2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
56 * Array of node states.
58 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
59 [N_POSSIBLE
] = NODE_MASK_ALL
,
60 [N_ONLINE
] = { { [0] = 1UL } },
62 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
64 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
66 [N_CPU
] = { { [0] = 1UL } },
69 EXPORT_SYMBOL(node_states
);
71 unsigned long totalram_pages __read_mostly
;
72 unsigned long totalreserve_pages __read_mostly
;
73 unsigned long highest_memmap_pfn __read_mostly
;
74 int percpu_pagelist_fraction
;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly
;
80 static void __free_pages_ok(struct page
*page
, unsigned int order
);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
94 #ifdef CONFIG_ZONE_DMA
97 #ifdef CONFIG_ZONE_DMA32
100 #ifdef CONFIG_HIGHMEM
106 EXPORT_SYMBOL(totalram_pages
);
108 static char * const zone_names
[MAX_NR_ZONES
] = {
109 #ifdef CONFIG_ZONE_DMA
112 #ifdef CONFIG_ZONE_DMA32
116 #ifdef CONFIG_HIGHMEM
122 int min_free_kbytes
= 1024;
124 unsigned long __meminitdata nr_kernel_pages
;
125 unsigned long __meminitdata nr_all_pages
;
126 static unsigned long __meminitdata dma_reserve
;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
149 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
150 static int __meminitdata nr_nodemap_entries
;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
153 static unsigned long __initdata required_kernelcore
;
154 static unsigned long __initdata required_movablecore
;
155 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159 EXPORT_SYMBOL(movable_zone
);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
164 EXPORT_SYMBOL(nr_node_ids
);
167 int page_group_by_mobility_disabled __read_mostly
;
169 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
172 if (unlikely(page_group_by_mobility_disabled
))
173 migratetype
= MIGRATE_UNMOVABLE
;
175 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
176 PB_migrate
, PB_migrate_end
);
179 #ifdef CONFIG_DEBUG_VM
180 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
184 unsigned long pfn
= page_to_pfn(page
);
187 seq
= zone_span_seqbegin(zone
);
188 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
190 else if (pfn
< zone
->zone_start_pfn
)
192 } while (zone_span_seqretry(zone
, seq
));
197 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
199 if (!pfn_valid_within(page_to_pfn(page
)))
201 if (zone
!= page_zone(page
))
207 * Temporary debugging check for pages not lying within a given zone.
209 static int bad_range(struct zone
*zone
, struct page
*page
)
211 if (page_outside_zone_boundaries(zone
, page
))
213 if (!page_is_consistent(zone
, page
))
219 static inline int bad_range(struct zone
*zone
, struct page
*page
)
225 static void bad_page(struct page
*page
)
227 static unsigned long resume
;
228 static unsigned long nr_shown
;
229 static unsigned long nr_unshown
;
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
235 if (nr_shown
== 60) {
236 if (time_before(jiffies
, resume
)) {
242 "BUG: Bad page state: %lu messages suppressed\n",
249 resume
= jiffies
+ 60 * HZ
;
251 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
252 current
->comm
, page_to_pfn(page
));
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page
, (void *)page
->flags
, page_count(page
),
256 page_mapcount(page
), page
->mapping
, page
->index
);
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page
);
262 add_taint(TAINT_BAD_PAGE
);
266 * Higher-order pages are called "compound pages". They are structured thusly:
268 * The first PAGE_SIZE page is called the "head page".
270 * The remaining PAGE_SIZE pages are called "tail pages".
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
280 static void free_compound_page(struct page
*page
)
282 __free_pages_ok(page
, compound_order(page
));
285 void prep_compound_page(struct page
*page
, unsigned long order
)
288 int nr_pages
= 1 << order
;
290 set_compound_page_dtor(page
, free_compound_page
);
291 set_compound_order(page
, order
);
293 for (i
= 1; i
< nr_pages
; i
++) {
294 struct page
*p
= page
+ i
;
297 p
->first_page
= page
;
301 #ifdef CONFIG_HUGETLBFS
302 void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
305 int nr_pages
= 1 << order
;
306 struct page
*p
= page
+ 1;
308 set_compound_page_dtor(page
, free_compound_page
);
309 set_compound_order(page
, order
);
311 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
313 p
->first_page
= page
;
318 static int destroy_compound_page(struct page
*page
, unsigned long order
)
321 int nr_pages
= 1 << order
;
324 if (unlikely(compound_order(page
) != order
) ||
325 unlikely(!PageHead(page
))) {
330 __ClearPageHead(page
);
332 for (i
= 1; i
< nr_pages
; i
++) {
333 struct page
*p
= page
+ i
;
335 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
345 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
353 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
354 for (i
= 0; i
< (1 << order
); i
++)
355 clear_highpage(page
+ i
);
358 static inline void set_page_order(struct page
*page
, int order
)
360 set_page_private(page
, order
);
361 __SetPageBuddy(page
);
364 static inline void rmv_page_order(struct page
*page
)
366 __ClearPageBuddy(page
);
367 set_page_private(page
, 0);
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
377 * For example, if the starting buddy (buddy2) is #8 its order
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
387 static inline struct page
*
388 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
390 unsigned long buddy_idx
= page_idx
^ (1 << order
);
392 return page
+ (buddy_idx
- page_idx
);
395 static inline unsigned long
396 __find_combined_index(unsigned long page_idx
, unsigned int order
)
398 return (page_idx
& ~(1 << order
));
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
404 * (a) the buddy is not in a hole &&
405 * (b) the buddy is in the buddy system &&
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
412 * For recording page's order, we use page_private(page).
414 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
417 if (!pfn_valid_within(page_to_pfn(buddy
)))
420 if (page_zone_id(page
) != page_zone_id(buddy
))
423 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
424 BUG_ON(page_count(buddy
) != 0);
431 * Freeing function for a buddy system allocator.
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
444 * order is recorded in page_private(page) field.
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
454 static inline void __free_one_page(struct page
*page
,
455 struct zone
*zone
, unsigned int order
)
457 unsigned long page_idx
;
458 int order_size
= 1 << order
;
459 int migratetype
= get_pageblock_migratetype(page
);
461 if (unlikely(PageCompound(page
)))
462 if (unlikely(destroy_compound_page(page
, order
)))
465 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
467 VM_BUG_ON(page_idx
& (order_size
- 1));
468 VM_BUG_ON(bad_range(zone
, page
));
470 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
471 while (order
< MAX_ORDER
-1) {
472 unsigned long combined_idx
;
475 buddy
= __page_find_buddy(page
, page_idx
, order
);
476 if (!page_is_buddy(page
, buddy
, order
))
479 /* Our buddy is free, merge with it and move up one order. */
480 list_del(&buddy
->lru
);
481 zone
->free_area
[order
].nr_free
--;
482 rmv_page_order(buddy
);
483 combined_idx
= __find_combined_index(page_idx
, order
);
484 page
= page
+ (combined_idx
- page_idx
);
485 page_idx
= combined_idx
;
488 set_page_order(page
, order
);
490 &zone
->free_area
[order
].free_list
[migratetype
]);
491 zone
->free_area
[order
].nr_free
++;
494 static inline int free_pages_check(struct page
*page
)
496 free_page_mlock(page
);
497 if (unlikely(page_mapcount(page
) |
498 (page
->mapping
!= NULL
) |
499 (page_count(page
) != 0) |
500 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
504 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
505 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
520 static void free_pages_bulk(struct zone
*zone
, int count
,
521 struct list_head
*list
, int order
)
523 spin_lock(&zone
->lock
);
524 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
525 zone
->pages_scanned
= 0;
529 VM_BUG_ON(list_empty(list
));
530 page
= list_entry(list
->prev
, struct page
, lru
);
531 /* have to delete it as __free_one_page list manipulates */
532 list_del(&page
->lru
);
533 __free_one_page(page
, zone
, order
);
535 spin_unlock(&zone
->lock
);
538 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
540 spin_lock(&zone
->lock
);
541 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
542 zone
->pages_scanned
= 0;
543 __free_one_page(page
, zone
, order
);
544 spin_unlock(&zone
->lock
);
547 static void __free_pages_ok(struct page
*page
, unsigned int order
)
553 for (i
= 0 ; i
< (1 << order
) ; ++i
)
554 bad
+= free_pages_check(page
+ i
);
558 if (!PageHighMem(page
)) {
559 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
560 debug_check_no_obj_freed(page_address(page
),
563 arch_free_page(page
, order
);
564 kernel_map_pages(page
, 1 << order
, 0);
566 local_irq_save(flags
);
567 __count_vm_events(PGFREE
, 1 << order
);
568 free_one_page(page_zone(page
), page
, order
);
569 local_irq_restore(flags
);
573 * permit the bootmem allocator to evade page validation on high-order frees
575 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
578 __ClearPageReserved(page
);
579 set_page_count(page
, 0);
580 set_page_refcounted(page
);
586 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
587 struct page
*p
= &page
[loop
];
589 if (loop
+ 1 < BITS_PER_LONG
)
591 __ClearPageReserved(p
);
592 set_page_count(p
, 0);
595 set_page_refcounted(page
);
596 __free_pages(page
, order
);
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
615 static inline void expand(struct zone
*zone
, struct page
*page
,
616 int low
, int high
, struct free_area
*area
,
619 unsigned long size
= 1 << high
;
625 VM_BUG_ON(bad_range(zone
, &page
[size
]));
626 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
628 set_page_order(&page
[size
], high
);
633 * This page is about to be returned from the page allocator
635 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
637 if (unlikely(page_mapcount(page
) |
638 (page
->mapping
!= NULL
) |
639 (page_count(page
) != 0) |
640 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
645 set_page_private(page
, 0);
646 set_page_refcounted(page
);
648 arch_alloc_page(page
, order
);
649 kernel_map_pages(page
, 1 << order
, 1);
651 if (gfp_flags
& __GFP_ZERO
)
652 prep_zero_page(page
, order
, gfp_flags
);
654 if (order
&& (gfp_flags
& __GFP_COMP
))
655 prep_compound_page(page
, order
);
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
664 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
667 unsigned int current_order
;
668 struct free_area
* area
;
671 /* Find a page of the appropriate size in the preferred list */
672 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
673 area
= &(zone
->free_area
[current_order
]);
674 if (list_empty(&area
->free_list
[migratetype
]))
677 page
= list_entry(area
->free_list
[migratetype
].next
,
679 list_del(&page
->lru
);
680 rmv_page_order(page
);
682 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
683 expand(zone
, page
, order
, current_order
, area
, migratetype
);
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
695 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
696 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
697 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
698 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
699 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
703 * Move the free pages in a range to the free lists of the requested type.
704 * Note that start_page and end_pages are not aligned on a pageblock
705 * boundary. If alignment is required, use move_freepages_block()
707 static int move_freepages(struct zone
*zone
,
708 struct page
*start_page
, struct page
*end_page
,
715 #ifndef CONFIG_HOLES_IN_ZONE
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
721 * grouping pages by mobility
723 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
726 for (page
= start_page
; page
<= end_page
;) {
727 /* Make sure we are not inadvertently changing nodes */
728 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
730 if (!pfn_valid_within(page_to_pfn(page
))) {
735 if (!PageBuddy(page
)) {
740 order
= page_order(page
);
741 list_del(&page
->lru
);
743 &zone
->free_area
[order
].free_list
[migratetype
]);
745 pages_moved
+= 1 << order
;
751 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
754 unsigned long start_pfn
, end_pfn
;
755 struct page
*start_page
, *end_page
;
757 start_pfn
= page_to_pfn(page
);
758 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
759 start_page
= pfn_to_page(start_pfn
);
760 end_page
= start_page
+ pageblock_nr_pages
- 1;
761 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
763 /* Do not cross zone boundaries */
764 if (start_pfn
< zone
->zone_start_pfn
)
766 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
769 return move_freepages(zone
, start_page
, end_page
, migratetype
);
772 /* Remove an element from the buddy allocator from the fallback list */
773 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
774 int start_migratetype
)
776 struct free_area
* area
;
781 /* Find the largest possible block of pages in the other list */
782 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
784 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
785 migratetype
= fallbacks
[start_migratetype
][i
];
787 /* MIGRATE_RESERVE handled later if necessary */
788 if (migratetype
== MIGRATE_RESERVE
)
791 area
= &(zone
->free_area
[current_order
]);
792 if (list_empty(&area
->free_list
[migratetype
]))
795 page
= list_entry(area
->free_list
[migratetype
].next
,
800 * If breaking a large block of pages, move all free
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
805 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
806 start_migratetype
== MIGRATE_RECLAIMABLE
) {
808 pages
= move_freepages_block(zone
, page
,
811 /* Claim the whole block if over half of it is free */
812 if (pages
>= (1 << (pageblock_order
-1)))
813 set_pageblock_migratetype(page
,
816 migratetype
= start_migratetype
;
819 /* Remove the page from the freelists */
820 list_del(&page
->lru
);
821 rmv_page_order(page
);
822 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
825 if (current_order
== pageblock_order
)
826 set_pageblock_migratetype(page
,
829 expand(zone
, page
, order
, current_order
, area
, migratetype
);
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
842 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
847 page
= __rmqueue_smallest(zone
, order
, migratetype
);
850 page
= __rmqueue_fallback(zone
, order
, migratetype
);
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
860 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
861 unsigned long count
, struct list_head
*list
,
866 spin_lock(&zone
->lock
);
867 for (i
= 0; i
< count
; ++i
) {
868 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
869 if (unlikely(page
== NULL
))
873 * Split buddy pages returned by expand() are received here
874 * in physical page order. The page is added to the callers and
875 * list and the list head then moves forward. From the callers
876 * perspective, the linked list is ordered by page number in
877 * some conditions. This is useful for IO devices that can
878 * merge IO requests if the physical pages are ordered
881 list_add(&page
->lru
, list
);
882 set_page_private(page
, migratetype
);
885 spin_unlock(&zone
->lock
);
891 * Called from the vmstat counter updater to drain pagesets of this
892 * currently executing processor on remote nodes after they have
895 * Note that this function must be called with the thread pinned to
896 * a single processor.
898 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
903 local_irq_save(flags
);
904 if (pcp
->count
>= pcp
->batch
)
905 to_drain
= pcp
->batch
;
907 to_drain
= pcp
->count
;
908 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
909 pcp
->count
-= to_drain
;
910 local_irq_restore(flags
);
915 * Drain pages of the indicated processor.
917 * The processor must either be the current processor and the
918 * thread pinned to the current processor or a processor that
921 static void drain_pages(unsigned int cpu
)
926 for_each_populated_zone(zone
) {
927 struct per_cpu_pageset
*pset
;
928 struct per_cpu_pages
*pcp
;
930 pset
= zone_pcp(zone
, cpu
);
933 local_irq_save(flags
);
934 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
936 local_irq_restore(flags
);
941 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
943 void drain_local_pages(void *arg
)
945 drain_pages(smp_processor_id());
949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
951 void drain_all_pages(void)
953 on_each_cpu(drain_local_pages
, NULL
, 1);
956 #ifdef CONFIG_HIBERNATION
958 void mark_free_pages(struct zone
*zone
)
960 unsigned long pfn
, max_zone_pfn
;
963 struct list_head
*curr
;
965 if (!zone
->spanned_pages
)
968 spin_lock_irqsave(&zone
->lock
, flags
);
970 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
971 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
972 if (pfn_valid(pfn
)) {
973 struct page
*page
= pfn_to_page(pfn
);
975 if (!swsusp_page_is_forbidden(page
))
976 swsusp_unset_page_free(page
);
979 for_each_migratetype_order(order
, t
) {
980 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
983 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
984 for (i
= 0; i
< (1UL << order
); i
++)
985 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
988 spin_unlock_irqrestore(&zone
->lock
, flags
);
990 #endif /* CONFIG_PM */
993 * Free a 0-order page
995 static void free_hot_cold_page(struct page
*page
, int cold
)
997 struct zone
*zone
= page_zone(page
);
998 struct per_cpu_pages
*pcp
;
1002 page
->mapping
= NULL
;
1003 if (free_pages_check(page
))
1006 if (!PageHighMem(page
)) {
1007 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1008 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1010 arch_free_page(page
, 0);
1011 kernel_map_pages(page
, 1, 0);
1013 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1014 local_irq_save(flags
);
1015 __count_vm_event(PGFREE
);
1017 list_add_tail(&page
->lru
, &pcp
->list
);
1019 list_add(&page
->lru
, &pcp
->list
);
1020 set_page_private(page
, get_pageblock_migratetype(page
));
1022 if (pcp
->count
>= pcp
->high
) {
1023 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1024 pcp
->count
-= pcp
->batch
;
1026 local_irq_restore(flags
);
1030 void free_hot_page(struct page
*page
)
1032 free_hot_cold_page(page
, 0);
1035 void free_cold_page(struct page
*page
)
1037 free_hot_cold_page(page
, 1);
1041 * split_page takes a non-compound higher-order page, and splits it into
1042 * n (1<<order) sub-pages: page[0..n]
1043 * Each sub-page must be freed individually.
1045 * Note: this is probably too low level an operation for use in drivers.
1046 * Please consult with lkml before using this in your driver.
1048 void split_page(struct page
*page
, unsigned int order
)
1052 VM_BUG_ON(PageCompound(page
));
1053 VM_BUG_ON(!page_count(page
));
1054 for (i
= 1; i
< (1 << order
); i
++)
1055 set_page_refcounted(page
+ i
);
1059 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1060 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1063 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1064 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1067 unsigned long flags
;
1069 int cold
= !!(gfp_flags
& __GFP_COLD
);
1074 if (likely(order
== 0)) {
1075 struct per_cpu_pages
*pcp
;
1077 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1078 local_irq_save(flags
);
1080 pcp
->count
= rmqueue_bulk(zone
, 0,
1081 pcp
->batch
, &pcp
->list
, migratetype
);
1082 if (unlikely(!pcp
->count
))
1086 /* Find a page of the appropriate migrate type */
1088 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1089 if (page_private(page
) == migratetype
)
1092 list_for_each_entry(page
, &pcp
->list
, lru
)
1093 if (page_private(page
) == migratetype
)
1097 /* Allocate more to the pcp list if necessary */
1098 if (unlikely(&page
->lru
== &pcp
->list
)) {
1099 pcp
->count
+= rmqueue_bulk(zone
, 0,
1100 pcp
->batch
, &pcp
->list
, migratetype
);
1101 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1104 list_del(&page
->lru
);
1107 spin_lock_irqsave(&zone
->lock
, flags
);
1108 page
= __rmqueue(zone
, order
, migratetype
);
1109 spin_unlock(&zone
->lock
);
1114 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1115 zone_statistics(preferred_zone
, zone
);
1116 local_irq_restore(flags
);
1119 VM_BUG_ON(bad_range(zone
, page
));
1120 if (prep_new_page(page
, order
, gfp_flags
))
1125 local_irq_restore(flags
);
1130 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1131 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1132 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1133 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1134 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1135 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1136 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1138 #ifdef CONFIG_FAIL_PAGE_ALLOC
1140 static struct fail_page_alloc_attr
{
1141 struct fault_attr attr
;
1143 u32 ignore_gfp_highmem
;
1144 u32 ignore_gfp_wait
;
1147 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1149 struct dentry
*ignore_gfp_highmem_file
;
1150 struct dentry
*ignore_gfp_wait_file
;
1151 struct dentry
*min_order_file
;
1153 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1155 } fail_page_alloc
= {
1156 .attr
= FAULT_ATTR_INITIALIZER
,
1157 .ignore_gfp_wait
= 1,
1158 .ignore_gfp_highmem
= 1,
1162 static int __init
setup_fail_page_alloc(char *str
)
1164 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1166 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1168 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1170 if (order
< fail_page_alloc
.min_order
)
1172 if (gfp_mask
& __GFP_NOFAIL
)
1174 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1176 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1179 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1182 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1184 static int __init
fail_page_alloc_debugfs(void)
1186 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1190 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1194 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1196 fail_page_alloc
.ignore_gfp_wait_file
=
1197 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1198 &fail_page_alloc
.ignore_gfp_wait
);
1200 fail_page_alloc
.ignore_gfp_highmem_file
=
1201 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1202 &fail_page_alloc
.ignore_gfp_highmem
);
1203 fail_page_alloc
.min_order_file
=
1204 debugfs_create_u32("min-order", mode
, dir
,
1205 &fail_page_alloc
.min_order
);
1207 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1208 !fail_page_alloc
.ignore_gfp_highmem_file
||
1209 !fail_page_alloc
.min_order_file
) {
1211 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1212 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1213 debugfs_remove(fail_page_alloc
.min_order_file
);
1214 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1220 late_initcall(fail_page_alloc_debugfs
);
1222 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1224 #else /* CONFIG_FAIL_PAGE_ALLOC */
1226 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1231 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1234 * Return 1 if free pages are above 'mark'. This takes into account the order
1235 * of the allocation.
1237 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1238 int classzone_idx
, int alloc_flags
)
1240 /* free_pages my go negative - that's OK */
1242 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1245 if (alloc_flags
& ALLOC_HIGH
)
1247 if (alloc_flags
& ALLOC_HARDER
)
1250 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1252 for (o
= 0; o
< order
; o
++) {
1253 /* At the next order, this order's pages become unavailable */
1254 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1256 /* Require fewer higher order pages to be free */
1259 if (free_pages
<= min
)
1267 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1268 * skip over zones that are not allowed by the cpuset, or that have
1269 * been recently (in last second) found to be nearly full. See further
1270 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1271 * that have to skip over a lot of full or unallowed zones.
1273 * If the zonelist cache is present in the passed in zonelist, then
1274 * returns a pointer to the allowed node mask (either the current
1275 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1277 * If the zonelist cache is not available for this zonelist, does
1278 * nothing and returns NULL.
1280 * If the fullzones BITMAP in the zonelist cache is stale (more than
1281 * a second since last zap'd) then we zap it out (clear its bits.)
1283 * We hold off even calling zlc_setup, until after we've checked the
1284 * first zone in the zonelist, on the theory that most allocations will
1285 * be satisfied from that first zone, so best to examine that zone as
1286 * quickly as we can.
1288 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1290 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1291 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1293 zlc
= zonelist
->zlcache_ptr
;
1297 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1298 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1299 zlc
->last_full_zap
= jiffies
;
1302 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1303 &cpuset_current_mems_allowed
:
1304 &node_states
[N_HIGH_MEMORY
];
1305 return allowednodes
;
1309 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1310 * if it is worth looking at further for free memory:
1311 * 1) Check that the zone isn't thought to be full (doesn't have its
1312 * bit set in the zonelist_cache fullzones BITMAP).
1313 * 2) Check that the zones node (obtained from the zonelist_cache
1314 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1315 * Return true (non-zero) if zone is worth looking at further, or
1316 * else return false (zero) if it is not.
1318 * This check -ignores- the distinction between various watermarks,
1319 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1320 * found to be full for any variation of these watermarks, it will
1321 * be considered full for up to one second by all requests, unless
1322 * we are so low on memory on all allowed nodes that we are forced
1323 * into the second scan of the zonelist.
1325 * In the second scan we ignore this zonelist cache and exactly
1326 * apply the watermarks to all zones, even it is slower to do so.
1327 * We are low on memory in the second scan, and should leave no stone
1328 * unturned looking for a free page.
1330 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1331 nodemask_t
*allowednodes
)
1333 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1334 int i
; /* index of *z in zonelist zones */
1335 int n
; /* node that zone *z is on */
1337 zlc
= zonelist
->zlcache_ptr
;
1341 i
= z
- zonelist
->_zonerefs
;
1344 /* This zone is worth trying if it is allowed but not full */
1345 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1349 * Given 'z' scanning a zonelist, set the corresponding bit in
1350 * zlc->fullzones, so that subsequent attempts to allocate a page
1351 * from that zone don't waste time re-examining it.
1353 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1355 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1356 int i
; /* index of *z in zonelist zones */
1358 zlc
= zonelist
->zlcache_ptr
;
1362 i
= z
- zonelist
->_zonerefs
;
1364 set_bit(i
, zlc
->fullzones
);
1367 #else /* CONFIG_NUMA */
1369 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1374 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1375 nodemask_t
*allowednodes
)
1380 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1383 #endif /* CONFIG_NUMA */
1386 * get_page_from_freelist goes through the zonelist trying to allocate
1389 static struct page
*
1390 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1391 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1392 struct zone
*preferred_zone
, int migratetype
)
1395 struct page
*page
= NULL
;
1398 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1399 int zlc_active
= 0; /* set if using zonelist_cache */
1400 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1402 if (WARN_ON_ONCE(order
>= MAX_ORDER
))
1405 classzone_idx
= zone_idx(preferred_zone
);
1408 * Scan zonelist, looking for a zone with enough free.
1409 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1411 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1412 high_zoneidx
, nodemask
) {
1413 if (NUMA_BUILD
&& zlc_active
&&
1414 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1416 if ((alloc_flags
& ALLOC_CPUSET
) &&
1417 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1420 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1422 if (alloc_flags
& ALLOC_WMARK_MIN
)
1423 mark
= zone
->pages_min
;
1424 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1425 mark
= zone
->pages_low
;
1427 mark
= zone
->pages_high
;
1428 if (!zone_watermark_ok(zone
, order
, mark
,
1429 classzone_idx
, alloc_flags
)) {
1430 if (!zone_reclaim_mode
||
1431 !zone_reclaim(zone
, gfp_mask
, order
))
1432 goto this_zone_full
;
1436 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1437 gfp_mask
, migratetype
);
1442 zlc_mark_zone_full(zonelist
, z
);
1444 if (NUMA_BUILD
&& !did_zlc_setup
) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1452 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1453 /* Disable zlc cache for second zonelist scan */
1461 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1462 unsigned long pages_reclaimed
)
1464 /* Do not loop if specifically requested */
1465 if (gfp_mask
& __GFP_NORETRY
)
1469 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1470 * means __GFP_NOFAIL, but that may not be true in other
1473 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1477 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1478 * specified, then we retry until we no longer reclaim any pages
1479 * (above), or we've reclaimed an order of pages at least as
1480 * large as the allocation's order. In both cases, if the
1481 * allocation still fails, we stop retrying.
1483 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1487 * Don't let big-order allocations loop unless the caller
1488 * explicitly requests that.
1490 if (gfp_mask
& __GFP_NOFAIL
)
1496 static inline struct page
*
1497 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1498 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1499 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1504 /* Acquire the OOM killer lock for the zones in zonelist */
1505 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1506 schedule_timeout_uninterruptible(1);
1511 * Go through the zonelist yet one more time, keep very high watermark
1512 * here, this is only to catch a parallel oom killing, we must fail if
1513 * we're still under heavy pressure.
1515 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1516 order
, zonelist
, high_zoneidx
,
1517 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1518 preferred_zone
, migratetype
);
1522 /* The OOM killer will not help higher order allocs */
1523 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1526 /* Exhausted what can be done so it's blamo time */
1527 out_of_memory(zonelist
, gfp_mask
, order
);
1530 clear_zonelist_oom(zonelist
, gfp_mask
);
1534 /* The really slow allocator path where we enter direct reclaim */
1535 static inline struct page
*
1536 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1537 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1538 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1539 int migratetype
, unsigned long *did_some_progress
)
1541 struct page
*page
= NULL
;
1542 struct reclaim_state reclaim_state
;
1543 struct task_struct
*p
= current
;
1547 /* We now go into synchronous reclaim */
1548 cpuset_memory_pressure_bump();
1551 * The task's cpuset might have expanded its set of allowable nodes
1553 p
->flags
|= PF_MEMALLOC
;
1554 lockdep_set_current_reclaim_state(gfp_mask
);
1555 reclaim_state
.reclaimed_slab
= 0;
1556 p
->reclaim_state
= &reclaim_state
;
1558 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1560 p
->reclaim_state
= NULL
;
1561 lockdep_clear_current_reclaim_state();
1562 p
->flags
&= ~PF_MEMALLOC
;
1569 if (likely(*did_some_progress
))
1570 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1571 zonelist
, high_zoneidx
,
1572 alloc_flags
, preferred_zone
,
1578 is_allocation_high_priority(struct task_struct
*p
, gfp_t gfp_mask
)
1580 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1587 * This is called in the allocator slow-path if the allocation request is of
1588 * sufficient urgency to ignore watermarks and take other desperate measures
1590 static inline struct page
*
1591 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1592 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1593 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1599 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1600 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1601 preferred_zone
, migratetype
);
1603 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1604 congestion_wait(WRITE
, HZ
/50);
1605 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1611 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1612 enum zone_type high_zoneidx
)
1617 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1618 wakeup_kswapd(zone
, order
);
1621 static inline struct page
*
1622 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1623 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1624 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1627 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1628 struct page
*page
= NULL
;
1630 unsigned long pages_reclaimed
= 0;
1631 unsigned long did_some_progress
;
1632 struct task_struct
*p
= current
;
1635 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1636 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1637 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1638 * using a larger set of nodes after it has established that the
1639 * allowed per node queues are empty and that nodes are
1642 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1645 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1648 * OK, we're below the kswapd watermark and have kicked background
1649 * reclaim. Now things get more complex, so set up alloc_flags according
1650 * to how we want to proceed.
1652 * The caller may dip into page reserves a bit more if the caller
1653 * cannot run direct reclaim, or if the caller has realtime scheduling
1654 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1655 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1657 alloc_flags
= ALLOC_WMARK_MIN
;
1658 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1659 alloc_flags
|= ALLOC_HARDER
;
1660 if (gfp_mask
& __GFP_HIGH
)
1661 alloc_flags
|= ALLOC_HIGH
;
1663 alloc_flags
|= ALLOC_CPUSET
;
1667 * Go through the zonelist again. Let __GFP_HIGH and allocations
1668 * coming from realtime tasks go deeper into reserves.
1670 * This is the last chance, in general, before the goto nopage.
1671 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1672 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1674 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1675 high_zoneidx
, alloc_flags
,
1682 /* Allocate without watermarks if the context allows */
1683 if (is_allocation_high_priority(p
, gfp_mask
)) {
1684 /* Do not dip into emergency reserves if specified */
1685 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1686 page
= __alloc_pages_high_priority(gfp_mask
, order
,
1687 zonelist
, high_zoneidx
, nodemask
, preferred_zone
,
1693 /* Ensure no recursion into the allocator */
1697 /* Atomic allocations - we can't balance anything */
1701 /* Try direct reclaim and then allocating */
1702 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
1703 zonelist
, high_zoneidx
,
1705 alloc_flags
, preferred_zone
,
1706 migratetype
, &did_some_progress
);
1711 * If we failed to make any progress reclaiming, then we are
1712 * running out of options and have to consider going OOM
1714 if (!did_some_progress
) {
1715 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1716 page
= __alloc_pages_may_oom(gfp_mask
, order
,
1717 zonelist
, high_zoneidx
,
1718 nodemask
, preferred_zone
,
1724 * The OOM killer does not trigger for high-order allocations
1725 * but if no progress is being made, there are no other
1726 * options and retrying is unlikely to help
1728 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1735 /* Check if we should retry the allocation */
1736 pages_reclaimed
+= did_some_progress
;
1737 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
1738 /* Wait for some write requests to complete then retry */
1739 congestion_wait(WRITE
, HZ
/50);
1744 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1745 printk(KERN_WARNING
"%s: page allocation failure."
1746 " order:%d, mode:0x%x\n",
1747 p
->comm
, order
, gfp_mask
);
1757 * This is the 'heart' of the zoned buddy allocator.
1760 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1761 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1763 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1764 struct zone
*preferred_zone
;
1766 int migratetype
= allocflags_to_migratetype(gfp_mask
);
1768 lockdep_trace_alloc(gfp_mask
);
1770 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1772 if (should_fail_alloc_page(gfp_mask
, order
))
1776 * Check the zones suitable for the gfp_mask contain at least one
1777 * valid zone. It's possible to have an empty zonelist as a result
1778 * of GFP_THISNODE and a memoryless node
1780 if (unlikely(!zonelist
->_zonerefs
->zone
))
1783 /* The preferred zone is used for statistics later */
1784 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
1785 if (!preferred_zone
)
1788 /* First allocation attempt */
1789 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1790 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
1791 preferred_zone
, migratetype
);
1792 if (unlikely(!page
))
1793 page
= __alloc_pages_slowpath(gfp_mask
, order
,
1794 zonelist
, high_zoneidx
, nodemask
,
1795 preferred_zone
, migratetype
);
1799 EXPORT_SYMBOL(__alloc_pages_nodemask
);
1802 * Common helper functions.
1804 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1807 page
= alloc_pages(gfp_mask
, order
);
1810 return (unsigned long) page_address(page
);
1813 EXPORT_SYMBOL(__get_free_pages
);
1815 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1820 * get_zeroed_page() returns a 32-bit address, which cannot represent
1823 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1825 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1827 return (unsigned long) page_address(page
);
1831 EXPORT_SYMBOL(get_zeroed_page
);
1833 void __pagevec_free(struct pagevec
*pvec
)
1835 int i
= pagevec_count(pvec
);
1838 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1841 void __free_pages(struct page
*page
, unsigned int order
)
1843 if (put_page_testzero(page
)) {
1845 free_hot_page(page
);
1847 __free_pages_ok(page
, order
);
1851 EXPORT_SYMBOL(__free_pages
);
1853 void free_pages(unsigned long addr
, unsigned int order
)
1856 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1857 __free_pages(virt_to_page((void *)addr
), order
);
1861 EXPORT_SYMBOL(free_pages
);
1864 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1865 * @size: the number of bytes to allocate
1866 * @gfp_mask: GFP flags for the allocation
1868 * This function is similar to alloc_pages(), except that it allocates the
1869 * minimum number of pages to satisfy the request. alloc_pages() can only
1870 * allocate memory in power-of-two pages.
1872 * This function is also limited by MAX_ORDER.
1874 * Memory allocated by this function must be released by free_pages_exact().
1876 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
1878 unsigned int order
= get_order(size
);
1881 addr
= __get_free_pages(gfp_mask
, order
);
1883 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
1884 unsigned long used
= addr
+ PAGE_ALIGN(size
);
1886 split_page(virt_to_page(addr
), order
);
1887 while (used
< alloc_end
) {
1893 return (void *)addr
;
1895 EXPORT_SYMBOL(alloc_pages_exact
);
1898 * free_pages_exact - release memory allocated via alloc_pages_exact()
1899 * @virt: the value returned by alloc_pages_exact.
1900 * @size: size of allocation, same value as passed to alloc_pages_exact().
1902 * Release the memory allocated by a previous call to alloc_pages_exact.
1904 void free_pages_exact(void *virt
, size_t size
)
1906 unsigned long addr
= (unsigned long)virt
;
1907 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1909 while (addr
< end
) {
1914 EXPORT_SYMBOL(free_pages_exact
);
1916 static unsigned int nr_free_zone_pages(int offset
)
1921 /* Just pick one node, since fallback list is circular */
1922 unsigned int sum
= 0;
1924 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1926 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1927 unsigned long size
= zone
->present_pages
;
1928 unsigned long high
= zone
->pages_high
;
1937 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1939 unsigned int nr_free_buffer_pages(void)
1941 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1943 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1946 * Amount of free RAM allocatable within all zones
1948 unsigned int nr_free_pagecache_pages(void)
1950 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1953 static inline void show_node(struct zone
*zone
)
1956 printk("Node %d ", zone_to_nid(zone
));
1959 void si_meminfo(struct sysinfo
*val
)
1961 val
->totalram
= totalram_pages
;
1963 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1964 val
->bufferram
= nr_blockdev_pages();
1965 val
->totalhigh
= totalhigh_pages
;
1966 val
->freehigh
= nr_free_highpages();
1967 val
->mem_unit
= PAGE_SIZE
;
1970 EXPORT_SYMBOL(si_meminfo
);
1973 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1975 pg_data_t
*pgdat
= NODE_DATA(nid
);
1977 val
->totalram
= pgdat
->node_present_pages
;
1978 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1979 #ifdef CONFIG_HIGHMEM
1980 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1981 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1987 val
->mem_unit
= PAGE_SIZE
;
1991 #define K(x) ((x) << (PAGE_SHIFT-10))
1994 * Show free area list (used inside shift_scroll-lock stuff)
1995 * We also calculate the percentage fragmentation. We do this by counting the
1996 * memory on each free list with the exception of the first item on the list.
1998 void show_free_areas(void)
2003 for_each_populated_zone(zone
) {
2005 printk("%s per-cpu:\n", zone
->name
);
2007 for_each_online_cpu(cpu
) {
2008 struct per_cpu_pageset
*pageset
;
2010 pageset
= zone_pcp(zone
, cpu
);
2012 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2013 cpu
, pageset
->pcp
.high
,
2014 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2018 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2019 " inactive_file:%lu"
2020 //TODO: check/adjust line lengths
2021 #ifdef CONFIG_UNEVICTABLE_LRU
2024 " dirty:%lu writeback:%lu unstable:%lu\n"
2025 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2026 global_page_state(NR_ACTIVE_ANON
),
2027 global_page_state(NR_ACTIVE_FILE
),
2028 global_page_state(NR_INACTIVE_ANON
),
2029 global_page_state(NR_INACTIVE_FILE
),
2030 #ifdef CONFIG_UNEVICTABLE_LRU
2031 global_page_state(NR_UNEVICTABLE
),
2033 global_page_state(NR_FILE_DIRTY
),
2034 global_page_state(NR_WRITEBACK
),
2035 global_page_state(NR_UNSTABLE_NFS
),
2036 global_page_state(NR_FREE_PAGES
),
2037 global_page_state(NR_SLAB_RECLAIMABLE
) +
2038 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2039 global_page_state(NR_FILE_MAPPED
),
2040 global_page_state(NR_PAGETABLE
),
2041 global_page_state(NR_BOUNCE
));
2043 for_each_populated_zone(zone
) {
2052 " active_anon:%lukB"
2053 " inactive_anon:%lukB"
2054 " active_file:%lukB"
2055 " inactive_file:%lukB"
2056 #ifdef CONFIG_UNEVICTABLE_LRU
2057 " unevictable:%lukB"
2060 " pages_scanned:%lu"
2061 " all_unreclaimable? %s"
2064 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2067 K(zone
->pages_high
),
2068 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2069 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2070 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2071 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2072 #ifdef CONFIG_UNEVICTABLE_LRU
2073 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2075 K(zone
->present_pages
),
2076 zone
->pages_scanned
,
2077 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
2079 printk("lowmem_reserve[]:");
2080 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2081 printk(" %lu", zone
->lowmem_reserve
[i
]);
2085 for_each_populated_zone(zone
) {
2086 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2089 printk("%s: ", zone
->name
);
2091 spin_lock_irqsave(&zone
->lock
, flags
);
2092 for (order
= 0; order
< MAX_ORDER
; order
++) {
2093 nr
[order
] = zone
->free_area
[order
].nr_free
;
2094 total
+= nr
[order
] << order
;
2096 spin_unlock_irqrestore(&zone
->lock
, flags
);
2097 for (order
= 0; order
< MAX_ORDER
; order
++)
2098 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2099 printk("= %lukB\n", K(total
));
2102 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2104 show_swap_cache_info();
2107 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2109 zoneref
->zone
= zone
;
2110 zoneref
->zone_idx
= zone_idx(zone
);
2114 * Builds allocation fallback zone lists.
2116 * Add all populated zones of a node to the zonelist.
2118 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2119 int nr_zones
, enum zone_type zone_type
)
2123 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2128 zone
= pgdat
->node_zones
+ zone_type
;
2129 if (populated_zone(zone
)) {
2130 zoneref_set_zone(zone
,
2131 &zonelist
->_zonerefs
[nr_zones
++]);
2132 check_highest_zone(zone_type
);
2135 } while (zone_type
);
2142 * 0 = automatic detection of better ordering.
2143 * 1 = order by ([node] distance, -zonetype)
2144 * 2 = order by (-zonetype, [node] distance)
2146 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2147 * the same zonelist. So only NUMA can configure this param.
2149 #define ZONELIST_ORDER_DEFAULT 0
2150 #define ZONELIST_ORDER_NODE 1
2151 #define ZONELIST_ORDER_ZONE 2
2153 /* zonelist order in the kernel.
2154 * set_zonelist_order() will set this to NODE or ZONE.
2156 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2157 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2161 /* The value user specified ....changed by config */
2162 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2163 /* string for sysctl */
2164 #define NUMA_ZONELIST_ORDER_LEN 16
2165 char numa_zonelist_order
[16] = "default";
2168 * interface for configure zonelist ordering.
2169 * command line option "numa_zonelist_order"
2170 * = "[dD]efault - default, automatic configuration.
2171 * = "[nN]ode - order by node locality, then by zone within node
2172 * = "[zZ]one - order by zone, then by locality within zone
2175 static int __parse_numa_zonelist_order(char *s
)
2177 if (*s
== 'd' || *s
== 'D') {
2178 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2179 } else if (*s
== 'n' || *s
== 'N') {
2180 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2181 } else if (*s
== 'z' || *s
== 'Z') {
2182 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2185 "Ignoring invalid numa_zonelist_order value: "
2192 static __init
int setup_numa_zonelist_order(char *s
)
2195 return __parse_numa_zonelist_order(s
);
2198 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2201 * sysctl handler for numa_zonelist_order
2203 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2204 struct file
*file
, void __user
*buffer
, size_t *length
,
2207 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2211 strncpy(saved_string
, (char*)table
->data
,
2212 NUMA_ZONELIST_ORDER_LEN
);
2213 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2217 int oldval
= user_zonelist_order
;
2218 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2220 * bogus value. restore saved string
2222 strncpy((char*)table
->data
, saved_string
,
2223 NUMA_ZONELIST_ORDER_LEN
);
2224 user_zonelist_order
= oldval
;
2225 } else if (oldval
!= user_zonelist_order
)
2226 build_all_zonelists();
2232 #define MAX_NODE_LOAD (num_online_nodes())
2233 static int node_load
[MAX_NUMNODES
];
2236 * find_next_best_node - find the next node that should appear in a given node's fallback list
2237 * @node: node whose fallback list we're appending
2238 * @used_node_mask: nodemask_t of already used nodes
2240 * We use a number of factors to determine which is the next node that should
2241 * appear on a given node's fallback list. The node should not have appeared
2242 * already in @node's fallback list, and it should be the next closest node
2243 * according to the distance array (which contains arbitrary distance values
2244 * from each node to each node in the system), and should also prefer nodes
2245 * with no CPUs, since presumably they'll have very little allocation pressure
2246 * on them otherwise.
2247 * It returns -1 if no node is found.
2249 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2252 int min_val
= INT_MAX
;
2254 const struct cpumask
*tmp
= cpumask_of_node(0);
2256 /* Use the local node if we haven't already */
2257 if (!node_isset(node
, *used_node_mask
)) {
2258 node_set(node
, *used_node_mask
);
2262 for_each_node_state(n
, N_HIGH_MEMORY
) {
2264 /* Don't want a node to appear more than once */
2265 if (node_isset(n
, *used_node_mask
))
2268 /* Use the distance array to find the distance */
2269 val
= node_distance(node
, n
);
2271 /* Penalize nodes under us ("prefer the next node") */
2274 /* Give preference to headless and unused nodes */
2275 tmp
= cpumask_of_node(n
);
2276 if (!cpumask_empty(tmp
))
2277 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2279 /* Slight preference for less loaded node */
2280 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2281 val
+= node_load
[n
];
2283 if (val
< min_val
) {
2290 node_set(best_node
, *used_node_mask
);
2297 * Build zonelists ordered by node and zones within node.
2298 * This results in maximum locality--normal zone overflows into local
2299 * DMA zone, if any--but risks exhausting DMA zone.
2301 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2304 struct zonelist
*zonelist
;
2306 zonelist
= &pgdat
->node_zonelists
[0];
2307 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2309 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2311 zonelist
->_zonerefs
[j
].zone
= NULL
;
2312 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2316 * Build gfp_thisnode zonelists
2318 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2321 struct zonelist
*zonelist
;
2323 zonelist
= &pgdat
->node_zonelists
[1];
2324 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2325 zonelist
->_zonerefs
[j
].zone
= NULL
;
2326 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2330 * Build zonelists ordered by zone and nodes within zones.
2331 * This results in conserving DMA zone[s] until all Normal memory is
2332 * exhausted, but results in overflowing to remote node while memory
2333 * may still exist in local DMA zone.
2335 static int node_order
[MAX_NUMNODES
];
2337 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2340 int zone_type
; /* needs to be signed */
2342 struct zonelist
*zonelist
;
2344 zonelist
= &pgdat
->node_zonelists
[0];
2346 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2347 for (j
= 0; j
< nr_nodes
; j
++) {
2348 node
= node_order
[j
];
2349 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2350 if (populated_zone(z
)) {
2352 &zonelist
->_zonerefs
[pos
++]);
2353 check_highest_zone(zone_type
);
2357 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2358 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2361 static int default_zonelist_order(void)
2364 unsigned long low_kmem_size
,total_size
;
2368 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2369 * If they are really small and used heavily, the system can fall
2370 * into OOM very easily.
2371 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2373 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2376 for_each_online_node(nid
) {
2377 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2378 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2379 if (populated_zone(z
)) {
2380 if (zone_type
< ZONE_NORMAL
)
2381 low_kmem_size
+= z
->present_pages
;
2382 total_size
+= z
->present_pages
;
2386 if (!low_kmem_size
|| /* there are no DMA area. */
2387 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2388 return ZONELIST_ORDER_NODE
;
2390 * look into each node's config.
2391 * If there is a node whose DMA/DMA32 memory is very big area on
2392 * local memory, NODE_ORDER may be suitable.
2394 average_size
= total_size
/
2395 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2396 for_each_online_node(nid
) {
2399 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2400 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2401 if (populated_zone(z
)) {
2402 if (zone_type
< ZONE_NORMAL
)
2403 low_kmem_size
+= z
->present_pages
;
2404 total_size
+= z
->present_pages
;
2407 if (low_kmem_size
&&
2408 total_size
> average_size
&& /* ignore small node */
2409 low_kmem_size
> total_size
* 70/100)
2410 return ZONELIST_ORDER_NODE
;
2412 return ZONELIST_ORDER_ZONE
;
2415 static void set_zonelist_order(void)
2417 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2418 current_zonelist_order
= default_zonelist_order();
2420 current_zonelist_order
= user_zonelist_order
;
2423 static void build_zonelists(pg_data_t
*pgdat
)
2427 nodemask_t used_mask
;
2428 int local_node
, prev_node
;
2429 struct zonelist
*zonelist
;
2430 int order
= current_zonelist_order
;
2432 /* initialize zonelists */
2433 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2434 zonelist
= pgdat
->node_zonelists
+ i
;
2435 zonelist
->_zonerefs
[0].zone
= NULL
;
2436 zonelist
->_zonerefs
[0].zone_idx
= 0;
2439 /* NUMA-aware ordering of nodes */
2440 local_node
= pgdat
->node_id
;
2441 load
= num_online_nodes();
2442 prev_node
= local_node
;
2443 nodes_clear(used_mask
);
2445 memset(node_load
, 0, sizeof(node_load
));
2446 memset(node_order
, 0, sizeof(node_order
));
2449 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2450 int distance
= node_distance(local_node
, node
);
2453 * If another node is sufficiently far away then it is better
2454 * to reclaim pages in a zone before going off node.
2456 if (distance
> RECLAIM_DISTANCE
)
2457 zone_reclaim_mode
= 1;
2460 * We don't want to pressure a particular node.
2461 * So adding penalty to the first node in same
2462 * distance group to make it round-robin.
2464 if (distance
!= node_distance(local_node
, prev_node
))
2465 node_load
[node
] = load
;
2469 if (order
== ZONELIST_ORDER_NODE
)
2470 build_zonelists_in_node_order(pgdat
, node
);
2472 node_order
[j
++] = node
; /* remember order */
2475 if (order
== ZONELIST_ORDER_ZONE
) {
2476 /* calculate node order -- i.e., DMA last! */
2477 build_zonelists_in_zone_order(pgdat
, j
);
2480 build_thisnode_zonelists(pgdat
);
2483 /* Construct the zonelist performance cache - see further mmzone.h */
2484 static void build_zonelist_cache(pg_data_t
*pgdat
)
2486 struct zonelist
*zonelist
;
2487 struct zonelist_cache
*zlc
;
2490 zonelist
= &pgdat
->node_zonelists
[0];
2491 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2492 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2493 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2494 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2498 #else /* CONFIG_NUMA */
2500 static void set_zonelist_order(void)
2502 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2505 static void build_zonelists(pg_data_t
*pgdat
)
2507 int node
, local_node
;
2509 struct zonelist
*zonelist
;
2511 local_node
= pgdat
->node_id
;
2513 zonelist
= &pgdat
->node_zonelists
[0];
2514 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2517 * Now we build the zonelist so that it contains the zones
2518 * of all the other nodes.
2519 * We don't want to pressure a particular node, so when
2520 * building the zones for node N, we make sure that the
2521 * zones coming right after the local ones are those from
2522 * node N+1 (modulo N)
2524 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2525 if (!node_online(node
))
2527 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2530 for (node
= 0; node
< local_node
; node
++) {
2531 if (!node_online(node
))
2533 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2537 zonelist
->_zonerefs
[j
].zone
= NULL
;
2538 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2541 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2542 static void build_zonelist_cache(pg_data_t
*pgdat
)
2544 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2547 #endif /* CONFIG_NUMA */
2549 /* return values int ....just for stop_machine() */
2550 static int __build_all_zonelists(void *dummy
)
2554 for_each_online_node(nid
) {
2555 pg_data_t
*pgdat
= NODE_DATA(nid
);
2557 build_zonelists(pgdat
);
2558 build_zonelist_cache(pgdat
);
2563 void build_all_zonelists(void)
2565 set_zonelist_order();
2567 if (system_state
== SYSTEM_BOOTING
) {
2568 __build_all_zonelists(NULL
);
2569 mminit_verify_zonelist();
2570 cpuset_init_current_mems_allowed();
2572 /* we have to stop all cpus to guarantee there is no user
2574 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2575 /* cpuset refresh routine should be here */
2577 vm_total_pages
= nr_free_pagecache_pages();
2579 * Disable grouping by mobility if the number of pages in the
2580 * system is too low to allow the mechanism to work. It would be
2581 * more accurate, but expensive to check per-zone. This check is
2582 * made on memory-hotadd so a system can start with mobility
2583 * disabled and enable it later
2585 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2586 page_group_by_mobility_disabled
= 1;
2588 page_group_by_mobility_disabled
= 0;
2590 printk("Built %i zonelists in %s order, mobility grouping %s. "
2591 "Total pages: %ld\n",
2593 zonelist_order_name
[current_zonelist_order
],
2594 page_group_by_mobility_disabled
? "off" : "on",
2597 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2602 * Helper functions to size the waitqueue hash table.
2603 * Essentially these want to choose hash table sizes sufficiently
2604 * large so that collisions trying to wait on pages are rare.
2605 * But in fact, the number of active page waitqueues on typical
2606 * systems is ridiculously low, less than 200. So this is even
2607 * conservative, even though it seems large.
2609 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2610 * waitqueues, i.e. the size of the waitq table given the number of pages.
2612 #define PAGES_PER_WAITQUEUE 256
2614 #ifndef CONFIG_MEMORY_HOTPLUG
2615 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2617 unsigned long size
= 1;
2619 pages
/= PAGES_PER_WAITQUEUE
;
2621 while (size
< pages
)
2625 * Once we have dozens or even hundreds of threads sleeping
2626 * on IO we've got bigger problems than wait queue collision.
2627 * Limit the size of the wait table to a reasonable size.
2629 size
= min(size
, 4096UL);
2631 return max(size
, 4UL);
2635 * A zone's size might be changed by hot-add, so it is not possible to determine
2636 * a suitable size for its wait_table. So we use the maximum size now.
2638 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2640 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2641 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2642 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2644 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2645 * or more by the traditional way. (See above). It equals:
2647 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2648 * ia64(16K page size) : = ( 8G + 4M)byte.
2649 * powerpc (64K page size) : = (32G +16M)byte.
2651 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2658 * This is an integer logarithm so that shifts can be used later
2659 * to extract the more random high bits from the multiplicative
2660 * hash function before the remainder is taken.
2662 static inline unsigned long wait_table_bits(unsigned long size
)
2667 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2670 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2671 * of blocks reserved is based on zone->pages_min. The memory within the
2672 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2673 * higher will lead to a bigger reserve which will get freed as contiguous
2674 * blocks as reclaim kicks in
2676 static void setup_zone_migrate_reserve(struct zone
*zone
)
2678 unsigned long start_pfn
, pfn
, end_pfn
;
2680 unsigned long reserve
, block_migratetype
;
2682 /* Get the start pfn, end pfn and the number of blocks to reserve */
2683 start_pfn
= zone
->zone_start_pfn
;
2684 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2685 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2688 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2689 if (!pfn_valid(pfn
))
2691 page
= pfn_to_page(pfn
);
2693 /* Watch out for overlapping nodes */
2694 if (page_to_nid(page
) != zone_to_nid(zone
))
2697 /* Blocks with reserved pages will never free, skip them. */
2698 if (PageReserved(page
))
2701 block_migratetype
= get_pageblock_migratetype(page
);
2703 /* If this block is reserved, account for it */
2704 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2709 /* Suitable for reserving if this block is movable */
2710 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2711 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2712 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2718 * If the reserve is met and this is a previous reserved block,
2721 if (block_migratetype
== MIGRATE_RESERVE
) {
2722 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2723 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2729 * Initially all pages are reserved - free ones are freed
2730 * up by free_all_bootmem() once the early boot process is
2731 * done. Non-atomic initialization, single-pass.
2733 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2734 unsigned long start_pfn
, enum memmap_context context
)
2737 unsigned long end_pfn
= start_pfn
+ size
;
2741 if (highest_memmap_pfn
< end_pfn
- 1)
2742 highest_memmap_pfn
= end_pfn
- 1;
2744 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2745 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2747 * There can be holes in boot-time mem_map[]s
2748 * handed to this function. They do not
2749 * exist on hotplugged memory.
2751 if (context
== MEMMAP_EARLY
) {
2752 if (!early_pfn_valid(pfn
))
2754 if (!early_pfn_in_nid(pfn
, nid
))
2757 page
= pfn_to_page(pfn
);
2758 set_page_links(page
, zone
, nid
, pfn
);
2759 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2760 init_page_count(page
);
2761 reset_page_mapcount(page
);
2762 SetPageReserved(page
);
2764 * Mark the block movable so that blocks are reserved for
2765 * movable at startup. This will force kernel allocations
2766 * to reserve their blocks rather than leaking throughout
2767 * the address space during boot when many long-lived
2768 * kernel allocations are made. Later some blocks near
2769 * the start are marked MIGRATE_RESERVE by
2770 * setup_zone_migrate_reserve()
2772 * bitmap is created for zone's valid pfn range. but memmap
2773 * can be created for invalid pages (for alignment)
2774 * check here not to call set_pageblock_migratetype() against
2777 if ((z
->zone_start_pfn
<= pfn
)
2778 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2779 && !(pfn
& (pageblock_nr_pages
- 1)))
2780 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2782 INIT_LIST_HEAD(&page
->lru
);
2783 #ifdef WANT_PAGE_VIRTUAL
2784 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2785 if (!is_highmem_idx(zone
))
2786 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2791 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2794 for_each_migratetype_order(order
, t
) {
2795 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2796 zone
->free_area
[order
].nr_free
= 0;
2800 #ifndef __HAVE_ARCH_MEMMAP_INIT
2801 #define memmap_init(size, nid, zone, start_pfn) \
2802 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2805 static int zone_batchsize(struct zone
*zone
)
2811 * The per-cpu-pages pools are set to around 1000th of the
2812 * size of the zone. But no more than 1/2 of a meg.
2814 * OK, so we don't know how big the cache is. So guess.
2816 batch
= zone
->present_pages
/ 1024;
2817 if (batch
* PAGE_SIZE
> 512 * 1024)
2818 batch
= (512 * 1024) / PAGE_SIZE
;
2819 batch
/= 4; /* We effectively *= 4 below */
2824 * Clamp the batch to a 2^n - 1 value. Having a power
2825 * of 2 value was found to be more likely to have
2826 * suboptimal cache aliasing properties in some cases.
2828 * For example if 2 tasks are alternately allocating
2829 * batches of pages, one task can end up with a lot
2830 * of pages of one half of the possible page colors
2831 * and the other with pages of the other colors.
2833 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
2838 /* The deferral and batching of frees should be suppressed under NOMMU
2841 * The problem is that NOMMU needs to be able to allocate large chunks
2842 * of contiguous memory as there's no hardware page translation to
2843 * assemble apparent contiguous memory from discontiguous pages.
2845 * Queueing large contiguous runs of pages for batching, however,
2846 * causes the pages to actually be freed in smaller chunks. As there
2847 * can be a significant delay between the individual batches being
2848 * recycled, this leads to the once large chunks of space being
2849 * fragmented and becoming unavailable for high-order allocations.
2855 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2857 struct per_cpu_pages
*pcp
;
2859 memset(p
, 0, sizeof(*p
));
2863 pcp
->high
= 6 * batch
;
2864 pcp
->batch
= max(1UL, 1 * batch
);
2865 INIT_LIST_HEAD(&pcp
->list
);
2869 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2870 * to the value high for the pageset p.
2873 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2876 struct per_cpu_pages
*pcp
;
2880 pcp
->batch
= max(1UL, high
/4);
2881 if ((high
/4) > (PAGE_SHIFT
* 8))
2882 pcp
->batch
= PAGE_SHIFT
* 8;
2888 * Boot pageset table. One per cpu which is going to be used for all
2889 * zones and all nodes. The parameters will be set in such a way
2890 * that an item put on a list will immediately be handed over to
2891 * the buddy list. This is safe since pageset manipulation is done
2892 * with interrupts disabled.
2894 * Some NUMA counter updates may also be caught by the boot pagesets.
2896 * The boot_pagesets must be kept even after bootup is complete for
2897 * unused processors and/or zones. They do play a role for bootstrapping
2898 * hotplugged processors.
2900 * zoneinfo_show() and maybe other functions do
2901 * not check if the processor is online before following the pageset pointer.
2902 * Other parts of the kernel may not check if the zone is available.
2904 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2907 * Dynamically allocate memory for the
2908 * per cpu pageset array in struct zone.
2910 static int __cpuinit
process_zones(int cpu
)
2912 struct zone
*zone
, *dzone
;
2913 int node
= cpu_to_node(cpu
);
2915 node_set_state(node
, N_CPU
); /* this node has a cpu */
2917 for_each_populated_zone(zone
) {
2918 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2920 if (!zone_pcp(zone
, cpu
))
2923 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2925 if (percpu_pagelist_fraction
)
2926 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2927 (zone
->present_pages
/ percpu_pagelist_fraction
));
2932 for_each_zone(dzone
) {
2933 if (!populated_zone(dzone
))
2937 kfree(zone_pcp(dzone
, cpu
));
2938 zone_pcp(dzone
, cpu
) = NULL
;
2943 static inline void free_zone_pagesets(int cpu
)
2947 for_each_zone(zone
) {
2948 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2950 /* Free per_cpu_pageset if it is slab allocated */
2951 if (pset
!= &boot_pageset
[cpu
])
2953 zone_pcp(zone
, cpu
) = NULL
;
2957 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2958 unsigned long action
,
2961 int cpu
= (long)hcpu
;
2962 int ret
= NOTIFY_OK
;
2965 case CPU_UP_PREPARE
:
2966 case CPU_UP_PREPARE_FROZEN
:
2967 if (process_zones(cpu
))
2970 case CPU_UP_CANCELED
:
2971 case CPU_UP_CANCELED_FROZEN
:
2973 case CPU_DEAD_FROZEN
:
2974 free_zone_pagesets(cpu
);
2982 static struct notifier_block __cpuinitdata pageset_notifier
=
2983 { &pageset_cpuup_callback
, NULL
, 0 };
2985 void __init
setup_per_cpu_pageset(void)
2989 /* Initialize per_cpu_pageset for cpu 0.
2990 * A cpuup callback will do this for every cpu
2991 * as it comes online
2993 err
= process_zones(smp_processor_id());
2995 register_cpu_notifier(&pageset_notifier
);
3000 static noinline __init_refok
3001 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3004 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3008 * The per-page waitqueue mechanism uses hashed waitqueues
3011 zone
->wait_table_hash_nr_entries
=
3012 wait_table_hash_nr_entries(zone_size_pages
);
3013 zone
->wait_table_bits
=
3014 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3015 alloc_size
= zone
->wait_table_hash_nr_entries
3016 * sizeof(wait_queue_head_t
);
3018 if (!slab_is_available()) {
3019 zone
->wait_table
= (wait_queue_head_t
*)
3020 alloc_bootmem_node(pgdat
, alloc_size
);
3023 * This case means that a zone whose size was 0 gets new memory
3024 * via memory hot-add.
3025 * But it may be the case that a new node was hot-added. In
3026 * this case vmalloc() will not be able to use this new node's
3027 * memory - this wait_table must be initialized to use this new
3028 * node itself as well.
3029 * To use this new node's memory, further consideration will be
3032 zone
->wait_table
= vmalloc(alloc_size
);
3034 if (!zone
->wait_table
)
3037 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3038 init_waitqueue_head(zone
->wait_table
+ i
);
3043 static __meminit
void zone_pcp_init(struct zone
*zone
)
3046 unsigned long batch
= zone_batchsize(zone
);
3048 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3050 /* Early boot. Slab allocator not functional yet */
3051 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3052 setup_pageset(&boot_pageset
[cpu
],0);
3054 setup_pageset(zone_pcp(zone
,cpu
), batch
);
3057 if (zone
->present_pages
)
3058 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
3059 zone
->name
, zone
->present_pages
, batch
);
3062 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3063 unsigned long zone_start_pfn
,
3065 enum memmap_context context
)
3067 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3069 ret
= zone_wait_table_init(zone
, size
);
3072 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3074 zone
->zone_start_pfn
= zone_start_pfn
;
3076 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3077 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3079 (unsigned long)zone_idx(zone
),
3080 zone_start_pfn
, (zone_start_pfn
+ size
));
3082 zone_init_free_lists(zone
);
3087 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3089 * Basic iterator support. Return the first range of PFNs for a node
3090 * Note: nid == MAX_NUMNODES returns first region regardless of node
3092 static int __meminit
first_active_region_index_in_nid(int nid
)
3096 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3097 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3104 * Basic iterator support. Return the next active range of PFNs for a node
3105 * Note: nid == MAX_NUMNODES returns next region regardless of node
3107 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3109 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3110 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3116 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3118 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3119 * Architectures may implement their own version but if add_active_range()
3120 * was used and there are no special requirements, this is a convenient
3123 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3127 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3128 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3129 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3131 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3132 return early_node_map
[i
].nid
;
3134 /* This is a memory hole */
3137 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3139 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3143 nid
= __early_pfn_to_nid(pfn
);
3146 /* just returns 0 */
3150 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3151 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3155 nid
= __early_pfn_to_nid(pfn
);
3156 if (nid
>= 0 && nid
!= node
)
3162 /* Basic iterator support to walk early_node_map[] */
3163 #define for_each_active_range_index_in_nid(i, nid) \
3164 for (i = first_active_region_index_in_nid(nid); i != -1; \
3165 i = next_active_region_index_in_nid(i, nid))
3168 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3169 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3170 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3172 * If an architecture guarantees that all ranges registered with
3173 * add_active_ranges() contain no holes and may be freed, this
3174 * this function may be used instead of calling free_bootmem() manually.
3176 void __init
free_bootmem_with_active_regions(int nid
,
3177 unsigned long max_low_pfn
)
3181 for_each_active_range_index_in_nid(i
, nid
) {
3182 unsigned long size_pages
= 0;
3183 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3185 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3188 if (end_pfn
> max_low_pfn
)
3189 end_pfn
= max_low_pfn
;
3191 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3192 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3193 PFN_PHYS(early_node_map
[i
].start_pfn
),
3194 size_pages
<< PAGE_SHIFT
);
3198 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3203 for_each_active_range_index_in_nid(i
, nid
) {
3204 ret
= work_fn(early_node_map
[i
].start_pfn
,
3205 early_node_map
[i
].end_pfn
, data
);
3211 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3212 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3214 * If an architecture guarantees that all ranges registered with
3215 * add_active_ranges() contain no holes and may be freed, this
3216 * function may be used instead of calling memory_present() manually.
3218 void __init
sparse_memory_present_with_active_regions(int nid
)
3222 for_each_active_range_index_in_nid(i
, nid
)
3223 memory_present(early_node_map
[i
].nid
,
3224 early_node_map
[i
].start_pfn
,
3225 early_node_map
[i
].end_pfn
);
3229 * get_pfn_range_for_nid - Return the start and end page frames for a node
3230 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3231 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3232 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3234 * It returns the start and end page frame of a node based on information
3235 * provided by an arch calling add_active_range(). If called for a node
3236 * with no available memory, a warning is printed and the start and end
3239 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3240 unsigned long *start_pfn
, unsigned long *end_pfn
)
3246 for_each_active_range_index_in_nid(i
, nid
) {
3247 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3248 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3251 if (*start_pfn
== -1UL)
3256 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3257 * assumption is made that zones within a node are ordered in monotonic
3258 * increasing memory addresses so that the "highest" populated zone is used
3260 static void __init
find_usable_zone_for_movable(void)
3263 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3264 if (zone_index
== ZONE_MOVABLE
)
3267 if (arch_zone_highest_possible_pfn
[zone_index
] >
3268 arch_zone_lowest_possible_pfn
[zone_index
])
3272 VM_BUG_ON(zone_index
== -1);
3273 movable_zone
= zone_index
;
3277 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3278 * because it is sized independant of architecture. Unlike the other zones,
3279 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3280 * in each node depending on the size of each node and how evenly kernelcore
3281 * is distributed. This helper function adjusts the zone ranges
3282 * provided by the architecture for a given node by using the end of the
3283 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3284 * zones within a node are in order of monotonic increases memory addresses
3286 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3287 unsigned long zone_type
,
3288 unsigned long node_start_pfn
,
3289 unsigned long node_end_pfn
,
3290 unsigned long *zone_start_pfn
,
3291 unsigned long *zone_end_pfn
)
3293 /* Only adjust if ZONE_MOVABLE is on this node */
3294 if (zone_movable_pfn
[nid
]) {
3295 /* Size ZONE_MOVABLE */
3296 if (zone_type
== ZONE_MOVABLE
) {
3297 *zone_start_pfn
= zone_movable_pfn
[nid
];
3298 *zone_end_pfn
= min(node_end_pfn
,
3299 arch_zone_highest_possible_pfn
[movable_zone
]);
3301 /* Adjust for ZONE_MOVABLE starting within this range */
3302 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3303 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3304 *zone_end_pfn
= zone_movable_pfn
[nid
];
3306 /* Check if this whole range is within ZONE_MOVABLE */
3307 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3308 *zone_start_pfn
= *zone_end_pfn
;
3313 * Return the number of pages a zone spans in a node, including holes
3314 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3316 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3317 unsigned long zone_type
,
3318 unsigned long *ignored
)
3320 unsigned long node_start_pfn
, node_end_pfn
;
3321 unsigned long zone_start_pfn
, zone_end_pfn
;
3323 /* Get the start and end of the node and zone */
3324 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3325 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3326 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3327 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3328 node_start_pfn
, node_end_pfn
,
3329 &zone_start_pfn
, &zone_end_pfn
);
3331 /* Check that this node has pages within the zone's required range */
3332 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3335 /* Move the zone boundaries inside the node if necessary */
3336 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3337 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3339 /* Return the spanned pages */
3340 return zone_end_pfn
- zone_start_pfn
;
3344 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3345 * then all holes in the requested range will be accounted for.
3347 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3348 unsigned long range_start_pfn
,
3349 unsigned long range_end_pfn
)
3352 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3353 unsigned long start_pfn
;
3355 /* Find the end_pfn of the first active range of pfns in the node */
3356 i
= first_active_region_index_in_nid(nid
);
3360 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3362 /* Account for ranges before physical memory on this node */
3363 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3364 hole_pages
= prev_end_pfn
- range_start_pfn
;
3366 /* Find all holes for the zone within the node */
3367 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3369 /* No need to continue if prev_end_pfn is outside the zone */
3370 if (prev_end_pfn
>= range_end_pfn
)
3373 /* Make sure the end of the zone is not within the hole */
3374 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3375 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3377 /* Update the hole size cound and move on */
3378 if (start_pfn
> range_start_pfn
) {
3379 BUG_ON(prev_end_pfn
> start_pfn
);
3380 hole_pages
+= start_pfn
- prev_end_pfn
;
3382 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3385 /* Account for ranges past physical memory on this node */
3386 if (range_end_pfn
> prev_end_pfn
)
3387 hole_pages
+= range_end_pfn
-
3388 max(range_start_pfn
, prev_end_pfn
);
3394 * absent_pages_in_range - Return number of page frames in holes within a range
3395 * @start_pfn: The start PFN to start searching for holes
3396 * @end_pfn: The end PFN to stop searching for holes
3398 * It returns the number of pages frames in memory holes within a range.
3400 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3401 unsigned long end_pfn
)
3403 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3406 /* Return the number of page frames in holes in a zone on a node */
3407 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3408 unsigned long zone_type
,
3409 unsigned long *ignored
)
3411 unsigned long node_start_pfn
, node_end_pfn
;
3412 unsigned long zone_start_pfn
, zone_end_pfn
;
3414 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3415 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3417 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3420 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3421 node_start_pfn
, node_end_pfn
,
3422 &zone_start_pfn
, &zone_end_pfn
);
3423 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3427 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3428 unsigned long zone_type
,
3429 unsigned long *zones_size
)
3431 return zones_size
[zone_type
];
3434 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3435 unsigned long zone_type
,
3436 unsigned long *zholes_size
)
3441 return zholes_size
[zone_type
];
3446 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3447 unsigned long *zones_size
, unsigned long *zholes_size
)
3449 unsigned long realtotalpages
, totalpages
= 0;
3452 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3453 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3455 pgdat
->node_spanned_pages
= totalpages
;
3457 realtotalpages
= totalpages
;
3458 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3460 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3462 pgdat
->node_present_pages
= realtotalpages
;
3463 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3467 #ifndef CONFIG_SPARSEMEM
3469 * Calculate the size of the zone->blockflags rounded to an unsigned long
3470 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3471 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3472 * round what is now in bits to nearest long in bits, then return it in
3475 static unsigned long __init
usemap_size(unsigned long zonesize
)
3477 unsigned long usemapsize
;
3479 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3480 usemapsize
= usemapsize
>> pageblock_order
;
3481 usemapsize
*= NR_PAGEBLOCK_BITS
;
3482 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3484 return usemapsize
/ 8;
3487 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3488 struct zone
*zone
, unsigned long zonesize
)
3490 unsigned long usemapsize
= usemap_size(zonesize
);
3491 zone
->pageblock_flags
= NULL
;
3493 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3496 static void inline setup_usemap(struct pglist_data
*pgdat
,
3497 struct zone
*zone
, unsigned long zonesize
) {}
3498 #endif /* CONFIG_SPARSEMEM */
3500 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3502 /* Return a sensible default order for the pageblock size. */
3503 static inline int pageblock_default_order(void)
3505 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3506 return HUGETLB_PAGE_ORDER
;
3511 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3512 static inline void __init
set_pageblock_order(unsigned int order
)
3514 /* Check that pageblock_nr_pages has not already been setup */
3515 if (pageblock_order
)
3519 * Assume the largest contiguous order of interest is a huge page.
3520 * This value may be variable depending on boot parameters on IA64
3522 pageblock_order
= order
;
3524 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3527 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3528 * and pageblock_default_order() are unused as pageblock_order is set
3529 * at compile-time. See include/linux/pageblock-flags.h for the values of
3530 * pageblock_order based on the kernel config
3532 static inline int pageblock_default_order(unsigned int order
)
3536 #define set_pageblock_order(x) do {} while (0)
3538 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3541 * Set up the zone data structures:
3542 * - mark all pages reserved
3543 * - mark all memory queues empty
3544 * - clear the memory bitmaps
3546 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3547 unsigned long *zones_size
, unsigned long *zholes_size
)
3550 int nid
= pgdat
->node_id
;
3551 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3554 pgdat_resize_init(pgdat
);
3555 pgdat
->nr_zones
= 0;
3556 init_waitqueue_head(&pgdat
->kswapd_wait
);
3557 pgdat
->kswapd_max_order
= 0;
3558 pgdat_page_cgroup_init(pgdat
);
3560 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3561 struct zone
*zone
= pgdat
->node_zones
+ j
;
3562 unsigned long size
, realsize
, memmap_pages
;
3565 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3566 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3570 * Adjust realsize so that it accounts for how much memory
3571 * is used by this zone for memmap. This affects the watermark
3572 * and per-cpu initialisations
3575 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3576 if (realsize
>= memmap_pages
) {
3577 realsize
-= memmap_pages
;
3580 " %s zone: %lu pages used for memmap\n",
3581 zone_names
[j
], memmap_pages
);
3584 " %s zone: %lu pages exceeds realsize %lu\n",
3585 zone_names
[j
], memmap_pages
, realsize
);
3587 /* Account for reserved pages */
3588 if (j
== 0 && realsize
> dma_reserve
) {
3589 realsize
-= dma_reserve
;
3590 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3591 zone_names
[0], dma_reserve
);
3594 if (!is_highmem_idx(j
))
3595 nr_kernel_pages
+= realsize
;
3596 nr_all_pages
+= realsize
;
3598 zone
->spanned_pages
= size
;
3599 zone
->present_pages
= realsize
;
3602 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3604 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3606 zone
->name
= zone_names
[j
];
3607 spin_lock_init(&zone
->lock
);
3608 spin_lock_init(&zone
->lru_lock
);
3609 zone_seqlock_init(zone
);
3610 zone
->zone_pgdat
= pgdat
;
3612 zone
->prev_priority
= DEF_PRIORITY
;
3614 zone_pcp_init(zone
);
3616 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3617 zone
->lru
[l
].nr_scan
= 0;
3619 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3620 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3621 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3622 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3623 zap_zone_vm_stats(zone
);
3628 set_pageblock_order(pageblock_default_order());
3629 setup_usemap(pgdat
, zone
, size
);
3630 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3631 size
, MEMMAP_EARLY
);
3633 memmap_init(size
, nid
, j
, zone_start_pfn
);
3634 zone_start_pfn
+= size
;
3638 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3640 /* Skip empty nodes */
3641 if (!pgdat
->node_spanned_pages
)
3644 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3645 /* ia64 gets its own node_mem_map, before this, without bootmem */
3646 if (!pgdat
->node_mem_map
) {
3647 unsigned long size
, start
, end
;
3651 * The zone's endpoints aren't required to be MAX_ORDER
3652 * aligned but the node_mem_map endpoints must be in order
3653 * for the buddy allocator to function correctly.
3655 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3656 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3657 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3658 size
= (end
- start
) * sizeof(struct page
);
3659 map
= alloc_remap(pgdat
->node_id
, size
);
3661 map
= alloc_bootmem_node(pgdat
, size
);
3662 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3664 #ifndef CONFIG_NEED_MULTIPLE_NODES
3666 * With no DISCONTIG, the global mem_map is just set as node 0's
3668 if (pgdat
== NODE_DATA(0)) {
3669 mem_map
= NODE_DATA(0)->node_mem_map
;
3670 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3671 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3672 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3673 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3676 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3679 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3680 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3682 pg_data_t
*pgdat
= NODE_DATA(nid
);
3684 pgdat
->node_id
= nid
;
3685 pgdat
->node_start_pfn
= node_start_pfn
;
3686 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3688 alloc_node_mem_map(pgdat
);
3689 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3690 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3691 nid
, (unsigned long)pgdat
,
3692 (unsigned long)pgdat
->node_mem_map
);
3695 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3698 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3700 #if MAX_NUMNODES > 1
3702 * Figure out the number of possible node ids.
3704 static void __init
setup_nr_node_ids(void)
3707 unsigned int highest
= 0;
3709 for_each_node_mask(node
, node_possible_map
)
3711 nr_node_ids
= highest
+ 1;
3714 static inline void setup_nr_node_ids(void)
3720 * add_active_range - Register a range of PFNs backed by physical memory
3721 * @nid: The node ID the range resides on
3722 * @start_pfn: The start PFN of the available physical memory
3723 * @end_pfn: The end PFN of the available physical memory
3725 * These ranges are stored in an early_node_map[] and later used by
3726 * free_area_init_nodes() to calculate zone sizes and holes. If the
3727 * range spans a memory hole, it is up to the architecture to ensure
3728 * the memory is not freed by the bootmem allocator. If possible
3729 * the range being registered will be merged with existing ranges.
3731 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3732 unsigned long end_pfn
)
3736 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3737 "Entering add_active_range(%d, %#lx, %#lx) "
3738 "%d entries of %d used\n",
3739 nid
, start_pfn
, end_pfn
,
3740 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3742 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3744 /* Merge with existing active regions if possible */
3745 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3746 if (early_node_map
[i
].nid
!= nid
)
3749 /* Skip if an existing region covers this new one */
3750 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3751 end_pfn
<= early_node_map
[i
].end_pfn
)
3754 /* Merge forward if suitable */
3755 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3756 end_pfn
> early_node_map
[i
].end_pfn
) {
3757 early_node_map
[i
].end_pfn
= end_pfn
;
3761 /* Merge backward if suitable */
3762 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3763 end_pfn
>= early_node_map
[i
].start_pfn
) {
3764 early_node_map
[i
].start_pfn
= start_pfn
;
3769 /* Check that early_node_map is large enough */
3770 if (i
>= MAX_ACTIVE_REGIONS
) {
3771 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3772 MAX_ACTIVE_REGIONS
);
3776 early_node_map
[i
].nid
= nid
;
3777 early_node_map
[i
].start_pfn
= start_pfn
;
3778 early_node_map
[i
].end_pfn
= end_pfn
;
3779 nr_nodemap_entries
= i
+ 1;
3783 * remove_active_range - Shrink an existing registered range of PFNs
3784 * @nid: The node id the range is on that should be shrunk
3785 * @start_pfn: The new PFN of the range
3786 * @end_pfn: The new PFN of the range
3788 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3789 * The map is kept near the end physical page range that has already been
3790 * registered. This function allows an arch to shrink an existing registered
3793 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
3794 unsigned long end_pfn
)
3799 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
3800 nid
, start_pfn
, end_pfn
);
3802 /* Find the old active region end and shrink */
3803 for_each_active_range_index_in_nid(i
, nid
) {
3804 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3805 early_node_map
[i
].end_pfn
<= end_pfn
) {
3807 early_node_map
[i
].start_pfn
= 0;
3808 early_node_map
[i
].end_pfn
= 0;
3812 if (early_node_map
[i
].start_pfn
< start_pfn
&&
3813 early_node_map
[i
].end_pfn
> start_pfn
) {
3814 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
3815 early_node_map
[i
].end_pfn
= start_pfn
;
3816 if (temp_end_pfn
> end_pfn
)
3817 add_active_range(nid
, end_pfn
, temp_end_pfn
);
3820 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3821 early_node_map
[i
].end_pfn
> end_pfn
&&
3822 early_node_map
[i
].start_pfn
< end_pfn
) {
3823 early_node_map
[i
].start_pfn
= end_pfn
;
3831 /* remove the blank ones */
3832 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
3833 if (early_node_map
[i
].nid
!= nid
)
3835 if (early_node_map
[i
].end_pfn
)
3837 /* we found it, get rid of it */
3838 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
3839 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
3840 sizeof(early_node_map
[j
]));
3841 j
= nr_nodemap_entries
- 1;
3842 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
3843 nr_nodemap_entries
--;
3848 * remove_all_active_ranges - Remove all currently registered regions
3850 * During discovery, it may be found that a table like SRAT is invalid
3851 * and an alternative discovery method must be used. This function removes
3852 * all currently registered regions.
3854 void __init
remove_all_active_ranges(void)
3856 memset(early_node_map
, 0, sizeof(early_node_map
));
3857 nr_nodemap_entries
= 0;
3860 /* Compare two active node_active_regions */
3861 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3863 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3864 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3866 /* Done this way to avoid overflows */
3867 if (arange
->start_pfn
> brange
->start_pfn
)
3869 if (arange
->start_pfn
< brange
->start_pfn
)
3875 /* sort the node_map by start_pfn */
3876 static void __init
sort_node_map(void)
3878 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3879 sizeof(struct node_active_region
),
3880 cmp_node_active_region
, NULL
);
3883 /* Find the lowest pfn for a node */
3884 static unsigned long __init
find_min_pfn_for_node(int nid
)
3887 unsigned long min_pfn
= ULONG_MAX
;
3889 /* Assuming a sorted map, the first range found has the starting pfn */
3890 for_each_active_range_index_in_nid(i
, nid
)
3891 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3893 if (min_pfn
== ULONG_MAX
) {
3895 "Could not find start_pfn for node %d\n", nid
);
3903 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3905 * It returns the minimum PFN based on information provided via
3906 * add_active_range().
3908 unsigned long __init
find_min_pfn_with_active_regions(void)
3910 return find_min_pfn_for_node(MAX_NUMNODES
);
3914 * early_calculate_totalpages()
3915 * Sum pages in active regions for movable zone.
3916 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3918 static unsigned long __init
early_calculate_totalpages(void)
3921 unsigned long totalpages
= 0;
3923 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3924 unsigned long pages
= early_node_map
[i
].end_pfn
-
3925 early_node_map
[i
].start_pfn
;
3926 totalpages
+= pages
;
3928 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3934 * Find the PFN the Movable zone begins in each node. Kernel memory
3935 * is spread evenly between nodes as long as the nodes have enough
3936 * memory. When they don't, some nodes will have more kernelcore than
3939 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3942 unsigned long usable_startpfn
;
3943 unsigned long kernelcore_node
, kernelcore_remaining
;
3944 unsigned long totalpages
= early_calculate_totalpages();
3945 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3948 * If movablecore was specified, calculate what size of
3949 * kernelcore that corresponds so that memory usable for
3950 * any allocation type is evenly spread. If both kernelcore
3951 * and movablecore are specified, then the value of kernelcore
3952 * will be used for required_kernelcore if it's greater than
3953 * what movablecore would have allowed.
3955 if (required_movablecore
) {
3956 unsigned long corepages
;
3959 * Round-up so that ZONE_MOVABLE is at least as large as what
3960 * was requested by the user
3962 required_movablecore
=
3963 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3964 corepages
= totalpages
- required_movablecore
;
3966 required_kernelcore
= max(required_kernelcore
, corepages
);
3969 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3970 if (!required_kernelcore
)
3973 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3974 find_usable_zone_for_movable();
3975 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3978 /* Spread kernelcore memory as evenly as possible throughout nodes */
3979 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3980 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3982 * Recalculate kernelcore_node if the division per node
3983 * now exceeds what is necessary to satisfy the requested
3984 * amount of memory for the kernel
3986 if (required_kernelcore
< kernelcore_node
)
3987 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3990 * As the map is walked, we track how much memory is usable
3991 * by the kernel using kernelcore_remaining. When it is
3992 * 0, the rest of the node is usable by ZONE_MOVABLE
3994 kernelcore_remaining
= kernelcore_node
;
3996 /* Go through each range of PFNs within this node */
3997 for_each_active_range_index_in_nid(i
, nid
) {
3998 unsigned long start_pfn
, end_pfn
;
3999 unsigned long size_pages
;
4001 start_pfn
= max(early_node_map
[i
].start_pfn
,
4002 zone_movable_pfn
[nid
]);
4003 end_pfn
= early_node_map
[i
].end_pfn
;
4004 if (start_pfn
>= end_pfn
)
4007 /* Account for what is only usable for kernelcore */
4008 if (start_pfn
< usable_startpfn
) {
4009 unsigned long kernel_pages
;
4010 kernel_pages
= min(end_pfn
, usable_startpfn
)
4013 kernelcore_remaining
-= min(kernel_pages
,
4014 kernelcore_remaining
);
4015 required_kernelcore
-= min(kernel_pages
,
4016 required_kernelcore
);
4018 /* Continue if range is now fully accounted */
4019 if (end_pfn
<= usable_startpfn
) {
4022 * Push zone_movable_pfn to the end so
4023 * that if we have to rebalance
4024 * kernelcore across nodes, we will
4025 * not double account here
4027 zone_movable_pfn
[nid
] = end_pfn
;
4030 start_pfn
= usable_startpfn
;
4034 * The usable PFN range for ZONE_MOVABLE is from
4035 * start_pfn->end_pfn. Calculate size_pages as the
4036 * number of pages used as kernelcore
4038 size_pages
= end_pfn
- start_pfn
;
4039 if (size_pages
> kernelcore_remaining
)
4040 size_pages
= kernelcore_remaining
;
4041 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4044 * Some kernelcore has been met, update counts and
4045 * break if the kernelcore for this node has been
4048 required_kernelcore
-= min(required_kernelcore
,
4050 kernelcore_remaining
-= size_pages
;
4051 if (!kernelcore_remaining
)
4057 * If there is still required_kernelcore, we do another pass with one
4058 * less node in the count. This will push zone_movable_pfn[nid] further
4059 * along on the nodes that still have memory until kernelcore is
4063 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4066 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4067 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4068 zone_movable_pfn
[nid
] =
4069 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4072 /* Any regular memory on that node ? */
4073 static void check_for_regular_memory(pg_data_t
*pgdat
)
4075 #ifdef CONFIG_HIGHMEM
4076 enum zone_type zone_type
;
4078 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4079 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4080 if (zone
->present_pages
)
4081 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4087 * free_area_init_nodes - Initialise all pg_data_t and zone data
4088 * @max_zone_pfn: an array of max PFNs for each zone
4090 * This will call free_area_init_node() for each active node in the system.
4091 * Using the page ranges provided by add_active_range(), the size of each
4092 * zone in each node and their holes is calculated. If the maximum PFN
4093 * between two adjacent zones match, it is assumed that the zone is empty.
4094 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4095 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4096 * starts where the previous one ended. For example, ZONE_DMA32 starts
4097 * at arch_max_dma_pfn.
4099 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4104 /* Sort early_node_map as initialisation assumes it is sorted */
4107 /* Record where the zone boundaries are */
4108 memset(arch_zone_lowest_possible_pfn
, 0,
4109 sizeof(arch_zone_lowest_possible_pfn
));
4110 memset(arch_zone_highest_possible_pfn
, 0,
4111 sizeof(arch_zone_highest_possible_pfn
));
4112 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4113 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4114 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4115 if (i
== ZONE_MOVABLE
)
4117 arch_zone_lowest_possible_pfn
[i
] =
4118 arch_zone_highest_possible_pfn
[i
-1];
4119 arch_zone_highest_possible_pfn
[i
] =
4120 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4122 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4123 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4125 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4126 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4127 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4129 /* Print out the zone ranges */
4130 printk("Zone PFN ranges:\n");
4131 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4132 if (i
== ZONE_MOVABLE
)
4134 printk(" %-8s %0#10lx -> %0#10lx\n",
4136 arch_zone_lowest_possible_pfn
[i
],
4137 arch_zone_highest_possible_pfn
[i
]);
4140 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4141 printk("Movable zone start PFN for each node\n");
4142 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4143 if (zone_movable_pfn
[i
])
4144 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4147 /* Print out the early_node_map[] */
4148 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4149 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4150 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4151 early_node_map
[i
].start_pfn
,
4152 early_node_map
[i
].end_pfn
);
4154 /* Initialise every node */
4155 mminit_verify_pageflags_layout();
4156 setup_nr_node_ids();
4157 for_each_online_node(nid
) {
4158 pg_data_t
*pgdat
= NODE_DATA(nid
);
4159 free_area_init_node(nid
, NULL
,
4160 find_min_pfn_for_node(nid
), NULL
);
4162 /* Any memory on that node */
4163 if (pgdat
->node_present_pages
)
4164 node_set_state(nid
, N_HIGH_MEMORY
);
4165 check_for_regular_memory(pgdat
);
4169 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4171 unsigned long long coremem
;
4175 coremem
= memparse(p
, &p
);
4176 *core
= coremem
>> PAGE_SHIFT
;
4178 /* Paranoid check that UL is enough for the coremem value */
4179 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4185 * kernelcore=size sets the amount of memory for use for allocations that
4186 * cannot be reclaimed or migrated.
4188 static int __init
cmdline_parse_kernelcore(char *p
)
4190 return cmdline_parse_core(p
, &required_kernelcore
);
4194 * movablecore=size sets the amount of memory for use for allocations that
4195 * can be reclaimed or migrated.
4197 static int __init
cmdline_parse_movablecore(char *p
)
4199 return cmdline_parse_core(p
, &required_movablecore
);
4202 early_param("kernelcore", cmdline_parse_kernelcore
);
4203 early_param("movablecore", cmdline_parse_movablecore
);
4205 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4208 * set_dma_reserve - set the specified number of pages reserved in the first zone
4209 * @new_dma_reserve: The number of pages to mark reserved
4211 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4212 * In the DMA zone, a significant percentage may be consumed by kernel image
4213 * and other unfreeable allocations which can skew the watermarks badly. This
4214 * function may optionally be used to account for unfreeable pages in the
4215 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4216 * smaller per-cpu batchsize.
4218 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4220 dma_reserve
= new_dma_reserve
;
4223 #ifndef CONFIG_NEED_MULTIPLE_NODES
4224 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4225 EXPORT_SYMBOL(contig_page_data
);
4228 void __init
free_area_init(unsigned long *zones_size
)
4230 free_area_init_node(0, zones_size
,
4231 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4234 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4235 unsigned long action
, void *hcpu
)
4237 int cpu
= (unsigned long)hcpu
;
4239 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4243 * Spill the event counters of the dead processor
4244 * into the current processors event counters.
4245 * This artificially elevates the count of the current
4248 vm_events_fold_cpu(cpu
);
4251 * Zero the differential counters of the dead processor
4252 * so that the vm statistics are consistent.
4254 * This is only okay since the processor is dead and cannot
4255 * race with what we are doing.
4257 refresh_cpu_vm_stats(cpu
);
4262 void __init
page_alloc_init(void)
4264 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4268 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4269 * or min_free_kbytes changes.
4271 static void calculate_totalreserve_pages(void)
4273 struct pglist_data
*pgdat
;
4274 unsigned long reserve_pages
= 0;
4275 enum zone_type i
, j
;
4277 for_each_online_pgdat(pgdat
) {
4278 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4279 struct zone
*zone
= pgdat
->node_zones
+ i
;
4280 unsigned long max
= 0;
4282 /* Find valid and maximum lowmem_reserve in the zone */
4283 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4284 if (zone
->lowmem_reserve
[j
] > max
)
4285 max
= zone
->lowmem_reserve
[j
];
4288 /* we treat pages_high as reserved pages. */
4289 max
+= zone
->pages_high
;
4291 if (max
> zone
->present_pages
)
4292 max
= zone
->present_pages
;
4293 reserve_pages
+= max
;
4296 totalreserve_pages
= reserve_pages
;
4300 * setup_per_zone_lowmem_reserve - called whenever
4301 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4302 * has a correct pages reserved value, so an adequate number of
4303 * pages are left in the zone after a successful __alloc_pages().
4305 static void setup_per_zone_lowmem_reserve(void)
4307 struct pglist_data
*pgdat
;
4308 enum zone_type j
, idx
;
4310 for_each_online_pgdat(pgdat
) {
4311 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4312 struct zone
*zone
= pgdat
->node_zones
+ j
;
4313 unsigned long present_pages
= zone
->present_pages
;
4315 zone
->lowmem_reserve
[j
] = 0;
4319 struct zone
*lower_zone
;
4323 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4324 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4326 lower_zone
= pgdat
->node_zones
+ idx
;
4327 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4328 sysctl_lowmem_reserve_ratio
[idx
];
4329 present_pages
+= lower_zone
->present_pages
;
4334 /* update totalreserve_pages */
4335 calculate_totalreserve_pages();
4339 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4341 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4342 * with respect to min_free_kbytes.
4344 void setup_per_zone_pages_min(void)
4346 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4347 unsigned long lowmem_pages
= 0;
4349 unsigned long flags
;
4351 /* Calculate total number of !ZONE_HIGHMEM pages */
4352 for_each_zone(zone
) {
4353 if (!is_highmem(zone
))
4354 lowmem_pages
+= zone
->present_pages
;
4357 for_each_zone(zone
) {
4360 spin_lock_irqsave(&zone
->lock
, flags
);
4361 tmp
= (u64
)pages_min
* zone
->present_pages
;
4362 do_div(tmp
, lowmem_pages
);
4363 if (is_highmem(zone
)) {
4365 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4366 * need highmem pages, so cap pages_min to a small
4369 * The (pages_high-pages_low) and (pages_low-pages_min)
4370 * deltas controls asynch page reclaim, and so should
4371 * not be capped for highmem.
4375 min_pages
= zone
->present_pages
/ 1024;
4376 if (min_pages
< SWAP_CLUSTER_MAX
)
4377 min_pages
= SWAP_CLUSTER_MAX
;
4378 if (min_pages
> 128)
4380 zone
->pages_min
= min_pages
;
4383 * If it's a lowmem zone, reserve a number of pages
4384 * proportionate to the zone's size.
4386 zone
->pages_min
= tmp
;
4389 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4390 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4391 setup_zone_migrate_reserve(zone
);
4392 spin_unlock_irqrestore(&zone
->lock
, flags
);
4395 /* update totalreserve_pages */
4396 calculate_totalreserve_pages();
4400 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4402 * The inactive anon list should be small enough that the VM never has to
4403 * do too much work, but large enough that each inactive page has a chance
4404 * to be referenced again before it is swapped out.
4406 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4407 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4408 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4409 * the anonymous pages are kept on the inactive list.
4412 * memory ratio inactive anon
4413 * -------------------------------------
4422 static void setup_per_zone_inactive_ratio(void)
4426 for_each_zone(zone
) {
4427 unsigned int gb
, ratio
;
4429 /* Zone size in gigabytes */
4430 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4431 ratio
= int_sqrt(10 * gb
);
4435 zone
->inactive_ratio
= ratio
;
4440 * Initialise min_free_kbytes.
4442 * For small machines we want it small (128k min). For large machines
4443 * we want it large (64MB max). But it is not linear, because network
4444 * bandwidth does not increase linearly with machine size. We use
4446 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4447 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4463 static int __init
init_per_zone_pages_min(void)
4465 unsigned long lowmem_kbytes
;
4467 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4469 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4470 if (min_free_kbytes
< 128)
4471 min_free_kbytes
= 128;
4472 if (min_free_kbytes
> 65536)
4473 min_free_kbytes
= 65536;
4474 setup_per_zone_pages_min();
4475 setup_per_zone_lowmem_reserve();
4476 setup_per_zone_inactive_ratio();
4479 module_init(init_per_zone_pages_min
)
4482 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4483 * that we can call two helper functions whenever min_free_kbytes
4486 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4487 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4489 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4491 setup_per_zone_pages_min();
4496 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4497 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4502 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4507 zone
->min_unmapped_pages
= (zone
->present_pages
*
4508 sysctl_min_unmapped_ratio
) / 100;
4512 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4513 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4518 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4523 zone
->min_slab_pages
= (zone
->present_pages
*
4524 sysctl_min_slab_ratio
) / 100;
4530 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4531 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4532 * whenever sysctl_lowmem_reserve_ratio changes.
4534 * The reserve ratio obviously has absolutely no relation with the
4535 * pages_min watermarks. The lowmem reserve ratio can only make sense
4536 * if in function of the boot time zone sizes.
4538 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4539 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4541 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4542 setup_per_zone_lowmem_reserve();
4547 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4548 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4549 * can have before it gets flushed back to buddy allocator.
4552 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4553 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4559 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4560 if (!write
|| (ret
== -EINVAL
))
4562 for_each_zone(zone
) {
4563 for_each_online_cpu(cpu
) {
4565 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4566 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4572 int hashdist
= HASHDIST_DEFAULT
;
4575 static int __init
set_hashdist(char *str
)
4579 hashdist
= simple_strtoul(str
, &str
, 0);
4582 __setup("hashdist=", set_hashdist
);
4586 * allocate a large system hash table from bootmem
4587 * - it is assumed that the hash table must contain an exact power-of-2
4588 * quantity of entries
4589 * - limit is the number of hash buckets, not the total allocation size
4591 void *__init
alloc_large_system_hash(const char *tablename
,
4592 unsigned long bucketsize
,
4593 unsigned long numentries
,
4596 unsigned int *_hash_shift
,
4597 unsigned int *_hash_mask
,
4598 unsigned long limit
)
4600 unsigned long long max
= limit
;
4601 unsigned long log2qty
, size
;
4604 /* allow the kernel cmdline to have a say */
4606 /* round applicable memory size up to nearest megabyte */
4607 numentries
= nr_kernel_pages
;
4608 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4609 numentries
>>= 20 - PAGE_SHIFT
;
4610 numentries
<<= 20 - PAGE_SHIFT
;
4612 /* limit to 1 bucket per 2^scale bytes of low memory */
4613 if (scale
> PAGE_SHIFT
)
4614 numentries
>>= (scale
- PAGE_SHIFT
);
4616 numentries
<<= (PAGE_SHIFT
- scale
);
4618 /* Make sure we've got at least a 0-order allocation.. */
4619 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4620 numentries
= PAGE_SIZE
/ bucketsize
;
4622 numentries
= roundup_pow_of_two(numentries
);
4624 /* limit allocation size to 1/16 total memory by default */
4626 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4627 do_div(max
, bucketsize
);
4630 if (numentries
> max
)
4633 log2qty
= ilog2(numentries
);
4636 size
= bucketsize
<< log2qty
;
4637 if (flags
& HASH_EARLY
)
4638 table
= alloc_bootmem_nopanic(size
);
4640 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4642 unsigned long order
= get_order(size
);
4644 if (order
< MAX_ORDER
)
4645 table
= (void *)__get_free_pages(GFP_ATOMIC
,
4648 * If bucketsize is not a power-of-two, we may free
4649 * some pages at the end of hash table.
4652 unsigned long alloc_end
= (unsigned long)table
+
4653 (PAGE_SIZE
<< order
);
4654 unsigned long used
= (unsigned long)table
+
4656 split_page(virt_to_page(table
), order
);
4657 while (used
< alloc_end
) {
4663 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4666 panic("Failed to allocate %s hash table\n", tablename
);
4668 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4671 ilog2(size
) - PAGE_SHIFT
,
4675 *_hash_shift
= log2qty
;
4677 *_hash_mask
= (1 << log2qty
) - 1;
4680 * If hashdist is set, the table allocation is done with __vmalloc()
4681 * which invokes the kmemleak_alloc() callback. This function may also
4682 * be called before the slab and kmemleak are initialised when
4683 * kmemleak simply buffers the request to be executed later
4684 * (GFP_ATOMIC flag ignored in this case).
4687 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
4692 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4693 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4696 #ifdef CONFIG_SPARSEMEM
4697 return __pfn_to_section(pfn
)->pageblock_flags
;
4699 return zone
->pageblock_flags
;
4700 #endif /* CONFIG_SPARSEMEM */
4703 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4705 #ifdef CONFIG_SPARSEMEM
4706 pfn
&= (PAGES_PER_SECTION
-1);
4707 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4709 pfn
= pfn
- zone
->zone_start_pfn
;
4710 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4711 #endif /* CONFIG_SPARSEMEM */
4715 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4716 * @page: The page within the block of interest
4717 * @start_bitidx: The first bit of interest to retrieve
4718 * @end_bitidx: The last bit of interest
4719 * returns pageblock_bits flags
4721 unsigned long get_pageblock_flags_group(struct page
*page
,
4722 int start_bitidx
, int end_bitidx
)
4725 unsigned long *bitmap
;
4726 unsigned long pfn
, bitidx
;
4727 unsigned long flags
= 0;
4728 unsigned long value
= 1;
4730 zone
= page_zone(page
);
4731 pfn
= page_to_pfn(page
);
4732 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4733 bitidx
= pfn_to_bitidx(zone
, pfn
);
4735 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4736 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4743 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4744 * @page: The page within the block of interest
4745 * @start_bitidx: The first bit of interest
4746 * @end_bitidx: The last bit of interest
4747 * @flags: The flags to set
4749 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4750 int start_bitidx
, int end_bitidx
)
4753 unsigned long *bitmap
;
4754 unsigned long pfn
, bitidx
;
4755 unsigned long value
= 1;
4757 zone
= page_zone(page
);
4758 pfn
= page_to_pfn(page
);
4759 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4760 bitidx
= pfn_to_bitidx(zone
, pfn
);
4761 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4762 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4764 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4766 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4768 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4772 * This is designed as sub function...plz see page_isolation.c also.
4773 * set/clear page block's type to be ISOLATE.
4774 * page allocater never alloc memory from ISOLATE block.
4777 int set_migratetype_isolate(struct page
*page
)
4780 unsigned long flags
;
4783 zone
= page_zone(page
);
4784 spin_lock_irqsave(&zone
->lock
, flags
);
4786 * In future, more migrate types will be able to be isolation target.
4788 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4790 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4791 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4794 spin_unlock_irqrestore(&zone
->lock
, flags
);
4800 void unset_migratetype_isolate(struct page
*page
)
4803 unsigned long flags
;
4804 zone
= page_zone(page
);
4805 spin_lock_irqsave(&zone
->lock
, flags
);
4806 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4808 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4809 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4811 spin_unlock_irqrestore(&zone
->lock
, flags
);
4814 #ifdef CONFIG_MEMORY_HOTREMOVE
4816 * All pages in the range must be isolated before calling this.
4819 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4825 unsigned long flags
;
4826 /* find the first valid pfn */
4827 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4832 zone
= page_zone(pfn_to_page(pfn
));
4833 spin_lock_irqsave(&zone
->lock
, flags
);
4835 while (pfn
< end_pfn
) {
4836 if (!pfn_valid(pfn
)) {
4840 page
= pfn_to_page(pfn
);
4841 BUG_ON(page_count(page
));
4842 BUG_ON(!PageBuddy(page
));
4843 order
= page_order(page
);
4844 #ifdef CONFIG_DEBUG_VM
4845 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4846 pfn
, 1 << order
, end_pfn
);
4848 list_del(&page
->lru
);
4849 rmv_page_order(page
);
4850 zone
->free_area
[order
].nr_free
--;
4851 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4853 for (i
= 0; i
< (1 << order
); i
++)
4854 SetPageReserved((page
+i
));
4855 pfn
+= (1 << order
);
4857 spin_unlock_irqrestore(&zone
->lock
, flags
);