Straightforward. As an aside, the ida_init calls are not needed as far as
[linux-2.6/next.git] / net / bluetooth / hci_core.c
blob446bfdb4e28173bba648aee931075fa7dc929c04
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI core. */
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
48 #include <asm/system.h>
49 #include <linux/uaccess.h>
50 #include <asm/unaligned.h>
52 #include <net/bluetooth/bluetooth.h>
53 #include <net/bluetooth/hci_core.h>
55 #define AUTO_OFF_TIMEOUT 2000
57 static void hci_cmd_task(unsigned long arg);
58 static void hci_rx_task(unsigned long arg);
59 static void hci_tx_task(unsigned long arg);
61 static DEFINE_RWLOCK(hci_task_lock);
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
71 /* HCI protocols */
72 #define HCI_MAX_PROTO 2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
78 /* ---- HCI notifications ---- */
80 int hci_register_notifier(struct notifier_block *nb)
82 return atomic_notifier_chain_register(&hci_notifier, nb);
85 int hci_unregister_notifier(struct notifier_block *nb)
87 return atomic_notifier_chain_unregister(&hci_notifier, nb);
90 static void hci_notify(struct hci_dev *hdev, int event)
92 atomic_notifier_call_chain(&hci_notifier, event, hdev);
95 /* ---- HCI requests ---- */
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
99 BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
101 /* If this is the init phase check if the completed command matches
102 * the last init command, and if not just return.
104 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105 return;
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 wake_up_interruptible(&hdev->req_wait_q);
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
116 BT_DBG("%s err 0x%2.2x", hdev->name, err);
118 if (hdev->req_status == HCI_REQ_PEND) {
119 hdev->req_result = err;
120 hdev->req_status = HCI_REQ_CANCELED;
121 wake_up_interruptible(&hdev->req_wait_q);
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127 unsigned long opt, __u32 timeout)
129 DECLARE_WAITQUEUE(wait, current);
130 int err = 0;
132 BT_DBG("%s start", hdev->name);
134 hdev->req_status = HCI_REQ_PEND;
136 add_wait_queue(&hdev->req_wait_q, &wait);
137 set_current_state(TASK_INTERRUPTIBLE);
139 req(hdev, opt);
140 schedule_timeout(timeout);
142 remove_wait_queue(&hdev->req_wait_q, &wait);
144 if (signal_pending(current))
145 return -EINTR;
147 switch (hdev->req_status) {
148 case HCI_REQ_DONE:
149 err = -bt_to_errno(hdev->req_result);
150 break;
152 case HCI_REQ_CANCELED:
153 err = -hdev->req_result;
154 break;
156 default:
157 err = -ETIMEDOUT;
158 break;
161 hdev->req_status = hdev->req_result = 0;
163 BT_DBG("%s end: err %d", hdev->name, err);
165 return err;
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169 unsigned long opt, __u32 timeout)
171 int ret;
173 if (!test_bit(HCI_UP, &hdev->flags))
174 return -ENETDOWN;
176 /* Serialize all requests */
177 hci_req_lock(hdev);
178 ret = __hci_request(hdev, req, opt, timeout);
179 hci_req_unlock(hdev);
181 return ret;
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
186 BT_DBG("%s %ld", hdev->name, opt);
188 /* Reset device */
189 set_bit(HCI_RESET, &hdev->flags);
190 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
195 struct hci_cp_delete_stored_link_key cp;
196 struct sk_buff *skb;
197 __le16 param;
198 __u8 flt_type;
200 BT_DBG("%s %ld", hdev->name, opt);
202 /* Driver initialization */
204 /* Special commands */
205 while ((skb = skb_dequeue(&hdev->driver_init))) {
206 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207 skb->dev = (void *) hdev;
209 skb_queue_tail(&hdev->cmd_q, skb);
210 tasklet_schedule(&hdev->cmd_task);
212 skb_queue_purge(&hdev->driver_init);
214 /* Mandatory initialization */
216 /* Reset */
217 if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218 set_bit(HCI_RESET, &hdev->flags);
219 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
222 /* Read Local Supported Features */
223 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
225 /* Read Local Version */
226 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
228 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229 hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
231 #if 0
232 /* Host buffer size */
234 struct hci_cp_host_buffer_size cp;
235 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237 cp.acl_max_pkt = cpu_to_le16(0xffff);
238 cp.sco_max_pkt = cpu_to_le16(0xffff);
239 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
241 #endif
243 /* Read BD Address */
244 hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
246 /* Read Class of Device */
247 hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
249 /* Read Local Name */
250 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
252 /* Read Voice Setting */
253 hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
255 /* Optional initialization */
257 /* Clear Event Filters */
258 flt_type = HCI_FLT_CLEAR_ALL;
259 hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
261 /* Connection accept timeout ~20 secs */
262 param = cpu_to_le16(0x7d00);
263 hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
265 bacpy(&cp.bdaddr, BDADDR_ANY);
266 cp.delete_all = 1;
267 hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
272 BT_DBG("%s", hdev->name);
274 /* Read LE buffer size */
275 hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
280 __u8 scan = opt;
282 BT_DBG("%s %x", hdev->name, scan);
284 /* Inquiry and Page scans */
285 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
290 __u8 auth = opt;
292 BT_DBG("%s %x", hdev->name, auth);
294 /* Authentication */
295 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
300 __u8 encrypt = opt;
302 BT_DBG("%s %x", hdev->name, encrypt);
304 /* Encryption */
305 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
310 __le16 policy = cpu_to_le16(opt);
312 BT_DBG("%s %x", hdev->name, policy);
314 /* Default link policy */
315 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
318 /* Get HCI device by index.
319 * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
322 struct hci_dev *hdev = NULL;
323 struct list_head *p;
325 BT_DBG("%d", index);
327 if (index < 0)
328 return NULL;
330 read_lock(&hci_dev_list_lock);
331 list_for_each(p, &hci_dev_list) {
332 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333 if (d->id == index) {
334 hdev = hci_dev_hold(d);
335 break;
338 read_unlock(&hci_dev_list_lock);
339 return hdev;
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
345 struct inquiry_cache *cache = &hdev->inq_cache;
346 struct inquiry_entry *next = cache->list, *e;
348 BT_DBG("cache %p", cache);
350 cache->list = NULL;
351 while ((e = next)) {
352 next = e->next;
353 kfree(e);
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
359 struct inquiry_cache *cache = &hdev->inq_cache;
360 struct inquiry_entry *e;
362 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
364 for (e = cache->list; e; e = e->next)
365 if (!bacmp(&e->data.bdaddr, bdaddr))
366 break;
367 return e;
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
372 struct inquiry_cache *cache = &hdev->inq_cache;
373 struct inquiry_entry *ie;
375 BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
377 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378 if (!ie) {
379 /* Entry not in the cache. Add new one. */
380 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381 if (!ie)
382 return;
384 ie->next = cache->list;
385 cache->list = ie;
388 memcpy(&ie->data, data, sizeof(*data));
389 ie->timestamp = jiffies;
390 cache->timestamp = jiffies;
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
395 struct inquiry_cache *cache = &hdev->inq_cache;
396 struct inquiry_info *info = (struct inquiry_info *) buf;
397 struct inquiry_entry *e;
398 int copied = 0;
400 for (e = cache->list; e && copied < num; e = e->next, copied++) {
401 struct inquiry_data *data = &e->data;
402 bacpy(&info->bdaddr, &data->bdaddr);
403 info->pscan_rep_mode = data->pscan_rep_mode;
404 info->pscan_period_mode = data->pscan_period_mode;
405 info->pscan_mode = data->pscan_mode;
406 memcpy(info->dev_class, data->dev_class, 3);
407 info->clock_offset = data->clock_offset;
408 info++;
411 BT_DBG("cache %p, copied %d", cache, copied);
412 return copied;
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
417 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418 struct hci_cp_inquiry cp;
420 BT_DBG("%s", hdev->name);
422 if (test_bit(HCI_INQUIRY, &hdev->flags))
423 return;
425 /* Start Inquiry */
426 memcpy(&cp.lap, &ir->lap, 3);
427 cp.length = ir->length;
428 cp.num_rsp = ir->num_rsp;
429 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
432 int hci_inquiry(void __user *arg)
434 __u8 __user *ptr = arg;
435 struct hci_inquiry_req ir;
436 struct hci_dev *hdev;
437 int err = 0, do_inquiry = 0, max_rsp;
438 long timeo;
439 __u8 *buf;
441 if (copy_from_user(&ir, ptr, sizeof(ir)))
442 return -EFAULT;
444 hdev = hci_dev_get(ir.dev_id);
445 if (!hdev)
446 return -ENODEV;
448 hci_dev_lock_bh(hdev);
449 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450 inquiry_cache_empty(hdev) ||
451 ir.flags & IREQ_CACHE_FLUSH) {
452 inquiry_cache_flush(hdev);
453 do_inquiry = 1;
455 hci_dev_unlock_bh(hdev);
457 timeo = ir.length * msecs_to_jiffies(2000);
459 if (do_inquiry) {
460 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461 if (err < 0)
462 goto done;
465 /* for unlimited number of responses we will use buffer with 255 entries */
466 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
468 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469 * copy it to the user space.
471 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472 if (!buf) {
473 err = -ENOMEM;
474 goto done;
477 hci_dev_lock_bh(hdev);
478 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479 hci_dev_unlock_bh(hdev);
481 BT_DBG("num_rsp %d", ir.num_rsp);
483 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484 ptr += sizeof(ir);
485 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486 ir.num_rsp))
487 err = -EFAULT;
488 } else
489 err = -EFAULT;
491 kfree(buf);
493 done:
494 hci_dev_put(hdev);
495 return err;
498 /* ---- HCI ioctl helpers ---- */
500 int hci_dev_open(__u16 dev)
502 struct hci_dev *hdev;
503 int ret = 0;
505 hdev = hci_dev_get(dev);
506 if (!hdev)
507 return -ENODEV;
509 BT_DBG("%s %p", hdev->name, hdev);
511 hci_req_lock(hdev);
513 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
514 ret = -ERFKILL;
515 goto done;
518 if (test_bit(HCI_UP, &hdev->flags)) {
519 ret = -EALREADY;
520 goto done;
523 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
524 set_bit(HCI_RAW, &hdev->flags);
526 /* Treat all non BR/EDR controllers as raw devices for now */
527 if (hdev->dev_type != HCI_BREDR)
528 set_bit(HCI_RAW, &hdev->flags);
530 if (hdev->open(hdev)) {
531 ret = -EIO;
532 goto done;
535 if (!test_bit(HCI_RAW, &hdev->flags)) {
536 atomic_set(&hdev->cmd_cnt, 1);
537 set_bit(HCI_INIT, &hdev->flags);
538 hdev->init_last_cmd = 0;
540 ret = __hci_request(hdev, hci_init_req, 0,
541 msecs_to_jiffies(HCI_INIT_TIMEOUT));
543 if (lmp_host_le_capable(hdev))
544 ret = __hci_request(hdev, hci_le_init_req, 0,
545 msecs_to_jiffies(HCI_INIT_TIMEOUT));
547 clear_bit(HCI_INIT, &hdev->flags);
550 if (!ret) {
551 hci_dev_hold(hdev);
552 set_bit(HCI_UP, &hdev->flags);
553 hci_notify(hdev, HCI_DEV_UP);
554 if (!test_bit(HCI_SETUP, &hdev->flags))
555 mgmt_powered(hdev->id, 1);
556 } else {
557 /* Init failed, cleanup */
558 tasklet_kill(&hdev->rx_task);
559 tasklet_kill(&hdev->tx_task);
560 tasklet_kill(&hdev->cmd_task);
562 skb_queue_purge(&hdev->cmd_q);
563 skb_queue_purge(&hdev->rx_q);
565 if (hdev->flush)
566 hdev->flush(hdev);
568 if (hdev->sent_cmd) {
569 kfree_skb(hdev->sent_cmd);
570 hdev->sent_cmd = NULL;
573 hdev->close(hdev);
574 hdev->flags = 0;
577 done:
578 hci_req_unlock(hdev);
579 hci_dev_put(hdev);
580 return ret;
583 static int hci_dev_do_close(struct hci_dev *hdev)
585 BT_DBG("%s %p", hdev->name, hdev);
587 hci_req_cancel(hdev, ENODEV);
588 hci_req_lock(hdev);
590 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
591 del_timer_sync(&hdev->cmd_timer);
592 hci_req_unlock(hdev);
593 return 0;
596 /* Kill RX and TX tasks */
597 tasklet_kill(&hdev->rx_task);
598 tasklet_kill(&hdev->tx_task);
600 hci_dev_lock_bh(hdev);
601 inquiry_cache_flush(hdev);
602 hci_conn_hash_flush(hdev);
603 hci_dev_unlock_bh(hdev);
605 hci_notify(hdev, HCI_DEV_DOWN);
607 if (hdev->flush)
608 hdev->flush(hdev);
610 /* Reset device */
611 skb_queue_purge(&hdev->cmd_q);
612 atomic_set(&hdev->cmd_cnt, 1);
613 if (!test_bit(HCI_RAW, &hdev->flags)) {
614 set_bit(HCI_INIT, &hdev->flags);
615 __hci_request(hdev, hci_reset_req, 0,
616 msecs_to_jiffies(250));
617 clear_bit(HCI_INIT, &hdev->flags);
620 /* Kill cmd task */
621 tasklet_kill(&hdev->cmd_task);
623 /* Drop queues */
624 skb_queue_purge(&hdev->rx_q);
625 skb_queue_purge(&hdev->cmd_q);
626 skb_queue_purge(&hdev->raw_q);
628 /* Drop last sent command */
629 if (hdev->sent_cmd) {
630 del_timer_sync(&hdev->cmd_timer);
631 kfree_skb(hdev->sent_cmd);
632 hdev->sent_cmd = NULL;
635 /* After this point our queues are empty
636 * and no tasks are scheduled. */
637 hdev->close(hdev);
639 mgmt_powered(hdev->id, 0);
641 /* Clear flags */
642 hdev->flags = 0;
644 hci_req_unlock(hdev);
646 hci_dev_put(hdev);
647 return 0;
650 int hci_dev_close(__u16 dev)
652 struct hci_dev *hdev;
653 int err;
655 hdev = hci_dev_get(dev);
656 if (!hdev)
657 return -ENODEV;
658 err = hci_dev_do_close(hdev);
659 hci_dev_put(hdev);
660 return err;
663 int hci_dev_reset(__u16 dev)
665 struct hci_dev *hdev;
666 int ret = 0;
668 hdev = hci_dev_get(dev);
669 if (!hdev)
670 return -ENODEV;
672 hci_req_lock(hdev);
673 tasklet_disable(&hdev->tx_task);
675 if (!test_bit(HCI_UP, &hdev->flags))
676 goto done;
678 /* Drop queues */
679 skb_queue_purge(&hdev->rx_q);
680 skb_queue_purge(&hdev->cmd_q);
682 hci_dev_lock_bh(hdev);
683 inquiry_cache_flush(hdev);
684 hci_conn_hash_flush(hdev);
685 hci_dev_unlock_bh(hdev);
687 if (hdev->flush)
688 hdev->flush(hdev);
690 atomic_set(&hdev->cmd_cnt, 1);
691 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
693 if (!test_bit(HCI_RAW, &hdev->flags))
694 ret = __hci_request(hdev, hci_reset_req, 0,
695 msecs_to_jiffies(HCI_INIT_TIMEOUT));
697 done:
698 tasklet_enable(&hdev->tx_task);
699 hci_req_unlock(hdev);
700 hci_dev_put(hdev);
701 return ret;
704 int hci_dev_reset_stat(__u16 dev)
706 struct hci_dev *hdev;
707 int ret = 0;
709 hdev = hci_dev_get(dev);
710 if (!hdev)
711 return -ENODEV;
713 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
715 hci_dev_put(hdev);
717 return ret;
720 int hci_dev_cmd(unsigned int cmd, void __user *arg)
722 struct hci_dev *hdev;
723 struct hci_dev_req dr;
724 int err = 0;
726 if (copy_from_user(&dr, arg, sizeof(dr)))
727 return -EFAULT;
729 hdev = hci_dev_get(dr.dev_id);
730 if (!hdev)
731 return -ENODEV;
733 switch (cmd) {
734 case HCISETAUTH:
735 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
736 msecs_to_jiffies(HCI_INIT_TIMEOUT));
737 break;
739 case HCISETENCRYPT:
740 if (!lmp_encrypt_capable(hdev)) {
741 err = -EOPNOTSUPP;
742 break;
745 if (!test_bit(HCI_AUTH, &hdev->flags)) {
746 /* Auth must be enabled first */
747 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
748 msecs_to_jiffies(HCI_INIT_TIMEOUT));
749 if (err)
750 break;
753 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
754 msecs_to_jiffies(HCI_INIT_TIMEOUT));
755 break;
757 case HCISETSCAN:
758 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
759 msecs_to_jiffies(HCI_INIT_TIMEOUT));
760 break;
762 case HCISETLINKPOL:
763 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
764 msecs_to_jiffies(HCI_INIT_TIMEOUT));
765 break;
767 case HCISETLINKMODE:
768 hdev->link_mode = ((__u16) dr.dev_opt) &
769 (HCI_LM_MASTER | HCI_LM_ACCEPT);
770 break;
772 case HCISETPTYPE:
773 hdev->pkt_type = (__u16) dr.dev_opt;
774 break;
776 case HCISETACLMTU:
777 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
778 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
779 break;
781 case HCISETSCOMTU:
782 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
783 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
784 break;
786 default:
787 err = -EINVAL;
788 break;
791 hci_dev_put(hdev);
792 return err;
795 int hci_get_dev_list(void __user *arg)
797 struct hci_dev_list_req *dl;
798 struct hci_dev_req *dr;
799 struct list_head *p;
800 int n = 0, size, err;
801 __u16 dev_num;
803 if (get_user(dev_num, (__u16 __user *) arg))
804 return -EFAULT;
806 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
807 return -EINVAL;
809 size = sizeof(*dl) + dev_num * sizeof(*dr);
811 dl = kzalloc(size, GFP_KERNEL);
812 if (!dl)
813 return -ENOMEM;
815 dr = dl->dev_req;
817 read_lock_bh(&hci_dev_list_lock);
818 list_for_each(p, &hci_dev_list) {
819 struct hci_dev *hdev;
821 hdev = list_entry(p, struct hci_dev, list);
823 hci_del_off_timer(hdev);
825 if (!test_bit(HCI_MGMT, &hdev->flags))
826 set_bit(HCI_PAIRABLE, &hdev->flags);
828 (dr + n)->dev_id = hdev->id;
829 (dr + n)->dev_opt = hdev->flags;
831 if (++n >= dev_num)
832 break;
834 read_unlock_bh(&hci_dev_list_lock);
836 dl->dev_num = n;
837 size = sizeof(*dl) + n * sizeof(*dr);
839 err = copy_to_user(arg, dl, size);
840 kfree(dl);
842 return err ? -EFAULT : 0;
845 int hci_get_dev_info(void __user *arg)
847 struct hci_dev *hdev;
848 struct hci_dev_info di;
849 int err = 0;
851 if (copy_from_user(&di, arg, sizeof(di)))
852 return -EFAULT;
854 hdev = hci_dev_get(di.dev_id);
855 if (!hdev)
856 return -ENODEV;
858 hci_del_off_timer(hdev);
860 if (!test_bit(HCI_MGMT, &hdev->flags))
861 set_bit(HCI_PAIRABLE, &hdev->flags);
863 strcpy(di.name, hdev->name);
864 di.bdaddr = hdev->bdaddr;
865 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
866 di.flags = hdev->flags;
867 di.pkt_type = hdev->pkt_type;
868 di.acl_mtu = hdev->acl_mtu;
869 di.acl_pkts = hdev->acl_pkts;
870 di.sco_mtu = hdev->sco_mtu;
871 di.sco_pkts = hdev->sco_pkts;
872 di.link_policy = hdev->link_policy;
873 di.link_mode = hdev->link_mode;
875 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
876 memcpy(&di.features, &hdev->features, sizeof(di.features));
878 if (copy_to_user(arg, &di, sizeof(di)))
879 err = -EFAULT;
881 hci_dev_put(hdev);
883 return err;
886 /* ---- Interface to HCI drivers ---- */
888 static int hci_rfkill_set_block(void *data, bool blocked)
890 struct hci_dev *hdev = data;
892 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
894 if (!blocked)
895 return 0;
897 hci_dev_do_close(hdev);
899 return 0;
902 static const struct rfkill_ops hci_rfkill_ops = {
903 .set_block = hci_rfkill_set_block,
906 /* Alloc HCI device */
907 struct hci_dev *hci_alloc_dev(void)
909 struct hci_dev *hdev;
911 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
912 if (!hdev)
913 return NULL;
915 skb_queue_head_init(&hdev->driver_init);
917 return hdev;
919 EXPORT_SYMBOL(hci_alloc_dev);
921 /* Free HCI device */
922 void hci_free_dev(struct hci_dev *hdev)
924 skb_queue_purge(&hdev->driver_init);
926 /* will free via device release */
927 put_device(&hdev->dev);
929 EXPORT_SYMBOL(hci_free_dev);
931 static void hci_power_on(struct work_struct *work)
933 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
935 BT_DBG("%s", hdev->name);
937 if (hci_dev_open(hdev->id) < 0)
938 return;
940 if (test_bit(HCI_AUTO_OFF, &hdev->flags))
941 mod_timer(&hdev->off_timer,
942 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
944 if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
945 mgmt_index_added(hdev->id);
948 static void hci_power_off(struct work_struct *work)
950 struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
952 BT_DBG("%s", hdev->name);
954 hci_dev_close(hdev->id);
957 static void hci_auto_off(unsigned long data)
959 struct hci_dev *hdev = (struct hci_dev *) data;
961 BT_DBG("%s", hdev->name);
963 clear_bit(HCI_AUTO_OFF, &hdev->flags);
965 queue_work(hdev->workqueue, &hdev->power_off);
968 void hci_del_off_timer(struct hci_dev *hdev)
970 BT_DBG("%s", hdev->name);
972 clear_bit(HCI_AUTO_OFF, &hdev->flags);
973 del_timer(&hdev->off_timer);
976 int hci_uuids_clear(struct hci_dev *hdev)
978 struct list_head *p, *n;
980 list_for_each_safe(p, n, &hdev->uuids) {
981 struct bt_uuid *uuid;
983 uuid = list_entry(p, struct bt_uuid, list);
985 list_del(p);
986 kfree(uuid);
989 return 0;
992 int hci_link_keys_clear(struct hci_dev *hdev)
994 struct list_head *p, *n;
996 list_for_each_safe(p, n, &hdev->link_keys) {
997 struct link_key *key;
999 key = list_entry(p, struct link_key, list);
1001 list_del(p);
1002 kfree(key);
1005 return 0;
1008 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1010 struct list_head *p;
1012 list_for_each(p, &hdev->link_keys) {
1013 struct link_key *k;
1015 k = list_entry(p, struct link_key, list);
1017 if (bacmp(bdaddr, &k->bdaddr) == 0)
1018 return k;
1021 return NULL;
1024 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1025 u8 key_type, u8 old_key_type)
1027 /* Legacy key */
1028 if (key_type < 0x03)
1029 return 1;
1031 /* Debug keys are insecure so don't store them persistently */
1032 if (key_type == HCI_LK_DEBUG_COMBINATION)
1033 return 0;
1035 /* Changed combination key and there's no previous one */
1036 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1037 return 0;
1039 /* Security mode 3 case */
1040 if (!conn)
1041 return 1;
1043 /* Neither local nor remote side had no-bonding as requirement */
1044 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1045 return 1;
1047 /* Local side had dedicated bonding as requirement */
1048 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1049 return 1;
1051 /* Remote side had dedicated bonding as requirement */
1052 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1053 return 1;
1055 /* If none of the above criteria match, then don't store the key
1056 * persistently */
1057 return 0;
1060 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1062 struct link_key *k;
1064 list_for_each_entry(k, &hdev->link_keys, list) {
1065 struct key_master_id *id;
1067 if (k->type != HCI_LK_SMP_LTK)
1068 continue;
1070 if (k->dlen != sizeof(*id))
1071 continue;
1073 id = (void *) &k->data;
1074 if (id->ediv == ediv &&
1075 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1076 return k;
1079 return NULL;
1081 EXPORT_SYMBOL(hci_find_ltk);
1083 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1084 bdaddr_t *bdaddr, u8 type)
1086 struct link_key *k;
1088 list_for_each_entry(k, &hdev->link_keys, list)
1089 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1090 return k;
1092 return NULL;
1094 EXPORT_SYMBOL(hci_find_link_key_type);
1096 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1097 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1099 struct link_key *key, *old_key;
1100 u8 old_key_type, persistent;
1102 old_key = hci_find_link_key(hdev, bdaddr);
1103 if (old_key) {
1104 old_key_type = old_key->type;
1105 key = old_key;
1106 } else {
1107 old_key_type = conn ? conn->key_type : 0xff;
1108 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1109 if (!key)
1110 return -ENOMEM;
1111 list_add(&key->list, &hdev->link_keys);
1114 BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1116 /* Some buggy controller combinations generate a changed
1117 * combination key for legacy pairing even when there's no
1118 * previous key */
1119 if (type == HCI_LK_CHANGED_COMBINATION &&
1120 (!conn || conn->remote_auth == 0xff) &&
1121 old_key_type == 0xff) {
1122 type = HCI_LK_COMBINATION;
1123 if (conn)
1124 conn->key_type = type;
1127 bacpy(&key->bdaddr, bdaddr);
1128 memcpy(key->val, val, 16);
1129 key->pin_len = pin_len;
1131 if (type == HCI_LK_CHANGED_COMBINATION)
1132 key->type = old_key_type;
1133 else
1134 key->type = type;
1136 if (!new_key)
1137 return 0;
1139 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1141 mgmt_new_key(hdev->id, key, persistent);
1143 if (!persistent) {
1144 list_del(&key->list);
1145 kfree(key);
1148 return 0;
1151 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1152 u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1154 struct link_key *key, *old_key;
1155 struct key_master_id *id;
1156 u8 old_key_type;
1158 BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1160 old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1161 if (old_key) {
1162 key = old_key;
1163 old_key_type = old_key->type;
1164 } else {
1165 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1166 if (!key)
1167 return -ENOMEM;
1168 list_add(&key->list, &hdev->link_keys);
1169 old_key_type = 0xff;
1172 key->dlen = sizeof(*id);
1174 bacpy(&key->bdaddr, bdaddr);
1175 memcpy(key->val, ltk, sizeof(key->val));
1176 key->type = HCI_LK_SMP_LTK;
1177 key->pin_len = key_size;
1179 id = (void *) &key->data;
1180 id->ediv = ediv;
1181 memcpy(id->rand, rand, sizeof(id->rand));
1183 if (new_key)
1184 mgmt_new_key(hdev->id, key, old_key_type);
1186 return 0;
1189 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1191 struct link_key *key;
1193 key = hci_find_link_key(hdev, bdaddr);
1194 if (!key)
1195 return -ENOENT;
1197 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1199 list_del(&key->list);
1200 kfree(key);
1202 return 0;
1205 /* HCI command timer function */
1206 static void hci_cmd_timer(unsigned long arg)
1208 struct hci_dev *hdev = (void *) arg;
1210 BT_ERR("%s command tx timeout", hdev->name);
1211 atomic_set(&hdev->cmd_cnt, 1);
1212 tasklet_schedule(&hdev->cmd_task);
1215 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1216 bdaddr_t *bdaddr)
1218 struct oob_data *data;
1220 list_for_each_entry(data, &hdev->remote_oob_data, list)
1221 if (bacmp(bdaddr, &data->bdaddr) == 0)
1222 return data;
1224 return NULL;
1227 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1229 struct oob_data *data;
1231 data = hci_find_remote_oob_data(hdev, bdaddr);
1232 if (!data)
1233 return -ENOENT;
1235 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1237 list_del(&data->list);
1238 kfree(data);
1240 return 0;
1243 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1245 struct oob_data *data, *n;
1247 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1248 list_del(&data->list);
1249 kfree(data);
1252 return 0;
1255 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1256 u8 *randomizer)
1258 struct oob_data *data;
1260 data = hci_find_remote_oob_data(hdev, bdaddr);
1262 if (!data) {
1263 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1264 if (!data)
1265 return -ENOMEM;
1267 bacpy(&data->bdaddr, bdaddr);
1268 list_add(&data->list, &hdev->remote_oob_data);
1271 memcpy(data->hash, hash, sizeof(data->hash));
1272 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1274 BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1276 return 0;
1279 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1280 bdaddr_t *bdaddr)
1282 struct list_head *p;
1284 list_for_each(p, &hdev->blacklist) {
1285 struct bdaddr_list *b;
1287 b = list_entry(p, struct bdaddr_list, list);
1289 if (bacmp(bdaddr, &b->bdaddr) == 0)
1290 return b;
1293 return NULL;
1296 int hci_blacklist_clear(struct hci_dev *hdev)
1298 struct list_head *p, *n;
1300 list_for_each_safe(p, n, &hdev->blacklist) {
1301 struct bdaddr_list *b;
1303 b = list_entry(p, struct bdaddr_list, list);
1305 list_del(p);
1306 kfree(b);
1309 return 0;
1312 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1314 struct bdaddr_list *entry;
1316 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1317 return -EBADF;
1319 if (hci_blacklist_lookup(hdev, bdaddr)) {
1320 return -EEXIST;
1323 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1324 if (!entry) {
1325 return -ENOMEM;
1328 bacpy(&entry->bdaddr, bdaddr);
1330 list_add(&entry->list, &hdev->blacklist);
1332 return mgmt_device_blocked(hdev->id, bdaddr);
1335 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1337 struct bdaddr_list *entry;
1339 if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1340 return hci_blacklist_clear(hdev);
1343 entry = hci_blacklist_lookup(hdev, bdaddr);
1344 if (!entry) {
1345 return -ENOENT;
1348 list_del(&entry->list);
1349 kfree(entry);
1351 return mgmt_device_unblocked(hdev->id, bdaddr);
1354 static void hci_clear_adv_cache(unsigned long arg)
1356 struct hci_dev *hdev = (void *) arg;
1358 hci_dev_lock(hdev);
1360 hci_adv_entries_clear(hdev);
1362 hci_dev_unlock(hdev);
1365 int hci_adv_entries_clear(struct hci_dev *hdev)
1367 struct adv_entry *entry, *tmp;
1369 list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1370 list_del(&entry->list);
1371 kfree(entry);
1374 BT_DBG("%s adv cache cleared", hdev->name);
1376 return 0;
1379 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1381 struct adv_entry *entry;
1383 list_for_each_entry(entry, &hdev->adv_entries, list)
1384 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1385 return entry;
1387 return NULL;
1390 static inline int is_connectable_adv(u8 evt_type)
1392 if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1393 return 1;
1395 return 0;
1398 int hci_add_adv_entry(struct hci_dev *hdev,
1399 struct hci_ev_le_advertising_info *ev)
1401 struct adv_entry *entry;
1403 if (!is_connectable_adv(ev->evt_type))
1404 return -EINVAL;
1406 /* Only new entries should be added to adv_entries. So, if
1407 * bdaddr was found, don't add it. */
1408 if (hci_find_adv_entry(hdev, &ev->bdaddr))
1409 return 0;
1411 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1412 if (!entry)
1413 return -ENOMEM;
1415 bacpy(&entry->bdaddr, &ev->bdaddr);
1416 entry->bdaddr_type = ev->bdaddr_type;
1418 list_add(&entry->list, &hdev->adv_entries);
1420 BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1421 batostr(&entry->bdaddr), entry->bdaddr_type);
1423 return 0;
1426 /* Register HCI device */
1427 int hci_register_dev(struct hci_dev *hdev)
1429 struct list_head *head = &hci_dev_list, *p;
1430 int i, id = 0;
1432 BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1433 hdev->bus, hdev->owner);
1435 if (!hdev->open || !hdev->close || !hdev->destruct)
1436 return -EINVAL;
1438 write_lock_bh(&hci_dev_list_lock);
1440 /* Find first available device id */
1441 list_for_each(p, &hci_dev_list) {
1442 if (list_entry(p, struct hci_dev, list)->id != id)
1443 break;
1444 head = p; id++;
1447 sprintf(hdev->name, "hci%d", id);
1448 hdev->id = id;
1449 list_add(&hdev->list, head);
1451 atomic_set(&hdev->refcnt, 1);
1452 spin_lock_init(&hdev->lock);
1454 hdev->flags = 0;
1455 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1456 hdev->esco_type = (ESCO_HV1);
1457 hdev->link_mode = (HCI_LM_ACCEPT);
1458 hdev->io_capability = 0x03; /* No Input No Output */
1460 hdev->idle_timeout = 0;
1461 hdev->sniff_max_interval = 800;
1462 hdev->sniff_min_interval = 80;
1464 tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1465 tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1466 tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1468 skb_queue_head_init(&hdev->rx_q);
1469 skb_queue_head_init(&hdev->cmd_q);
1470 skb_queue_head_init(&hdev->raw_q);
1472 setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1474 for (i = 0; i < NUM_REASSEMBLY; i++)
1475 hdev->reassembly[i] = NULL;
1477 init_waitqueue_head(&hdev->req_wait_q);
1478 mutex_init(&hdev->req_lock);
1480 inquiry_cache_init(hdev);
1482 hci_conn_hash_init(hdev);
1484 INIT_LIST_HEAD(&hdev->blacklist);
1486 INIT_LIST_HEAD(&hdev->uuids);
1488 INIT_LIST_HEAD(&hdev->link_keys);
1490 INIT_LIST_HEAD(&hdev->remote_oob_data);
1492 INIT_LIST_HEAD(&hdev->adv_entries);
1493 setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1494 (unsigned long) hdev);
1496 INIT_WORK(&hdev->power_on, hci_power_on);
1497 INIT_WORK(&hdev->power_off, hci_power_off);
1498 setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1500 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1502 atomic_set(&hdev->promisc, 0);
1504 write_unlock_bh(&hci_dev_list_lock);
1506 hdev->workqueue = create_singlethread_workqueue(hdev->name);
1507 if (!hdev->workqueue)
1508 goto nomem;
1510 hdev->tfm = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC);
1511 if (IS_ERR(hdev->tfm))
1512 BT_INFO("Failed to load transform for ecb(aes): %ld",
1513 PTR_ERR(hdev->tfm));
1515 hci_register_sysfs(hdev);
1517 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1518 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1519 if (hdev->rfkill) {
1520 if (rfkill_register(hdev->rfkill) < 0) {
1521 rfkill_destroy(hdev->rfkill);
1522 hdev->rfkill = NULL;
1526 set_bit(HCI_AUTO_OFF, &hdev->flags);
1527 set_bit(HCI_SETUP, &hdev->flags);
1528 queue_work(hdev->workqueue, &hdev->power_on);
1530 hci_notify(hdev, HCI_DEV_REG);
1532 return id;
1534 nomem:
1535 write_lock_bh(&hci_dev_list_lock);
1536 list_del(&hdev->list);
1537 write_unlock_bh(&hci_dev_list_lock);
1539 return -ENOMEM;
1541 EXPORT_SYMBOL(hci_register_dev);
1543 /* Unregister HCI device */
1544 int hci_unregister_dev(struct hci_dev *hdev)
1546 int i;
1548 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1550 write_lock_bh(&hci_dev_list_lock);
1551 list_del(&hdev->list);
1552 write_unlock_bh(&hci_dev_list_lock);
1554 hci_dev_do_close(hdev);
1556 for (i = 0; i < NUM_REASSEMBLY; i++)
1557 kfree_skb(hdev->reassembly[i]);
1559 if (!test_bit(HCI_INIT, &hdev->flags) &&
1560 !test_bit(HCI_SETUP, &hdev->flags))
1561 mgmt_index_removed(hdev->id);
1563 if (!IS_ERR(hdev->tfm))
1564 crypto_free_blkcipher(hdev->tfm);
1566 hci_notify(hdev, HCI_DEV_UNREG);
1568 if (hdev->rfkill) {
1569 rfkill_unregister(hdev->rfkill);
1570 rfkill_destroy(hdev->rfkill);
1573 hci_unregister_sysfs(hdev);
1575 hci_del_off_timer(hdev);
1576 del_timer(&hdev->adv_timer);
1578 destroy_workqueue(hdev->workqueue);
1580 hci_dev_lock_bh(hdev);
1581 hci_blacklist_clear(hdev);
1582 hci_uuids_clear(hdev);
1583 hci_link_keys_clear(hdev);
1584 hci_remote_oob_data_clear(hdev);
1585 hci_adv_entries_clear(hdev);
1586 hci_dev_unlock_bh(hdev);
1588 __hci_dev_put(hdev);
1590 return 0;
1592 EXPORT_SYMBOL(hci_unregister_dev);
1594 /* Suspend HCI device */
1595 int hci_suspend_dev(struct hci_dev *hdev)
1597 hci_notify(hdev, HCI_DEV_SUSPEND);
1598 return 0;
1600 EXPORT_SYMBOL(hci_suspend_dev);
1602 /* Resume HCI device */
1603 int hci_resume_dev(struct hci_dev *hdev)
1605 hci_notify(hdev, HCI_DEV_RESUME);
1606 return 0;
1608 EXPORT_SYMBOL(hci_resume_dev);
1610 /* Receive frame from HCI drivers */
1611 int hci_recv_frame(struct sk_buff *skb)
1613 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1614 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1615 && !test_bit(HCI_INIT, &hdev->flags))) {
1616 kfree_skb(skb);
1617 return -ENXIO;
1620 /* Incomming skb */
1621 bt_cb(skb)->incoming = 1;
1623 /* Time stamp */
1624 __net_timestamp(skb);
1626 /* Queue frame for rx task */
1627 skb_queue_tail(&hdev->rx_q, skb);
1628 tasklet_schedule(&hdev->rx_task);
1630 return 0;
1632 EXPORT_SYMBOL(hci_recv_frame);
1634 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1635 int count, __u8 index)
1637 int len = 0;
1638 int hlen = 0;
1639 int remain = count;
1640 struct sk_buff *skb;
1641 struct bt_skb_cb *scb;
1643 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1644 index >= NUM_REASSEMBLY)
1645 return -EILSEQ;
1647 skb = hdev->reassembly[index];
1649 if (!skb) {
1650 switch (type) {
1651 case HCI_ACLDATA_PKT:
1652 len = HCI_MAX_FRAME_SIZE;
1653 hlen = HCI_ACL_HDR_SIZE;
1654 break;
1655 case HCI_EVENT_PKT:
1656 len = HCI_MAX_EVENT_SIZE;
1657 hlen = HCI_EVENT_HDR_SIZE;
1658 break;
1659 case HCI_SCODATA_PKT:
1660 len = HCI_MAX_SCO_SIZE;
1661 hlen = HCI_SCO_HDR_SIZE;
1662 break;
1665 skb = bt_skb_alloc(len, GFP_ATOMIC);
1666 if (!skb)
1667 return -ENOMEM;
1669 scb = (void *) skb->cb;
1670 scb->expect = hlen;
1671 scb->pkt_type = type;
1673 skb->dev = (void *) hdev;
1674 hdev->reassembly[index] = skb;
1677 while (count) {
1678 scb = (void *) skb->cb;
1679 len = min(scb->expect, (__u16)count);
1681 memcpy(skb_put(skb, len), data, len);
1683 count -= len;
1684 data += len;
1685 scb->expect -= len;
1686 remain = count;
1688 switch (type) {
1689 case HCI_EVENT_PKT:
1690 if (skb->len == HCI_EVENT_HDR_SIZE) {
1691 struct hci_event_hdr *h = hci_event_hdr(skb);
1692 scb->expect = h->plen;
1694 if (skb_tailroom(skb) < scb->expect) {
1695 kfree_skb(skb);
1696 hdev->reassembly[index] = NULL;
1697 return -ENOMEM;
1700 break;
1702 case HCI_ACLDATA_PKT:
1703 if (skb->len == HCI_ACL_HDR_SIZE) {
1704 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1705 scb->expect = __le16_to_cpu(h->dlen);
1707 if (skb_tailroom(skb) < scb->expect) {
1708 kfree_skb(skb);
1709 hdev->reassembly[index] = NULL;
1710 return -ENOMEM;
1713 break;
1715 case HCI_SCODATA_PKT:
1716 if (skb->len == HCI_SCO_HDR_SIZE) {
1717 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1718 scb->expect = h->dlen;
1720 if (skb_tailroom(skb) < scb->expect) {
1721 kfree_skb(skb);
1722 hdev->reassembly[index] = NULL;
1723 return -ENOMEM;
1726 break;
1729 if (scb->expect == 0) {
1730 /* Complete frame */
1732 bt_cb(skb)->pkt_type = type;
1733 hci_recv_frame(skb);
1735 hdev->reassembly[index] = NULL;
1736 return remain;
1740 return remain;
1743 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1745 int rem = 0;
1747 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1748 return -EILSEQ;
1750 while (count) {
1751 rem = hci_reassembly(hdev, type, data, count, type - 1);
1752 if (rem < 0)
1753 return rem;
1755 data += (count - rem);
1756 count = rem;
1759 return rem;
1761 EXPORT_SYMBOL(hci_recv_fragment);
1763 #define STREAM_REASSEMBLY 0
1765 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1767 int type;
1768 int rem = 0;
1770 while (count) {
1771 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1773 if (!skb) {
1774 struct { char type; } *pkt;
1776 /* Start of the frame */
1777 pkt = data;
1778 type = pkt->type;
1780 data++;
1781 count--;
1782 } else
1783 type = bt_cb(skb)->pkt_type;
1785 rem = hci_reassembly(hdev, type, data, count,
1786 STREAM_REASSEMBLY);
1787 if (rem < 0)
1788 return rem;
1790 data += (count - rem);
1791 count = rem;
1794 return rem;
1796 EXPORT_SYMBOL(hci_recv_stream_fragment);
1798 /* ---- Interface to upper protocols ---- */
1800 /* Register/Unregister protocols.
1801 * hci_task_lock is used to ensure that no tasks are running. */
1802 int hci_register_proto(struct hci_proto *hp)
1804 int err = 0;
1806 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1808 if (hp->id >= HCI_MAX_PROTO)
1809 return -EINVAL;
1811 write_lock_bh(&hci_task_lock);
1813 if (!hci_proto[hp->id])
1814 hci_proto[hp->id] = hp;
1815 else
1816 err = -EEXIST;
1818 write_unlock_bh(&hci_task_lock);
1820 return err;
1822 EXPORT_SYMBOL(hci_register_proto);
1824 int hci_unregister_proto(struct hci_proto *hp)
1826 int err = 0;
1828 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1830 if (hp->id >= HCI_MAX_PROTO)
1831 return -EINVAL;
1833 write_lock_bh(&hci_task_lock);
1835 if (hci_proto[hp->id])
1836 hci_proto[hp->id] = NULL;
1837 else
1838 err = -ENOENT;
1840 write_unlock_bh(&hci_task_lock);
1842 return err;
1844 EXPORT_SYMBOL(hci_unregister_proto);
1846 int hci_register_cb(struct hci_cb *cb)
1848 BT_DBG("%p name %s", cb, cb->name);
1850 write_lock_bh(&hci_cb_list_lock);
1851 list_add(&cb->list, &hci_cb_list);
1852 write_unlock_bh(&hci_cb_list_lock);
1854 return 0;
1856 EXPORT_SYMBOL(hci_register_cb);
1858 int hci_unregister_cb(struct hci_cb *cb)
1860 BT_DBG("%p name %s", cb, cb->name);
1862 write_lock_bh(&hci_cb_list_lock);
1863 list_del(&cb->list);
1864 write_unlock_bh(&hci_cb_list_lock);
1866 return 0;
1868 EXPORT_SYMBOL(hci_unregister_cb);
1870 static int hci_send_frame(struct sk_buff *skb)
1872 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1874 if (!hdev) {
1875 kfree_skb(skb);
1876 return -ENODEV;
1879 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1881 if (atomic_read(&hdev->promisc)) {
1882 /* Time stamp */
1883 __net_timestamp(skb);
1885 hci_send_to_sock(hdev, skb, NULL);
1888 /* Get rid of skb owner, prior to sending to the driver. */
1889 skb_orphan(skb);
1891 return hdev->send(skb);
1894 /* Send HCI command */
1895 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1897 int len = HCI_COMMAND_HDR_SIZE + plen;
1898 struct hci_command_hdr *hdr;
1899 struct sk_buff *skb;
1901 BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1903 skb = bt_skb_alloc(len, GFP_ATOMIC);
1904 if (!skb) {
1905 BT_ERR("%s no memory for command", hdev->name);
1906 return -ENOMEM;
1909 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1910 hdr->opcode = cpu_to_le16(opcode);
1911 hdr->plen = plen;
1913 if (plen)
1914 memcpy(skb_put(skb, plen), param, plen);
1916 BT_DBG("skb len %d", skb->len);
1918 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1919 skb->dev = (void *) hdev;
1921 if (test_bit(HCI_INIT, &hdev->flags))
1922 hdev->init_last_cmd = opcode;
1924 skb_queue_tail(&hdev->cmd_q, skb);
1925 tasklet_schedule(&hdev->cmd_task);
1927 return 0;
1930 /* Get data from the previously sent command */
1931 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1933 struct hci_command_hdr *hdr;
1935 if (!hdev->sent_cmd)
1936 return NULL;
1938 hdr = (void *) hdev->sent_cmd->data;
1940 if (hdr->opcode != cpu_to_le16(opcode))
1941 return NULL;
1943 BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1945 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1948 /* Send ACL data */
1949 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1951 struct hci_acl_hdr *hdr;
1952 int len = skb->len;
1954 skb_push(skb, HCI_ACL_HDR_SIZE);
1955 skb_reset_transport_header(skb);
1956 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1957 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1958 hdr->dlen = cpu_to_le16(len);
1961 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1963 struct hci_dev *hdev = conn->hdev;
1964 struct sk_buff *list;
1966 BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1968 skb->dev = (void *) hdev;
1969 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1970 hci_add_acl_hdr(skb, conn->handle, flags);
1972 list = skb_shinfo(skb)->frag_list;
1973 if (!list) {
1974 /* Non fragmented */
1975 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1977 skb_queue_tail(&conn->data_q, skb);
1978 } else {
1979 /* Fragmented */
1980 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1982 skb_shinfo(skb)->frag_list = NULL;
1984 /* Queue all fragments atomically */
1985 spin_lock_bh(&conn->data_q.lock);
1987 __skb_queue_tail(&conn->data_q, skb);
1989 flags &= ~ACL_START;
1990 flags |= ACL_CONT;
1991 do {
1992 skb = list; list = list->next;
1994 skb->dev = (void *) hdev;
1995 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1996 hci_add_acl_hdr(skb, conn->handle, flags);
1998 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2000 __skb_queue_tail(&conn->data_q, skb);
2001 } while (list);
2003 spin_unlock_bh(&conn->data_q.lock);
2006 tasklet_schedule(&hdev->tx_task);
2008 EXPORT_SYMBOL(hci_send_acl);
2010 /* Send SCO data */
2011 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2013 struct hci_dev *hdev = conn->hdev;
2014 struct hci_sco_hdr hdr;
2016 BT_DBG("%s len %d", hdev->name, skb->len);
2018 hdr.handle = cpu_to_le16(conn->handle);
2019 hdr.dlen = skb->len;
2021 skb_push(skb, HCI_SCO_HDR_SIZE);
2022 skb_reset_transport_header(skb);
2023 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2025 skb->dev = (void *) hdev;
2026 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2028 skb_queue_tail(&conn->data_q, skb);
2029 tasklet_schedule(&hdev->tx_task);
2031 EXPORT_SYMBOL(hci_send_sco);
2033 /* ---- HCI TX task (outgoing data) ---- */
2035 /* HCI Connection scheduler */
2036 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2038 struct hci_conn_hash *h = &hdev->conn_hash;
2039 struct hci_conn *conn = NULL;
2040 int num = 0, min = ~0;
2041 struct list_head *p;
2043 /* We don't have to lock device here. Connections are always
2044 * added and removed with TX task disabled. */
2045 list_for_each(p, &h->list) {
2046 struct hci_conn *c;
2047 c = list_entry(p, struct hci_conn, list);
2049 if (c->type != type || skb_queue_empty(&c->data_q))
2050 continue;
2052 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2053 continue;
2055 num++;
2057 if (c->sent < min) {
2058 min = c->sent;
2059 conn = c;
2062 if (hci_conn_num(hdev, type) == num)
2063 break;
2066 if (conn) {
2067 int cnt, q;
2069 switch (conn->type) {
2070 case ACL_LINK:
2071 cnt = hdev->acl_cnt;
2072 break;
2073 case SCO_LINK:
2074 case ESCO_LINK:
2075 cnt = hdev->sco_cnt;
2076 break;
2077 case LE_LINK:
2078 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2079 break;
2080 default:
2081 cnt = 0;
2082 BT_ERR("Unknown link type");
2085 q = cnt / num;
2086 *quote = q ? q : 1;
2087 } else
2088 *quote = 0;
2090 BT_DBG("conn %p quote %d", conn, *quote);
2091 return conn;
2094 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2096 struct hci_conn_hash *h = &hdev->conn_hash;
2097 struct list_head *p;
2098 struct hci_conn *c;
2100 BT_ERR("%s link tx timeout", hdev->name);
2102 /* Kill stalled connections */
2103 list_for_each(p, &h->list) {
2104 c = list_entry(p, struct hci_conn, list);
2105 if (c->type == type && c->sent) {
2106 BT_ERR("%s killing stalled connection %s",
2107 hdev->name, batostr(&c->dst));
2108 hci_acl_disconn(c, 0x13);
2113 static inline void hci_sched_acl(struct hci_dev *hdev)
2115 struct hci_conn *conn;
2116 struct sk_buff *skb;
2117 int quote;
2119 BT_DBG("%s", hdev->name);
2121 if (!hci_conn_num(hdev, ACL_LINK))
2122 return;
2124 if (!test_bit(HCI_RAW, &hdev->flags)) {
2125 /* ACL tx timeout must be longer than maximum
2126 * link supervision timeout (40.9 seconds) */
2127 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2128 hci_link_tx_to(hdev, ACL_LINK);
2131 while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2132 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2133 BT_DBG("skb %p len %d", skb, skb->len);
2135 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2137 hci_send_frame(skb);
2138 hdev->acl_last_tx = jiffies;
2140 hdev->acl_cnt--;
2141 conn->sent++;
2146 /* Schedule SCO */
2147 static inline void hci_sched_sco(struct hci_dev *hdev)
2149 struct hci_conn *conn;
2150 struct sk_buff *skb;
2151 int quote;
2153 BT_DBG("%s", hdev->name);
2155 if (!hci_conn_num(hdev, SCO_LINK))
2156 return;
2158 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2159 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2160 BT_DBG("skb %p len %d", skb, skb->len);
2161 hci_send_frame(skb);
2163 conn->sent++;
2164 if (conn->sent == ~0)
2165 conn->sent = 0;
2170 static inline void hci_sched_esco(struct hci_dev *hdev)
2172 struct hci_conn *conn;
2173 struct sk_buff *skb;
2174 int quote;
2176 BT_DBG("%s", hdev->name);
2178 if (!hci_conn_num(hdev, ESCO_LINK))
2179 return;
2181 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2182 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2183 BT_DBG("skb %p len %d", skb, skb->len);
2184 hci_send_frame(skb);
2186 conn->sent++;
2187 if (conn->sent == ~0)
2188 conn->sent = 0;
2193 static inline void hci_sched_le(struct hci_dev *hdev)
2195 struct hci_conn *conn;
2196 struct sk_buff *skb;
2197 int quote, cnt;
2199 BT_DBG("%s", hdev->name);
2201 if (!hci_conn_num(hdev, LE_LINK))
2202 return;
2204 if (!test_bit(HCI_RAW, &hdev->flags)) {
2205 /* LE tx timeout must be longer than maximum
2206 * link supervision timeout (40.9 seconds) */
2207 if (!hdev->le_cnt && hdev->le_pkts &&
2208 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2209 hci_link_tx_to(hdev, LE_LINK);
2212 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2213 while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2214 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2215 BT_DBG("skb %p len %d", skb, skb->len);
2217 hci_send_frame(skb);
2218 hdev->le_last_tx = jiffies;
2220 cnt--;
2221 conn->sent++;
2224 if (hdev->le_pkts)
2225 hdev->le_cnt = cnt;
2226 else
2227 hdev->acl_cnt = cnt;
2230 static void hci_tx_task(unsigned long arg)
2232 struct hci_dev *hdev = (struct hci_dev *) arg;
2233 struct sk_buff *skb;
2235 read_lock(&hci_task_lock);
2237 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2238 hdev->sco_cnt, hdev->le_cnt);
2240 /* Schedule queues and send stuff to HCI driver */
2242 hci_sched_acl(hdev);
2244 hci_sched_sco(hdev);
2246 hci_sched_esco(hdev);
2248 hci_sched_le(hdev);
2250 /* Send next queued raw (unknown type) packet */
2251 while ((skb = skb_dequeue(&hdev->raw_q)))
2252 hci_send_frame(skb);
2254 read_unlock(&hci_task_lock);
2257 /* ----- HCI RX task (incoming data processing) ----- */
2259 /* ACL data packet */
2260 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2262 struct hci_acl_hdr *hdr = (void *) skb->data;
2263 struct hci_conn *conn;
2264 __u16 handle, flags;
2266 skb_pull(skb, HCI_ACL_HDR_SIZE);
2268 handle = __le16_to_cpu(hdr->handle);
2269 flags = hci_flags(handle);
2270 handle = hci_handle(handle);
2272 BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2274 hdev->stat.acl_rx++;
2276 hci_dev_lock(hdev);
2277 conn = hci_conn_hash_lookup_handle(hdev, handle);
2278 hci_dev_unlock(hdev);
2280 if (conn) {
2281 register struct hci_proto *hp;
2283 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2285 /* Send to upper protocol */
2286 hp = hci_proto[HCI_PROTO_L2CAP];
2287 if (hp && hp->recv_acldata) {
2288 hp->recv_acldata(conn, skb, flags);
2289 return;
2291 } else {
2292 BT_ERR("%s ACL packet for unknown connection handle %d",
2293 hdev->name, handle);
2296 kfree_skb(skb);
2299 /* SCO data packet */
2300 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2302 struct hci_sco_hdr *hdr = (void *) skb->data;
2303 struct hci_conn *conn;
2304 __u16 handle;
2306 skb_pull(skb, HCI_SCO_HDR_SIZE);
2308 handle = __le16_to_cpu(hdr->handle);
2310 BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2312 hdev->stat.sco_rx++;
2314 hci_dev_lock(hdev);
2315 conn = hci_conn_hash_lookup_handle(hdev, handle);
2316 hci_dev_unlock(hdev);
2318 if (conn) {
2319 register struct hci_proto *hp;
2321 /* Send to upper protocol */
2322 hp = hci_proto[HCI_PROTO_SCO];
2323 if (hp && hp->recv_scodata) {
2324 hp->recv_scodata(conn, skb);
2325 return;
2327 } else {
2328 BT_ERR("%s SCO packet for unknown connection handle %d",
2329 hdev->name, handle);
2332 kfree_skb(skb);
2335 static void hci_rx_task(unsigned long arg)
2337 struct hci_dev *hdev = (struct hci_dev *) arg;
2338 struct sk_buff *skb;
2340 BT_DBG("%s", hdev->name);
2342 read_lock(&hci_task_lock);
2344 while ((skb = skb_dequeue(&hdev->rx_q))) {
2345 if (atomic_read(&hdev->promisc)) {
2346 /* Send copy to the sockets */
2347 hci_send_to_sock(hdev, skb, NULL);
2350 if (test_bit(HCI_RAW, &hdev->flags)) {
2351 kfree_skb(skb);
2352 continue;
2355 if (test_bit(HCI_INIT, &hdev->flags)) {
2356 /* Don't process data packets in this states. */
2357 switch (bt_cb(skb)->pkt_type) {
2358 case HCI_ACLDATA_PKT:
2359 case HCI_SCODATA_PKT:
2360 kfree_skb(skb);
2361 continue;
2365 /* Process frame */
2366 switch (bt_cb(skb)->pkt_type) {
2367 case HCI_EVENT_PKT:
2368 hci_event_packet(hdev, skb);
2369 break;
2371 case HCI_ACLDATA_PKT:
2372 BT_DBG("%s ACL data packet", hdev->name);
2373 hci_acldata_packet(hdev, skb);
2374 break;
2376 case HCI_SCODATA_PKT:
2377 BT_DBG("%s SCO data packet", hdev->name);
2378 hci_scodata_packet(hdev, skb);
2379 break;
2381 default:
2382 kfree_skb(skb);
2383 break;
2387 read_unlock(&hci_task_lock);
2390 static void hci_cmd_task(unsigned long arg)
2392 struct hci_dev *hdev = (struct hci_dev *) arg;
2393 struct sk_buff *skb;
2395 BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2397 /* Send queued commands */
2398 if (atomic_read(&hdev->cmd_cnt)) {
2399 skb = skb_dequeue(&hdev->cmd_q);
2400 if (!skb)
2401 return;
2403 kfree_skb(hdev->sent_cmd);
2405 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2406 if (hdev->sent_cmd) {
2407 atomic_dec(&hdev->cmd_cnt);
2408 hci_send_frame(skb);
2409 if (test_bit(HCI_RESET, &hdev->flags))
2410 del_timer(&hdev->cmd_timer);
2411 else
2412 mod_timer(&hdev->cmd_timer,
2413 jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2414 } else {
2415 skb_queue_head(&hdev->cmd_q, skb);
2416 tasklet_schedule(&hdev->cmd_task);