page allocator: calculate the migratetype for allocation only once
[linux-2.6/next.git] / mm / page_alloc.c
blobd3be076ea9c5404095ec160f76532bf4d98657f7
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
102 #endif
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
167 int page_group_by_mobility_disabled __read_mostly;
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
179 #ifdef CONFIG_DEBUG_VM
180 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
194 return ret;
197 static int page_is_consistent(struct zone *zone, struct page *page)
199 if (!pfn_valid_within(page_to_pfn(page)))
200 return 0;
201 if (zone != page_zone(page))
202 return 0;
204 return 1;
207 * Temporary debugging check for pages not lying within a given zone.
209 static int bad_range(struct zone *zone, struct page *page)
211 if (page_outside_zone_boundaries(zone, page))
212 return 1;
213 if (!page_is_consistent(zone, page))
214 return 1;
216 return 0;
218 #else
219 static inline int bad_range(struct zone *zone, struct page *page)
221 return 0;
223 #endif
225 static void bad_page(struct page *page)
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
240 if (nr_unshown) {
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
243 nr_unshown);
244 nr_unshown = 0;
246 nr_shown = 0;
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
252 current->comm, page_to_pfn(page));
253 printk(KERN_ALERT
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
258 dump_stack();
259 out:
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
262 add_taint(TAINT_BAD_PAGE);
266 * Higher-order pages are called "compound pages". They are structured thusly:
268 * The first PAGE_SIZE page is called the "head page".
270 * The remaining PAGE_SIZE pages are called "tail pages".
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
280 static void free_compound_page(struct page *page)
282 __free_pages_ok(page, compound_order(page));
285 void prep_compound_page(struct page *page, unsigned long order)
287 int i;
288 int nr_pages = 1 << order;
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
296 __SetPageTail(p);
297 p->first_page = page;
301 #ifdef CONFIG_HUGETLBFS
302 void prep_compound_gigantic_page(struct page *page, unsigned long order)
304 int i;
305 int nr_pages = 1 << order;
306 struct page *p = page + 1;
308 set_compound_page_dtor(page, free_compound_page);
309 set_compound_order(page, order);
310 __SetPageHead(page);
311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
312 __SetPageTail(p);
313 p->first_page = page;
316 #endif
318 static int destroy_compound_page(struct page *page, unsigned long order)
320 int i;
321 int nr_pages = 1 << order;
322 int bad = 0;
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
326 bad_page(page);
327 bad++;
330 __ClearPageHead(page);
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
336 bad_page(page);
337 bad++;
339 __ClearPageTail(p);
342 return bad;
345 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
347 int i;
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
358 static inline void set_page_order(struct page *page, int order)
360 set_page_private(page, order);
361 __SetPageBuddy(page);
364 static inline void rmv_page_order(struct page *page)
366 __ClearPageBuddy(page);
367 set_page_private(page, 0);
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
387 static inline struct page *
388 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
390 unsigned long buddy_idx = page_idx ^ (1 << order);
392 return page + (buddy_idx - page_idx);
395 static inline unsigned long
396 __find_combined_index(unsigned long page_idx, unsigned int order)
398 return (page_idx & ~(1 << order));
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
404 * (a) the buddy is not in a hole &&
405 * (b) the buddy is in the buddy system &&
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
412 * For recording page's order, we use page_private(page).
414 static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
417 if (!pfn_valid_within(page_to_pfn(buddy)))
418 return 0;
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
425 return 1;
427 return 0;
431 * Freeing function for a buddy system allocator.
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
444 * order is recorded in page_private(page) field.
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
451 * -- wli
454 static inline void __free_one_page(struct page *page,
455 struct zone *zone, unsigned int order)
457 unsigned long page_idx;
458 int order_size = 1 << order;
459 int migratetype = get_pageblock_migratetype(page);
461 if (unlikely(PageCompound(page)))
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
473 struct page *buddy;
475 buddy = __page_find_buddy(page, page_idx, order);
476 if (!page_is_buddy(page, buddy, order))
477 break;
479 /* Our buddy is free, merge with it and move up one order. */
480 list_del(&buddy->lru);
481 zone->free_area[order].nr_free--;
482 rmv_page_order(buddy);
483 combined_idx = __find_combined_index(page_idx, order);
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
488 set_page_order(page, order);
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
491 zone->free_area[order].nr_free++;
494 static inline int free_pages_check(struct page *page)
496 free_page_mlock(page);
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501 bad_page(page);
502 return 1;
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
520 static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
523 spin_lock(&zone->lock);
524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525 zone->pages_scanned = 0;
526 while (count--) {
527 struct page *page;
529 VM_BUG_ON(list_empty(list));
530 page = list_entry(list->prev, struct page, lru);
531 /* have to delete it as __free_one_page list manipulates */
532 list_del(&page->lru);
533 __free_one_page(page, zone, order);
535 spin_unlock(&zone->lock);
538 static void free_one_page(struct zone *zone, struct page *page, int order)
540 spin_lock(&zone->lock);
541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
542 zone->pages_scanned = 0;
543 __free_one_page(page, zone, order);
544 spin_unlock(&zone->lock);
547 static void __free_pages_ok(struct page *page, unsigned int order)
549 unsigned long flags;
550 int i;
551 int bad = 0;
553 for (i = 0 ; i < (1 << order) ; ++i)
554 bad += free_pages_check(page + i);
555 if (bad)
556 return;
558 if (!PageHighMem(page)) {
559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
563 arch_free_page(page, order);
564 kernel_map_pages(page, 1 << order, 0);
566 local_irq_save(flags);
567 __count_vm_events(PGFREE, 1 << order);
568 free_one_page(page_zone(page), page, order);
569 local_irq_restore(flags);
573 * permit the bootmem allocator to evade page validation on high-order frees
575 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
580 set_page_refcounted(page);
581 __free_page(page);
582 } else {
583 int loop;
585 prefetchw(page);
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
595 set_page_refcounted(page);
596 __free_pages(page, order);
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
613 * -- wli
615 static inline void expand(struct zone *zone, struct page *page,
616 int low, int high, struct free_area *area,
617 int migratetype)
619 unsigned long size = 1 << high;
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
625 VM_BUG_ON(bad_range(zone, &page[size]));
626 list_add(&page[size].lru, &area->free_list[migratetype]);
627 area->nr_free++;
628 set_page_order(&page[size], high);
633 * This page is about to be returned from the page allocator
635 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
641 bad_page(page);
642 return 1;
645 set_page_private(page, 0);
646 set_page_refcounted(page);
648 arch_alloc_page(page, order);
649 kernel_map_pages(page, 1 << order, 1);
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
657 return 0;
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
664 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
665 int migratetype)
667 unsigned int current_order;
668 struct free_area * area;
669 struct page *page;
671 /* Find a page of the appropriate size in the preferred list */
672 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
673 area = &(zone->free_area[current_order]);
674 if (list_empty(&area->free_list[migratetype]))
675 continue;
677 page = list_entry(area->free_list[migratetype].next,
678 struct page, lru);
679 list_del(&page->lru);
680 rmv_page_order(page);
681 area->nr_free--;
682 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
683 expand(zone, page, order, current_order, area, migratetype);
684 return page;
687 return NULL;
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
695 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
696 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
703 * Move the free pages in a range to the free lists of the requested type.
704 * Note that start_page and end_pages are not aligned on a pageblock
705 * boundary. If alignment is required, use move_freepages_block()
707 static int move_freepages(struct zone *zone,
708 struct page *start_page, struct page *end_page,
709 int migratetype)
711 struct page *page;
712 unsigned long order;
713 int pages_moved = 0;
715 #ifndef CONFIG_HOLES_IN_ZONE
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
721 * grouping pages by mobility
723 BUG_ON(page_zone(start_page) != page_zone(end_page));
724 #endif
726 for (page = start_page; page <= end_page;) {
727 /* Make sure we are not inadvertently changing nodes */
728 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
730 if (!pfn_valid_within(page_to_pfn(page))) {
731 page++;
732 continue;
735 if (!PageBuddy(page)) {
736 page++;
737 continue;
740 order = page_order(page);
741 list_del(&page->lru);
742 list_add(&page->lru,
743 &zone->free_area[order].free_list[migratetype]);
744 page += 1 << order;
745 pages_moved += 1 << order;
748 return pages_moved;
751 static int move_freepages_block(struct zone *zone, struct page *page,
752 int migratetype)
754 unsigned long start_pfn, end_pfn;
755 struct page *start_page, *end_page;
757 start_pfn = page_to_pfn(page);
758 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
759 start_page = pfn_to_page(start_pfn);
760 end_page = start_page + pageblock_nr_pages - 1;
761 end_pfn = start_pfn + pageblock_nr_pages - 1;
763 /* Do not cross zone boundaries */
764 if (start_pfn < zone->zone_start_pfn)
765 start_page = page;
766 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
767 return 0;
769 return move_freepages(zone, start_page, end_page, migratetype);
772 /* Remove an element from the buddy allocator from the fallback list */
773 static struct page *__rmqueue_fallback(struct zone *zone, int order,
774 int start_migratetype)
776 struct free_area * area;
777 int current_order;
778 struct page *page;
779 int migratetype, i;
781 /* Find the largest possible block of pages in the other list */
782 for (current_order = MAX_ORDER-1; current_order >= order;
783 --current_order) {
784 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
785 migratetype = fallbacks[start_migratetype][i];
787 /* MIGRATE_RESERVE handled later if necessary */
788 if (migratetype == MIGRATE_RESERVE)
789 continue;
791 area = &(zone->free_area[current_order]);
792 if (list_empty(&area->free_list[migratetype]))
793 continue;
795 page = list_entry(area->free_list[migratetype].next,
796 struct page, lru);
797 area->nr_free--;
800 * If breaking a large block of pages, move all free
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
805 if (unlikely(current_order >= (pageblock_order >> 1)) ||
806 start_migratetype == MIGRATE_RECLAIMABLE) {
807 unsigned long pages;
808 pages = move_freepages_block(zone, page,
809 start_migratetype);
811 /* Claim the whole block if over half of it is free */
812 if (pages >= (1 << (pageblock_order-1)))
813 set_pageblock_migratetype(page,
814 start_migratetype);
816 migratetype = start_migratetype;
819 /* Remove the page from the freelists */
820 list_del(&page->lru);
821 rmv_page_order(page);
822 __mod_zone_page_state(zone, NR_FREE_PAGES,
823 -(1UL << order));
825 if (current_order == pageblock_order)
826 set_pageblock_migratetype(page,
827 start_migratetype);
829 expand(zone, page, order, current_order, area, migratetype);
830 return page;
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
842 static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
845 struct page *page;
847 page = __rmqueue_smallest(zone, order, migratetype);
849 if (unlikely(!page))
850 page = __rmqueue_fallback(zone, order, migratetype);
852 return page;
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
860 static int rmqueue_bulk(struct zone *zone, unsigned int order,
861 unsigned long count, struct list_head *list,
862 int migratetype)
864 int i;
866 spin_lock(&zone->lock);
867 for (i = 0; i < count; ++i) {
868 struct page *page = __rmqueue(zone, order, migratetype);
869 if (unlikely(page == NULL))
870 break;
873 * Split buddy pages returned by expand() are received here
874 * in physical page order. The page is added to the callers and
875 * list and the list head then moves forward. From the callers
876 * perspective, the linked list is ordered by page number in
877 * some conditions. This is useful for IO devices that can
878 * merge IO requests if the physical pages are ordered
879 * properly.
881 list_add(&page->lru, list);
882 set_page_private(page, migratetype);
883 list = &page->lru;
885 spin_unlock(&zone->lock);
886 return i;
889 #ifdef CONFIG_NUMA
891 * Called from the vmstat counter updater to drain pagesets of this
892 * currently executing processor on remote nodes after they have
893 * expired.
895 * Note that this function must be called with the thread pinned to
896 * a single processor.
898 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
900 unsigned long flags;
901 int to_drain;
903 local_irq_save(flags);
904 if (pcp->count >= pcp->batch)
905 to_drain = pcp->batch;
906 else
907 to_drain = pcp->count;
908 free_pages_bulk(zone, to_drain, &pcp->list, 0);
909 pcp->count -= to_drain;
910 local_irq_restore(flags);
912 #endif
915 * Drain pages of the indicated processor.
917 * The processor must either be the current processor and the
918 * thread pinned to the current processor or a processor that
919 * is not online.
921 static void drain_pages(unsigned int cpu)
923 unsigned long flags;
924 struct zone *zone;
926 for_each_populated_zone(zone) {
927 struct per_cpu_pageset *pset;
928 struct per_cpu_pages *pcp;
930 pset = zone_pcp(zone, cpu);
932 pcp = &pset->pcp;
933 local_irq_save(flags);
934 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
935 pcp->count = 0;
936 local_irq_restore(flags);
941 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
943 void drain_local_pages(void *arg)
945 drain_pages(smp_processor_id());
949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
951 void drain_all_pages(void)
953 on_each_cpu(drain_local_pages, NULL, 1);
956 #ifdef CONFIG_HIBERNATION
958 void mark_free_pages(struct zone *zone)
960 unsigned long pfn, max_zone_pfn;
961 unsigned long flags;
962 int order, t;
963 struct list_head *curr;
965 if (!zone->spanned_pages)
966 return;
968 spin_lock_irqsave(&zone->lock, flags);
970 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
971 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
972 if (pfn_valid(pfn)) {
973 struct page *page = pfn_to_page(pfn);
975 if (!swsusp_page_is_forbidden(page))
976 swsusp_unset_page_free(page);
979 for_each_migratetype_order(order, t) {
980 list_for_each(curr, &zone->free_area[order].free_list[t]) {
981 unsigned long i;
983 pfn = page_to_pfn(list_entry(curr, struct page, lru));
984 for (i = 0; i < (1UL << order); i++)
985 swsusp_set_page_free(pfn_to_page(pfn + i));
988 spin_unlock_irqrestore(&zone->lock, flags);
990 #endif /* CONFIG_PM */
993 * Free a 0-order page
995 static void free_hot_cold_page(struct page *page, int cold)
997 struct zone *zone = page_zone(page);
998 struct per_cpu_pages *pcp;
999 unsigned long flags;
1001 if (PageAnon(page))
1002 page->mapping = NULL;
1003 if (free_pages_check(page))
1004 return;
1006 if (!PageHighMem(page)) {
1007 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1008 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1010 arch_free_page(page, 0);
1011 kernel_map_pages(page, 1, 0);
1013 pcp = &zone_pcp(zone, get_cpu())->pcp;
1014 local_irq_save(flags);
1015 __count_vm_event(PGFREE);
1016 if (cold)
1017 list_add_tail(&page->lru, &pcp->list);
1018 else
1019 list_add(&page->lru, &pcp->list);
1020 set_page_private(page, get_pageblock_migratetype(page));
1021 pcp->count++;
1022 if (pcp->count >= pcp->high) {
1023 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1024 pcp->count -= pcp->batch;
1026 local_irq_restore(flags);
1027 put_cpu();
1030 void free_hot_page(struct page *page)
1032 free_hot_cold_page(page, 0);
1035 void free_cold_page(struct page *page)
1037 free_hot_cold_page(page, 1);
1041 * split_page takes a non-compound higher-order page, and splits it into
1042 * n (1<<order) sub-pages: page[0..n]
1043 * Each sub-page must be freed individually.
1045 * Note: this is probably too low level an operation for use in drivers.
1046 * Please consult with lkml before using this in your driver.
1048 void split_page(struct page *page, unsigned int order)
1050 int i;
1052 VM_BUG_ON(PageCompound(page));
1053 VM_BUG_ON(!page_count(page));
1054 for (i = 1; i < (1 << order); i++)
1055 set_page_refcounted(page + i);
1059 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1060 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1061 * or two.
1063 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1064 struct zone *zone, int order, gfp_t gfp_flags,
1065 int migratetype)
1067 unsigned long flags;
1068 struct page *page;
1069 int cold = !!(gfp_flags & __GFP_COLD);
1070 int cpu;
1072 again:
1073 cpu = get_cpu();
1074 if (likely(order == 0)) {
1075 struct per_cpu_pages *pcp;
1077 pcp = &zone_pcp(zone, cpu)->pcp;
1078 local_irq_save(flags);
1079 if (!pcp->count) {
1080 pcp->count = rmqueue_bulk(zone, 0,
1081 pcp->batch, &pcp->list, migratetype);
1082 if (unlikely(!pcp->count))
1083 goto failed;
1086 /* Find a page of the appropriate migrate type */
1087 if (cold) {
1088 list_for_each_entry_reverse(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1091 } else {
1092 list_for_each_entry(page, &pcp->list, lru)
1093 if (page_private(page) == migratetype)
1094 break;
1097 /* Allocate more to the pcp list if necessary */
1098 if (unlikely(&page->lru == &pcp->list)) {
1099 pcp->count += rmqueue_bulk(zone, 0,
1100 pcp->batch, &pcp->list, migratetype);
1101 page = list_entry(pcp->list.next, struct page, lru);
1104 list_del(&page->lru);
1105 pcp->count--;
1106 } else {
1107 spin_lock_irqsave(&zone->lock, flags);
1108 page = __rmqueue(zone, order, migratetype);
1109 spin_unlock(&zone->lock);
1110 if (!page)
1111 goto failed;
1114 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1115 zone_statistics(preferred_zone, zone);
1116 local_irq_restore(flags);
1117 put_cpu();
1119 VM_BUG_ON(bad_range(zone, page));
1120 if (prep_new_page(page, order, gfp_flags))
1121 goto again;
1122 return page;
1124 failed:
1125 local_irq_restore(flags);
1126 put_cpu();
1127 return NULL;
1130 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1131 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1132 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1133 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1134 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1135 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1136 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1138 #ifdef CONFIG_FAIL_PAGE_ALLOC
1140 static struct fail_page_alloc_attr {
1141 struct fault_attr attr;
1143 u32 ignore_gfp_highmem;
1144 u32 ignore_gfp_wait;
1145 u32 min_order;
1147 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1149 struct dentry *ignore_gfp_highmem_file;
1150 struct dentry *ignore_gfp_wait_file;
1151 struct dentry *min_order_file;
1153 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1155 } fail_page_alloc = {
1156 .attr = FAULT_ATTR_INITIALIZER,
1157 .ignore_gfp_wait = 1,
1158 .ignore_gfp_highmem = 1,
1159 .min_order = 1,
1162 static int __init setup_fail_page_alloc(char *str)
1164 return setup_fault_attr(&fail_page_alloc.attr, str);
1166 __setup("fail_page_alloc=", setup_fail_page_alloc);
1168 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1170 if (order < fail_page_alloc.min_order)
1171 return 0;
1172 if (gfp_mask & __GFP_NOFAIL)
1173 return 0;
1174 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1175 return 0;
1176 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1177 return 0;
1179 return should_fail(&fail_page_alloc.attr, 1 << order);
1182 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1184 static int __init fail_page_alloc_debugfs(void)
1186 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1187 struct dentry *dir;
1188 int err;
1190 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1191 "fail_page_alloc");
1192 if (err)
1193 return err;
1194 dir = fail_page_alloc.attr.dentries.dir;
1196 fail_page_alloc.ignore_gfp_wait_file =
1197 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1198 &fail_page_alloc.ignore_gfp_wait);
1200 fail_page_alloc.ignore_gfp_highmem_file =
1201 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1202 &fail_page_alloc.ignore_gfp_highmem);
1203 fail_page_alloc.min_order_file =
1204 debugfs_create_u32("min-order", mode, dir,
1205 &fail_page_alloc.min_order);
1207 if (!fail_page_alloc.ignore_gfp_wait_file ||
1208 !fail_page_alloc.ignore_gfp_highmem_file ||
1209 !fail_page_alloc.min_order_file) {
1210 err = -ENOMEM;
1211 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1212 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1213 debugfs_remove(fail_page_alloc.min_order_file);
1214 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1217 return err;
1220 late_initcall(fail_page_alloc_debugfs);
1222 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1224 #else /* CONFIG_FAIL_PAGE_ALLOC */
1226 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1228 return 0;
1231 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1234 * Return 1 if free pages are above 'mark'. This takes into account the order
1235 * of the allocation.
1237 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1238 int classzone_idx, int alloc_flags)
1240 /* free_pages my go negative - that's OK */
1241 long min = mark;
1242 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1243 int o;
1245 if (alloc_flags & ALLOC_HIGH)
1246 min -= min / 2;
1247 if (alloc_flags & ALLOC_HARDER)
1248 min -= min / 4;
1250 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1251 return 0;
1252 for (o = 0; o < order; o++) {
1253 /* At the next order, this order's pages become unavailable */
1254 free_pages -= z->free_area[o].nr_free << o;
1256 /* Require fewer higher order pages to be free */
1257 min >>= 1;
1259 if (free_pages <= min)
1260 return 0;
1262 return 1;
1265 #ifdef CONFIG_NUMA
1267 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1268 * skip over zones that are not allowed by the cpuset, or that have
1269 * been recently (in last second) found to be nearly full. See further
1270 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1271 * that have to skip over a lot of full or unallowed zones.
1273 * If the zonelist cache is present in the passed in zonelist, then
1274 * returns a pointer to the allowed node mask (either the current
1275 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1277 * If the zonelist cache is not available for this zonelist, does
1278 * nothing and returns NULL.
1280 * If the fullzones BITMAP in the zonelist cache is stale (more than
1281 * a second since last zap'd) then we zap it out (clear its bits.)
1283 * We hold off even calling zlc_setup, until after we've checked the
1284 * first zone in the zonelist, on the theory that most allocations will
1285 * be satisfied from that first zone, so best to examine that zone as
1286 * quickly as we can.
1288 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1290 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1291 nodemask_t *allowednodes; /* zonelist_cache approximation */
1293 zlc = zonelist->zlcache_ptr;
1294 if (!zlc)
1295 return NULL;
1297 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1298 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1299 zlc->last_full_zap = jiffies;
1302 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1303 &cpuset_current_mems_allowed :
1304 &node_states[N_HIGH_MEMORY];
1305 return allowednodes;
1309 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1310 * if it is worth looking at further for free memory:
1311 * 1) Check that the zone isn't thought to be full (doesn't have its
1312 * bit set in the zonelist_cache fullzones BITMAP).
1313 * 2) Check that the zones node (obtained from the zonelist_cache
1314 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1315 * Return true (non-zero) if zone is worth looking at further, or
1316 * else return false (zero) if it is not.
1318 * This check -ignores- the distinction between various watermarks,
1319 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1320 * found to be full for any variation of these watermarks, it will
1321 * be considered full for up to one second by all requests, unless
1322 * we are so low on memory on all allowed nodes that we are forced
1323 * into the second scan of the zonelist.
1325 * In the second scan we ignore this zonelist cache and exactly
1326 * apply the watermarks to all zones, even it is slower to do so.
1327 * We are low on memory in the second scan, and should leave no stone
1328 * unturned looking for a free page.
1330 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1331 nodemask_t *allowednodes)
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 int i; /* index of *z in zonelist zones */
1335 int n; /* node that zone *z is on */
1337 zlc = zonelist->zlcache_ptr;
1338 if (!zlc)
1339 return 1;
1341 i = z - zonelist->_zonerefs;
1342 n = zlc->z_to_n[i];
1344 /* This zone is worth trying if it is allowed but not full */
1345 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1349 * Given 'z' scanning a zonelist, set the corresponding bit in
1350 * zlc->fullzones, so that subsequent attempts to allocate a page
1351 * from that zone don't waste time re-examining it.
1353 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1356 int i; /* index of *z in zonelist zones */
1358 zlc = zonelist->zlcache_ptr;
1359 if (!zlc)
1360 return;
1362 i = z - zonelist->_zonerefs;
1364 set_bit(i, zlc->fullzones);
1367 #else /* CONFIG_NUMA */
1369 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1371 return NULL;
1374 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1375 nodemask_t *allowednodes)
1377 return 1;
1380 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1383 #endif /* CONFIG_NUMA */
1386 * get_page_from_freelist goes through the zonelist trying to allocate
1387 * a page.
1389 static struct page *
1390 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1391 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1392 struct zone *preferred_zone, int migratetype)
1394 struct zoneref *z;
1395 struct page *page = NULL;
1396 int classzone_idx;
1397 struct zone *zone;
1398 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1399 int zlc_active = 0; /* set if using zonelist_cache */
1400 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1402 if (WARN_ON_ONCE(order >= MAX_ORDER))
1403 return NULL;
1405 classzone_idx = zone_idx(preferred_zone);
1406 zonelist_scan:
1408 * Scan zonelist, looking for a zone with enough free.
1409 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1411 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1412 high_zoneidx, nodemask) {
1413 if (NUMA_BUILD && zlc_active &&
1414 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1415 continue;
1416 if ((alloc_flags & ALLOC_CPUSET) &&
1417 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1418 goto try_next_zone;
1420 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1421 unsigned long mark;
1422 if (alloc_flags & ALLOC_WMARK_MIN)
1423 mark = zone->pages_min;
1424 else if (alloc_flags & ALLOC_WMARK_LOW)
1425 mark = zone->pages_low;
1426 else
1427 mark = zone->pages_high;
1428 if (!zone_watermark_ok(zone, order, mark,
1429 classzone_idx, alloc_flags)) {
1430 if (!zone_reclaim_mode ||
1431 !zone_reclaim(zone, gfp_mask, order))
1432 goto this_zone_full;
1436 page = buffered_rmqueue(preferred_zone, zone, order,
1437 gfp_mask, migratetype);
1438 if (page)
1439 break;
1440 this_zone_full:
1441 if (NUMA_BUILD)
1442 zlc_mark_zone_full(zonelist, z);
1443 try_next_zone:
1444 if (NUMA_BUILD && !did_zlc_setup) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes = zlc_setup(zonelist, alloc_flags);
1447 zlc_active = 1;
1448 did_zlc_setup = 1;
1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 /* Disable zlc cache for second zonelist scan */
1454 zlc_active = 0;
1455 goto zonelist_scan;
1457 return page;
1460 static inline int
1461 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1462 unsigned long pages_reclaimed)
1464 /* Do not loop if specifically requested */
1465 if (gfp_mask & __GFP_NORETRY)
1466 return 0;
1469 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1470 * means __GFP_NOFAIL, but that may not be true in other
1471 * implementations.
1473 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1474 return 1;
1477 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1478 * specified, then we retry until we no longer reclaim any pages
1479 * (above), or we've reclaimed an order of pages at least as
1480 * large as the allocation's order. In both cases, if the
1481 * allocation still fails, we stop retrying.
1483 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1484 return 1;
1487 * Don't let big-order allocations loop unless the caller
1488 * explicitly requests that.
1490 if (gfp_mask & __GFP_NOFAIL)
1491 return 1;
1493 return 0;
1496 static inline struct page *
1497 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1498 struct zonelist *zonelist, enum zone_type high_zoneidx,
1499 nodemask_t *nodemask, struct zone *preferred_zone,
1500 int migratetype)
1502 struct page *page;
1504 /* Acquire the OOM killer lock for the zones in zonelist */
1505 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1506 schedule_timeout_uninterruptible(1);
1507 return NULL;
1511 * Go through the zonelist yet one more time, keep very high watermark
1512 * here, this is only to catch a parallel oom killing, we must fail if
1513 * we're still under heavy pressure.
1515 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1516 order, zonelist, high_zoneidx,
1517 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1518 preferred_zone, migratetype);
1519 if (page)
1520 goto out;
1522 /* The OOM killer will not help higher order allocs */
1523 if (order > PAGE_ALLOC_COSTLY_ORDER)
1524 goto out;
1526 /* Exhausted what can be done so it's blamo time */
1527 out_of_memory(zonelist, gfp_mask, order);
1529 out:
1530 clear_zonelist_oom(zonelist, gfp_mask);
1531 return page;
1534 /* The really slow allocator path where we enter direct reclaim */
1535 static inline struct page *
1536 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1537 struct zonelist *zonelist, enum zone_type high_zoneidx,
1538 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1539 int migratetype, unsigned long *did_some_progress)
1541 struct page *page = NULL;
1542 struct reclaim_state reclaim_state;
1543 struct task_struct *p = current;
1545 cond_resched();
1547 /* We now go into synchronous reclaim */
1548 cpuset_memory_pressure_bump();
1551 * The task's cpuset might have expanded its set of allowable nodes
1553 p->flags |= PF_MEMALLOC;
1554 lockdep_set_current_reclaim_state(gfp_mask);
1555 reclaim_state.reclaimed_slab = 0;
1556 p->reclaim_state = &reclaim_state;
1558 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1560 p->reclaim_state = NULL;
1561 lockdep_clear_current_reclaim_state();
1562 p->flags &= ~PF_MEMALLOC;
1564 cond_resched();
1566 if (order != 0)
1567 drain_all_pages();
1569 if (likely(*did_some_progress))
1570 page = get_page_from_freelist(gfp_mask, nodemask, order,
1571 zonelist, high_zoneidx,
1572 alloc_flags, preferred_zone,
1573 migratetype);
1574 return page;
1577 static inline int
1578 is_allocation_high_priority(struct task_struct *p, gfp_t gfp_mask)
1580 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1581 && !in_interrupt())
1582 return 1;
1583 return 0;
1587 * This is called in the allocator slow-path if the allocation request is of
1588 * sufficient urgency to ignore watermarks and take other desperate measures
1590 static inline struct page *
1591 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1592 struct zonelist *zonelist, enum zone_type high_zoneidx,
1593 nodemask_t *nodemask, struct zone *preferred_zone,
1594 int migratetype)
1596 struct page *page;
1598 do {
1599 page = get_page_from_freelist(gfp_mask, nodemask, order,
1600 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1601 preferred_zone, migratetype);
1603 if (!page && gfp_mask & __GFP_NOFAIL)
1604 congestion_wait(WRITE, HZ/50);
1605 } while (!page && (gfp_mask & __GFP_NOFAIL));
1607 return page;
1610 static inline
1611 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1612 enum zone_type high_zoneidx)
1614 struct zoneref *z;
1615 struct zone *zone;
1617 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1618 wakeup_kswapd(zone, order);
1621 static inline struct page *
1622 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1623 struct zonelist *zonelist, enum zone_type high_zoneidx,
1624 nodemask_t *nodemask, struct zone *preferred_zone,
1625 int migratetype)
1627 const gfp_t wait = gfp_mask & __GFP_WAIT;
1628 struct page *page = NULL;
1629 int alloc_flags;
1630 unsigned long pages_reclaimed = 0;
1631 unsigned long did_some_progress;
1632 struct task_struct *p = current;
1635 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1636 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1637 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1638 * using a larger set of nodes after it has established that the
1639 * allowed per node queues are empty and that nodes are
1640 * over allocated.
1642 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1643 goto nopage;
1645 wake_all_kswapd(order, zonelist, high_zoneidx);
1648 * OK, we're below the kswapd watermark and have kicked background
1649 * reclaim. Now things get more complex, so set up alloc_flags according
1650 * to how we want to proceed.
1652 * The caller may dip into page reserves a bit more if the caller
1653 * cannot run direct reclaim, or if the caller has realtime scheduling
1654 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1655 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1657 alloc_flags = ALLOC_WMARK_MIN;
1658 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1659 alloc_flags |= ALLOC_HARDER;
1660 if (gfp_mask & __GFP_HIGH)
1661 alloc_flags |= ALLOC_HIGH;
1662 if (wait)
1663 alloc_flags |= ALLOC_CPUSET;
1665 restart:
1667 * Go through the zonelist again. Let __GFP_HIGH and allocations
1668 * coming from realtime tasks go deeper into reserves.
1670 * This is the last chance, in general, before the goto nopage.
1671 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1672 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1674 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1675 high_zoneidx, alloc_flags,
1676 preferred_zone,
1677 migratetype);
1678 if (page)
1679 goto got_pg;
1681 rebalance:
1682 /* Allocate without watermarks if the context allows */
1683 if (is_allocation_high_priority(p, gfp_mask)) {
1684 /* Do not dip into emergency reserves if specified */
1685 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1686 page = __alloc_pages_high_priority(gfp_mask, order,
1687 zonelist, high_zoneidx, nodemask, preferred_zone,
1688 migratetype);
1689 if (page)
1690 goto got_pg;
1693 /* Ensure no recursion into the allocator */
1694 goto nopage;
1697 /* Atomic allocations - we can't balance anything */
1698 if (!wait)
1699 goto nopage;
1701 /* Try direct reclaim and then allocating */
1702 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1703 zonelist, high_zoneidx,
1704 nodemask,
1705 alloc_flags, preferred_zone,
1706 migratetype, &did_some_progress);
1707 if (page)
1708 goto got_pg;
1711 * If we failed to make any progress reclaiming, then we are
1712 * running out of options and have to consider going OOM
1714 if (!did_some_progress) {
1715 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1716 page = __alloc_pages_may_oom(gfp_mask, order,
1717 zonelist, high_zoneidx,
1718 nodemask, preferred_zone,
1719 migratetype);
1720 if (page)
1721 goto got_pg;
1724 * The OOM killer does not trigger for high-order allocations
1725 * but if no progress is being made, there are no other
1726 * options and retrying is unlikely to help
1728 if (order > PAGE_ALLOC_COSTLY_ORDER)
1729 goto nopage;
1731 goto restart;
1735 /* Check if we should retry the allocation */
1736 pages_reclaimed += did_some_progress;
1737 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1738 /* Wait for some write requests to complete then retry */
1739 congestion_wait(WRITE, HZ/50);
1740 goto rebalance;
1743 nopage:
1744 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1745 printk(KERN_WARNING "%s: page allocation failure."
1746 " order:%d, mode:0x%x\n",
1747 p->comm, order, gfp_mask);
1748 dump_stack();
1749 show_mem();
1751 got_pg:
1752 return page;
1757 * This is the 'heart' of the zoned buddy allocator.
1759 struct page *
1760 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1761 struct zonelist *zonelist, nodemask_t *nodemask)
1763 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1764 struct zone *preferred_zone;
1765 struct page *page;
1766 int migratetype = allocflags_to_migratetype(gfp_mask);
1768 lockdep_trace_alloc(gfp_mask);
1770 might_sleep_if(gfp_mask & __GFP_WAIT);
1772 if (should_fail_alloc_page(gfp_mask, order))
1773 return NULL;
1776 * Check the zones suitable for the gfp_mask contain at least one
1777 * valid zone. It's possible to have an empty zonelist as a result
1778 * of GFP_THISNODE and a memoryless node
1780 if (unlikely(!zonelist->_zonerefs->zone))
1781 return NULL;
1783 /* The preferred zone is used for statistics later */
1784 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1785 if (!preferred_zone)
1786 return NULL;
1788 /* First allocation attempt */
1789 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1790 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1791 preferred_zone, migratetype);
1792 if (unlikely(!page))
1793 page = __alloc_pages_slowpath(gfp_mask, order,
1794 zonelist, high_zoneidx, nodemask,
1795 preferred_zone, migratetype);
1797 return page;
1799 EXPORT_SYMBOL(__alloc_pages_nodemask);
1802 * Common helper functions.
1804 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1806 struct page * page;
1807 page = alloc_pages(gfp_mask, order);
1808 if (!page)
1809 return 0;
1810 return (unsigned long) page_address(page);
1813 EXPORT_SYMBOL(__get_free_pages);
1815 unsigned long get_zeroed_page(gfp_t gfp_mask)
1817 struct page * page;
1820 * get_zeroed_page() returns a 32-bit address, which cannot represent
1821 * a highmem page
1823 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1825 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1826 if (page)
1827 return (unsigned long) page_address(page);
1828 return 0;
1831 EXPORT_SYMBOL(get_zeroed_page);
1833 void __pagevec_free(struct pagevec *pvec)
1835 int i = pagevec_count(pvec);
1837 while (--i >= 0)
1838 free_hot_cold_page(pvec->pages[i], pvec->cold);
1841 void __free_pages(struct page *page, unsigned int order)
1843 if (put_page_testzero(page)) {
1844 if (order == 0)
1845 free_hot_page(page);
1846 else
1847 __free_pages_ok(page, order);
1851 EXPORT_SYMBOL(__free_pages);
1853 void free_pages(unsigned long addr, unsigned int order)
1855 if (addr != 0) {
1856 VM_BUG_ON(!virt_addr_valid((void *)addr));
1857 __free_pages(virt_to_page((void *)addr), order);
1861 EXPORT_SYMBOL(free_pages);
1864 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1865 * @size: the number of bytes to allocate
1866 * @gfp_mask: GFP flags for the allocation
1868 * This function is similar to alloc_pages(), except that it allocates the
1869 * minimum number of pages to satisfy the request. alloc_pages() can only
1870 * allocate memory in power-of-two pages.
1872 * This function is also limited by MAX_ORDER.
1874 * Memory allocated by this function must be released by free_pages_exact().
1876 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1878 unsigned int order = get_order(size);
1879 unsigned long addr;
1881 addr = __get_free_pages(gfp_mask, order);
1882 if (addr) {
1883 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1884 unsigned long used = addr + PAGE_ALIGN(size);
1886 split_page(virt_to_page(addr), order);
1887 while (used < alloc_end) {
1888 free_page(used);
1889 used += PAGE_SIZE;
1893 return (void *)addr;
1895 EXPORT_SYMBOL(alloc_pages_exact);
1898 * free_pages_exact - release memory allocated via alloc_pages_exact()
1899 * @virt: the value returned by alloc_pages_exact.
1900 * @size: size of allocation, same value as passed to alloc_pages_exact().
1902 * Release the memory allocated by a previous call to alloc_pages_exact.
1904 void free_pages_exact(void *virt, size_t size)
1906 unsigned long addr = (unsigned long)virt;
1907 unsigned long end = addr + PAGE_ALIGN(size);
1909 while (addr < end) {
1910 free_page(addr);
1911 addr += PAGE_SIZE;
1914 EXPORT_SYMBOL(free_pages_exact);
1916 static unsigned int nr_free_zone_pages(int offset)
1918 struct zoneref *z;
1919 struct zone *zone;
1921 /* Just pick one node, since fallback list is circular */
1922 unsigned int sum = 0;
1924 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1926 for_each_zone_zonelist(zone, z, zonelist, offset) {
1927 unsigned long size = zone->present_pages;
1928 unsigned long high = zone->pages_high;
1929 if (size > high)
1930 sum += size - high;
1933 return sum;
1937 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1939 unsigned int nr_free_buffer_pages(void)
1941 return nr_free_zone_pages(gfp_zone(GFP_USER));
1943 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1946 * Amount of free RAM allocatable within all zones
1948 unsigned int nr_free_pagecache_pages(void)
1950 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1953 static inline void show_node(struct zone *zone)
1955 if (NUMA_BUILD)
1956 printk("Node %d ", zone_to_nid(zone));
1959 void si_meminfo(struct sysinfo *val)
1961 val->totalram = totalram_pages;
1962 val->sharedram = 0;
1963 val->freeram = global_page_state(NR_FREE_PAGES);
1964 val->bufferram = nr_blockdev_pages();
1965 val->totalhigh = totalhigh_pages;
1966 val->freehigh = nr_free_highpages();
1967 val->mem_unit = PAGE_SIZE;
1970 EXPORT_SYMBOL(si_meminfo);
1972 #ifdef CONFIG_NUMA
1973 void si_meminfo_node(struct sysinfo *val, int nid)
1975 pg_data_t *pgdat = NODE_DATA(nid);
1977 val->totalram = pgdat->node_present_pages;
1978 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1979 #ifdef CONFIG_HIGHMEM
1980 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1981 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1982 NR_FREE_PAGES);
1983 #else
1984 val->totalhigh = 0;
1985 val->freehigh = 0;
1986 #endif
1987 val->mem_unit = PAGE_SIZE;
1989 #endif
1991 #define K(x) ((x) << (PAGE_SHIFT-10))
1994 * Show free area list (used inside shift_scroll-lock stuff)
1995 * We also calculate the percentage fragmentation. We do this by counting the
1996 * memory on each free list with the exception of the first item on the list.
1998 void show_free_areas(void)
2000 int cpu;
2001 struct zone *zone;
2003 for_each_populated_zone(zone) {
2004 show_node(zone);
2005 printk("%s per-cpu:\n", zone->name);
2007 for_each_online_cpu(cpu) {
2008 struct per_cpu_pageset *pageset;
2010 pageset = zone_pcp(zone, cpu);
2012 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2013 cpu, pageset->pcp.high,
2014 pageset->pcp.batch, pageset->pcp.count);
2018 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2019 " inactive_file:%lu"
2020 //TODO: check/adjust line lengths
2021 #ifdef CONFIG_UNEVICTABLE_LRU
2022 " unevictable:%lu"
2023 #endif
2024 " dirty:%lu writeback:%lu unstable:%lu\n"
2025 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2026 global_page_state(NR_ACTIVE_ANON),
2027 global_page_state(NR_ACTIVE_FILE),
2028 global_page_state(NR_INACTIVE_ANON),
2029 global_page_state(NR_INACTIVE_FILE),
2030 #ifdef CONFIG_UNEVICTABLE_LRU
2031 global_page_state(NR_UNEVICTABLE),
2032 #endif
2033 global_page_state(NR_FILE_DIRTY),
2034 global_page_state(NR_WRITEBACK),
2035 global_page_state(NR_UNSTABLE_NFS),
2036 global_page_state(NR_FREE_PAGES),
2037 global_page_state(NR_SLAB_RECLAIMABLE) +
2038 global_page_state(NR_SLAB_UNRECLAIMABLE),
2039 global_page_state(NR_FILE_MAPPED),
2040 global_page_state(NR_PAGETABLE),
2041 global_page_state(NR_BOUNCE));
2043 for_each_populated_zone(zone) {
2044 int i;
2046 show_node(zone);
2047 printk("%s"
2048 " free:%lukB"
2049 " min:%lukB"
2050 " low:%lukB"
2051 " high:%lukB"
2052 " active_anon:%lukB"
2053 " inactive_anon:%lukB"
2054 " active_file:%lukB"
2055 " inactive_file:%lukB"
2056 #ifdef CONFIG_UNEVICTABLE_LRU
2057 " unevictable:%lukB"
2058 #endif
2059 " present:%lukB"
2060 " pages_scanned:%lu"
2061 " all_unreclaimable? %s"
2062 "\n",
2063 zone->name,
2064 K(zone_page_state(zone, NR_FREE_PAGES)),
2065 K(zone->pages_min),
2066 K(zone->pages_low),
2067 K(zone->pages_high),
2068 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2069 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2070 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2071 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2072 #ifdef CONFIG_UNEVICTABLE_LRU
2073 K(zone_page_state(zone, NR_UNEVICTABLE)),
2074 #endif
2075 K(zone->present_pages),
2076 zone->pages_scanned,
2077 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2079 printk("lowmem_reserve[]:");
2080 for (i = 0; i < MAX_NR_ZONES; i++)
2081 printk(" %lu", zone->lowmem_reserve[i]);
2082 printk("\n");
2085 for_each_populated_zone(zone) {
2086 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2088 show_node(zone);
2089 printk("%s: ", zone->name);
2091 spin_lock_irqsave(&zone->lock, flags);
2092 for (order = 0; order < MAX_ORDER; order++) {
2093 nr[order] = zone->free_area[order].nr_free;
2094 total += nr[order] << order;
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 for (order = 0; order < MAX_ORDER; order++)
2098 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2099 printk("= %lukB\n", K(total));
2102 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2104 show_swap_cache_info();
2107 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2109 zoneref->zone = zone;
2110 zoneref->zone_idx = zone_idx(zone);
2114 * Builds allocation fallback zone lists.
2116 * Add all populated zones of a node to the zonelist.
2118 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2119 int nr_zones, enum zone_type zone_type)
2121 struct zone *zone;
2123 BUG_ON(zone_type >= MAX_NR_ZONES);
2124 zone_type++;
2126 do {
2127 zone_type--;
2128 zone = pgdat->node_zones + zone_type;
2129 if (populated_zone(zone)) {
2130 zoneref_set_zone(zone,
2131 &zonelist->_zonerefs[nr_zones++]);
2132 check_highest_zone(zone_type);
2135 } while (zone_type);
2136 return nr_zones;
2141 * zonelist_order:
2142 * 0 = automatic detection of better ordering.
2143 * 1 = order by ([node] distance, -zonetype)
2144 * 2 = order by (-zonetype, [node] distance)
2146 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2147 * the same zonelist. So only NUMA can configure this param.
2149 #define ZONELIST_ORDER_DEFAULT 0
2150 #define ZONELIST_ORDER_NODE 1
2151 #define ZONELIST_ORDER_ZONE 2
2153 /* zonelist order in the kernel.
2154 * set_zonelist_order() will set this to NODE or ZONE.
2156 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2157 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2160 #ifdef CONFIG_NUMA
2161 /* The value user specified ....changed by config */
2162 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2163 /* string for sysctl */
2164 #define NUMA_ZONELIST_ORDER_LEN 16
2165 char numa_zonelist_order[16] = "default";
2168 * interface for configure zonelist ordering.
2169 * command line option "numa_zonelist_order"
2170 * = "[dD]efault - default, automatic configuration.
2171 * = "[nN]ode - order by node locality, then by zone within node
2172 * = "[zZ]one - order by zone, then by locality within zone
2175 static int __parse_numa_zonelist_order(char *s)
2177 if (*s == 'd' || *s == 'D') {
2178 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2179 } else if (*s == 'n' || *s == 'N') {
2180 user_zonelist_order = ZONELIST_ORDER_NODE;
2181 } else if (*s == 'z' || *s == 'Z') {
2182 user_zonelist_order = ZONELIST_ORDER_ZONE;
2183 } else {
2184 printk(KERN_WARNING
2185 "Ignoring invalid numa_zonelist_order value: "
2186 "%s\n", s);
2187 return -EINVAL;
2189 return 0;
2192 static __init int setup_numa_zonelist_order(char *s)
2194 if (s)
2195 return __parse_numa_zonelist_order(s);
2196 return 0;
2198 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2201 * sysctl handler for numa_zonelist_order
2203 int numa_zonelist_order_handler(ctl_table *table, int write,
2204 struct file *file, void __user *buffer, size_t *length,
2205 loff_t *ppos)
2207 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2208 int ret;
2210 if (write)
2211 strncpy(saved_string, (char*)table->data,
2212 NUMA_ZONELIST_ORDER_LEN);
2213 ret = proc_dostring(table, write, file, buffer, length, ppos);
2214 if (ret)
2215 return ret;
2216 if (write) {
2217 int oldval = user_zonelist_order;
2218 if (__parse_numa_zonelist_order((char*)table->data)) {
2220 * bogus value. restore saved string
2222 strncpy((char*)table->data, saved_string,
2223 NUMA_ZONELIST_ORDER_LEN);
2224 user_zonelist_order = oldval;
2225 } else if (oldval != user_zonelist_order)
2226 build_all_zonelists();
2228 return 0;
2232 #define MAX_NODE_LOAD (num_online_nodes())
2233 static int node_load[MAX_NUMNODES];
2236 * find_next_best_node - find the next node that should appear in a given node's fallback list
2237 * @node: node whose fallback list we're appending
2238 * @used_node_mask: nodemask_t of already used nodes
2240 * We use a number of factors to determine which is the next node that should
2241 * appear on a given node's fallback list. The node should not have appeared
2242 * already in @node's fallback list, and it should be the next closest node
2243 * according to the distance array (which contains arbitrary distance values
2244 * from each node to each node in the system), and should also prefer nodes
2245 * with no CPUs, since presumably they'll have very little allocation pressure
2246 * on them otherwise.
2247 * It returns -1 if no node is found.
2249 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2251 int n, val;
2252 int min_val = INT_MAX;
2253 int best_node = -1;
2254 const struct cpumask *tmp = cpumask_of_node(0);
2256 /* Use the local node if we haven't already */
2257 if (!node_isset(node, *used_node_mask)) {
2258 node_set(node, *used_node_mask);
2259 return node;
2262 for_each_node_state(n, N_HIGH_MEMORY) {
2264 /* Don't want a node to appear more than once */
2265 if (node_isset(n, *used_node_mask))
2266 continue;
2268 /* Use the distance array to find the distance */
2269 val = node_distance(node, n);
2271 /* Penalize nodes under us ("prefer the next node") */
2272 val += (n < node);
2274 /* Give preference to headless and unused nodes */
2275 tmp = cpumask_of_node(n);
2276 if (!cpumask_empty(tmp))
2277 val += PENALTY_FOR_NODE_WITH_CPUS;
2279 /* Slight preference for less loaded node */
2280 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2281 val += node_load[n];
2283 if (val < min_val) {
2284 min_val = val;
2285 best_node = n;
2289 if (best_node >= 0)
2290 node_set(best_node, *used_node_mask);
2292 return best_node;
2297 * Build zonelists ordered by node and zones within node.
2298 * This results in maximum locality--normal zone overflows into local
2299 * DMA zone, if any--but risks exhausting DMA zone.
2301 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2303 int j;
2304 struct zonelist *zonelist;
2306 zonelist = &pgdat->node_zonelists[0];
2307 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2309 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2310 MAX_NR_ZONES - 1);
2311 zonelist->_zonerefs[j].zone = NULL;
2312 zonelist->_zonerefs[j].zone_idx = 0;
2316 * Build gfp_thisnode zonelists
2318 static void build_thisnode_zonelists(pg_data_t *pgdat)
2320 int j;
2321 struct zonelist *zonelist;
2323 zonelist = &pgdat->node_zonelists[1];
2324 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2325 zonelist->_zonerefs[j].zone = NULL;
2326 zonelist->_zonerefs[j].zone_idx = 0;
2330 * Build zonelists ordered by zone and nodes within zones.
2331 * This results in conserving DMA zone[s] until all Normal memory is
2332 * exhausted, but results in overflowing to remote node while memory
2333 * may still exist in local DMA zone.
2335 static int node_order[MAX_NUMNODES];
2337 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2339 int pos, j, node;
2340 int zone_type; /* needs to be signed */
2341 struct zone *z;
2342 struct zonelist *zonelist;
2344 zonelist = &pgdat->node_zonelists[0];
2345 pos = 0;
2346 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2347 for (j = 0; j < nr_nodes; j++) {
2348 node = node_order[j];
2349 z = &NODE_DATA(node)->node_zones[zone_type];
2350 if (populated_zone(z)) {
2351 zoneref_set_zone(z,
2352 &zonelist->_zonerefs[pos++]);
2353 check_highest_zone(zone_type);
2357 zonelist->_zonerefs[pos].zone = NULL;
2358 zonelist->_zonerefs[pos].zone_idx = 0;
2361 static int default_zonelist_order(void)
2363 int nid, zone_type;
2364 unsigned long low_kmem_size,total_size;
2365 struct zone *z;
2366 int average_size;
2368 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2369 * If they are really small and used heavily, the system can fall
2370 * into OOM very easily.
2371 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2373 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2374 low_kmem_size = 0;
2375 total_size = 0;
2376 for_each_online_node(nid) {
2377 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2378 z = &NODE_DATA(nid)->node_zones[zone_type];
2379 if (populated_zone(z)) {
2380 if (zone_type < ZONE_NORMAL)
2381 low_kmem_size += z->present_pages;
2382 total_size += z->present_pages;
2386 if (!low_kmem_size || /* there are no DMA area. */
2387 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2388 return ZONELIST_ORDER_NODE;
2390 * look into each node's config.
2391 * If there is a node whose DMA/DMA32 memory is very big area on
2392 * local memory, NODE_ORDER may be suitable.
2394 average_size = total_size /
2395 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2396 for_each_online_node(nid) {
2397 low_kmem_size = 0;
2398 total_size = 0;
2399 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2400 z = &NODE_DATA(nid)->node_zones[zone_type];
2401 if (populated_zone(z)) {
2402 if (zone_type < ZONE_NORMAL)
2403 low_kmem_size += z->present_pages;
2404 total_size += z->present_pages;
2407 if (low_kmem_size &&
2408 total_size > average_size && /* ignore small node */
2409 low_kmem_size > total_size * 70/100)
2410 return ZONELIST_ORDER_NODE;
2412 return ZONELIST_ORDER_ZONE;
2415 static void set_zonelist_order(void)
2417 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2418 current_zonelist_order = default_zonelist_order();
2419 else
2420 current_zonelist_order = user_zonelist_order;
2423 static void build_zonelists(pg_data_t *pgdat)
2425 int j, node, load;
2426 enum zone_type i;
2427 nodemask_t used_mask;
2428 int local_node, prev_node;
2429 struct zonelist *zonelist;
2430 int order = current_zonelist_order;
2432 /* initialize zonelists */
2433 for (i = 0; i < MAX_ZONELISTS; i++) {
2434 zonelist = pgdat->node_zonelists + i;
2435 zonelist->_zonerefs[0].zone = NULL;
2436 zonelist->_zonerefs[0].zone_idx = 0;
2439 /* NUMA-aware ordering of nodes */
2440 local_node = pgdat->node_id;
2441 load = num_online_nodes();
2442 prev_node = local_node;
2443 nodes_clear(used_mask);
2445 memset(node_load, 0, sizeof(node_load));
2446 memset(node_order, 0, sizeof(node_order));
2447 j = 0;
2449 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2450 int distance = node_distance(local_node, node);
2453 * If another node is sufficiently far away then it is better
2454 * to reclaim pages in a zone before going off node.
2456 if (distance > RECLAIM_DISTANCE)
2457 zone_reclaim_mode = 1;
2460 * We don't want to pressure a particular node.
2461 * So adding penalty to the first node in same
2462 * distance group to make it round-robin.
2464 if (distance != node_distance(local_node, prev_node))
2465 node_load[node] = load;
2467 prev_node = node;
2468 load--;
2469 if (order == ZONELIST_ORDER_NODE)
2470 build_zonelists_in_node_order(pgdat, node);
2471 else
2472 node_order[j++] = node; /* remember order */
2475 if (order == ZONELIST_ORDER_ZONE) {
2476 /* calculate node order -- i.e., DMA last! */
2477 build_zonelists_in_zone_order(pgdat, j);
2480 build_thisnode_zonelists(pgdat);
2483 /* Construct the zonelist performance cache - see further mmzone.h */
2484 static void build_zonelist_cache(pg_data_t *pgdat)
2486 struct zonelist *zonelist;
2487 struct zonelist_cache *zlc;
2488 struct zoneref *z;
2490 zonelist = &pgdat->node_zonelists[0];
2491 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2492 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2493 for (z = zonelist->_zonerefs; z->zone; z++)
2494 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2498 #else /* CONFIG_NUMA */
2500 static void set_zonelist_order(void)
2502 current_zonelist_order = ZONELIST_ORDER_ZONE;
2505 static void build_zonelists(pg_data_t *pgdat)
2507 int node, local_node;
2508 enum zone_type j;
2509 struct zonelist *zonelist;
2511 local_node = pgdat->node_id;
2513 zonelist = &pgdat->node_zonelists[0];
2514 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2517 * Now we build the zonelist so that it contains the zones
2518 * of all the other nodes.
2519 * We don't want to pressure a particular node, so when
2520 * building the zones for node N, we make sure that the
2521 * zones coming right after the local ones are those from
2522 * node N+1 (modulo N)
2524 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2525 if (!node_online(node))
2526 continue;
2527 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2528 MAX_NR_ZONES - 1);
2530 for (node = 0; node < local_node; node++) {
2531 if (!node_online(node))
2532 continue;
2533 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2534 MAX_NR_ZONES - 1);
2537 zonelist->_zonerefs[j].zone = NULL;
2538 zonelist->_zonerefs[j].zone_idx = 0;
2541 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2542 static void build_zonelist_cache(pg_data_t *pgdat)
2544 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2547 #endif /* CONFIG_NUMA */
2549 /* return values int ....just for stop_machine() */
2550 static int __build_all_zonelists(void *dummy)
2552 int nid;
2554 for_each_online_node(nid) {
2555 pg_data_t *pgdat = NODE_DATA(nid);
2557 build_zonelists(pgdat);
2558 build_zonelist_cache(pgdat);
2560 return 0;
2563 void build_all_zonelists(void)
2565 set_zonelist_order();
2567 if (system_state == SYSTEM_BOOTING) {
2568 __build_all_zonelists(NULL);
2569 mminit_verify_zonelist();
2570 cpuset_init_current_mems_allowed();
2571 } else {
2572 /* we have to stop all cpus to guarantee there is no user
2573 of zonelist */
2574 stop_machine(__build_all_zonelists, NULL, NULL);
2575 /* cpuset refresh routine should be here */
2577 vm_total_pages = nr_free_pagecache_pages();
2579 * Disable grouping by mobility if the number of pages in the
2580 * system is too low to allow the mechanism to work. It would be
2581 * more accurate, but expensive to check per-zone. This check is
2582 * made on memory-hotadd so a system can start with mobility
2583 * disabled and enable it later
2585 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2586 page_group_by_mobility_disabled = 1;
2587 else
2588 page_group_by_mobility_disabled = 0;
2590 printk("Built %i zonelists in %s order, mobility grouping %s. "
2591 "Total pages: %ld\n",
2592 num_online_nodes(),
2593 zonelist_order_name[current_zonelist_order],
2594 page_group_by_mobility_disabled ? "off" : "on",
2595 vm_total_pages);
2596 #ifdef CONFIG_NUMA
2597 printk("Policy zone: %s\n", zone_names[policy_zone]);
2598 #endif
2602 * Helper functions to size the waitqueue hash table.
2603 * Essentially these want to choose hash table sizes sufficiently
2604 * large so that collisions trying to wait on pages are rare.
2605 * But in fact, the number of active page waitqueues on typical
2606 * systems is ridiculously low, less than 200. So this is even
2607 * conservative, even though it seems large.
2609 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2610 * waitqueues, i.e. the size of the waitq table given the number of pages.
2612 #define PAGES_PER_WAITQUEUE 256
2614 #ifndef CONFIG_MEMORY_HOTPLUG
2615 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2617 unsigned long size = 1;
2619 pages /= PAGES_PER_WAITQUEUE;
2621 while (size < pages)
2622 size <<= 1;
2625 * Once we have dozens or even hundreds of threads sleeping
2626 * on IO we've got bigger problems than wait queue collision.
2627 * Limit the size of the wait table to a reasonable size.
2629 size = min(size, 4096UL);
2631 return max(size, 4UL);
2633 #else
2635 * A zone's size might be changed by hot-add, so it is not possible to determine
2636 * a suitable size for its wait_table. So we use the maximum size now.
2638 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2640 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2641 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2642 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2644 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2645 * or more by the traditional way. (See above). It equals:
2647 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2648 * ia64(16K page size) : = ( 8G + 4M)byte.
2649 * powerpc (64K page size) : = (32G +16M)byte.
2651 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2653 return 4096UL;
2655 #endif
2658 * This is an integer logarithm so that shifts can be used later
2659 * to extract the more random high bits from the multiplicative
2660 * hash function before the remainder is taken.
2662 static inline unsigned long wait_table_bits(unsigned long size)
2664 return ffz(~size);
2667 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2670 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2671 * of blocks reserved is based on zone->pages_min. The memory within the
2672 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2673 * higher will lead to a bigger reserve which will get freed as contiguous
2674 * blocks as reclaim kicks in
2676 static void setup_zone_migrate_reserve(struct zone *zone)
2678 unsigned long start_pfn, pfn, end_pfn;
2679 struct page *page;
2680 unsigned long reserve, block_migratetype;
2682 /* Get the start pfn, end pfn and the number of blocks to reserve */
2683 start_pfn = zone->zone_start_pfn;
2684 end_pfn = start_pfn + zone->spanned_pages;
2685 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2686 pageblock_order;
2688 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2689 if (!pfn_valid(pfn))
2690 continue;
2691 page = pfn_to_page(pfn);
2693 /* Watch out for overlapping nodes */
2694 if (page_to_nid(page) != zone_to_nid(zone))
2695 continue;
2697 /* Blocks with reserved pages will never free, skip them. */
2698 if (PageReserved(page))
2699 continue;
2701 block_migratetype = get_pageblock_migratetype(page);
2703 /* If this block is reserved, account for it */
2704 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2705 reserve--;
2706 continue;
2709 /* Suitable for reserving if this block is movable */
2710 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2711 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2712 move_freepages_block(zone, page, MIGRATE_RESERVE);
2713 reserve--;
2714 continue;
2718 * If the reserve is met and this is a previous reserved block,
2719 * take it back
2721 if (block_migratetype == MIGRATE_RESERVE) {
2722 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2723 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2729 * Initially all pages are reserved - free ones are freed
2730 * up by free_all_bootmem() once the early boot process is
2731 * done. Non-atomic initialization, single-pass.
2733 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2734 unsigned long start_pfn, enum memmap_context context)
2736 struct page *page;
2737 unsigned long end_pfn = start_pfn + size;
2738 unsigned long pfn;
2739 struct zone *z;
2741 if (highest_memmap_pfn < end_pfn - 1)
2742 highest_memmap_pfn = end_pfn - 1;
2744 z = &NODE_DATA(nid)->node_zones[zone];
2745 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2747 * There can be holes in boot-time mem_map[]s
2748 * handed to this function. They do not
2749 * exist on hotplugged memory.
2751 if (context == MEMMAP_EARLY) {
2752 if (!early_pfn_valid(pfn))
2753 continue;
2754 if (!early_pfn_in_nid(pfn, nid))
2755 continue;
2757 page = pfn_to_page(pfn);
2758 set_page_links(page, zone, nid, pfn);
2759 mminit_verify_page_links(page, zone, nid, pfn);
2760 init_page_count(page);
2761 reset_page_mapcount(page);
2762 SetPageReserved(page);
2764 * Mark the block movable so that blocks are reserved for
2765 * movable at startup. This will force kernel allocations
2766 * to reserve their blocks rather than leaking throughout
2767 * the address space during boot when many long-lived
2768 * kernel allocations are made. Later some blocks near
2769 * the start are marked MIGRATE_RESERVE by
2770 * setup_zone_migrate_reserve()
2772 * bitmap is created for zone's valid pfn range. but memmap
2773 * can be created for invalid pages (for alignment)
2774 * check here not to call set_pageblock_migratetype() against
2775 * pfn out of zone.
2777 if ((z->zone_start_pfn <= pfn)
2778 && (pfn < z->zone_start_pfn + z->spanned_pages)
2779 && !(pfn & (pageblock_nr_pages - 1)))
2780 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2782 INIT_LIST_HEAD(&page->lru);
2783 #ifdef WANT_PAGE_VIRTUAL
2784 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2785 if (!is_highmem_idx(zone))
2786 set_page_address(page, __va(pfn << PAGE_SHIFT));
2787 #endif
2791 static void __meminit zone_init_free_lists(struct zone *zone)
2793 int order, t;
2794 for_each_migratetype_order(order, t) {
2795 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2796 zone->free_area[order].nr_free = 0;
2800 #ifndef __HAVE_ARCH_MEMMAP_INIT
2801 #define memmap_init(size, nid, zone, start_pfn) \
2802 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2803 #endif
2805 static int zone_batchsize(struct zone *zone)
2807 #ifdef CONFIG_MMU
2808 int batch;
2811 * The per-cpu-pages pools are set to around 1000th of the
2812 * size of the zone. But no more than 1/2 of a meg.
2814 * OK, so we don't know how big the cache is. So guess.
2816 batch = zone->present_pages / 1024;
2817 if (batch * PAGE_SIZE > 512 * 1024)
2818 batch = (512 * 1024) / PAGE_SIZE;
2819 batch /= 4; /* We effectively *= 4 below */
2820 if (batch < 1)
2821 batch = 1;
2824 * Clamp the batch to a 2^n - 1 value. Having a power
2825 * of 2 value was found to be more likely to have
2826 * suboptimal cache aliasing properties in some cases.
2828 * For example if 2 tasks are alternately allocating
2829 * batches of pages, one task can end up with a lot
2830 * of pages of one half of the possible page colors
2831 * and the other with pages of the other colors.
2833 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2835 return batch;
2837 #else
2838 /* The deferral and batching of frees should be suppressed under NOMMU
2839 * conditions.
2841 * The problem is that NOMMU needs to be able to allocate large chunks
2842 * of contiguous memory as there's no hardware page translation to
2843 * assemble apparent contiguous memory from discontiguous pages.
2845 * Queueing large contiguous runs of pages for batching, however,
2846 * causes the pages to actually be freed in smaller chunks. As there
2847 * can be a significant delay between the individual batches being
2848 * recycled, this leads to the once large chunks of space being
2849 * fragmented and becoming unavailable for high-order allocations.
2851 return 0;
2852 #endif
2855 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2857 struct per_cpu_pages *pcp;
2859 memset(p, 0, sizeof(*p));
2861 pcp = &p->pcp;
2862 pcp->count = 0;
2863 pcp->high = 6 * batch;
2864 pcp->batch = max(1UL, 1 * batch);
2865 INIT_LIST_HEAD(&pcp->list);
2869 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2870 * to the value high for the pageset p.
2873 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2874 unsigned long high)
2876 struct per_cpu_pages *pcp;
2878 pcp = &p->pcp;
2879 pcp->high = high;
2880 pcp->batch = max(1UL, high/4);
2881 if ((high/4) > (PAGE_SHIFT * 8))
2882 pcp->batch = PAGE_SHIFT * 8;
2886 #ifdef CONFIG_NUMA
2888 * Boot pageset table. One per cpu which is going to be used for all
2889 * zones and all nodes. The parameters will be set in such a way
2890 * that an item put on a list will immediately be handed over to
2891 * the buddy list. This is safe since pageset manipulation is done
2892 * with interrupts disabled.
2894 * Some NUMA counter updates may also be caught by the boot pagesets.
2896 * The boot_pagesets must be kept even after bootup is complete for
2897 * unused processors and/or zones. They do play a role for bootstrapping
2898 * hotplugged processors.
2900 * zoneinfo_show() and maybe other functions do
2901 * not check if the processor is online before following the pageset pointer.
2902 * Other parts of the kernel may not check if the zone is available.
2904 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2907 * Dynamically allocate memory for the
2908 * per cpu pageset array in struct zone.
2910 static int __cpuinit process_zones(int cpu)
2912 struct zone *zone, *dzone;
2913 int node = cpu_to_node(cpu);
2915 node_set_state(node, N_CPU); /* this node has a cpu */
2917 for_each_populated_zone(zone) {
2918 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2919 GFP_KERNEL, node);
2920 if (!zone_pcp(zone, cpu))
2921 goto bad;
2923 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2925 if (percpu_pagelist_fraction)
2926 setup_pagelist_highmark(zone_pcp(zone, cpu),
2927 (zone->present_pages / percpu_pagelist_fraction));
2930 return 0;
2931 bad:
2932 for_each_zone(dzone) {
2933 if (!populated_zone(dzone))
2934 continue;
2935 if (dzone == zone)
2936 break;
2937 kfree(zone_pcp(dzone, cpu));
2938 zone_pcp(dzone, cpu) = NULL;
2940 return -ENOMEM;
2943 static inline void free_zone_pagesets(int cpu)
2945 struct zone *zone;
2947 for_each_zone(zone) {
2948 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2950 /* Free per_cpu_pageset if it is slab allocated */
2951 if (pset != &boot_pageset[cpu])
2952 kfree(pset);
2953 zone_pcp(zone, cpu) = NULL;
2957 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2958 unsigned long action,
2959 void *hcpu)
2961 int cpu = (long)hcpu;
2962 int ret = NOTIFY_OK;
2964 switch (action) {
2965 case CPU_UP_PREPARE:
2966 case CPU_UP_PREPARE_FROZEN:
2967 if (process_zones(cpu))
2968 ret = NOTIFY_BAD;
2969 break;
2970 case CPU_UP_CANCELED:
2971 case CPU_UP_CANCELED_FROZEN:
2972 case CPU_DEAD:
2973 case CPU_DEAD_FROZEN:
2974 free_zone_pagesets(cpu);
2975 break;
2976 default:
2977 break;
2979 return ret;
2982 static struct notifier_block __cpuinitdata pageset_notifier =
2983 { &pageset_cpuup_callback, NULL, 0 };
2985 void __init setup_per_cpu_pageset(void)
2987 int err;
2989 /* Initialize per_cpu_pageset for cpu 0.
2990 * A cpuup callback will do this for every cpu
2991 * as it comes online
2993 err = process_zones(smp_processor_id());
2994 BUG_ON(err);
2995 register_cpu_notifier(&pageset_notifier);
2998 #endif
3000 static noinline __init_refok
3001 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3003 int i;
3004 struct pglist_data *pgdat = zone->zone_pgdat;
3005 size_t alloc_size;
3008 * The per-page waitqueue mechanism uses hashed waitqueues
3009 * per zone.
3011 zone->wait_table_hash_nr_entries =
3012 wait_table_hash_nr_entries(zone_size_pages);
3013 zone->wait_table_bits =
3014 wait_table_bits(zone->wait_table_hash_nr_entries);
3015 alloc_size = zone->wait_table_hash_nr_entries
3016 * sizeof(wait_queue_head_t);
3018 if (!slab_is_available()) {
3019 zone->wait_table = (wait_queue_head_t *)
3020 alloc_bootmem_node(pgdat, alloc_size);
3021 } else {
3023 * This case means that a zone whose size was 0 gets new memory
3024 * via memory hot-add.
3025 * But it may be the case that a new node was hot-added. In
3026 * this case vmalloc() will not be able to use this new node's
3027 * memory - this wait_table must be initialized to use this new
3028 * node itself as well.
3029 * To use this new node's memory, further consideration will be
3030 * necessary.
3032 zone->wait_table = vmalloc(alloc_size);
3034 if (!zone->wait_table)
3035 return -ENOMEM;
3037 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3038 init_waitqueue_head(zone->wait_table + i);
3040 return 0;
3043 static __meminit void zone_pcp_init(struct zone *zone)
3045 int cpu;
3046 unsigned long batch = zone_batchsize(zone);
3048 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3049 #ifdef CONFIG_NUMA
3050 /* Early boot. Slab allocator not functional yet */
3051 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3052 setup_pageset(&boot_pageset[cpu],0);
3053 #else
3054 setup_pageset(zone_pcp(zone,cpu), batch);
3055 #endif
3057 if (zone->present_pages)
3058 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3059 zone->name, zone->present_pages, batch);
3062 __meminit int init_currently_empty_zone(struct zone *zone,
3063 unsigned long zone_start_pfn,
3064 unsigned long size,
3065 enum memmap_context context)
3067 struct pglist_data *pgdat = zone->zone_pgdat;
3068 int ret;
3069 ret = zone_wait_table_init(zone, size);
3070 if (ret)
3071 return ret;
3072 pgdat->nr_zones = zone_idx(zone) + 1;
3074 zone->zone_start_pfn = zone_start_pfn;
3076 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3077 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3078 pgdat->node_id,
3079 (unsigned long)zone_idx(zone),
3080 zone_start_pfn, (zone_start_pfn + size));
3082 zone_init_free_lists(zone);
3084 return 0;
3087 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3089 * Basic iterator support. Return the first range of PFNs for a node
3090 * Note: nid == MAX_NUMNODES returns first region regardless of node
3092 static int __meminit first_active_region_index_in_nid(int nid)
3094 int i;
3096 for (i = 0; i < nr_nodemap_entries; i++)
3097 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3098 return i;
3100 return -1;
3104 * Basic iterator support. Return the next active range of PFNs for a node
3105 * Note: nid == MAX_NUMNODES returns next region regardless of node
3107 static int __meminit next_active_region_index_in_nid(int index, int nid)
3109 for (index = index + 1; index < nr_nodemap_entries; index++)
3110 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3111 return index;
3113 return -1;
3116 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3118 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3119 * Architectures may implement their own version but if add_active_range()
3120 * was used and there are no special requirements, this is a convenient
3121 * alternative
3123 int __meminit __early_pfn_to_nid(unsigned long pfn)
3125 int i;
3127 for (i = 0; i < nr_nodemap_entries; i++) {
3128 unsigned long start_pfn = early_node_map[i].start_pfn;
3129 unsigned long end_pfn = early_node_map[i].end_pfn;
3131 if (start_pfn <= pfn && pfn < end_pfn)
3132 return early_node_map[i].nid;
3134 /* This is a memory hole */
3135 return -1;
3137 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3139 int __meminit early_pfn_to_nid(unsigned long pfn)
3141 int nid;
3143 nid = __early_pfn_to_nid(pfn);
3144 if (nid >= 0)
3145 return nid;
3146 /* just returns 0 */
3147 return 0;
3150 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3151 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3153 int nid;
3155 nid = __early_pfn_to_nid(pfn);
3156 if (nid >= 0 && nid != node)
3157 return false;
3158 return true;
3160 #endif
3162 /* Basic iterator support to walk early_node_map[] */
3163 #define for_each_active_range_index_in_nid(i, nid) \
3164 for (i = first_active_region_index_in_nid(nid); i != -1; \
3165 i = next_active_region_index_in_nid(i, nid))
3168 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3169 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3170 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3172 * If an architecture guarantees that all ranges registered with
3173 * add_active_ranges() contain no holes and may be freed, this
3174 * this function may be used instead of calling free_bootmem() manually.
3176 void __init free_bootmem_with_active_regions(int nid,
3177 unsigned long max_low_pfn)
3179 int i;
3181 for_each_active_range_index_in_nid(i, nid) {
3182 unsigned long size_pages = 0;
3183 unsigned long end_pfn = early_node_map[i].end_pfn;
3185 if (early_node_map[i].start_pfn >= max_low_pfn)
3186 continue;
3188 if (end_pfn > max_low_pfn)
3189 end_pfn = max_low_pfn;
3191 size_pages = end_pfn - early_node_map[i].start_pfn;
3192 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3193 PFN_PHYS(early_node_map[i].start_pfn),
3194 size_pages << PAGE_SHIFT);
3198 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3200 int i;
3201 int ret;
3203 for_each_active_range_index_in_nid(i, nid) {
3204 ret = work_fn(early_node_map[i].start_pfn,
3205 early_node_map[i].end_pfn, data);
3206 if (ret)
3207 break;
3211 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3212 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3214 * If an architecture guarantees that all ranges registered with
3215 * add_active_ranges() contain no holes and may be freed, this
3216 * function may be used instead of calling memory_present() manually.
3218 void __init sparse_memory_present_with_active_regions(int nid)
3220 int i;
3222 for_each_active_range_index_in_nid(i, nid)
3223 memory_present(early_node_map[i].nid,
3224 early_node_map[i].start_pfn,
3225 early_node_map[i].end_pfn);
3229 * get_pfn_range_for_nid - Return the start and end page frames for a node
3230 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3231 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3232 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3234 * It returns the start and end page frame of a node based on information
3235 * provided by an arch calling add_active_range(). If called for a node
3236 * with no available memory, a warning is printed and the start and end
3237 * PFNs will be 0.
3239 void __meminit get_pfn_range_for_nid(unsigned int nid,
3240 unsigned long *start_pfn, unsigned long *end_pfn)
3242 int i;
3243 *start_pfn = -1UL;
3244 *end_pfn = 0;
3246 for_each_active_range_index_in_nid(i, nid) {
3247 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3248 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3251 if (*start_pfn == -1UL)
3252 *start_pfn = 0;
3256 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3257 * assumption is made that zones within a node are ordered in monotonic
3258 * increasing memory addresses so that the "highest" populated zone is used
3260 static void __init find_usable_zone_for_movable(void)
3262 int zone_index;
3263 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3264 if (zone_index == ZONE_MOVABLE)
3265 continue;
3267 if (arch_zone_highest_possible_pfn[zone_index] >
3268 arch_zone_lowest_possible_pfn[zone_index])
3269 break;
3272 VM_BUG_ON(zone_index == -1);
3273 movable_zone = zone_index;
3277 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3278 * because it is sized independant of architecture. Unlike the other zones,
3279 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3280 * in each node depending on the size of each node and how evenly kernelcore
3281 * is distributed. This helper function adjusts the zone ranges
3282 * provided by the architecture for a given node by using the end of the
3283 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3284 * zones within a node are in order of monotonic increases memory addresses
3286 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3287 unsigned long zone_type,
3288 unsigned long node_start_pfn,
3289 unsigned long node_end_pfn,
3290 unsigned long *zone_start_pfn,
3291 unsigned long *zone_end_pfn)
3293 /* Only adjust if ZONE_MOVABLE is on this node */
3294 if (zone_movable_pfn[nid]) {
3295 /* Size ZONE_MOVABLE */
3296 if (zone_type == ZONE_MOVABLE) {
3297 *zone_start_pfn = zone_movable_pfn[nid];
3298 *zone_end_pfn = min(node_end_pfn,
3299 arch_zone_highest_possible_pfn[movable_zone]);
3301 /* Adjust for ZONE_MOVABLE starting within this range */
3302 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3303 *zone_end_pfn > zone_movable_pfn[nid]) {
3304 *zone_end_pfn = zone_movable_pfn[nid];
3306 /* Check if this whole range is within ZONE_MOVABLE */
3307 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3308 *zone_start_pfn = *zone_end_pfn;
3313 * Return the number of pages a zone spans in a node, including holes
3314 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3316 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3317 unsigned long zone_type,
3318 unsigned long *ignored)
3320 unsigned long node_start_pfn, node_end_pfn;
3321 unsigned long zone_start_pfn, zone_end_pfn;
3323 /* Get the start and end of the node and zone */
3324 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3325 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3326 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3327 adjust_zone_range_for_zone_movable(nid, zone_type,
3328 node_start_pfn, node_end_pfn,
3329 &zone_start_pfn, &zone_end_pfn);
3331 /* Check that this node has pages within the zone's required range */
3332 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3333 return 0;
3335 /* Move the zone boundaries inside the node if necessary */
3336 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3337 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3339 /* Return the spanned pages */
3340 return zone_end_pfn - zone_start_pfn;
3344 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3345 * then all holes in the requested range will be accounted for.
3347 static unsigned long __meminit __absent_pages_in_range(int nid,
3348 unsigned long range_start_pfn,
3349 unsigned long range_end_pfn)
3351 int i = 0;
3352 unsigned long prev_end_pfn = 0, hole_pages = 0;
3353 unsigned long start_pfn;
3355 /* Find the end_pfn of the first active range of pfns in the node */
3356 i = first_active_region_index_in_nid(nid);
3357 if (i == -1)
3358 return 0;
3360 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3362 /* Account for ranges before physical memory on this node */
3363 if (early_node_map[i].start_pfn > range_start_pfn)
3364 hole_pages = prev_end_pfn - range_start_pfn;
3366 /* Find all holes for the zone within the node */
3367 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3369 /* No need to continue if prev_end_pfn is outside the zone */
3370 if (prev_end_pfn >= range_end_pfn)
3371 break;
3373 /* Make sure the end of the zone is not within the hole */
3374 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3375 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3377 /* Update the hole size cound and move on */
3378 if (start_pfn > range_start_pfn) {
3379 BUG_ON(prev_end_pfn > start_pfn);
3380 hole_pages += start_pfn - prev_end_pfn;
3382 prev_end_pfn = early_node_map[i].end_pfn;
3385 /* Account for ranges past physical memory on this node */
3386 if (range_end_pfn > prev_end_pfn)
3387 hole_pages += range_end_pfn -
3388 max(range_start_pfn, prev_end_pfn);
3390 return hole_pages;
3394 * absent_pages_in_range - Return number of page frames in holes within a range
3395 * @start_pfn: The start PFN to start searching for holes
3396 * @end_pfn: The end PFN to stop searching for holes
3398 * It returns the number of pages frames in memory holes within a range.
3400 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3401 unsigned long end_pfn)
3403 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3406 /* Return the number of page frames in holes in a zone on a node */
3407 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3408 unsigned long zone_type,
3409 unsigned long *ignored)
3411 unsigned long node_start_pfn, node_end_pfn;
3412 unsigned long zone_start_pfn, zone_end_pfn;
3414 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3415 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3416 node_start_pfn);
3417 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3418 node_end_pfn);
3420 adjust_zone_range_for_zone_movable(nid, zone_type,
3421 node_start_pfn, node_end_pfn,
3422 &zone_start_pfn, &zone_end_pfn);
3423 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3426 #else
3427 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3428 unsigned long zone_type,
3429 unsigned long *zones_size)
3431 return zones_size[zone_type];
3434 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3435 unsigned long zone_type,
3436 unsigned long *zholes_size)
3438 if (!zholes_size)
3439 return 0;
3441 return zholes_size[zone_type];
3444 #endif
3446 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3447 unsigned long *zones_size, unsigned long *zholes_size)
3449 unsigned long realtotalpages, totalpages = 0;
3450 enum zone_type i;
3452 for (i = 0; i < MAX_NR_ZONES; i++)
3453 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3454 zones_size);
3455 pgdat->node_spanned_pages = totalpages;
3457 realtotalpages = totalpages;
3458 for (i = 0; i < MAX_NR_ZONES; i++)
3459 realtotalpages -=
3460 zone_absent_pages_in_node(pgdat->node_id, i,
3461 zholes_size);
3462 pgdat->node_present_pages = realtotalpages;
3463 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3464 realtotalpages);
3467 #ifndef CONFIG_SPARSEMEM
3469 * Calculate the size of the zone->blockflags rounded to an unsigned long
3470 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3471 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3472 * round what is now in bits to nearest long in bits, then return it in
3473 * bytes.
3475 static unsigned long __init usemap_size(unsigned long zonesize)
3477 unsigned long usemapsize;
3479 usemapsize = roundup(zonesize, pageblock_nr_pages);
3480 usemapsize = usemapsize >> pageblock_order;
3481 usemapsize *= NR_PAGEBLOCK_BITS;
3482 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3484 return usemapsize / 8;
3487 static void __init setup_usemap(struct pglist_data *pgdat,
3488 struct zone *zone, unsigned long zonesize)
3490 unsigned long usemapsize = usemap_size(zonesize);
3491 zone->pageblock_flags = NULL;
3492 if (usemapsize)
3493 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3495 #else
3496 static void inline setup_usemap(struct pglist_data *pgdat,
3497 struct zone *zone, unsigned long zonesize) {}
3498 #endif /* CONFIG_SPARSEMEM */
3500 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3502 /* Return a sensible default order for the pageblock size. */
3503 static inline int pageblock_default_order(void)
3505 if (HPAGE_SHIFT > PAGE_SHIFT)
3506 return HUGETLB_PAGE_ORDER;
3508 return MAX_ORDER-1;
3511 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3512 static inline void __init set_pageblock_order(unsigned int order)
3514 /* Check that pageblock_nr_pages has not already been setup */
3515 if (pageblock_order)
3516 return;
3519 * Assume the largest contiguous order of interest is a huge page.
3520 * This value may be variable depending on boot parameters on IA64
3522 pageblock_order = order;
3524 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3527 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3528 * and pageblock_default_order() are unused as pageblock_order is set
3529 * at compile-time. See include/linux/pageblock-flags.h for the values of
3530 * pageblock_order based on the kernel config
3532 static inline int pageblock_default_order(unsigned int order)
3534 return MAX_ORDER-1;
3536 #define set_pageblock_order(x) do {} while (0)
3538 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3541 * Set up the zone data structures:
3542 * - mark all pages reserved
3543 * - mark all memory queues empty
3544 * - clear the memory bitmaps
3546 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3547 unsigned long *zones_size, unsigned long *zholes_size)
3549 enum zone_type j;
3550 int nid = pgdat->node_id;
3551 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3552 int ret;
3554 pgdat_resize_init(pgdat);
3555 pgdat->nr_zones = 0;
3556 init_waitqueue_head(&pgdat->kswapd_wait);
3557 pgdat->kswapd_max_order = 0;
3558 pgdat_page_cgroup_init(pgdat);
3560 for (j = 0; j < MAX_NR_ZONES; j++) {
3561 struct zone *zone = pgdat->node_zones + j;
3562 unsigned long size, realsize, memmap_pages;
3563 enum lru_list l;
3565 size = zone_spanned_pages_in_node(nid, j, zones_size);
3566 realsize = size - zone_absent_pages_in_node(nid, j,
3567 zholes_size);
3570 * Adjust realsize so that it accounts for how much memory
3571 * is used by this zone for memmap. This affects the watermark
3572 * and per-cpu initialisations
3574 memmap_pages =
3575 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3576 if (realsize >= memmap_pages) {
3577 realsize -= memmap_pages;
3578 if (memmap_pages)
3579 printk(KERN_DEBUG
3580 " %s zone: %lu pages used for memmap\n",
3581 zone_names[j], memmap_pages);
3582 } else
3583 printk(KERN_WARNING
3584 " %s zone: %lu pages exceeds realsize %lu\n",
3585 zone_names[j], memmap_pages, realsize);
3587 /* Account for reserved pages */
3588 if (j == 0 && realsize > dma_reserve) {
3589 realsize -= dma_reserve;
3590 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3591 zone_names[0], dma_reserve);
3594 if (!is_highmem_idx(j))
3595 nr_kernel_pages += realsize;
3596 nr_all_pages += realsize;
3598 zone->spanned_pages = size;
3599 zone->present_pages = realsize;
3600 #ifdef CONFIG_NUMA
3601 zone->node = nid;
3602 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3603 / 100;
3604 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3605 #endif
3606 zone->name = zone_names[j];
3607 spin_lock_init(&zone->lock);
3608 spin_lock_init(&zone->lru_lock);
3609 zone_seqlock_init(zone);
3610 zone->zone_pgdat = pgdat;
3612 zone->prev_priority = DEF_PRIORITY;
3614 zone_pcp_init(zone);
3615 for_each_lru(l) {
3616 INIT_LIST_HEAD(&zone->lru[l].list);
3617 zone->lru[l].nr_scan = 0;
3619 zone->reclaim_stat.recent_rotated[0] = 0;
3620 zone->reclaim_stat.recent_rotated[1] = 0;
3621 zone->reclaim_stat.recent_scanned[0] = 0;
3622 zone->reclaim_stat.recent_scanned[1] = 0;
3623 zap_zone_vm_stats(zone);
3624 zone->flags = 0;
3625 if (!size)
3626 continue;
3628 set_pageblock_order(pageblock_default_order());
3629 setup_usemap(pgdat, zone, size);
3630 ret = init_currently_empty_zone(zone, zone_start_pfn,
3631 size, MEMMAP_EARLY);
3632 BUG_ON(ret);
3633 memmap_init(size, nid, j, zone_start_pfn);
3634 zone_start_pfn += size;
3638 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3640 /* Skip empty nodes */
3641 if (!pgdat->node_spanned_pages)
3642 return;
3644 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3645 /* ia64 gets its own node_mem_map, before this, without bootmem */
3646 if (!pgdat->node_mem_map) {
3647 unsigned long size, start, end;
3648 struct page *map;
3651 * The zone's endpoints aren't required to be MAX_ORDER
3652 * aligned but the node_mem_map endpoints must be in order
3653 * for the buddy allocator to function correctly.
3655 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3656 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3657 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3658 size = (end - start) * sizeof(struct page);
3659 map = alloc_remap(pgdat->node_id, size);
3660 if (!map)
3661 map = alloc_bootmem_node(pgdat, size);
3662 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3664 #ifndef CONFIG_NEED_MULTIPLE_NODES
3666 * With no DISCONTIG, the global mem_map is just set as node 0's
3668 if (pgdat == NODE_DATA(0)) {
3669 mem_map = NODE_DATA(0)->node_mem_map;
3670 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3671 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3672 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3673 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3675 #endif
3676 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3679 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3680 unsigned long node_start_pfn, unsigned long *zholes_size)
3682 pg_data_t *pgdat = NODE_DATA(nid);
3684 pgdat->node_id = nid;
3685 pgdat->node_start_pfn = node_start_pfn;
3686 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3688 alloc_node_mem_map(pgdat);
3689 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3690 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3691 nid, (unsigned long)pgdat,
3692 (unsigned long)pgdat->node_mem_map);
3693 #endif
3695 free_area_init_core(pgdat, zones_size, zholes_size);
3698 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3700 #if MAX_NUMNODES > 1
3702 * Figure out the number of possible node ids.
3704 static void __init setup_nr_node_ids(void)
3706 unsigned int node;
3707 unsigned int highest = 0;
3709 for_each_node_mask(node, node_possible_map)
3710 highest = node;
3711 nr_node_ids = highest + 1;
3713 #else
3714 static inline void setup_nr_node_ids(void)
3717 #endif
3720 * add_active_range - Register a range of PFNs backed by physical memory
3721 * @nid: The node ID the range resides on
3722 * @start_pfn: The start PFN of the available physical memory
3723 * @end_pfn: The end PFN of the available physical memory
3725 * These ranges are stored in an early_node_map[] and later used by
3726 * free_area_init_nodes() to calculate zone sizes and holes. If the
3727 * range spans a memory hole, it is up to the architecture to ensure
3728 * the memory is not freed by the bootmem allocator. If possible
3729 * the range being registered will be merged with existing ranges.
3731 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3732 unsigned long end_pfn)
3734 int i;
3736 mminit_dprintk(MMINIT_TRACE, "memory_register",
3737 "Entering add_active_range(%d, %#lx, %#lx) "
3738 "%d entries of %d used\n",
3739 nid, start_pfn, end_pfn,
3740 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3742 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3744 /* Merge with existing active regions if possible */
3745 for (i = 0; i < nr_nodemap_entries; i++) {
3746 if (early_node_map[i].nid != nid)
3747 continue;
3749 /* Skip if an existing region covers this new one */
3750 if (start_pfn >= early_node_map[i].start_pfn &&
3751 end_pfn <= early_node_map[i].end_pfn)
3752 return;
3754 /* Merge forward if suitable */
3755 if (start_pfn <= early_node_map[i].end_pfn &&
3756 end_pfn > early_node_map[i].end_pfn) {
3757 early_node_map[i].end_pfn = end_pfn;
3758 return;
3761 /* Merge backward if suitable */
3762 if (start_pfn < early_node_map[i].end_pfn &&
3763 end_pfn >= early_node_map[i].start_pfn) {
3764 early_node_map[i].start_pfn = start_pfn;
3765 return;
3769 /* Check that early_node_map is large enough */
3770 if (i >= MAX_ACTIVE_REGIONS) {
3771 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3772 MAX_ACTIVE_REGIONS);
3773 return;
3776 early_node_map[i].nid = nid;
3777 early_node_map[i].start_pfn = start_pfn;
3778 early_node_map[i].end_pfn = end_pfn;
3779 nr_nodemap_entries = i + 1;
3783 * remove_active_range - Shrink an existing registered range of PFNs
3784 * @nid: The node id the range is on that should be shrunk
3785 * @start_pfn: The new PFN of the range
3786 * @end_pfn: The new PFN of the range
3788 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3789 * The map is kept near the end physical page range that has already been
3790 * registered. This function allows an arch to shrink an existing registered
3791 * range.
3793 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3794 unsigned long end_pfn)
3796 int i, j;
3797 int removed = 0;
3799 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3800 nid, start_pfn, end_pfn);
3802 /* Find the old active region end and shrink */
3803 for_each_active_range_index_in_nid(i, nid) {
3804 if (early_node_map[i].start_pfn >= start_pfn &&
3805 early_node_map[i].end_pfn <= end_pfn) {
3806 /* clear it */
3807 early_node_map[i].start_pfn = 0;
3808 early_node_map[i].end_pfn = 0;
3809 removed = 1;
3810 continue;
3812 if (early_node_map[i].start_pfn < start_pfn &&
3813 early_node_map[i].end_pfn > start_pfn) {
3814 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3815 early_node_map[i].end_pfn = start_pfn;
3816 if (temp_end_pfn > end_pfn)
3817 add_active_range(nid, end_pfn, temp_end_pfn);
3818 continue;
3820 if (early_node_map[i].start_pfn >= start_pfn &&
3821 early_node_map[i].end_pfn > end_pfn &&
3822 early_node_map[i].start_pfn < end_pfn) {
3823 early_node_map[i].start_pfn = end_pfn;
3824 continue;
3828 if (!removed)
3829 return;
3831 /* remove the blank ones */
3832 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3833 if (early_node_map[i].nid != nid)
3834 continue;
3835 if (early_node_map[i].end_pfn)
3836 continue;
3837 /* we found it, get rid of it */
3838 for (j = i; j < nr_nodemap_entries - 1; j++)
3839 memcpy(&early_node_map[j], &early_node_map[j+1],
3840 sizeof(early_node_map[j]));
3841 j = nr_nodemap_entries - 1;
3842 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3843 nr_nodemap_entries--;
3848 * remove_all_active_ranges - Remove all currently registered regions
3850 * During discovery, it may be found that a table like SRAT is invalid
3851 * and an alternative discovery method must be used. This function removes
3852 * all currently registered regions.
3854 void __init remove_all_active_ranges(void)
3856 memset(early_node_map, 0, sizeof(early_node_map));
3857 nr_nodemap_entries = 0;
3860 /* Compare two active node_active_regions */
3861 static int __init cmp_node_active_region(const void *a, const void *b)
3863 struct node_active_region *arange = (struct node_active_region *)a;
3864 struct node_active_region *brange = (struct node_active_region *)b;
3866 /* Done this way to avoid overflows */
3867 if (arange->start_pfn > brange->start_pfn)
3868 return 1;
3869 if (arange->start_pfn < brange->start_pfn)
3870 return -1;
3872 return 0;
3875 /* sort the node_map by start_pfn */
3876 static void __init sort_node_map(void)
3878 sort(early_node_map, (size_t)nr_nodemap_entries,
3879 sizeof(struct node_active_region),
3880 cmp_node_active_region, NULL);
3883 /* Find the lowest pfn for a node */
3884 static unsigned long __init find_min_pfn_for_node(int nid)
3886 int i;
3887 unsigned long min_pfn = ULONG_MAX;
3889 /* Assuming a sorted map, the first range found has the starting pfn */
3890 for_each_active_range_index_in_nid(i, nid)
3891 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3893 if (min_pfn == ULONG_MAX) {
3894 printk(KERN_WARNING
3895 "Could not find start_pfn for node %d\n", nid);
3896 return 0;
3899 return min_pfn;
3903 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3905 * It returns the minimum PFN based on information provided via
3906 * add_active_range().
3908 unsigned long __init find_min_pfn_with_active_regions(void)
3910 return find_min_pfn_for_node(MAX_NUMNODES);
3914 * early_calculate_totalpages()
3915 * Sum pages in active regions for movable zone.
3916 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3918 static unsigned long __init early_calculate_totalpages(void)
3920 int i;
3921 unsigned long totalpages = 0;
3923 for (i = 0; i < nr_nodemap_entries; i++) {
3924 unsigned long pages = early_node_map[i].end_pfn -
3925 early_node_map[i].start_pfn;
3926 totalpages += pages;
3927 if (pages)
3928 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3930 return totalpages;
3934 * Find the PFN the Movable zone begins in each node. Kernel memory
3935 * is spread evenly between nodes as long as the nodes have enough
3936 * memory. When they don't, some nodes will have more kernelcore than
3937 * others
3939 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3941 int i, nid;
3942 unsigned long usable_startpfn;
3943 unsigned long kernelcore_node, kernelcore_remaining;
3944 unsigned long totalpages = early_calculate_totalpages();
3945 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3948 * If movablecore was specified, calculate what size of
3949 * kernelcore that corresponds so that memory usable for
3950 * any allocation type is evenly spread. If both kernelcore
3951 * and movablecore are specified, then the value of kernelcore
3952 * will be used for required_kernelcore if it's greater than
3953 * what movablecore would have allowed.
3955 if (required_movablecore) {
3956 unsigned long corepages;
3959 * Round-up so that ZONE_MOVABLE is at least as large as what
3960 * was requested by the user
3962 required_movablecore =
3963 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3964 corepages = totalpages - required_movablecore;
3966 required_kernelcore = max(required_kernelcore, corepages);
3969 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3970 if (!required_kernelcore)
3971 return;
3973 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3974 find_usable_zone_for_movable();
3975 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3977 restart:
3978 /* Spread kernelcore memory as evenly as possible throughout nodes */
3979 kernelcore_node = required_kernelcore / usable_nodes;
3980 for_each_node_state(nid, N_HIGH_MEMORY) {
3982 * Recalculate kernelcore_node if the division per node
3983 * now exceeds what is necessary to satisfy the requested
3984 * amount of memory for the kernel
3986 if (required_kernelcore < kernelcore_node)
3987 kernelcore_node = required_kernelcore / usable_nodes;
3990 * As the map is walked, we track how much memory is usable
3991 * by the kernel using kernelcore_remaining. When it is
3992 * 0, the rest of the node is usable by ZONE_MOVABLE
3994 kernelcore_remaining = kernelcore_node;
3996 /* Go through each range of PFNs within this node */
3997 for_each_active_range_index_in_nid(i, nid) {
3998 unsigned long start_pfn, end_pfn;
3999 unsigned long size_pages;
4001 start_pfn = max(early_node_map[i].start_pfn,
4002 zone_movable_pfn[nid]);
4003 end_pfn = early_node_map[i].end_pfn;
4004 if (start_pfn >= end_pfn)
4005 continue;
4007 /* Account for what is only usable for kernelcore */
4008 if (start_pfn < usable_startpfn) {
4009 unsigned long kernel_pages;
4010 kernel_pages = min(end_pfn, usable_startpfn)
4011 - start_pfn;
4013 kernelcore_remaining -= min(kernel_pages,
4014 kernelcore_remaining);
4015 required_kernelcore -= min(kernel_pages,
4016 required_kernelcore);
4018 /* Continue if range is now fully accounted */
4019 if (end_pfn <= usable_startpfn) {
4022 * Push zone_movable_pfn to the end so
4023 * that if we have to rebalance
4024 * kernelcore across nodes, we will
4025 * not double account here
4027 zone_movable_pfn[nid] = end_pfn;
4028 continue;
4030 start_pfn = usable_startpfn;
4034 * The usable PFN range for ZONE_MOVABLE is from
4035 * start_pfn->end_pfn. Calculate size_pages as the
4036 * number of pages used as kernelcore
4038 size_pages = end_pfn - start_pfn;
4039 if (size_pages > kernelcore_remaining)
4040 size_pages = kernelcore_remaining;
4041 zone_movable_pfn[nid] = start_pfn + size_pages;
4044 * Some kernelcore has been met, update counts and
4045 * break if the kernelcore for this node has been
4046 * satisified
4048 required_kernelcore -= min(required_kernelcore,
4049 size_pages);
4050 kernelcore_remaining -= size_pages;
4051 if (!kernelcore_remaining)
4052 break;
4057 * If there is still required_kernelcore, we do another pass with one
4058 * less node in the count. This will push zone_movable_pfn[nid] further
4059 * along on the nodes that still have memory until kernelcore is
4060 * satisified
4062 usable_nodes--;
4063 if (usable_nodes && required_kernelcore > usable_nodes)
4064 goto restart;
4066 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4067 for (nid = 0; nid < MAX_NUMNODES; nid++)
4068 zone_movable_pfn[nid] =
4069 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4072 /* Any regular memory on that node ? */
4073 static void check_for_regular_memory(pg_data_t *pgdat)
4075 #ifdef CONFIG_HIGHMEM
4076 enum zone_type zone_type;
4078 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4079 struct zone *zone = &pgdat->node_zones[zone_type];
4080 if (zone->present_pages)
4081 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4083 #endif
4087 * free_area_init_nodes - Initialise all pg_data_t and zone data
4088 * @max_zone_pfn: an array of max PFNs for each zone
4090 * This will call free_area_init_node() for each active node in the system.
4091 * Using the page ranges provided by add_active_range(), the size of each
4092 * zone in each node and their holes is calculated. If the maximum PFN
4093 * between two adjacent zones match, it is assumed that the zone is empty.
4094 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4095 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4096 * starts where the previous one ended. For example, ZONE_DMA32 starts
4097 * at arch_max_dma_pfn.
4099 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4101 unsigned long nid;
4102 int i;
4104 /* Sort early_node_map as initialisation assumes it is sorted */
4105 sort_node_map();
4107 /* Record where the zone boundaries are */
4108 memset(arch_zone_lowest_possible_pfn, 0,
4109 sizeof(arch_zone_lowest_possible_pfn));
4110 memset(arch_zone_highest_possible_pfn, 0,
4111 sizeof(arch_zone_highest_possible_pfn));
4112 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4113 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4114 for (i = 1; i < MAX_NR_ZONES; i++) {
4115 if (i == ZONE_MOVABLE)
4116 continue;
4117 arch_zone_lowest_possible_pfn[i] =
4118 arch_zone_highest_possible_pfn[i-1];
4119 arch_zone_highest_possible_pfn[i] =
4120 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4122 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4123 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4125 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4126 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4127 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4129 /* Print out the zone ranges */
4130 printk("Zone PFN ranges:\n");
4131 for (i = 0; i < MAX_NR_ZONES; i++) {
4132 if (i == ZONE_MOVABLE)
4133 continue;
4134 printk(" %-8s %0#10lx -> %0#10lx\n",
4135 zone_names[i],
4136 arch_zone_lowest_possible_pfn[i],
4137 arch_zone_highest_possible_pfn[i]);
4140 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4141 printk("Movable zone start PFN for each node\n");
4142 for (i = 0; i < MAX_NUMNODES; i++) {
4143 if (zone_movable_pfn[i])
4144 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4147 /* Print out the early_node_map[] */
4148 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4149 for (i = 0; i < nr_nodemap_entries; i++)
4150 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4151 early_node_map[i].start_pfn,
4152 early_node_map[i].end_pfn);
4154 /* Initialise every node */
4155 mminit_verify_pageflags_layout();
4156 setup_nr_node_ids();
4157 for_each_online_node(nid) {
4158 pg_data_t *pgdat = NODE_DATA(nid);
4159 free_area_init_node(nid, NULL,
4160 find_min_pfn_for_node(nid), NULL);
4162 /* Any memory on that node */
4163 if (pgdat->node_present_pages)
4164 node_set_state(nid, N_HIGH_MEMORY);
4165 check_for_regular_memory(pgdat);
4169 static int __init cmdline_parse_core(char *p, unsigned long *core)
4171 unsigned long long coremem;
4172 if (!p)
4173 return -EINVAL;
4175 coremem = memparse(p, &p);
4176 *core = coremem >> PAGE_SHIFT;
4178 /* Paranoid check that UL is enough for the coremem value */
4179 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4181 return 0;
4185 * kernelcore=size sets the amount of memory for use for allocations that
4186 * cannot be reclaimed or migrated.
4188 static int __init cmdline_parse_kernelcore(char *p)
4190 return cmdline_parse_core(p, &required_kernelcore);
4194 * movablecore=size sets the amount of memory for use for allocations that
4195 * can be reclaimed or migrated.
4197 static int __init cmdline_parse_movablecore(char *p)
4199 return cmdline_parse_core(p, &required_movablecore);
4202 early_param("kernelcore", cmdline_parse_kernelcore);
4203 early_param("movablecore", cmdline_parse_movablecore);
4205 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4208 * set_dma_reserve - set the specified number of pages reserved in the first zone
4209 * @new_dma_reserve: The number of pages to mark reserved
4211 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4212 * In the DMA zone, a significant percentage may be consumed by kernel image
4213 * and other unfreeable allocations which can skew the watermarks badly. This
4214 * function may optionally be used to account for unfreeable pages in the
4215 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4216 * smaller per-cpu batchsize.
4218 void __init set_dma_reserve(unsigned long new_dma_reserve)
4220 dma_reserve = new_dma_reserve;
4223 #ifndef CONFIG_NEED_MULTIPLE_NODES
4224 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4225 EXPORT_SYMBOL(contig_page_data);
4226 #endif
4228 void __init free_area_init(unsigned long *zones_size)
4230 free_area_init_node(0, zones_size,
4231 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4234 static int page_alloc_cpu_notify(struct notifier_block *self,
4235 unsigned long action, void *hcpu)
4237 int cpu = (unsigned long)hcpu;
4239 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4240 drain_pages(cpu);
4243 * Spill the event counters of the dead processor
4244 * into the current processors event counters.
4245 * This artificially elevates the count of the current
4246 * processor.
4248 vm_events_fold_cpu(cpu);
4251 * Zero the differential counters of the dead processor
4252 * so that the vm statistics are consistent.
4254 * This is only okay since the processor is dead and cannot
4255 * race with what we are doing.
4257 refresh_cpu_vm_stats(cpu);
4259 return NOTIFY_OK;
4262 void __init page_alloc_init(void)
4264 hotcpu_notifier(page_alloc_cpu_notify, 0);
4268 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4269 * or min_free_kbytes changes.
4271 static void calculate_totalreserve_pages(void)
4273 struct pglist_data *pgdat;
4274 unsigned long reserve_pages = 0;
4275 enum zone_type i, j;
4277 for_each_online_pgdat(pgdat) {
4278 for (i = 0; i < MAX_NR_ZONES; i++) {
4279 struct zone *zone = pgdat->node_zones + i;
4280 unsigned long max = 0;
4282 /* Find valid and maximum lowmem_reserve in the zone */
4283 for (j = i; j < MAX_NR_ZONES; j++) {
4284 if (zone->lowmem_reserve[j] > max)
4285 max = zone->lowmem_reserve[j];
4288 /* we treat pages_high as reserved pages. */
4289 max += zone->pages_high;
4291 if (max > zone->present_pages)
4292 max = zone->present_pages;
4293 reserve_pages += max;
4296 totalreserve_pages = reserve_pages;
4300 * setup_per_zone_lowmem_reserve - called whenever
4301 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4302 * has a correct pages reserved value, so an adequate number of
4303 * pages are left in the zone after a successful __alloc_pages().
4305 static void setup_per_zone_lowmem_reserve(void)
4307 struct pglist_data *pgdat;
4308 enum zone_type j, idx;
4310 for_each_online_pgdat(pgdat) {
4311 for (j = 0; j < MAX_NR_ZONES; j++) {
4312 struct zone *zone = pgdat->node_zones + j;
4313 unsigned long present_pages = zone->present_pages;
4315 zone->lowmem_reserve[j] = 0;
4317 idx = j;
4318 while (idx) {
4319 struct zone *lower_zone;
4321 idx--;
4323 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4324 sysctl_lowmem_reserve_ratio[idx] = 1;
4326 lower_zone = pgdat->node_zones + idx;
4327 lower_zone->lowmem_reserve[j] = present_pages /
4328 sysctl_lowmem_reserve_ratio[idx];
4329 present_pages += lower_zone->present_pages;
4334 /* update totalreserve_pages */
4335 calculate_totalreserve_pages();
4339 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4341 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4342 * with respect to min_free_kbytes.
4344 void setup_per_zone_pages_min(void)
4346 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4347 unsigned long lowmem_pages = 0;
4348 struct zone *zone;
4349 unsigned long flags;
4351 /* Calculate total number of !ZONE_HIGHMEM pages */
4352 for_each_zone(zone) {
4353 if (!is_highmem(zone))
4354 lowmem_pages += zone->present_pages;
4357 for_each_zone(zone) {
4358 u64 tmp;
4360 spin_lock_irqsave(&zone->lock, flags);
4361 tmp = (u64)pages_min * zone->present_pages;
4362 do_div(tmp, lowmem_pages);
4363 if (is_highmem(zone)) {
4365 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4366 * need highmem pages, so cap pages_min to a small
4367 * value here.
4369 * The (pages_high-pages_low) and (pages_low-pages_min)
4370 * deltas controls asynch page reclaim, and so should
4371 * not be capped for highmem.
4373 int min_pages;
4375 min_pages = zone->present_pages / 1024;
4376 if (min_pages < SWAP_CLUSTER_MAX)
4377 min_pages = SWAP_CLUSTER_MAX;
4378 if (min_pages > 128)
4379 min_pages = 128;
4380 zone->pages_min = min_pages;
4381 } else {
4383 * If it's a lowmem zone, reserve a number of pages
4384 * proportionate to the zone's size.
4386 zone->pages_min = tmp;
4389 zone->pages_low = zone->pages_min + (tmp >> 2);
4390 zone->pages_high = zone->pages_min + (tmp >> 1);
4391 setup_zone_migrate_reserve(zone);
4392 spin_unlock_irqrestore(&zone->lock, flags);
4395 /* update totalreserve_pages */
4396 calculate_totalreserve_pages();
4400 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4402 * The inactive anon list should be small enough that the VM never has to
4403 * do too much work, but large enough that each inactive page has a chance
4404 * to be referenced again before it is swapped out.
4406 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4407 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4408 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4409 * the anonymous pages are kept on the inactive list.
4411 * total target max
4412 * memory ratio inactive anon
4413 * -------------------------------------
4414 * 10MB 1 5MB
4415 * 100MB 1 50MB
4416 * 1GB 3 250MB
4417 * 10GB 10 0.9GB
4418 * 100GB 31 3GB
4419 * 1TB 101 10GB
4420 * 10TB 320 32GB
4422 static void setup_per_zone_inactive_ratio(void)
4424 struct zone *zone;
4426 for_each_zone(zone) {
4427 unsigned int gb, ratio;
4429 /* Zone size in gigabytes */
4430 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4431 ratio = int_sqrt(10 * gb);
4432 if (!ratio)
4433 ratio = 1;
4435 zone->inactive_ratio = ratio;
4440 * Initialise min_free_kbytes.
4442 * For small machines we want it small (128k min). For large machines
4443 * we want it large (64MB max). But it is not linear, because network
4444 * bandwidth does not increase linearly with machine size. We use
4446 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4447 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4449 * which yields
4451 * 16MB: 512k
4452 * 32MB: 724k
4453 * 64MB: 1024k
4454 * 128MB: 1448k
4455 * 256MB: 2048k
4456 * 512MB: 2896k
4457 * 1024MB: 4096k
4458 * 2048MB: 5792k
4459 * 4096MB: 8192k
4460 * 8192MB: 11584k
4461 * 16384MB: 16384k
4463 static int __init init_per_zone_pages_min(void)
4465 unsigned long lowmem_kbytes;
4467 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4469 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4470 if (min_free_kbytes < 128)
4471 min_free_kbytes = 128;
4472 if (min_free_kbytes > 65536)
4473 min_free_kbytes = 65536;
4474 setup_per_zone_pages_min();
4475 setup_per_zone_lowmem_reserve();
4476 setup_per_zone_inactive_ratio();
4477 return 0;
4479 module_init(init_per_zone_pages_min)
4482 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4483 * that we can call two helper functions whenever min_free_kbytes
4484 * changes.
4486 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4487 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4489 proc_dointvec(table, write, file, buffer, length, ppos);
4490 if (write)
4491 setup_per_zone_pages_min();
4492 return 0;
4495 #ifdef CONFIG_NUMA
4496 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4497 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4499 struct zone *zone;
4500 int rc;
4502 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4503 if (rc)
4504 return rc;
4506 for_each_zone(zone)
4507 zone->min_unmapped_pages = (zone->present_pages *
4508 sysctl_min_unmapped_ratio) / 100;
4509 return 0;
4512 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4513 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4515 struct zone *zone;
4516 int rc;
4518 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4519 if (rc)
4520 return rc;
4522 for_each_zone(zone)
4523 zone->min_slab_pages = (zone->present_pages *
4524 sysctl_min_slab_ratio) / 100;
4525 return 0;
4527 #endif
4530 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4531 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4532 * whenever sysctl_lowmem_reserve_ratio changes.
4534 * The reserve ratio obviously has absolutely no relation with the
4535 * pages_min watermarks. The lowmem reserve ratio can only make sense
4536 * if in function of the boot time zone sizes.
4538 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4539 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4541 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4542 setup_per_zone_lowmem_reserve();
4543 return 0;
4547 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4548 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4549 * can have before it gets flushed back to buddy allocator.
4552 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4553 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4555 struct zone *zone;
4556 unsigned int cpu;
4557 int ret;
4559 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4560 if (!write || (ret == -EINVAL))
4561 return ret;
4562 for_each_zone(zone) {
4563 for_each_online_cpu(cpu) {
4564 unsigned long high;
4565 high = zone->present_pages / percpu_pagelist_fraction;
4566 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4569 return 0;
4572 int hashdist = HASHDIST_DEFAULT;
4574 #ifdef CONFIG_NUMA
4575 static int __init set_hashdist(char *str)
4577 if (!str)
4578 return 0;
4579 hashdist = simple_strtoul(str, &str, 0);
4580 return 1;
4582 __setup("hashdist=", set_hashdist);
4583 #endif
4586 * allocate a large system hash table from bootmem
4587 * - it is assumed that the hash table must contain an exact power-of-2
4588 * quantity of entries
4589 * - limit is the number of hash buckets, not the total allocation size
4591 void *__init alloc_large_system_hash(const char *tablename,
4592 unsigned long bucketsize,
4593 unsigned long numentries,
4594 int scale,
4595 int flags,
4596 unsigned int *_hash_shift,
4597 unsigned int *_hash_mask,
4598 unsigned long limit)
4600 unsigned long long max = limit;
4601 unsigned long log2qty, size;
4602 void *table = NULL;
4604 /* allow the kernel cmdline to have a say */
4605 if (!numentries) {
4606 /* round applicable memory size up to nearest megabyte */
4607 numentries = nr_kernel_pages;
4608 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4609 numentries >>= 20 - PAGE_SHIFT;
4610 numentries <<= 20 - PAGE_SHIFT;
4612 /* limit to 1 bucket per 2^scale bytes of low memory */
4613 if (scale > PAGE_SHIFT)
4614 numentries >>= (scale - PAGE_SHIFT);
4615 else
4616 numentries <<= (PAGE_SHIFT - scale);
4618 /* Make sure we've got at least a 0-order allocation.. */
4619 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4620 numentries = PAGE_SIZE / bucketsize;
4622 numentries = roundup_pow_of_two(numentries);
4624 /* limit allocation size to 1/16 total memory by default */
4625 if (max == 0) {
4626 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4627 do_div(max, bucketsize);
4630 if (numentries > max)
4631 numentries = max;
4633 log2qty = ilog2(numentries);
4635 do {
4636 size = bucketsize << log2qty;
4637 if (flags & HASH_EARLY)
4638 table = alloc_bootmem_nopanic(size);
4639 else if (hashdist)
4640 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4641 else {
4642 unsigned long order = get_order(size);
4644 if (order < MAX_ORDER)
4645 table = (void *)__get_free_pages(GFP_ATOMIC,
4646 order);
4648 * If bucketsize is not a power-of-two, we may free
4649 * some pages at the end of hash table.
4651 if (table) {
4652 unsigned long alloc_end = (unsigned long)table +
4653 (PAGE_SIZE << order);
4654 unsigned long used = (unsigned long)table +
4655 PAGE_ALIGN(size);
4656 split_page(virt_to_page(table), order);
4657 while (used < alloc_end) {
4658 free_page(used);
4659 used += PAGE_SIZE;
4663 } while (!table && size > PAGE_SIZE && --log2qty);
4665 if (!table)
4666 panic("Failed to allocate %s hash table\n", tablename);
4668 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4669 tablename,
4670 (1U << log2qty),
4671 ilog2(size) - PAGE_SHIFT,
4672 size);
4674 if (_hash_shift)
4675 *_hash_shift = log2qty;
4676 if (_hash_mask)
4677 *_hash_mask = (1 << log2qty) - 1;
4680 * If hashdist is set, the table allocation is done with __vmalloc()
4681 * which invokes the kmemleak_alloc() callback. This function may also
4682 * be called before the slab and kmemleak are initialised when
4683 * kmemleak simply buffers the request to be executed later
4684 * (GFP_ATOMIC flag ignored in this case).
4686 if (!hashdist)
4687 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4689 return table;
4692 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4693 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4694 unsigned long pfn)
4696 #ifdef CONFIG_SPARSEMEM
4697 return __pfn_to_section(pfn)->pageblock_flags;
4698 #else
4699 return zone->pageblock_flags;
4700 #endif /* CONFIG_SPARSEMEM */
4703 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4705 #ifdef CONFIG_SPARSEMEM
4706 pfn &= (PAGES_PER_SECTION-1);
4707 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4708 #else
4709 pfn = pfn - zone->zone_start_pfn;
4710 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4711 #endif /* CONFIG_SPARSEMEM */
4715 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4716 * @page: The page within the block of interest
4717 * @start_bitidx: The first bit of interest to retrieve
4718 * @end_bitidx: The last bit of interest
4719 * returns pageblock_bits flags
4721 unsigned long get_pageblock_flags_group(struct page *page,
4722 int start_bitidx, int end_bitidx)
4724 struct zone *zone;
4725 unsigned long *bitmap;
4726 unsigned long pfn, bitidx;
4727 unsigned long flags = 0;
4728 unsigned long value = 1;
4730 zone = page_zone(page);
4731 pfn = page_to_pfn(page);
4732 bitmap = get_pageblock_bitmap(zone, pfn);
4733 bitidx = pfn_to_bitidx(zone, pfn);
4735 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4736 if (test_bit(bitidx + start_bitidx, bitmap))
4737 flags |= value;
4739 return flags;
4743 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4744 * @page: The page within the block of interest
4745 * @start_bitidx: The first bit of interest
4746 * @end_bitidx: The last bit of interest
4747 * @flags: The flags to set
4749 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4750 int start_bitidx, int end_bitidx)
4752 struct zone *zone;
4753 unsigned long *bitmap;
4754 unsigned long pfn, bitidx;
4755 unsigned long value = 1;
4757 zone = page_zone(page);
4758 pfn = page_to_pfn(page);
4759 bitmap = get_pageblock_bitmap(zone, pfn);
4760 bitidx = pfn_to_bitidx(zone, pfn);
4761 VM_BUG_ON(pfn < zone->zone_start_pfn);
4762 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4764 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4765 if (flags & value)
4766 __set_bit(bitidx + start_bitidx, bitmap);
4767 else
4768 __clear_bit(bitidx + start_bitidx, bitmap);
4772 * This is designed as sub function...plz see page_isolation.c also.
4773 * set/clear page block's type to be ISOLATE.
4774 * page allocater never alloc memory from ISOLATE block.
4777 int set_migratetype_isolate(struct page *page)
4779 struct zone *zone;
4780 unsigned long flags;
4781 int ret = -EBUSY;
4783 zone = page_zone(page);
4784 spin_lock_irqsave(&zone->lock, flags);
4786 * In future, more migrate types will be able to be isolation target.
4788 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4789 goto out;
4790 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4791 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4792 ret = 0;
4793 out:
4794 spin_unlock_irqrestore(&zone->lock, flags);
4795 if (!ret)
4796 drain_all_pages();
4797 return ret;
4800 void unset_migratetype_isolate(struct page *page)
4802 struct zone *zone;
4803 unsigned long flags;
4804 zone = page_zone(page);
4805 spin_lock_irqsave(&zone->lock, flags);
4806 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4807 goto out;
4808 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4809 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4810 out:
4811 spin_unlock_irqrestore(&zone->lock, flags);
4814 #ifdef CONFIG_MEMORY_HOTREMOVE
4816 * All pages in the range must be isolated before calling this.
4818 void
4819 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4821 struct page *page;
4822 struct zone *zone;
4823 int order, i;
4824 unsigned long pfn;
4825 unsigned long flags;
4826 /* find the first valid pfn */
4827 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4828 if (pfn_valid(pfn))
4829 break;
4830 if (pfn == end_pfn)
4831 return;
4832 zone = page_zone(pfn_to_page(pfn));
4833 spin_lock_irqsave(&zone->lock, flags);
4834 pfn = start_pfn;
4835 while (pfn < end_pfn) {
4836 if (!pfn_valid(pfn)) {
4837 pfn++;
4838 continue;
4840 page = pfn_to_page(pfn);
4841 BUG_ON(page_count(page));
4842 BUG_ON(!PageBuddy(page));
4843 order = page_order(page);
4844 #ifdef CONFIG_DEBUG_VM
4845 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4846 pfn, 1 << order, end_pfn);
4847 #endif
4848 list_del(&page->lru);
4849 rmv_page_order(page);
4850 zone->free_area[order].nr_free--;
4851 __mod_zone_page_state(zone, NR_FREE_PAGES,
4852 - (1UL << order));
4853 for (i = 0; i < (1 << order); i++)
4854 SetPageReserved((page+i));
4855 pfn += (1 << order);
4857 spin_unlock_irqrestore(&zone->lock, flags);
4859 #endif