mac80211: remove bogus mod_timer() call
[linux-2.6/next.git] / kernel / timer.c
blob9199f3c5221526a1f7f60e52a33f7a6554cc0adf
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_event.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55 EXPORT_SYMBOL(jiffies_64);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
92 * Note that all tvec_bases are 2 byte aligned and lower bit of
93 * base in timer_list is guaranteed to be zero. Use the LSB for
94 * the new flag to indicate whether the timer is deferrable
96 #define TBASE_DEFERRABLE_FLAG (0x1)
98 /* Functions below help us manage 'deferrable' flag */
99 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
101 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
104 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
106 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
109 static inline void timer_set_deferrable(struct timer_list *timer)
111 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
112 TBASE_DEFERRABLE_FLAG));
115 static inline void
116 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
118 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
119 tbase_get_deferrable(timer->base));
122 static unsigned long round_jiffies_common(unsigned long j, int cpu,
123 bool force_up)
125 int rem;
126 unsigned long original = j;
129 * We don't want all cpus firing their timers at once hitting the
130 * same lock or cachelines, so we skew each extra cpu with an extra
131 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
132 * already did this.
133 * The skew is done by adding 3*cpunr, then round, then subtract this
134 * extra offset again.
136 j += cpu * 3;
138 rem = j % HZ;
141 * If the target jiffie is just after a whole second (which can happen
142 * due to delays of the timer irq, long irq off times etc etc) then
143 * we should round down to the whole second, not up. Use 1/4th second
144 * as cutoff for this rounding as an extreme upper bound for this.
145 * But never round down if @force_up is set.
147 if (rem < HZ/4 && !force_up) /* round down */
148 j = j - rem;
149 else /* round up */
150 j = j - rem + HZ;
152 /* now that we have rounded, subtract the extra skew again */
153 j -= cpu * 3;
155 if (j <= jiffies) /* rounding ate our timeout entirely; */
156 return original;
157 return j;
161 * __round_jiffies - function to round jiffies to a full second
162 * @j: the time in (absolute) jiffies that should be rounded
163 * @cpu: the processor number on which the timeout will happen
165 * __round_jiffies() rounds an absolute time in the future (in jiffies)
166 * up or down to (approximately) full seconds. This is useful for timers
167 * for which the exact time they fire does not matter too much, as long as
168 * they fire approximately every X seconds.
170 * By rounding these timers to whole seconds, all such timers will fire
171 * at the same time, rather than at various times spread out. The goal
172 * of this is to have the CPU wake up less, which saves power.
174 * The exact rounding is skewed for each processor to avoid all
175 * processors firing at the exact same time, which could lead
176 * to lock contention or spurious cache line bouncing.
178 * The return value is the rounded version of the @j parameter.
180 unsigned long __round_jiffies(unsigned long j, int cpu)
182 return round_jiffies_common(j, cpu, false);
184 EXPORT_SYMBOL_GPL(__round_jiffies);
187 * __round_jiffies_relative - function to round jiffies to a full second
188 * @j: the time in (relative) jiffies that should be rounded
189 * @cpu: the processor number on which the timeout will happen
191 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
192 * up or down to (approximately) full seconds. This is useful for timers
193 * for which the exact time they fire does not matter too much, as long as
194 * they fire approximately every X seconds.
196 * By rounding these timers to whole seconds, all such timers will fire
197 * at the same time, rather than at various times spread out. The goal
198 * of this is to have the CPU wake up less, which saves power.
200 * The exact rounding is skewed for each processor to avoid all
201 * processors firing at the exact same time, which could lead
202 * to lock contention or spurious cache line bouncing.
204 * The return value is the rounded version of the @j parameter.
206 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
208 unsigned long j0 = jiffies;
210 /* Use j0 because jiffies might change while we run */
211 return round_jiffies_common(j + j0, cpu, false) - j0;
213 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
216 * round_jiffies - function to round jiffies to a full second
217 * @j: the time in (absolute) jiffies that should be rounded
219 * round_jiffies() rounds an absolute time in the future (in jiffies)
220 * up or down to (approximately) full seconds. This is useful for timers
221 * for which the exact time they fire does not matter too much, as long as
222 * they fire approximately every X seconds.
224 * By rounding these timers to whole seconds, all such timers will fire
225 * at the same time, rather than at various times spread out. The goal
226 * of this is to have the CPU wake up less, which saves power.
228 * The return value is the rounded version of the @j parameter.
230 unsigned long round_jiffies(unsigned long j)
232 return round_jiffies_common(j, raw_smp_processor_id(), false);
234 EXPORT_SYMBOL_GPL(round_jiffies);
237 * round_jiffies_relative - function to round jiffies to a full second
238 * @j: the time in (relative) jiffies that should be rounded
240 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
241 * up or down to (approximately) full seconds. This is useful for timers
242 * for which the exact time they fire does not matter too much, as long as
243 * they fire approximately every X seconds.
245 * By rounding these timers to whole seconds, all such timers will fire
246 * at the same time, rather than at various times spread out. The goal
247 * of this is to have the CPU wake up less, which saves power.
249 * The return value is the rounded version of the @j parameter.
251 unsigned long round_jiffies_relative(unsigned long j)
253 return __round_jiffies_relative(j, raw_smp_processor_id());
255 EXPORT_SYMBOL_GPL(round_jiffies_relative);
258 * __round_jiffies_up - function to round jiffies up to a full second
259 * @j: the time in (absolute) jiffies that should be rounded
260 * @cpu: the processor number on which the timeout will happen
262 * This is the same as __round_jiffies() except that it will never
263 * round down. This is useful for timeouts for which the exact time
264 * of firing does not matter too much, as long as they don't fire too
265 * early.
267 unsigned long __round_jiffies_up(unsigned long j, int cpu)
269 return round_jiffies_common(j, cpu, true);
271 EXPORT_SYMBOL_GPL(__round_jiffies_up);
274 * __round_jiffies_up_relative - function to round jiffies up to a full second
275 * @j: the time in (relative) jiffies that should be rounded
276 * @cpu: the processor number on which the timeout will happen
278 * This is the same as __round_jiffies_relative() except that it will never
279 * round down. This is useful for timeouts for which the exact time
280 * of firing does not matter too much, as long as they don't fire too
281 * early.
283 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
285 unsigned long j0 = jiffies;
287 /* Use j0 because jiffies might change while we run */
288 return round_jiffies_common(j + j0, cpu, true) - j0;
290 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
293 * round_jiffies_up - function to round jiffies up to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
296 * This is the same as round_jiffies() except that it will never
297 * round down. This is useful for timeouts for which the exact time
298 * of firing does not matter too much, as long as they don't fire too
299 * early.
301 unsigned long round_jiffies_up(unsigned long j)
303 return round_jiffies_common(j, raw_smp_processor_id(), true);
305 EXPORT_SYMBOL_GPL(round_jiffies_up);
308 * round_jiffies_up_relative - function to round jiffies up to a full second
309 * @j: the time in (relative) jiffies that should be rounded
311 * This is the same as round_jiffies_relative() except that it will never
312 * round down. This is useful for timeouts for which the exact time
313 * of firing does not matter too much, as long as they don't fire too
314 * early.
316 unsigned long round_jiffies_up_relative(unsigned long j)
318 return __round_jiffies_up_relative(j, raw_smp_processor_id());
320 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
323 * set_timer_slack - set the allowed slack for a timer
324 * @slack_hz: the amount of time (in jiffies) allowed for rounding
326 * Set the amount of time, in jiffies, that a certain timer has
327 * in terms of slack. By setting this value, the timer subsystem
328 * will schedule the actual timer somewhere between
329 * the time mod_timer() asks for, and that time plus the slack.
331 * By setting the slack to -1, a percentage of the delay is used
332 * instead.
334 void set_timer_slack(struct timer_list *timer, int slack_hz)
336 timer->slack = slack_hz;
338 EXPORT_SYMBOL_GPL(set_timer_slack);
341 static inline void set_running_timer(struct tvec_base *base,
342 struct timer_list *timer)
344 #ifdef CONFIG_SMP
345 base->running_timer = timer;
346 #endif
349 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
351 unsigned long expires = timer->expires;
352 unsigned long idx = expires - base->timer_jiffies;
353 struct list_head *vec;
355 if (idx < TVR_SIZE) {
356 int i = expires & TVR_MASK;
357 vec = base->tv1.vec + i;
358 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
359 int i = (expires >> TVR_BITS) & TVN_MASK;
360 vec = base->tv2.vec + i;
361 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
362 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
363 vec = base->tv3.vec + i;
364 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
365 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
366 vec = base->tv4.vec + i;
367 } else if ((signed long) idx < 0) {
369 * Can happen if you add a timer with expires == jiffies,
370 * or you set a timer to go off in the past
372 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
373 } else {
374 int i;
375 /* If the timeout is larger than 0xffffffff on 64-bit
376 * architectures then we use the maximum timeout:
378 if (idx > 0xffffffffUL) {
379 idx = 0xffffffffUL;
380 expires = idx + base->timer_jiffies;
382 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
383 vec = base->tv5.vec + i;
386 * Timers are FIFO:
388 list_add_tail(&timer->entry, vec);
391 #ifdef CONFIG_TIMER_STATS
392 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
394 if (timer->start_site)
395 return;
397 timer->start_site = addr;
398 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
399 timer->start_pid = current->pid;
402 static void timer_stats_account_timer(struct timer_list *timer)
404 unsigned int flag = 0;
406 if (likely(!timer->start_site))
407 return;
408 if (unlikely(tbase_get_deferrable(timer->base)))
409 flag |= TIMER_STATS_FLAG_DEFERRABLE;
411 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
412 timer->function, timer->start_comm, flag);
415 #else
416 static void timer_stats_account_timer(struct timer_list *timer) {}
417 #endif
419 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
421 static struct debug_obj_descr timer_debug_descr;
424 * fixup_init is called when:
425 * - an active object is initialized
427 static int timer_fixup_init(void *addr, enum debug_obj_state state)
429 struct timer_list *timer = addr;
431 switch (state) {
432 case ODEBUG_STATE_ACTIVE:
433 del_timer_sync(timer);
434 debug_object_init(timer, &timer_debug_descr);
435 return 1;
436 default:
437 return 0;
442 * fixup_activate is called when:
443 * - an active object is activated
444 * - an unknown object is activated (might be a statically initialized object)
446 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
448 struct timer_list *timer = addr;
450 switch (state) {
452 case ODEBUG_STATE_NOTAVAILABLE:
454 * This is not really a fixup. The timer was
455 * statically initialized. We just make sure that it
456 * is tracked in the object tracker.
458 if (timer->entry.next == NULL &&
459 timer->entry.prev == TIMER_ENTRY_STATIC) {
460 debug_object_init(timer, &timer_debug_descr);
461 debug_object_activate(timer, &timer_debug_descr);
462 return 0;
463 } else {
464 WARN_ON_ONCE(1);
466 return 0;
468 case ODEBUG_STATE_ACTIVE:
469 WARN_ON(1);
471 default:
472 return 0;
477 * fixup_free is called when:
478 * - an active object is freed
480 static int timer_fixup_free(void *addr, enum debug_obj_state state)
482 struct timer_list *timer = addr;
484 switch (state) {
485 case ODEBUG_STATE_ACTIVE:
486 del_timer_sync(timer);
487 debug_object_free(timer, &timer_debug_descr);
488 return 1;
489 default:
490 return 0;
494 static struct debug_obj_descr timer_debug_descr = {
495 .name = "timer_list",
496 .fixup_init = timer_fixup_init,
497 .fixup_activate = timer_fixup_activate,
498 .fixup_free = timer_fixup_free,
501 static inline void debug_timer_init(struct timer_list *timer)
503 debug_object_init(timer, &timer_debug_descr);
506 static inline void debug_timer_activate(struct timer_list *timer)
508 debug_object_activate(timer, &timer_debug_descr);
511 static inline void debug_timer_deactivate(struct timer_list *timer)
513 debug_object_deactivate(timer, &timer_debug_descr);
516 static inline void debug_timer_free(struct timer_list *timer)
518 debug_object_free(timer, &timer_debug_descr);
521 static void __init_timer(struct timer_list *timer,
522 const char *name,
523 struct lock_class_key *key);
525 void init_timer_on_stack_key(struct timer_list *timer,
526 const char *name,
527 struct lock_class_key *key)
529 debug_object_init_on_stack(timer, &timer_debug_descr);
530 __init_timer(timer, name, key);
532 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
534 void destroy_timer_on_stack(struct timer_list *timer)
536 debug_object_free(timer, &timer_debug_descr);
538 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
540 #else
541 static inline void debug_timer_init(struct timer_list *timer) { }
542 static inline void debug_timer_activate(struct timer_list *timer) { }
543 static inline void debug_timer_deactivate(struct timer_list *timer) { }
544 #endif
546 static inline void debug_init(struct timer_list *timer)
548 debug_timer_init(timer);
549 trace_timer_init(timer);
552 static inline void
553 debug_activate(struct timer_list *timer, unsigned long expires)
555 debug_timer_activate(timer);
556 trace_timer_start(timer, expires);
559 static inline void debug_deactivate(struct timer_list *timer)
561 debug_timer_deactivate(timer);
562 trace_timer_cancel(timer);
565 static void __init_timer(struct timer_list *timer,
566 const char *name,
567 struct lock_class_key *key)
569 timer->entry.next = NULL;
570 timer->base = __raw_get_cpu_var(tvec_bases);
571 timer->slack = -1;
572 #ifdef CONFIG_TIMER_STATS
573 timer->start_site = NULL;
574 timer->start_pid = -1;
575 memset(timer->start_comm, 0, TASK_COMM_LEN);
576 #endif
577 lockdep_init_map(&timer->lockdep_map, name, key, 0);
581 * init_timer_key - initialize a timer
582 * @timer: the timer to be initialized
583 * @name: name of the timer
584 * @key: lockdep class key of the fake lock used for tracking timer
585 * sync lock dependencies
587 * init_timer_key() must be done to a timer prior calling *any* of the
588 * other timer functions.
590 void init_timer_key(struct timer_list *timer,
591 const char *name,
592 struct lock_class_key *key)
594 debug_init(timer);
595 __init_timer(timer, name, key);
597 EXPORT_SYMBOL(init_timer_key);
599 void init_timer_deferrable_key(struct timer_list *timer,
600 const char *name,
601 struct lock_class_key *key)
603 init_timer_key(timer, name, key);
604 timer_set_deferrable(timer);
606 EXPORT_SYMBOL(init_timer_deferrable_key);
608 static inline void detach_timer(struct timer_list *timer,
609 int clear_pending)
611 struct list_head *entry = &timer->entry;
613 debug_deactivate(timer);
615 __list_del(entry->prev, entry->next);
616 if (clear_pending)
617 entry->next = NULL;
618 entry->prev = LIST_POISON2;
622 * We are using hashed locking: holding per_cpu(tvec_bases).lock
623 * means that all timers which are tied to this base via timer->base are
624 * locked, and the base itself is locked too.
626 * So __run_timers/migrate_timers can safely modify all timers which could
627 * be found on ->tvX lists.
629 * When the timer's base is locked, and the timer removed from list, it is
630 * possible to set timer->base = NULL and drop the lock: the timer remains
631 * locked.
633 static struct tvec_base *lock_timer_base(struct timer_list *timer,
634 unsigned long *flags)
635 __acquires(timer->base->lock)
637 struct tvec_base *base;
639 for (;;) {
640 struct tvec_base *prelock_base = timer->base;
641 base = tbase_get_base(prelock_base);
642 if (likely(base != NULL)) {
643 spin_lock_irqsave(&base->lock, *flags);
644 if (likely(prelock_base == timer->base))
645 return base;
646 /* The timer has migrated to another CPU */
647 spin_unlock_irqrestore(&base->lock, *flags);
649 cpu_relax();
653 static inline int
654 __mod_timer(struct timer_list *timer, unsigned long expires,
655 bool pending_only, int pinned)
657 struct tvec_base *base, *new_base;
658 unsigned long flags;
659 int ret = 0 , cpu;
661 timer_stats_timer_set_start_info(timer);
662 BUG_ON(!timer->function);
664 base = lock_timer_base(timer, &flags);
666 if (timer_pending(timer)) {
667 detach_timer(timer, 0);
668 if (timer->expires == base->next_timer &&
669 !tbase_get_deferrable(timer->base))
670 base->next_timer = base->timer_jiffies;
671 ret = 1;
672 } else {
673 if (pending_only)
674 goto out_unlock;
677 debug_activate(timer, expires);
679 cpu = smp_processor_id();
681 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
682 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
683 int preferred_cpu = get_nohz_load_balancer();
685 if (preferred_cpu >= 0)
686 cpu = preferred_cpu;
688 #endif
689 new_base = per_cpu(tvec_bases, cpu);
691 if (base != new_base) {
693 * We are trying to schedule the timer on the local CPU.
694 * However we can't change timer's base while it is running,
695 * otherwise del_timer_sync() can't detect that the timer's
696 * handler yet has not finished. This also guarantees that
697 * the timer is serialized wrt itself.
699 if (likely(base->running_timer != timer)) {
700 /* See the comment in lock_timer_base() */
701 timer_set_base(timer, NULL);
702 spin_unlock(&base->lock);
703 base = new_base;
704 spin_lock(&base->lock);
705 timer_set_base(timer, base);
709 timer->expires = expires;
710 if (time_before(timer->expires, base->next_timer) &&
711 !tbase_get_deferrable(timer->base))
712 base->next_timer = timer->expires;
713 internal_add_timer(base, timer);
715 out_unlock:
716 spin_unlock_irqrestore(&base->lock, flags);
718 return ret;
722 * mod_timer_pending - modify a pending timer's timeout
723 * @timer: the pending timer to be modified
724 * @expires: new timeout in jiffies
726 * mod_timer_pending() is the same for pending timers as mod_timer(),
727 * but will not re-activate and modify already deleted timers.
729 * It is useful for unserialized use of timers.
731 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
733 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
735 EXPORT_SYMBOL(mod_timer_pending);
738 * Decide where to put the timer while taking the slack into account
740 * Algorithm:
741 * 1) calculate the maximum (absolute) time
742 * 2) calculate the highest bit where the expires and new max are different
743 * 3) use this bit to make a mask
744 * 4) use the bitmask to round down the maximum time, so that all last
745 * bits are zeros
747 static inline
748 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
750 unsigned long expires_limit, mask;
751 int bit;
753 expires_limit = expires + timer->slack;
755 if (timer->slack < 0) /* auto slack: use 0.4% */
756 expires_limit = expires + (expires - jiffies)/256;
758 mask = expires ^ expires_limit;
760 if (mask == 0)
761 return expires;
763 bit = find_last_bit(&mask, BITS_PER_LONG);
765 mask = (1 << bit) - 1;
767 expires_limit = expires_limit & ~(mask);
769 return expires_limit;
773 * mod_timer - modify a timer's timeout
774 * @timer: the timer to be modified
775 * @expires: new timeout in jiffies
777 * mod_timer() is a more efficient way to update the expire field of an
778 * active timer (if the timer is inactive it will be activated)
780 * mod_timer(timer, expires) is equivalent to:
782 * del_timer(timer); timer->expires = expires; add_timer(timer);
784 * Note that if there are multiple unserialized concurrent users of the
785 * same timer, then mod_timer() is the only safe way to modify the timeout,
786 * since add_timer() cannot modify an already running timer.
788 * The function returns whether it has modified a pending timer or not.
789 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
790 * active timer returns 1.)
792 int mod_timer(struct timer_list *timer, unsigned long expires)
795 * This is a common optimization triggered by the
796 * networking code - if the timer is re-modified
797 * to be the same thing then just return:
799 if (timer_pending(timer) && timer->expires == expires)
800 return 1;
802 expires = apply_slack(timer, expires);
804 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
806 EXPORT_SYMBOL(mod_timer);
809 * mod_timer_pinned - modify a timer's timeout
810 * @timer: the timer to be modified
811 * @expires: new timeout in jiffies
813 * mod_timer_pinned() is a way to update the expire field of an
814 * active timer (if the timer is inactive it will be activated)
815 * and not allow the timer to be migrated to a different CPU.
817 * mod_timer_pinned(timer, expires) is equivalent to:
819 * del_timer(timer); timer->expires = expires; add_timer(timer);
821 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
823 if (timer->expires == expires && timer_pending(timer))
824 return 1;
826 return __mod_timer(timer, expires, false, TIMER_PINNED);
828 EXPORT_SYMBOL(mod_timer_pinned);
831 * add_timer - start a timer
832 * @timer: the timer to be added
834 * The kernel will do a ->function(->data) callback from the
835 * timer interrupt at the ->expires point in the future. The
836 * current time is 'jiffies'.
838 * The timer's ->expires, ->function (and if the handler uses it, ->data)
839 * fields must be set prior calling this function.
841 * Timers with an ->expires field in the past will be executed in the next
842 * timer tick.
844 void add_timer(struct timer_list *timer)
846 BUG_ON(timer_pending(timer));
847 mod_timer(timer, timer->expires);
849 EXPORT_SYMBOL(add_timer);
852 * add_timer_on - start a timer on a particular CPU
853 * @timer: the timer to be added
854 * @cpu: the CPU to start it on
856 * This is not very scalable on SMP. Double adds are not possible.
858 void add_timer_on(struct timer_list *timer, int cpu)
860 struct tvec_base *base = per_cpu(tvec_bases, cpu);
861 unsigned long flags;
863 timer_stats_timer_set_start_info(timer);
864 BUG_ON(timer_pending(timer) || !timer->function);
865 spin_lock_irqsave(&base->lock, flags);
866 timer_set_base(timer, base);
867 debug_activate(timer, timer->expires);
868 if (time_before(timer->expires, base->next_timer) &&
869 !tbase_get_deferrable(timer->base))
870 base->next_timer = timer->expires;
871 internal_add_timer(base, timer);
873 * Check whether the other CPU is idle and needs to be
874 * triggered to reevaluate the timer wheel when nohz is
875 * active. We are protected against the other CPU fiddling
876 * with the timer by holding the timer base lock. This also
877 * makes sure that a CPU on the way to idle can not evaluate
878 * the timer wheel.
880 wake_up_idle_cpu(cpu);
881 spin_unlock_irqrestore(&base->lock, flags);
883 EXPORT_SYMBOL_GPL(add_timer_on);
886 * del_timer - deactive a timer.
887 * @timer: the timer to be deactivated
889 * del_timer() deactivates a timer - this works on both active and inactive
890 * timers.
892 * The function returns whether it has deactivated a pending timer or not.
893 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
894 * active timer returns 1.)
896 int del_timer(struct timer_list *timer)
898 struct tvec_base *base;
899 unsigned long flags;
900 int ret = 0;
902 timer_stats_timer_clear_start_info(timer);
903 if (timer_pending(timer)) {
904 base = lock_timer_base(timer, &flags);
905 if (timer_pending(timer)) {
906 detach_timer(timer, 1);
907 if (timer->expires == base->next_timer &&
908 !tbase_get_deferrable(timer->base))
909 base->next_timer = base->timer_jiffies;
910 ret = 1;
912 spin_unlock_irqrestore(&base->lock, flags);
915 return ret;
917 EXPORT_SYMBOL(del_timer);
919 #ifdef CONFIG_SMP
921 * try_to_del_timer_sync - Try to deactivate a timer
922 * @timer: timer do del
924 * This function tries to deactivate a timer. Upon successful (ret >= 0)
925 * exit the timer is not queued and the handler is not running on any CPU.
927 * It must not be called from interrupt contexts.
929 int try_to_del_timer_sync(struct timer_list *timer)
931 struct tvec_base *base;
932 unsigned long flags;
933 int ret = -1;
935 base = lock_timer_base(timer, &flags);
937 if (base->running_timer == timer)
938 goto out;
940 timer_stats_timer_clear_start_info(timer);
941 ret = 0;
942 if (timer_pending(timer)) {
943 detach_timer(timer, 1);
944 if (timer->expires == base->next_timer &&
945 !tbase_get_deferrable(timer->base))
946 base->next_timer = base->timer_jiffies;
947 ret = 1;
949 out:
950 spin_unlock_irqrestore(&base->lock, flags);
952 return ret;
954 EXPORT_SYMBOL(try_to_del_timer_sync);
957 * del_timer_sync - deactivate a timer and wait for the handler to finish.
958 * @timer: the timer to be deactivated
960 * This function only differs from del_timer() on SMP: besides deactivating
961 * the timer it also makes sure the handler has finished executing on other
962 * CPUs.
964 * Synchronization rules: Callers must prevent restarting of the timer,
965 * otherwise this function is meaningless. It must not be called from
966 * interrupt contexts. The caller must not hold locks which would prevent
967 * completion of the timer's handler. The timer's handler must not call
968 * add_timer_on(). Upon exit the timer is not queued and the handler is
969 * not running on any CPU.
971 * The function returns whether it has deactivated a pending timer or not.
973 int del_timer_sync(struct timer_list *timer)
975 #ifdef CONFIG_LOCKDEP
976 unsigned long flags;
978 local_irq_save(flags);
979 lock_map_acquire(&timer->lockdep_map);
980 lock_map_release(&timer->lockdep_map);
981 local_irq_restore(flags);
982 #endif
984 for (;;) {
985 int ret = try_to_del_timer_sync(timer);
986 if (ret >= 0)
987 return ret;
988 cpu_relax();
991 EXPORT_SYMBOL(del_timer_sync);
992 #endif
994 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
996 /* cascade all the timers from tv up one level */
997 struct timer_list *timer, *tmp;
998 struct list_head tv_list;
1000 list_replace_init(tv->vec + index, &tv_list);
1003 * We are removing _all_ timers from the list, so we
1004 * don't have to detach them individually.
1006 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1007 BUG_ON(tbase_get_base(timer->base) != base);
1008 internal_add_timer(base, timer);
1011 return index;
1014 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1015 unsigned long data)
1017 int preempt_count = preempt_count();
1019 #ifdef CONFIG_LOCKDEP
1021 * It is permissible to free the timer from inside the
1022 * function that is called from it, this we need to take into
1023 * account for lockdep too. To avoid bogus "held lock freed"
1024 * warnings as well as problems when looking into
1025 * timer->lockdep_map, make a copy and use that here.
1027 struct lockdep_map lockdep_map = timer->lockdep_map;
1028 #endif
1030 * Couple the lock chain with the lock chain at
1031 * del_timer_sync() by acquiring the lock_map around the fn()
1032 * call here and in del_timer_sync().
1034 lock_map_acquire(&lockdep_map);
1036 trace_timer_expire_entry(timer);
1037 fn(data);
1038 trace_timer_expire_exit(timer);
1040 lock_map_release(&lockdep_map);
1042 if (preempt_count != preempt_count()) {
1043 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1044 fn, preempt_count, preempt_count());
1046 * Restore the preempt count. That gives us a decent
1047 * chance to survive and extract information. If the
1048 * callback kept a lock held, bad luck, but not worse
1049 * than the BUG() we had.
1051 preempt_count() = preempt_count;
1055 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1058 * __run_timers - run all expired timers (if any) on this CPU.
1059 * @base: the timer vector to be processed.
1061 * This function cascades all vectors and executes all expired timer
1062 * vectors.
1064 static inline void __run_timers(struct tvec_base *base)
1066 struct timer_list *timer;
1068 spin_lock_irq(&base->lock);
1069 while (time_after_eq(jiffies, base->timer_jiffies)) {
1070 struct list_head work_list;
1071 struct list_head *head = &work_list;
1072 int index = base->timer_jiffies & TVR_MASK;
1075 * Cascade timers:
1077 if (!index &&
1078 (!cascade(base, &base->tv2, INDEX(0))) &&
1079 (!cascade(base, &base->tv3, INDEX(1))) &&
1080 !cascade(base, &base->tv4, INDEX(2)))
1081 cascade(base, &base->tv5, INDEX(3));
1082 ++base->timer_jiffies;
1083 list_replace_init(base->tv1.vec + index, &work_list);
1084 while (!list_empty(head)) {
1085 void (*fn)(unsigned long);
1086 unsigned long data;
1088 timer = list_first_entry(head, struct timer_list,entry);
1089 fn = timer->function;
1090 data = timer->data;
1092 timer_stats_account_timer(timer);
1094 set_running_timer(base, timer);
1095 detach_timer(timer, 1);
1097 spin_unlock_irq(&base->lock);
1098 call_timer_fn(timer, fn, data);
1099 spin_lock_irq(&base->lock);
1102 set_running_timer(base, NULL);
1103 spin_unlock_irq(&base->lock);
1106 #ifdef CONFIG_NO_HZ
1108 * Find out when the next timer event is due to happen. This
1109 * is used on S/390 to stop all activity when a CPU is idle.
1110 * This function needs to be called with interrupts disabled.
1112 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1114 unsigned long timer_jiffies = base->timer_jiffies;
1115 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1116 int index, slot, array, found = 0;
1117 struct timer_list *nte;
1118 struct tvec *varray[4];
1120 /* Look for timer events in tv1. */
1121 index = slot = timer_jiffies & TVR_MASK;
1122 do {
1123 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1124 if (tbase_get_deferrable(nte->base))
1125 continue;
1127 found = 1;
1128 expires = nte->expires;
1129 /* Look at the cascade bucket(s)? */
1130 if (!index || slot < index)
1131 goto cascade;
1132 return expires;
1134 slot = (slot + 1) & TVR_MASK;
1135 } while (slot != index);
1137 cascade:
1138 /* Calculate the next cascade event */
1139 if (index)
1140 timer_jiffies += TVR_SIZE - index;
1141 timer_jiffies >>= TVR_BITS;
1143 /* Check tv2-tv5. */
1144 varray[0] = &base->tv2;
1145 varray[1] = &base->tv3;
1146 varray[2] = &base->tv4;
1147 varray[3] = &base->tv5;
1149 for (array = 0; array < 4; array++) {
1150 struct tvec *varp = varray[array];
1152 index = slot = timer_jiffies & TVN_MASK;
1153 do {
1154 list_for_each_entry(nte, varp->vec + slot, entry) {
1155 if (tbase_get_deferrable(nte->base))
1156 continue;
1158 found = 1;
1159 if (time_before(nte->expires, expires))
1160 expires = nte->expires;
1163 * Do we still search for the first timer or are
1164 * we looking up the cascade buckets ?
1166 if (found) {
1167 /* Look at the cascade bucket(s)? */
1168 if (!index || slot < index)
1169 break;
1170 return expires;
1172 slot = (slot + 1) & TVN_MASK;
1173 } while (slot != index);
1175 if (index)
1176 timer_jiffies += TVN_SIZE - index;
1177 timer_jiffies >>= TVN_BITS;
1179 return expires;
1183 * Check, if the next hrtimer event is before the next timer wheel
1184 * event:
1186 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1187 unsigned long expires)
1189 ktime_t hr_delta = hrtimer_get_next_event();
1190 struct timespec tsdelta;
1191 unsigned long delta;
1193 if (hr_delta.tv64 == KTIME_MAX)
1194 return expires;
1197 * Expired timer available, let it expire in the next tick
1199 if (hr_delta.tv64 <= 0)
1200 return now + 1;
1202 tsdelta = ktime_to_timespec(hr_delta);
1203 delta = timespec_to_jiffies(&tsdelta);
1206 * Limit the delta to the max value, which is checked in
1207 * tick_nohz_stop_sched_tick():
1209 if (delta > NEXT_TIMER_MAX_DELTA)
1210 delta = NEXT_TIMER_MAX_DELTA;
1213 * Take rounding errors in to account and make sure, that it
1214 * expires in the next tick. Otherwise we go into an endless
1215 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1216 * the timer softirq
1218 if (delta < 1)
1219 delta = 1;
1220 now += delta;
1221 if (time_before(now, expires))
1222 return now;
1223 return expires;
1227 * get_next_timer_interrupt - return the jiffy of the next pending timer
1228 * @now: current time (in jiffies)
1230 unsigned long get_next_timer_interrupt(unsigned long now)
1232 struct tvec_base *base = __get_cpu_var(tvec_bases);
1233 unsigned long expires;
1235 spin_lock(&base->lock);
1236 if (time_before_eq(base->next_timer, base->timer_jiffies))
1237 base->next_timer = __next_timer_interrupt(base);
1238 expires = base->next_timer;
1239 spin_unlock(&base->lock);
1241 if (time_before_eq(expires, now))
1242 return now;
1244 return cmp_next_hrtimer_event(now, expires);
1246 #endif
1249 * Called from the timer interrupt handler to charge one tick to the current
1250 * process. user_tick is 1 if the tick is user time, 0 for system.
1252 void update_process_times(int user_tick)
1254 struct task_struct *p = current;
1255 int cpu = smp_processor_id();
1257 /* Note: this timer irq context must be accounted for as well. */
1258 account_process_tick(p, user_tick);
1259 run_local_timers();
1260 rcu_check_callbacks(cpu, user_tick);
1261 printk_tick();
1262 perf_event_do_pending();
1263 scheduler_tick();
1264 run_posix_cpu_timers(p);
1268 * This function runs timers and the timer-tq in bottom half context.
1270 static void run_timer_softirq(struct softirq_action *h)
1272 struct tvec_base *base = __get_cpu_var(tvec_bases);
1274 hrtimer_run_pending();
1276 if (time_after_eq(jiffies, base->timer_jiffies))
1277 __run_timers(base);
1281 * Called by the local, per-CPU timer interrupt on SMP.
1283 void run_local_timers(void)
1285 hrtimer_run_queues();
1286 raise_softirq(TIMER_SOFTIRQ);
1287 softlockup_tick();
1291 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1292 * without sampling the sequence number in xtime_lock.
1293 * jiffies is defined in the linker script...
1296 void do_timer(unsigned long ticks)
1298 jiffies_64 += ticks;
1299 update_wall_time();
1300 calc_global_load();
1303 #ifdef __ARCH_WANT_SYS_ALARM
1306 * For backwards compatibility? This can be done in libc so Alpha
1307 * and all newer ports shouldn't need it.
1309 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1311 return alarm_setitimer(seconds);
1314 #endif
1316 #ifndef __alpha__
1319 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1320 * should be moved into arch/i386 instead?
1324 * sys_getpid - return the thread group id of the current process
1326 * Note, despite the name, this returns the tgid not the pid. The tgid and
1327 * the pid are identical unless CLONE_THREAD was specified on clone() in
1328 * which case the tgid is the same in all threads of the same group.
1330 * This is SMP safe as current->tgid does not change.
1332 SYSCALL_DEFINE0(getpid)
1334 return task_tgid_vnr(current);
1338 * Accessing ->real_parent is not SMP-safe, it could
1339 * change from under us. However, we can use a stale
1340 * value of ->real_parent under rcu_read_lock(), see
1341 * release_task()->call_rcu(delayed_put_task_struct).
1343 SYSCALL_DEFINE0(getppid)
1345 int pid;
1347 rcu_read_lock();
1348 pid = task_tgid_vnr(current->real_parent);
1349 rcu_read_unlock();
1351 return pid;
1354 SYSCALL_DEFINE0(getuid)
1356 /* Only we change this so SMP safe */
1357 return current_uid();
1360 SYSCALL_DEFINE0(geteuid)
1362 /* Only we change this so SMP safe */
1363 return current_euid();
1366 SYSCALL_DEFINE0(getgid)
1368 /* Only we change this so SMP safe */
1369 return current_gid();
1372 SYSCALL_DEFINE0(getegid)
1374 /* Only we change this so SMP safe */
1375 return current_egid();
1378 #endif
1380 static void process_timeout(unsigned long __data)
1382 wake_up_process((struct task_struct *)__data);
1386 * schedule_timeout - sleep until timeout
1387 * @timeout: timeout value in jiffies
1389 * Make the current task sleep until @timeout jiffies have
1390 * elapsed. The routine will return immediately unless
1391 * the current task state has been set (see set_current_state()).
1393 * You can set the task state as follows -
1395 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1396 * pass before the routine returns. The routine will return 0
1398 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1399 * delivered to the current task. In this case the remaining time
1400 * in jiffies will be returned, or 0 if the timer expired in time
1402 * The current task state is guaranteed to be TASK_RUNNING when this
1403 * routine returns.
1405 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1406 * the CPU away without a bound on the timeout. In this case the return
1407 * value will be %MAX_SCHEDULE_TIMEOUT.
1409 * In all cases the return value is guaranteed to be non-negative.
1411 signed long __sched schedule_timeout(signed long timeout)
1413 struct timer_list timer;
1414 unsigned long expire;
1416 switch (timeout)
1418 case MAX_SCHEDULE_TIMEOUT:
1420 * These two special cases are useful to be comfortable
1421 * in the caller. Nothing more. We could take
1422 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1423 * but I' d like to return a valid offset (>=0) to allow
1424 * the caller to do everything it want with the retval.
1426 schedule();
1427 goto out;
1428 default:
1430 * Another bit of PARANOID. Note that the retval will be
1431 * 0 since no piece of kernel is supposed to do a check
1432 * for a negative retval of schedule_timeout() (since it
1433 * should never happens anyway). You just have the printk()
1434 * that will tell you if something is gone wrong and where.
1436 if (timeout < 0) {
1437 printk(KERN_ERR "schedule_timeout: wrong timeout "
1438 "value %lx\n", timeout);
1439 dump_stack();
1440 current->state = TASK_RUNNING;
1441 goto out;
1445 expire = timeout + jiffies;
1447 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1448 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1449 schedule();
1450 del_singleshot_timer_sync(&timer);
1452 /* Remove the timer from the object tracker */
1453 destroy_timer_on_stack(&timer);
1455 timeout = expire - jiffies;
1457 out:
1458 return timeout < 0 ? 0 : timeout;
1460 EXPORT_SYMBOL(schedule_timeout);
1463 * We can use __set_current_state() here because schedule_timeout() calls
1464 * schedule() unconditionally.
1466 signed long __sched schedule_timeout_interruptible(signed long timeout)
1468 __set_current_state(TASK_INTERRUPTIBLE);
1469 return schedule_timeout(timeout);
1471 EXPORT_SYMBOL(schedule_timeout_interruptible);
1473 signed long __sched schedule_timeout_killable(signed long timeout)
1475 __set_current_state(TASK_KILLABLE);
1476 return schedule_timeout(timeout);
1478 EXPORT_SYMBOL(schedule_timeout_killable);
1480 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1482 __set_current_state(TASK_UNINTERRUPTIBLE);
1483 return schedule_timeout(timeout);
1485 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1487 /* Thread ID - the internal kernel "pid" */
1488 SYSCALL_DEFINE0(gettid)
1490 return task_pid_vnr(current);
1494 * do_sysinfo - fill in sysinfo struct
1495 * @info: pointer to buffer to fill
1497 int do_sysinfo(struct sysinfo *info)
1499 unsigned long mem_total, sav_total;
1500 unsigned int mem_unit, bitcount;
1501 struct timespec tp;
1503 memset(info, 0, sizeof(struct sysinfo));
1505 ktime_get_ts(&tp);
1506 monotonic_to_bootbased(&tp);
1507 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1509 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1511 info->procs = nr_threads;
1513 si_meminfo(info);
1514 si_swapinfo(info);
1517 * If the sum of all the available memory (i.e. ram + swap)
1518 * is less than can be stored in a 32 bit unsigned long then
1519 * we can be binary compatible with 2.2.x kernels. If not,
1520 * well, in that case 2.2.x was broken anyways...
1522 * -Erik Andersen <andersee@debian.org>
1525 mem_total = info->totalram + info->totalswap;
1526 if (mem_total < info->totalram || mem_total < info->totalswap)
1527 goto out;
1528 bitcount = 0;
1529 mem_unit = info->mem_unit;
1530 while (mem_unit > 1) {
1531 bitcount++;
1532 mem_unit >>= 1;
1533 sav_total = mem_total;
1534 mem_total <<= 1;
1535 if (mem_total < sav_total)
1536 goto out;
1540 * If mem_total did not overflow, multiply all memory values by
1541 * info->mem_unit and set it to 1. This leaves things compatible
1542 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1543 * kernels...
1546 info->mem_unit = 1;
1547 info->totalram <<= bitcount;
1548 info->freeram <<= bitcount;
1549 info->sharedram <<= bitcount;
1550 info->bufferram <<= bitcount;
1551 info->totalswap <<= bitcount;
1552 info->freeswap <<= bitcount;
1553 info->totalhigh <<= bitcount;
1554 info->freehigh <<= bitcount;
1556 out:
1557 return 0;
1560 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1562 struct sysinfo val;
1564 do_sysinfo(&val);
1566 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1567 return -EFAULT;
1569 return 0;
1572 static int __cpuinit init_timers_cpu(int cpu)
1574 int j;
1575 struct tvec_base *base;
1576 static char __cpuinitdata tvec_base_done[NR_CPUS];
1578 if (!tvec_base_done[cpu]) {
1579 static char boot_done;
1581 if (boot_done) {
1583 * The APs use this path later in boot
1585 base = kmalloc_node(sizeof(*base),
1586 GFP_KERNEL | __GFP_ZERO,
1587 cpu_to_node(cpu));
1588 if (!base)
1589 return -ENOMEM;
1591 /* Make sure that tvec_base is 2 byte aligned */
1592 if (tbase_get_deferrable(base)) {
1593 WARN_ON(1);
1594 kfree(base);
1595 return -ENOMEM;
1597 per_cpu(tvec_bases, cpu) = base;
1598 } else {
1600 * This is for the boot CPU - we use compile-time
1601 * static initialisation because per-cpu memory isn't
1602 * ready yet and because the memory allocators are not
1603 * initialised either.
1605 boot_done = 1;
1606 base = &boot_tvec_bases;
1608 tvec_base_done[cpu] = 1;
1609 } else {
1610 base = per_cpu(tvec_bases, cpu);
1613 spin_lock_init(&base->lock);
1615 for (j = 0; j < TVN_SIZE; j++) {
1616 INIT_LIST_HEAD(base->tv5.vec + j);
1617 INIT_LIST_HEAD(base->tv4.vec + j);
1618 INIT_LIST_HEAD(base->tv3.vec + j);
1619 INIT_LIST_HEAD(base->tv2.vec + j);
1621 for (j = 0; j < TVR_SIZE; j++)
1622 INIT_LIST_HEAD(base->tv1.vec + j);
1624 base->timer_jiffies = jiffies;
1625 base->next_timer = base->timer_jiffies;
1626 return 0;
1629 #ifdef CONFIG_HOTPLUG_CPU
1630 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1632 struct timer_list *timer;
1634 while (!list_empty(head)) {
1635 timer = list_first_entry(head, struct timer_list, entry);
1636 detach_timer(timer, 0);
1637 timer_set_base(timer, new_base);
1638 if (time_before(timer->expires, new_base->next_timer) &&
1639 !tbase_get_deferrable(timer->base))
1640 new_base->next_timer = timer->expires;
1641 internal_add_timer(new_base, timer);
1645 static void __cpuinit migrate_timers(int cpu)
1647 struct tvec_base *old_base;
1648 struct tvec_base *new_base;
1649 int i;
1651 BUG_ON(cpu_online(cpu));
1652 old_base = per_cpu(tvec_bases, cpu);
1653 new_base = get_cpu_var(tvec_bases);
1655 * The caller is globally serialized and nobody else
1656 * takes two locks at once, deadlock is not possible.
1658 spin_lock_irq(&new_base->lock);
1659 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1661 BUG_ON(old_base->running_timer);
1663 for (i = 0; i < TVR_SIZE; i++)
1664 migrate_timer_list(new_base, old_base->tv1.vec + i);
1665 for (i = 0; i < TVN_SIZE; i++) {
1666 migrate_timer_list(new_base, old_base->tv2.vec + i);
1667 migrate_timer_list(new_base, old_base->tv3.vec + i);
1668 migrate_timer_list(new_base, old_base->tv4.vec + i);
1669 migrate_timer_list(new_base, old_base->tv5.vec + i);
1672 spin_unlock(&old_base->lock);
1673 spin_unlock_irq(&new_base->lock);
1674 put_cpu_var(tvec_bases);
1676 #endif /* CONFIG_HOTPLUG_CPU */
1678 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1679 unsigned long action, void *hcpu)
1681 long cpu = (long)hcpu;
1682 switch(action) {
1683 case CPU_UP_PREPARE:
1684 case CPU_UP_PREPARE_FROZEN:
1685 if (init_timers_cpu(cpu) < 0)
1686 return NOTIFY_BAD;
1687 break;
1688 #ifdef CONFIG_HOTPLUG_CPU
1689 case CPU_DEAD:
1690 case CPU_DEAD_FROZEN:
1691 migrate_timers(cpu);
1692 break;
1693 #endif
1694 default:
1695 break;
1697 return NOTIFY_OK;
1700 static struct notifier_block __cpuinitdata timers_nb = {
1701 .notifier_call = timer_cpu_notify,
1705 void __init init_timers(void)
1707 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1708 (void *)(long)smp_processor_id());
1710 init_timer_stats();
1712 BUG_ON(err == NOTIFY_BAD);
1713 register_cpu_notifier(&timers_nb);
1714 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1718 * msleep - sleep safely even with waitqueue interruptions
1719 * @msecs: Time in milliseconds to sleep for
1721 void msleep(unsigned int msecs)
1723 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1725 while (timeout)
1726 timeout = schedule_timeout_uninterruptible(timeout);
1729 EXPORT_SYMBOL(msleep);
1732 * msleep_interruptible - sleep waiting for signals
1733 * @msecs: Time in milliseconds to sleep for
1735 unsigned long msleep_interruptible(unsigned int msecs)
1737 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1739 while (timeout && !signal_pending(current))
1740 timeout = schedule_timeout_interruptible(timeout);
1741 return jiffies_to_msecs(timeout);
1744 EXPORT_SYMBOL(msleep_interruptible);