(). The request will
726 * be put back on the queue and retried using the same
727 * command as before, possibly after a delay.
729 * c) We can call blk_end_request() with -EIO to fail
730 * the remainder of the request.
732 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
734 int result
= cmd
->result
;
735 struct request_queue
*q
= cmd
->device
->request_queue
;
736 struct request
*req
= cmd
->request
;
738 struct scsi_sense_hdr sshdr
;
740 int sense_deferred
= 0;
741 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
742 ACTION_DELAYED_RETRY
} action
;
743 char *description
= NULL
;
746 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
748 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
751 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
752 req
->errors
= result
;
754 if (sense_valid
&& req
->sense
) {
756 * SG_IO wants current and deferred errors
758 int len
= 8 + cmd
->sense_buffer
[7];
760 if (len
> SCSI_SENSE_BUFFERSIZE
)
761 len
= SCSI_SENSE_BUFFERSIZE
;
762 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
763 req
->sense_len
= len
;
766 error
= __scsi_error_from_host_byte(cmd
, result
);
769 req
->resid_len
= scsi_get_resid(cmd
);
771 if (scsi_bidi_cmnd(cmd
)) {
773 * Bidi commands Must be complete as a whole,
774 * both sides at once.
776 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
778 scsi_release_buffers(cmd
);
779 blk_end_request_all(req
, 0);
781 scsi_next_command(cmd
);
786 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
787 BUG_ON(blk_bidi_rq(req
));
790 * Next deal with any sectors which we were able to correctly
793 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
795 blk_rq_sectors(req
), good_bytes
));
798 * Recovered errors need reporting, but they're always treated
799 * as success, so fiddle the result code here. For BLOCK_PC
800 * we already took a copy of the original into rq->errors which
801 * is what gets returned to the user
803 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
804 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
805 * print since caller wants ATA registers. Only occurs on
806 * SCSI ATA PASS_THROUGH commands when CK_COND=1
808 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
810 else if (!(req
->cmd_flags
& REQ_QUIET
))
811 scsi_print_sense("", cmd
);
813 /* BLOCK_PC may have set error */
818 * A number of bytes were successfully read. If there
819 * are leftovers and there is some kind of error
820 * (result != 0), retry the rest.
822 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
825 error
= __scsi_error_from_host_byte(cmd
, result
);
827 if (host_byte(result
) == DID_RESET
) {
828 /* Third party bus reset or reset for error recovery
829 * reasons. Just retry the command and see what
832 action
= ACTION_RETRY
;
833 } else if (sense_valid
&& !sense_deferred
) {
834 switch (sshdr
.sense_key
) {
836 if (cmd
->device
->removable
) {
837 /* Detected disc change. Set a bit
838 * and quietly refuse further access.
840 cmd
->device
->changed
= 1;
841 description
= "Media Changed";
842 action
= ACTION_FAIL
;
844 /* Must have been a power glitch, or a
845 * bus reset. Could not have been a
846 * media change, so we just retry the
847 * command and see what happens.
849 action
= ACTION_RETRY
;
852 case ILLEGAL_REQUEST
:
853 /* If we had an ILLEGAL REQUEST returned, then
854 * we may have performed an unsupported
855 * command. The only thing this should be
856 * would be a ten byte read where only a six
857 * byte read was supported. Also, on a system
858 * where READ CAPACITY failed, we may have
859 * read past the end of the disk.
861 if ((cmd
->device
->use_10_for_rw
&&
862 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
863 (cmd
->cmnd
[0] == READ_10
||
864 cmd
->cmnd
[0] == WRITE_10
)) {
865 /* This will issue a new 6-byte command. */
866 cmd
->device
->use_10_for_rw
= 0;
867 action
= ACTION_REPREP
;
868 } else if (sshdr
.asc
== 0x10) /* DIX */ {
869 description
= "Host Data Integrity Failure";
870 action
= ACTION_FAIL
;
872 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
873 } else if ((sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) &&
874 (cmd
->cmnd
[0] == UNMAP
||
875 cmd
->cmnd
[0] == WRITE_SAME_16
||
876 cmd
->cmnd
[0] == WRITE_SAME
)) {
877 description
= "Discard failure";
878 action
= ACTION_FAIL
;
880 action
= ACTION_FAIL
;
882 case ABORTED_COMMAND
:
883 action
= ACTION_FAIL
;
884 if (sshdr
.asc
== 0x10) { /* DIF */
885 description
= "Target Data Integrity Failure";
890 /* If the device is in the process of becoming
891 * ready, or has a temporary blockage, retry.
893 if (sshdr
.asc
== 0x04) {
894 switch (sshdr
.ascq
) {
895 case 0x01: /* becoming ready */
896 case 0x04: /* format in progress */
897 case 0x05: /* rebuild in progress */
898 case 0x06: /* recalculation in progress */
899 case 0x07: /* operation in progress */
900 case 0x08: /* Long write in progress */
901 case 0x09: /* self test in progress */
902 case 0x14: /* space allocation in progress */
903 action
= ACTION_DELAYED_RETRY
;
906 description
= "Device not ready";
907 action
= ACTION_FAIL
;
911 description
= "Device not ready";
912 action
= ACTION_FAIL
;
915 case VOLUME_OVERFLOW
:
916 /* See SSC3rXX or current. */
917 action
= ACTION_FAIL
;
920 description
= "Unhandled sense code";
921 action
= ACTION_FAIL
;
925 description
= "Unhandled error code";
926 action
= ACTION_FAIL
;
931 /* Give up and fail the remainder of the request */
932 scsi_release_buffers(cmd
);
933 if (!(req
->cmd_flags
& REQ_QUIET
)) {
935 scmd_printk(KERN_INFO
, cmd
, "%s\n",
937 scsi_print_result(cmd
);
938 if (driver_byte(result
) & DRIVER_SENSE
)
939 scsi_print_sense("", cmd
);
940 scsi_print_command(cmd
);
942 if (blk_end_request_err(req
, error
))
943 scsi_requeue_command(q
, cmd
);
945 scsi_next_command(cmd
);
948 /* Unprep the request and put it back at the head of the queue.
949 * A new command will be prepared and issued.
951 scsi_release_buffers(cmd
);
952 scsi_requeue_command(q
, cmd
);
955 /* Retry the same command immediately */
956 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
958 case ACTION_DELAYED_RETRY
:
959 /* Retry the same command after a delay */
960 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
965 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
971 * If sg table allocation fails, requeue request later.
973 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
975 return BLKPREP_DEFER
;
981 * Next, walk the list, and fill in the addresses and sizes of
984 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
985 BUG_ON(count
> sdb
->table
.nents
);
986 sdb
->table
.nents
= count
;
987 sdb
->length
= blk_rq_bytes(req
);
992 * Function: scsi_init_io()
994 * Purpose: SCSI I/O initialize function.
996 * Arguments: cmd - Command descriptor we wish to initialize
998 * Returns: 0 on success
999 * BLKPREP_DEFER if the failure is retryable
1000 * BLKPREP_KILL if the failure is fatal
1002 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1004 struct request
*rq
= cmd
->request
;
1006 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1010 if (blk_bidi_rq(rq
)) {
1011 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1012 scsi_sdb_cache
, GFP_ATOMIC
);
1014 error
= BLKPREP_DEFER
;
1018 rq
->next_rq
->special
= bidi_sdb
;
1019 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1024 if (blk_integrity_rq(rq
)) {
1025 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1028 BUG_ON(prot_sdb
== NULL
);
1029 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1031 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1032 error
= BLKPREP_DEFER
;
1036 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1037 prot_sdb
->table
.sgl
);
1038 BUG_ON(unlikely(count
> ivecs
));
1039 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1041 cmd
->prot_sdb
= prot_sdb
;
1042 cmd
->prot_sdb
->table
.nents
= count
;
1048 scsi_release_buffers(cmd
);
1049 cmd
->request
->special
= NULL
;
1050 scsi_put_command(cmd
);
1053 EXPORT_SYMBOL(scsi_init_io
);
1055 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1056 struct request
*req
)
1058 struct scsi_cmnd
*cmd
;
1060 if (!req
->special
) {
1061 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1069 /* pull a tag out of the request if we have one */
1070 cmd
->tag
= req
->tag
;
1073 cmd
->cmnd
= req
->cmd
;
1074 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1079 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1081 struct scsi_cmnd
*cmd
;
1082 int ret
= scsi_prep_state_check(sdev
, req
);
1084 if (ret
!= BLKPREP_OK
)
1087 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1089 return BLKPREP_DEFER
;
1092 * BLOCK_PC requests may transfer data, in which case they must
1093 * a bio attached to them. Or they might contain a SCSI command
1094 * that does not transfer data, in which case they may optionally
1095 * submit a request without an attached bio.
1100 BUG_ON(!req
->nr_phys_segments
);
1102 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1106 BUG_ON(blk_rq_bytes(req
));
1108 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1112 cmd
->cmd_len
= req
->cmd_len
;
1113 if (!blk_rq_bytes(req
))
1114 cmd
->sc_data_direction
= DMA_NONE
;
1115 else if (rq_data_dir(req
) == WRITE
)
1116 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1118 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1120 cmd
->transfersize
= blk_rq_bytes(req
);
1121 cmd
->allowed
= req
->retries
;
1124 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1127 * Setup a REQ_TYPE_FS command. These are simple read/write request
1128 * from filesystems that still need to be translated to SCSI CDBs from
1131 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1133 struct scsi_cmnd
*cmd
;
1134 int ret
= scsi_prep_state_check(sdev
, req
);
1136 if (ret
!= BLKPREP_OK
)
1139 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1140 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1141 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1142 if (ret
!= BLKPREP_OK
)
1147 * Filesystem requests must transfer data.
1149 BUG_ON(!req
->nr_phys_segments
);
1151 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1153 return BLKPREP_DEFER
;
1155 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1156 return scsi_init_io(cmd
, GFP_ATOMIC
);
1158 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1160 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1162 int ret
= BLKPREP_OK
;
1165 * If the device is not in running state we will reject some
1168 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1169 switch (sdev
->sdev_state
) {
1172 * If the device is offline we refuse to process any
1173 * commands. The device must be brought online
1174 * before trying any recovery commands.
1176 sdev_printk(KERN_ERR
, sdev
,
1177 "rejecting I/O to offline device\n");
1182 * If the device is fully deleted, we refuse to
1183 * process any commands as well.
1185 sdev_printk(KERN_ERR
, sdev
,
1186 "rejecting I/O to dead device\n");
1191 case SDEV_CREATED_BLOCK
:
1193 * If the devices is blocked we defer normal commands.
1195 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1196 ret
= BLKPREP_DEFER
;
1200 * For any other not fully online state we only allow
1201 * special commands. In particular any user initiated
1202 * command is not allowed.
1204 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1211 EXPORT_SYMBOL(scsi_prep_state_check
);
1213 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1215 struct scsi_device
*sdev
= q
->queuedata
;
1219 req
->errors
= DID_NO_CONNECT
<< 16;
1220 /* release the command and kill it */
1222 struct scsi_cmnd
*cmd
= req
->special
;
1223 scsi_release_buffers(cmd
);
1224 scsi_put_command(cmd
);
1225 req
->special
= NULL
;
1230 * If we defer, the blk_peek_request() returns NULL, but the
1231 * queue must be restarted, so we schedule a callback to happen
1234 if (sdev
->device_busy
== 0)
1235 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1238 req
->cmd_flags
|= REQ_DONTPREP
;
1243 EXPORT_SYMBOL(scsi_prep_return
);
1245 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1247 struct scsi_device
*sdev
= q
->queuedata
;
1248 int ret
= BLKPREP_KILL
;
1250 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1251 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1252 return scsi_prep_return(q
, req
, ret
);
1254 EXPORT_SYMBOL(scsi_prep_fn
);
1257 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1260 * Called with the queue_lock held.
1262 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1263 struct scsi_device
*sdev
)
1265 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1267 * unblock after device_blocked iterates to zero
1269 if (--sdev
->device_blocked
== 0) {
1271 sdev_printk(KERN_INFO
, sdev
,
1272 "unblocking device at zero depth\n"));
1274 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1278 if (scsi_device_is_busy(sdev
))
1286 * scsi_target_queue_ready: checks if there we can send commands to target
1287 * @sdev: scsi device on starget to check.
1289 * Called with the host lock held.
1291 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1292 struct scsi_device
*sdev
)
1294 struct scsi_target
*starget
= scsi_target(sdev
);
1296 if (starget
->single_lun
) {
1297 if (starget
->starget_sdev_user
&&
1298 starget
->starget_sdev_user
!= sdev
)
1300 starget
->starget_sdev_user
= sdev
;
1303 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1305 * unblock after target_blocked iterates to zero
1307 if (--starget
->target_blocked
== 0) {
1308 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1309 "unblocking target at zero depth\n"));
1314 if (scsi_target_is_busy(starget
)) {
1315 if (list_empty(&sdev
->starved_entry
))
1316 list_add_tail(&sdev
->starved_entry
,
1317 &shost
->starved_list
);
1321 /* We're OK to process the command, so we can't be starved */
1322 if (!list_empty(&sdev
->starved_entry
))
1323 list_del_init(&sdev
->starved_entry
);
1328 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329 * return 0. We must end up running the queue again whenever 0 is
1330 * returned, else IO can hang.
1332 * Called with host_lock held.
1334 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1335 struct Scsi_Host
*shost
,
1336 struct scsi_device
*sdev
)
1338 if (scsi_host_in_recovery(shost
))
1340 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1342 * unblock after host_blocked iterates to zero
1344 if (--shost
->host_blocked
== 0) {
1346 printk("scsi%d unblocking host at zero depth\n",
1352 if (scsi_host_is_busy(shost
)) {
1353 if (list_empty(&sdev
->starved_entry
))
1354 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1358 /* We're OK to process the command, so we can't be starved */
1359 if (!list_empty(&sdev
->starved_entry
))
1360 list_del_init(&sdev
->starved_entry
);
1366 * Busy state exporting function for request stacking drivers.
1368 * For efficiency, no lock is taken to check the busy state of
1369 * shost/starget/sdev, since the returned value is not guaranteed and
1370 * may be changed after request stacking drivers call the function,
1371 * regardless of taking lock or not.
1373 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1374 * (e.g. !sdev), scsi needs to return 'not busy'.
1375 * Otherwise, request stacking drivers may hold requests forever.
1377 static int scsi_lld_busy(struct request_queue
*q
)
1379 struct scsi_device
*sdev
= q
->queuedata
;
1380 struct Scsi_Host
*shost
;
1381 struct scsi_target
*starget
;
1387 starget
= scsi_target(sdev
);
1389 if (scsi_host_in_recovery(shost
) || scsi_host_is_busy(shost
) ||
1390 scsi_target_is_busy(starget
) || scsi_device_is_busy(sdev
))
1397 * Kill a request for a dead device
1399 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1401 struct scsi_cmnd
*cmd
= req
->special
;
1402 struct scsi_device
*sdev
;
1403 struct scsi_target
*starget
;
1404 struct Scsi_Host
*shost
;
1406 blk_start_request(req
);
1409 starget
= scsi_target(sdev
);
1411 scsi_init_cmd_errh(cmd
);
1412 cmd
->result
= DID_NO_CONNECT
<< 16;
1413 atomic_inc(&cmd
->device
->iorequest_cnt
);
1416 * SCSI request completion path will do scsi_device_unbusy(),
1417 * bump busy counts. To bump the counters, we need to dance
1418 * with the locks as normal issue path does.
1420 sdev
->device_busy
++;
1421 spin_unlock(sdev
->request_queue
->queue_lock
);
1422 spin_lock(shost
->host_lock
);
1424 starget
->target_busy
++;
1425 spin_unlock(shost
->host_lock
);
1426 spin_lock(sdev
->request_queue
->queue_lock
);
1428 blk_complete_request(req
);
1431 static void scsi_softirq_done(struct request
*rq
)
1433 struct scsi_cmnd
*cmd
= rq
->special
;
1434 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1437 INIT_LIST_HEAD(&cmd
->eh_entry
);
1439 atomic_inc(&cmd
->device
->iodone_cnt
);
1441 atomic_inc(&cmd
->device
->ioerr_cnt
);
1443 disposition
= scsi_decide_disposition(cmd
);
1444 if (disposition
!= SUCCESS
&&
1445 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1446 sdev_printk(KERN_ERR
, cmd
->device
,
1447 "timing out command, waited %lus\n",
1449 disposition
= SUCCESS
;
1452 scsi_log_completion(cmd
, disposition
);
1454 switch (disposition
) {
1456 scsi_finish_command(cmd
);
1459 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1461 case ADD_TO_MLQUEUE
:
1462 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1465 if (!scsi_eh_scmd_add(cmd
, 0))
1466 scsi_finish_command(cmd
);
1471 * Function: scsi_request_fn()
1473 * Purpose: Main strategy routine for SCSI.
1475 * Arguments: q - Pointer to actual queue.
1479 * Lock status: IO request lock assumed to be held when called.
1481 static void scsi_request_fn(struct request_queue
*q
)
1483 struct scsi_device
*sdev
= q
->queuedata
;
1484 struct Scsi_Host
*shost
;
1485 struct scsi_cmnd
*cmd
;
1486 struct request
*req
;
1489 printk("scsi: killing requests for dead queue\n");
1490 while ((req
= blk_peek_request(q
)) != NULL
)
1491 scsi_kill_request(req
, q
);
1495 if(!get_device(&sdev
->sdev_gendev
))
1496 /* We must be tearing the block queue down already */
1500 * To start with, we keep looping until the queue is empty, or until
1501 * the host is no longer able to accept any more requests.
1507 * get next queueable request. We do this early to make sure
1508 * that the request is fully prepared even if we cannot
1511 req
= blk_peek_request(q
);
1512 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1515 if (unlikely(!scsi_device_online(sdev
))) {
1516 sdev_printk(KERN_ERR
, sdev
,
1517 "rejecting I/O to offline device\n");
1518 scsi_kill_request(req
, q
);
1524 * Remove the request from the request list.
1526 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1527 blk_start_request(req
);
1528 sdev
->device_busy
++;
1530 spin_unlock(q
->queue_lock
);
1532 if (unlikely(cmd
== NULL
)) {
1533 printk(KERN_CRIT
"impossible request in %s.\n"
1534 "please mail a stack trace to "
1535 "linux-scsi@vger.kernel.org\n",
1537 blk_dump_rq_flags(req
, "foo");
1540 spin_lock(shost
->host_lock
);
1543 * We hit this when the driver is using a host wide
1544 * tag map. For device level tag maps the queue_depth check
1545 * in the device ready fn would prevent us from trying
1546 * to allocate a tag. Since the map is a shared host resource
1547 * we add the dev to the starved list so it eventually gets
1548 * a run when a tag is freed.
1550 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1551 if (list_empty(&sdev
->starved_entry
))
1552 list_add_tail(&sdev
->starved_entry
,
1553 &shost
->starved_list
);
1557 if (!scsi_target_queue_ready(shost
, sdev
))
1560 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1563 scsi_target(sdev
)->target_busy
++;
1567 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1568 * take the lock again.
1570 spin_unlock_irq(shost
->host_lock
);
1573 * Finally, initialize any error handling parameters, and set up
1574 * the timers for timeouts.
1576 scsi_init_cmd_errh(cmd
);
1579 * Dispatch the command to the low-level driver.
1581 rtn
= scsi_dispatch_cmd(cmd
);
1582 spin_lock_irq(q
->queue_lock
);
1590 spin_unlock_irq(shost
->host_lock
);
1593 * lock q, handle tag, requeue req, and decrement device_busy. We
1594 * must return with queue_lock held.
1596 * Decrementing device_busy without checking it is OK, as all such
1597 * cases (host limits or settings) should run the queue at some
1600 spin_lock_irq(q
->queue_lock
);
1601 blk_requeue_request(q
, req
);
1602 sdev
->device_busy
--;
1604 if (sdev
->device_busy
== 0)
1605 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1607 /* must be careful here...if we trigger the ->remove() function
1608 * we cannot be holding the q lock */
1609 spin_unlock_irq(q
->queue_lock
);
1610 put_device(&sdev
->sdev_gendev
);
1611 spin_lock_irq(q
->queue_lock
);
1614 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1616 struct device
*host_dev
;
1617 u64 bounce_limit
= 0xffffffff;
1619 if (shost
->unchecked_isa_dma
)
1620 return BLK_BOUNCE_ISA
;
1622 * Platforms with virtual-DMA translation
1623 * hardware have no practical limit.
1625 if (!PCI_DMA_BUS_IS_PHYS
)
1626 return BLK_BOUNCE_ANY
;
1628 host_dev
= scsi_get_device(shost
);
1629 if (host_dev
&& host_dev
->dma_mask
)
1630 bounce_limit
= *host_dev
->dma_mask
;
1632 return bounce_limit
;
1634 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1636 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1637 request_fn_proc
*request_fn
)
1639 struct request_queue
*q
;
1640 struct device
*dev
= shost
->shost_gendev
.parent
;
1642 q
= blk_init_queue(request_fn
, NULL
);
1647 * this limit is imposed by hardware restrictions
1649 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1650 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1652 if (scsi_host_prot_dma(shost
)) {
1653 shost
->sg_prot_tablesize
=
1654 min_not_zero(shost
->sg_prot_tablesize
,
1655 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1656 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1657 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1660 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1661 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1662 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1663 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1665 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1667 if (!shost
->use_clustering
)
1668 q
->limits
.cluster
= 0;
1671 * set a reasonable default alignment on word boundaries: the
1672 * host and device may alter it using
1673 * blk_queue_update_dma_alignment() later.
1675 blk_queue_dma_alignment(q
, 0x03);
1679 EXPORT_SYMBOL(__scsi_alloc_queue
);
1681 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1683 struct request_queue
*q
;
1685 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1689 blk_queue_prep_rq(q
, scsi_prep_fn
);
1690 blk_queue_softirq_done(q
, scsi_softirq_done
);
1691 blk_queue_rq_timed_out(q
, scsi_times_out
);
1692 blk_queue_lld_busy(q
, scsi_lld_busy
);
1696 void scsi_free_queue(struct request_queue
*q
)
1698 blk_cleanup_queue(q
);
1702 * Function: scsi_block_requests()
1704 * Purpose: Utility function used by low-level drivers to prevent further
1705 * commands from being queued to the device.
1707 * Arguments: shost - Host in question
1711 * Lock status: No locks are assumed held.
1713 * Notes: There is no timer nor any other means by which the requests
1714 * get unblocked other than the low-level driver calling
1715 * scsi_unblock_requests().
1717 void scsi_block_requests(struct Scsi_Host
*shost
)
1719 shost
->host_self_blocked
= 1;
1721 EXPORT_SYMBOL(scsi_block_requests
);
1724 * Function: scsi_unblock_requests()
1726 * Purpose: Utility function used by low-level drivers to allow further
1727 * commands from being queued to the device.
1729 * Arguments: shost - Host in question
1733 * Lock status: No locks are assumed held.
1735 * Notes: There is no timer nor any other means by which the requests
1736 * get unblocked other than the low-level driver calling
1737 * scsi_unblock_requests().
1739 * This is done as an API function so that changes to the
1740 * internals of the scsi mid-layer won't require wholesale
1741 * changes to drivers that use this feature.
1743 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1745 shost
->host_self_blocked
= 0;
1746 scsi_run_host_queues(shost
);
1748 EXPORT_SYMBOL(scsi_unblock_requests
);
1750 int __init
scsi_init_queue(void)
1754 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1755 sizeof(struct scsi_data_buffer
),
1757 if (!scsi_sdb_cache
) {
1758 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1762 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1763 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1764 int size
= sgp
->size
* sizeof(struct scatterlist
);
1766 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1767 SLAB_HWCACHE_ALIGN
, NULL
);
1769 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1774 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1777 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1786 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1787 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1789 mempool_destroy(sgp
->pool
);
1791 kmem_cache_destroy(sgp
->slab
);
1793 kmem_cache_destroy(scsi_sdb_cache
);
1798 void scsi_exit_queue(void)
1802 kmem_cache_destroy(scsi_sdb_cache
);
1804 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1805 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1806 mempool_destroy(sgp
->pool
);
1807 kmem_cache_destroy(sgp
->slab
);
1812 * scsi_mode_select - issue a mode select
1813 * @sdev: SCSI device to be queried
1814 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1815 * @sp: Save page bit (0 == don't save, 1 == save)
1816 * @modepage: mode page being requested
1817 * @buffer: request buffer (may not be smaller than eight bytes)
1818 * @len: length of request buffer.
1819 * @timeout: command timeout
1820 * @retries: number of retries before failing
1821 * @data: returns a structure abstracting the mode header data
1822 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1823 * must be SCSI_SENSE_BUFFERSIZE big.
1825 * Returns zero if successful; negative error number or scsi
1830 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1831 unsigned char *buffer
, int len
, int timeout
, int retries
,
1832 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1834 unsigned char cmd
[10];
1835 unsigned char *real_buffer
;
1838 memset(cmd
, 0, sizeof(cmd
));
1839 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1841 if (sdev
->use_10_for_ms
) {
1844 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1847 memcpy(real_buffer
+ 8, buffer
, len
);
1851 real_buffer
[2] = data
->medium_type
;
1852 real_buffer
[3] = data
->device_specific
;
1853 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1855 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1856 real_buffer
[7] = data
->block_descriptor_length
;
1858 cmd
[0] = MODE_SELECT_10
;
1862 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1866 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1869 memcpy(real_buffer
+ 4, buffer
, len
);
1872 real_buffer
[1] = data
->medium_type
;
1873 real_buffer
[2] = data
->device_specific
;
1874 real_buffer
[3] = data
->block_descriptor_length
;
1877 cmd
[0] = MODE_SELECT
;
1881 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1882 sshdr
, timeout
, retries
, NULL
);
1886 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1889 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1890 * @sdev: SCSI device to be queried
1891 * @dbd: set if mode sense will allow block descriptors to be returned
1892 * @modepage: mode page being requested
1893 * @buffer: request buffer (may not be smaller than eight bytes)
1894 * @len: length of request buffer.
1895 * @timeout: command timeout
1896 * @retries: number of retries before failing
1897 * @data: returns a structure abstracting the mode header data
1898 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1899 * must be SCSI_SENSE_BUFFERSIZE big.
1901 * Returns zero if unsuccessful, or the header offset (either 4
1902 * or 8 depending on whether a six or ten byte command was
1903 * issued) if successful.
1906 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1907 unsigned char *buffer
, int len
, int timeout
, int retries
,
1908 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1910 unsigned char cmd
[12];
1914 struct scsi_sense_hdr my_sshdr
;
1916 memset(data
, 0, sizeof(*data
));
1917 memset(&cmd
[0], 0, 12);
1918 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1921 /* caller might not be interested in sense, but we need it */
1926 use_10_for_ms
= sdev
->use_10_for_ms
;
1928 if (use_10_for_ms
) {
1932 cmd
[0] = MODE_SENSE_10
;
1939 cmd
[0] = MODE_SENSE
;
1944 memset(buffer
, 0, len
);
1946 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1947 sshdr
, timeout
, retries
, NULL
);
1949 /* This code looks awful: what it's doing is making sure an
1950 * ILLEGAL REQUEST sense return identifies the actual command
1951 * byte as the problem. MODE_SENSE commands can return
1952 * ILLEGAL REQUEST if the code page isn't supported */
1954 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1955 (driver_byte(result
) & DRIVER_SENSE
)) {
1956 if (scsi_sense_valid(sshdr
)) {
1957 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1958 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1960 * Invalid command operation code
1962 sdev
->use_10_for_ms
= 0;
1968 if(scsi_status_is_good(result
)) {
1969 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1970 (modepage
== 6 || modepage
== 8))) {
1971 /* Initio breakage? */
1974 data
->medium_type
= 0;
1975 data
->device_specific
= 0;
1977 data
->block_descriptor_length
= 0;
1978 } else if(use_10_for_ms
) {
1979 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1980 data
->medium_type
= buffer
[2];
1981 data
->device_specific
= buffer
[3];
1982 data
->longlba
= buffer
[4] & 0x01;
1983 data
->block_descriptor_length
= buffer
[6]*256
1986 data
->length
= buffer
[0] + 1;
1987 data
->medium_type
= buffer
[1];
1988 data
->device_specific
= buffer
[2];
1989 data
->block_descriptor_length
= buffer
[3];
1991 data
->header_length
= header_length
;
1996 EXPORT_SYMBOL(scsi_mode_sense
);
1999 * scsi_test_unit_ready - test if unit is ready
2000 * @sdev: scsi device to change the state of.
2001 * @timeout: command timeout
2002 * @retries: number of retries before failing
2003 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2004 * returning sense. Make sure that this is cleared before passing
2007 * Returns zero if unsuccessful or an error if TUR failed. For
2008 * removable media, UNIT_ATTENTION sets ->changed flag.
2011 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2012 struct scsi_sense_hdr
*sshdr_external
)
2015 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2017 struct scsi_sense_hdr
*sshdr
;
2020 if (!sshdr_external
)
2021 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2023 sshdr
= sshdr_external
;
2025 /* try to eat the UNIT_ATTENTION if there are enough retries */
2027 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2028 timeout
, retries
, NULL
);
2029 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2030 sshdr
->sense_key
== UNIT_ATTENTION
)
2032 } while (scsi_sense_valid(sshdr
) &&
2033 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2035 if (!sshdr_external
)
2039 EXPORT_SYMBOL(scsi_test_unit_ready
);
2042 * scsi_device_set_state - Take the given device through the device state model.
2043 * @sdev: scsi device to change the state of.
2044 * @state: state to change to.
2046 * Returns zero if unsuccessful or an error if the requested
2047 * transition is illegal.
2050 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2052 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2054 if (state
== oldstate
)
2060 case SDEV_CREATED_BLOCK
:
2104 case SDEV_CREATED_BLOCK
:
2111 case SDEV_CREATED_BLOCK
:
2146 sdev
->sdev_state
= state
;
2150 SCSI_LOG_ERROR_RECOVERY(1,
2151 sdev_printk(KERN_ERR
, sdev
,
2152 "Illegal state transition %s->%s\n",
2153 scsi_device_state_name(oldstate
),
2154 scsi_device_state_name(state
))
2158 EXPORT_SYMBOL(scsi_device_set_state
);
2161 * sdev_evt_emit - emit a single SCSI device uevent
2162 * @sdev: associated SCSI device
2163 * @evt: event to emit
2165 * Send a single uevent (scsi_event) to the associated scsi_device.
2167 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2172 switch (evt
->evt_type
) {
2173 case SDEV_EVT_MEDIA_CHANGE
:
2174 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2184 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2188 * sdev_evt_thread - send a uevent for each scsi event
2189 * @work: work struct for scsi_device
2191 * Dispatch queued events to their associated scsi_device kobjects
2194 void scsi_evt_thread(struct work_struct
*work
)
2196 struct scsi_device
*sdev
;
2197 LIST_HEAD(event_list
);
2199 sdev
= container_of(work
, struct scsi_device
, event_work
);
2202 struct scsi_event
*evt
;
2203 struct list_head
*this, *tmp
;
2204 unsigned long flags
;
2206 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2207 list_splice_init(&sdev
->event_list
, &event_list
);
2208 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2210 if (list_empty(&event_list
))
2213 list_for_each_safe(this, tmp
, &event_list
) {
2214 evt
= list_entry(this, struct scsi_event
, node
);
2215 list_del(&evt
->node
);
2216 scsi_evt_emit(sdev
, evt
);
2223 * sdev_evt_send - send asserted event to uevent thread
2224 * @sdev: scsi_device event occurred on
2225 * @evt: event to send
2227 * Assert scsi device event asynchronously.
2229 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2231 unsigned long flags
;
2234 /* FIXME: currently this check eliminates all media change events
2235 * for polled devices. Need to update to discriminate between AN
2236 * and polled events */
2237 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2243 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2244 list_add_tail(&evt
->node
, &sdev
->event_list
);
2245 schedule_work(&sdev
->event_work
);
2246 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2248 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2251 * sdev_evt_alloc - allocate a new scsi event
2252 * @evt_type: type of event to allocate
2253 * @gfpflags: GFP flags for allocation
2255 * Allocates and returns a new scsi_event.
2257 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2260 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2264 evt
->evt_type
= evt_type
;
2265 INIT_LIST_HEAD(&evt
->node
);
2267 /* evt_type-specific initialization, if any */
2269 case SDEV_EVT_MEDIA_CHANGE
:
2277 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2280 * sdev_evt_send_simple - send asserted event to uevent thread
2281 * @sdev: scsi_device event occurred on
2282 * @evt_type: type of event to send
2283 * @gfpflags: GFP flags for allocation
2285 * Assert scsi device event asynchronously, given an event type.
2287 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2288 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2290 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2292 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2297 sdev_evt_send(sdev
, evt
);
2299 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2302 * scsi_device_quiesce - Block user issued commands.
2303 * @sdev: scsi device to quiesce.
2305 * This works by trying to transition to the SDEV_QUIESCE state
2306 * (which must be a legal transition). When the device is in this
2307 * state, only special requests will be accepted, all others will
2308 * be deferred. Since special requests may also be requeued requests,
2309 * a successful return doesn't guarantee the device will be
2310 * totally quiescent.
2312 * Must be called with user context, may sleep.
2314 * Returns zero if unsuccessful or an error if not.
2317 scsi_device_quiesce(struct scsi_device
*sdev
)
2319 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2323 scsi_run_queue(sdev
->request_queue
);
2324 while (sdev
->device_busy
) {
2325 msleep_interruptible(200);
2326 scsi_run_queue(sdev
->request_queue
);
2330 EXPORT_SYMBOL(scsi_device_quiesce
);
2333 * scsi_device_resume - Restart user issued commands to a quiesced device.
2334 * @sdev: scsi device to resume.
2336 * Moves the device from quiesced back to running and restarts the
2339 * Must be called with user context, may sleep.
2342 scsi_device_resume(struct scsi_device
*sdev
)
2344 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2346 scsi_run_queue(sdev
->request_queue
);
2348 EXPORT_SYMBOL(scsi_device_resume
);
2351 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2353 scsi_device_quiesce(sdev
);
2357 scsi_target_quiesce(struct scsi_target
*starget
)
2359 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2361 EXPORT_SYMBOL(scsi_target_quiesce
);
2364 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2366 scsi_device_resume(sdev
);
2370 scsi_target_resume(struct scsi_target
*starget
)
2372 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2374 EXPORT_SYMBOL(scsi_target_resume
);
2377 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2378 * @sdev: device to block
2380 * Block request made by scsi lld's to temporarily stop all
2381 * scsi commands on the specified device. Called from interrupt
2382 * or normal process context.
2384 * Returns zero if successful or error if not
2387 * This routine transitions the device to the SDEV_BLOCK state
2388 * (which must be a legal transition). When the device is in this
2389 * state, all commands are deferred until the scsi lld reenables
2390 * the device with scsi_device_unblock or device_block_tmo fires.
2391 * This routine assumes the host_lock is held on entry.
2394 scsi_internal_device_block(struct scsi_device
*sdev
)
2396 struct request_queue
*q
= sdev
->request_queue
;
2397 unsigned long flags
;
2400 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2402 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2409 * The device has transitioned to SDEV_BLOCK. Stop the
2410 * block layer from calling the midlayer with this device's
2413 spin_lock_irqsave(q
->queue_lock
, flags
);
2415 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2419 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2422 * scsi_internal_device_unblock - resume a device after a block request
2423 * @sdev: device to resume
2425 * Called by scsi lld's or the midlayer to restart the device queue
2426 * for the previously suspended scsi device. Called from interrupt or
2427 * normal process context.
2429 * Returns zero if successful or error if not.
2432 * This routine transitions the device to the SDEV_RUNNING state
2433 * (which must be a legal transition) allowing the midlayer to
2434 * goose the queue for this device. This routine assumes the
2435 * host_lock is held upon entry.
2438 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2440 struct request_queue
*q
= sdev
->request_queue
;
2441 unsigned long flags
;
2444 * Try to transition the scsi device to SDEV_RUNNING
2445 * and goose the device queue if successful.
2447 if (sdev
->sdev_state
== SDEV_BLOCK
)
2448 sdev
->sdev_state
= SDEV_RUNNING
;
2449 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
)
2450 sdev
->sdev_state
= SDEV_CREATED
;
2451 else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2452 sdev
->sdev_state
!= SDEV_OFFLINE
)
2455 spin_lock_irqsave(q
->queue_lock
, flags
);
2457 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2461 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2464 device_block(struct scsi_device
*sdev
, void *data
)
2466 scsi_internal_device_block(sdev
);
2470 target_block(struct device
*dev
, void *data
)
2472 if (scsi_is_target_device(dev
))
2473 starget_for_each_device(to_scsi_target(dev
), NULL
,
2479 scsi_target_block(struct device
*dev
)
2481 if (scsi_is_target_device(dev
))
2482 starget_for_each_device(to_scsi_target(dev
), NULL
,
2485 device_for_each_child(dev
, NULL
, target_block
);
2487 EXPORT_SYMBOL_GPL(scsi_target_block
);
2490 device_unblock(struct scsi_device
*sdev
, void *data
)
2492 scsi_internal_device_unblock(sdev
);
2496 target_unblock(struct device
*dev
, void *data
)
2498 if (scsi_is_target_device(dev
))
2499 starget_for_each_device(to_scsi_target(dev
), NULL
,
2505 scsi_target_unblock(struct device
*dev
)
2507 if (scsi_is_target_device(dev
))
2508 starget_for_each_device(to_scsi_target(dev
), NULL
,
2511 device_for_each_child(dev
, NULL
, target_unblock
);
2513 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2516 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2517 * @sgl: scatter-gather list
2518 * @sg_count: number of segments in sg
2519 * @offset: offset in bytes into sg, on return offset into the mapped area
2520 * @len: bytes to map, on return number of bytes mapped
2522 * Returns virtual address of the start of the mapped page
2524 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2525 size_t *offset
, size_t *len
)
2528 size_t sg_len
= 0, len_complete
= 0;
2529 struct scatterlist
*sg
;
2532 WARN_ON(!irqs_disabled());
2534 for_each_sg(sgl
, sg
, sg_count
, i
) {
2535 len_complete
= sg_len
; /* Complete sg-entries */
2536 sg_len
+= sg
->length
;
2537 if (sg_len
> *offset
)
2541 if (unlikely(i
== sg_count
)) {
2542 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2544 __func__
, sg_len
, *offset
, sg_count
);
2549 /* Offset starting from the beginning of first page in this sg-entry */
2550 *offset
= *offset
- len_complete
+ sg
->offset
;
2552 /* Assumption: contiguous pages can be accessed as "page + i" */
2553 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2554 *offset
&= ~PAGE_MASK
;
2556 /* Bytes in this sg-entry from *offset to the end of the page */
2557 sg_len
= PAGE_SIZE
- *offset
;
2561 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2563 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2566 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2567 * @virt: virtual address to be unmapped
2569 void scsi_kunmap_atomic_sg(void *virt
)
2571 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2573 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);