2 * Hardware performance events for the Alpha.
4 * We implement HW counts on the EV67 and subsequent CPUs only.
6 * (C) 2010 Michael J. Cree
8 * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
9 * ARM code, which are copyright by their respective authors.
12 #include <linux/perf_event.h>
13 #include <linux/kprobes.h>
14 #include <linux/kernel.h>
15 #include <linux/kdebug.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
19 #include <asm/hwrpb.h>
20 #include <asm/atomic.h>
22 #include <asm/irq_regs.h>
24 #include <asm/wrperfmon.h>
25 #include <asm/hw_irq.h>
28 /* The maximum number of PMCs on any Alpha CPU whatsoever. */
29 #define MAX_HWEVENTS 3
30 #define PMC_NO_INDEX -1
32 /* For tracking PMCs and the hw events they monitor on each CPU. */
33 struct cpu_hw_events
{
35 /* Number of events scheduled; also number entries valid in arrays below. */
37 /* Number events added since last hw_perf_disable(). */
39 /* Events currently scheduled. */
40 struct perf_event
*event
[MAX_HWEVENTS
];
41 /* Event type of each scheduled event. */
42 unsigned long evtype
[MAX_HWEVENTS
];
43 /* Current index of each scheduled event; if not yet determined
44 * contains PMC_NO_INDEX.
46 int current_idx
[MAX_HWEVENTS
];
47 /* The active PMCs' config for easy use with wrperfmon(). */
49 /* The active counters' indices for easy use with wrperfmon(). */
50 unsigned long idx_mask
;
52 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
57 * A structure to hold the description of the PMCs available on a particular
61 /* Mapping of the perf system hw event types to indigenous event types */
63 /* The number of entries in the event_map */
65 /* The number of PMCs on this Alpha */
68 * All PMC counters reside in the IBOX register PCTR. This is the
71 int pmc_count_shift
[MAX_HWEVENTS
];
73 * The mask that isolates the PMC bits when the LSB of the counter
74 * is shifted to bit 0.
76 unsigned long pmc_count_mask
[MAX_HWEVENTS
];
77 /* The maximum period the PMC can count. */
78 unsigned long pmc_max_period
[MAX_HWEVENTS
];
80 * The maximum value that may be written to the counter due to
81 * hardware restrictions is pmc_max_period - pmc_left.
84 /* Subroutine for allocation of PMCs. Enforces constraints. */
85 int (*check_constraints
)(struct perf_event
**, unsigned long *, int);
89 * The Alpha CPU PMU description currently in operation. This is set during
90 * the boot process to the specific CPU of the machine.
92 static const struct alpha_pmu_t
*alpha_pmu
;
95 #define HW_OP_UNSUPPORTED -1
98 * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
99 * follow. Since they are identical we refer to them collectively as the
104 * EV67 PMC event types
106 * There is no one-to-one mapping of the possible hw event types to the
107 * actual codes that are used to program the PMCs hence we introduce our
108 * own hw event type identifiers.
110 enum ev67_pmc_event_type
{
117 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
120 /* Mapping of the hw event types to the perf tool interface */
121 static const int ev67_perfmon_event_map
[] = {
122 [PERF_COUNT_HW_CPU_CYCLES
] = EV67_CYCLES
,
123 [PERF_COUNT_HW_INSTRUCTIONS
] = EV67_INSTRUCTIONS
,
124 [PERF_COUNT_HW_CACHE_REFERENCES
] = HW_OP_UNSUPPORTED
,
125 [PERF_COUNT_HW_CACHE_MISSES
] = EV67_BCACHEMISS
,
128 struct ev67_mapping_t
{
134 * The mapping used for one event only - these must be in same order as enum
135 * ev67_pmc_event_type definition.
137 static const struct ev67_mapping_t ev67_mapping
[] = {
138 {EV67_PCTR_INSTR_CYCLES
, 1}, /* EV67_CYCLES, */
139 {EV67_PCTR_INSTR_CYCLES
, 0}, /* EV67_INSTRUCTIONS */
140 {EV67_PCTR_INSTR_BCACHEMISS
, 1}, /* EV67_BCACHEMISS */
141 {EV67_PCTR_CYCLES_MBOX
, 1} /* EV67_MBOXREPLAY */
146 * Check that a group of events can be simultaneously scheduled on to the
147 * EV67 PMU. Also allocate counter indices and config.
149 static int ev67_check_constraints(struct perf_event
**event
,
150 unsigned long *evtype
, int n_ev
)
153 unsigned long config
;
155 idx0
= ev67_mapping
[evtype
[0]-1].idx
;
156 config
= ev67_mapping
[evtype
[0]-1].config
;
162 if (evtype
[0] == EV67_MBOXREPLAY
|| evtype
[1] == EV67_MBOXREPLAY
) {
163 /* MBOX replay traps must be on PMC 1 */
164 idx0
= (evtype
[0] == EV67_MBOXREPLAY
) ? 1 : 0;
165 /* Only cycles can accompany MBOX replay traps */
166 if (evtype
[idx0
] == EV67_CYCLES
) {
167 config
= EV67_PCTR_CYCLES_MBOX
;
172 if (evtype
[0] == EV67_BCACHEMISS
|| evtype
[1] == EV67_BCACHEMISS
) {
173 /* Bcache misses must be on PMC 1 */
174 idx0
= (evtype
[0] == EV67_BCACHEMISS
) ? 1 : 0;
175 /* Only instructions can accompany Bcache misses */
176 if (evtype
[idx0
] == EV67_INSTRUCTIONS
) {
177 config
= EV67_PCTR_INSTR_BCACHEMISS
;
182 if (evtype
[0] == EV67_INSTRUCTIONS
|| evtype
[1] == EV67_INSTRUCTIONS
) {
183 /* Instructions must be on PMC 0 */
184 idx0
= (evtype
[0] == EV67_INSTRUCTIONS
) ? 0 : 1;
185 /* By this point only cycles can accompany instructions */
186 if (evtype
[idx0
^1] == EV67_CYCLES
) {
187 config
= EV67_PCTR_INSTR_CYCLES
;
192 /* Otherwise, darn it, there is a conflict. */
196 event
[0]->hw
.idx
= idx0
;
197 event
[0]->hw
.config_base
= config
;
199 event
[1]->hw
.idx
= idx0
^ 1;
200 event
[1]->hw
.config_base
= config
;
206 static const struct alpha_pmu_t ev67_pmu
= {
207 .event_map
= ev67_perfmon_event_map
,
208 .max_events
= ARRAY_SIZE(ev67_perfmon_event_map
),
210 .pmc_count_shift
= {EV67_PCTR_0_COUNT_SHIFT
, EV67_PCTR_1_COUNT_SHIFT
, 0},
211 .pmc_count_mask
= {EV67_PCTR_0_COUNT_MASK
, EV67_PCTR_1_COUNT_MASK
, 0},
212 .pmc_max_period
= {(1UL<<20) - 1, (1UL<<20) - 1, 0},
213 .pmc_left
= {16, 4, 0},
214 .check_constraints
= ev67_check_constraints
220 * Helper routines to ensure that we read/write only the correct PMC bits
221 * when calling the wrperfmon PALcall.
223 static inline void alpha_write_pmc(int idx
, unsigned long val
)
225 val
&= alpha_pmu
->pmc_count_mask
[idx
];
226 val
<<= alpha_pmu
->pmc_count_shift
[idx
];
228 wrperfmon(PERFMON_CMD_WRITE
, val
);
231 static inline unsigned long alpha_read_pmc(int idx
)
235 val
= wrperfmon(PERFMON_CMD_READ
, 0);
236 val
>>= alpha_pmu
->pmc_count_shift
[idx
];
237 val
&= alpha_pmu
->pmc_count_mask
[idx
];
241 /* Set a new period to sample over */
242 static int alpha_perf_event_set_period(struct perf_event
*event
,
243 struct hw_perf_event
*hwc
, int idx
)
245 long left
= local64_read(&hwc
->period_left
);
246 long period
= hwc
->sample_period
;
249 if (unlikely(left
<= -period
)) {
251 local64_set(&hwc
->period_left
, left
);
252 hwc
->last_period
= period
;
256 if (unlikely(left
<= 0)) {
258 local64_set(&hwc
->period_left
, left
);
259 hwc
->last_period
= period
;
264 * Hardware restrictions require that the counters must not be
265 * written with values that are too close to the maximum period.
267 if (unlikely(left
< alpha_pmu
->pmc_left
[idx
]))
268 left
= alpha_pmu
->pmc_left
[idx
];
270 if (left
> (long)alpha_pmu
->pmc_max_period
[idx
])
271 left
= alpha_pmu
->pmc_max_period
[idx
];
273 local64_set(&hwc
->prev_count
, (unsigned long)(-left
));
275 alpha_write_pmc(idx
, (unsigned long)(-left
));
277 perf_event_update_userpage(event
);
284 * Calculates the count (the 'delta') since the last time the PMC was read.
286 * As the PMCs' full period can easily be exceeded within the perf system
287 * sampling period we cannot use any high order bits as a guard bit in the
288 * PMCs to detect overflow as is done by other architectures. The code here
289 * calculates the delta on the basis that there is no overflow when ovf is
290 * zero. The value passed via ovf by the interrupt handler corrects for
293 * This can be racey on rare occasions -- a call to this routine can occur
294 * with an overflowed counter just before the PMI service routine is called.
295 * The check for delta negative hopefully always rectifies this situation.
297 static unsigned long alpha_perf_event_update(struct perf_event
*event
,
298 struct hw_perf_event
*hwc
, int idx
, long ovf
)
300 long prev_raw_count
, new_raw_count
;
304 prev_raw_count
= local64_read(&hwc
->prev_count
);
305 new_raw_count
= alpha_read_pmc(idx
);
307 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
308 new_raw_count
) != prev_raw_count
)
311 delta
= (new_raw_count
- (prev_raw_count
& alpha_pmu
->pmc_count_mask
[idx
])) + ovf
;
313 /* It is possible on very rare occasions that the PMC has overflowed
314 * but the interrupt is yet to come. Detect and fix this situation.
316 if (unlikely(delta
< 0)) {
317 delta
+= alpha_pmu
->pmc_max_period
[idx
] + 1;
320 local64_add(delta
, &event
->count
);
321 local64_sub(delta
, &hwc
->period_left
);
323 return new_raw_count
;
328 * Collect all HW events into the array event[].
330 static int collect_events(struct perf_event
*group
, int max_count
,
331 struct perf_event
*event
[], unsigned long *evtype
,
334 struct perf_event
*pe
;
337 if (!is_software_event(group
)) {
341 evtype
[n
] = group
->hw
.event_base
;
342 current_idx
[n
++] = PMC_NO_INDEX
;
344 list_for_each_entry(pe
, &group
->sibling_list
, group_entry
) {
345 if (!is_software_event(pe
) && pe
->state
!= PERF_EVENT_STATE_OFF
) {
349 evtype
[n
] = pe
->hw
.event_base
;
350 current_idx
[n
++] = PMC_NO_INDEX
;
359 * Check that a group of events can be simultaneously scheduled on to the PMU.
361 static int alpha_check_constraints(struct perf_event
**events
,
362 unsigned long *evtypes
, int n_ev
)
365 /* No HW events is possible from hw_perf_group_sched_in(). */
369 if (n_ev
> alpha_pmu
->num_pmcs
)
372 return alpha_pmu
->check_constraints(events
, evtypes
, n_ev
);
377 * If new events have been scheduled then update cpuc with the new
378 * configuration. This may involve shifting cycle counts from one PMC to
381 static void maybe_change_configuration(struct cpu_hw_events
*cpuc
)
385 if (cpuc
->n_added
== 0)
388 /* Find counters that are moving to another PMC and update */
389 for (j
= 0; j
< cpuc
->n_events
; j
++) {
390 struct perf_event
*pe
= cpuc
->event
[j
];
392 if (cpuc
->current_idx
[j
] != PMC_NO_INDEX
&&
393 cpuc
->current_idx
[j
] != pe
->hw
.idx
) {
394 alpha_perf_event_update(pe
, &pe
->hw
, cpuc
->current_idx
[j
], 0);
395 cpuc
->current_idx
[j
] = PMC_NO_INDEX
;
399 /* Assign to counters all unassigned events. */
401 for (j
= 0; j
< cpuc
->n_events
; j
++) {
402 struct perf_event
*pe
= cpuc
->event
[j
];
403 struct hw_perf_event
*hwc
= &pe
->hw
;
406 if (cpuc
->current_idx
[j
] == PMC_NO_INDEX
) {
407 alpha_perf_event_set_period(pe
, hwc
, idx
);
408 cpuc
->current_idx
[j
] = idx
;
411 if (!(hwc
->state
& PERF_HES_STOPPED
))
412 cpuc
->idx_mask
|= (1<<cpuc
->current_idx
[j
]);
414 cpuc
->config
= cpuc
->event
[0]->hw
.config_base
;
419 /* Schedule perf HW event on to PMU.
420 * - this function is called from outside this module via the pmu struct
421 * returned from perf event initialisation.
423 static int alpha_pmu_add(struct perf_event
*event
, int flags
)
425 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
426 struct hw_perf_event
*hwc
= &event
->hw
;
429 unsigned long irq_flags
;
432 * The Sparc code has the IRQ disable first followed by the perf
433 * disable, however this can lead to an overflowed counter with the
434 * PMI disabled on rare occasions. The alpha_perf_event_update()
435 * routine should detect this situation by noting a negative delta,
436 * nevertheless we disable the PMCs first to enable a potential
437 * final PMI to occur before we disable interrupts.
439 perf_pmu_disable(event
->pmu
);
440 local_irq_save(irq_flags
);
442 /* Default to error to be returned */
445 /* Insert event on to PMU and if successful modify ret to valid return */
447 if (n0
< alpha_pmu
->num_pmcs
) {
448 cpuc
->event
[n0
] = event
;
449 cpuc
->evtype
[n0
] = event
->hw
.event_base
;
450 cpuc
->current_idx
[n0
] = PMC_NO_INDEX
;
452 if (!alpha_check_constraints(cpuc
->event
, cpuc
->evtype
, n0
+1)) {
459 hwc
->state
= PERF_HES_UPTODATE
;
460 if (!(flags
& PERF_EF_START
))
461 hwc
->state
|= PERF_HES_STOPPED
;
463 local_irq_restore(irq_flags
);
464 perf_pmu_enable(event
->pmu
);
471 /* Disable performance monitoring unit
472 * - this function is called from outside this module via the pmu struct
473 * returned from perf event initialisation.
475 static void alpha_pmu_del(struct perf_event
*event
, int flags
)
477 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
478 struct hw_perf_event
*hwc
= &event
->hw
;
479 unsigned long irq_flags
;
482 perf_pmu_disable(event
->pmu
);
483 local_irq_save(irq_flags
);
485 for (j
= 0; j
< cpuc
->n_events
; j
++) {
486 if (event
== cpuc
->event
[j
]) {
487 int idx
= cpuc
->current_idx
[j
];
489 /* Shift remaining entries down into the existing
492 while (++j
< cpuc
->n_events
) {
493 cpuc
->event
[j
- 1] = cpuc
->event
[j
];
494 cpuc
->evtype
[j
- 1] = cpuc
->evtype
[j
];
495 cpuc
->current_idx
[j
- 1] =
496 cpuc
->current_idx
[j
];
499 /* Absorb the final count and turn off the event. */
500 alpha_perf_event_update(event
, hwc
, idx
, 0);
501 perf_event_update_userpage(event
);
503 cpuc
->idx_mask
&= ~(1UL<<idx
);
509 local_irq_restore(irq_flags
);
510 perf_pmu_enable(event
->pmu
);
514 static void alpha_pmu_read(struct perf_event
*event
)
516 struct hw_perf_event
*hwc
= &event
->hw
;
518 alpha_perf_event_update(event
, hwc
, hwc
->idx
, 0);
522 static void alpha_pmu_stop(struct perf_event
*event
, int flags
)
524 struct hw_perf_event
*hwc
= &event
->hw
;
525 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
527 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
528 cpuc
->idx_mask
&= ~(1UL<<hwc
->idx
);
529 hwc
->state
|= PERF_HES_STOPPED
;
532 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
533 alpha_perf_event_update(event
, hwc
, hwc
->idx
, 0);
534 hwc
->state
|= PERF_HES_UPTODATE
;
538 wrperfmon(PERFMON_CMD_DISABLE
, (1UL<<hwc
->idx
));
542 static void alpha_pmu_start(struct perf_event
*event
, int flags
)
544 struct hw_perf_event
*hwc
= &event
->hw
;
545 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
547 if (WARN_ON_ONCE(!(hwc
->state
& PERF_HES_STOPPED
)))
550 if (flags
& PERF_EF_RELOAD
) {
551 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
552 alpha_perf_event_set_period(event
, hwc
, hwc
->idx
);
557 cpuc
->idx_mask
|= 1UL<<hwc
->idx
;
559 wrperfmon(PERFMON_CMD_ENABLE
, (1UL<<hwc
->idx
));
564 * Check that CPU performance counters are supported.
565 * - currently support EV67 and later CPUs.
566 * - actually some later revisions of the EV6 have the same PMC model as the
567 * EV67 but we don't do suffiently deep CPU detection to detect them.
568 * Bad luck to the very few people who might have one, I guess.
570 static int supported_cpu(void)
572 struct percpu_struct
*cpu
;
573 unsigned long cputype
;
575 /* Get cpu type from HW */
576 cpu
= (struct percpu_struct
*)((char *)hwrpb
+ hwrpb
->processor_offset
);
577 cputype
= cpu
->type
& 0xffffffff;
578 /* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
579 return (cputype
>= EV67_CPU
) && (cputype
<= EV69_CPU
);
584 static void hw_perf_event_destroy(struct perf_event
*event
)
586 /* Nothing to be done! */
592 static int __hw_perf_event_init(struct perf_event
*event
)
594 struct perf_event_attr
*attr
= &event
->attr
;
595 struct hw_perf_event
*hwc
= &event
->hw
;
596 struct perf_event
*evts
[MAX_HWEVENTS
];
597 unsigned long evtypes
[MAX_HWEVENTS
];
598 int idx_rubbish_bin
[MAX_HWEVENTS
];
602 /* We only support a limited range of HARDWARE event types with one
603 * only programmable via a RAW event type.
605 if (attr
->type
== PERF_TYPE_HARDWARE
) {
606 if (attr
->config
>= alpha_pmu
->max_events
)
608 ev
= alpha_pmu
->event_map
[attr
->config
];
609 } else if (attr
->type
== PERF_TYPE_HW_CACHE
) {
611 } else if (attr
->type
== PERF_TYPE_RAW
) {
612 ev
= attr
->config
& 0xff;
621 /* The EV67 does not support mode exclusion */
622 if (attr
->exclude_kernel
|| attr
->exclude_user
623 || attr
->exclude_hv
|| attr
->exclude_idle
) {
628 * We place the event type in event_base here and leave calculation
629 * of the codes to programme the PMU for alpha_pmu_enable() because
630 * it is only then we will know what HW events are actually
631 * scheduled on to the PMU. At that point the code to programme the
632 * PMU is put into config_base and the PMC to use is placed into
633 * idx. We initialise idx (below) to PMC_NO_INDEX to indicate that
634 * it is yet to be determined.
636 hwc
->event_base
= ev
;
638 /* Collect events in a group together suitable for calling
639 * alpha_check_constraints() to verify that the group as a whole can
640 * be scheduled on to the PMU.
643 if (event
->group_leader
!= event
) {
644 n
= collect_events(event
->group_leader
,
645 alpha_pmu
->num_pmcs
- 1,
646 evts
, evtypes
, idx_rubbish_bin
);
650 evtypes
[n
] = hwc
->event_base
;
653 if (alpha_check_constraints(evts
, evtypes
, n
+ 1))
656 /* Indicate that PMU config and idx are yet to be determined. */
657 hwc
->config_base
= 0;
658 hwc
->idx
= PMC_NO_INDEX
;
660 event
->destroy
= hw_perf_event_destroy
;
663 * Most architectures reserve the PMU for their use at this point.
664 * As there is no existing mechanism to arbitrate usage and there
665 * appears to be no other user of the Alpha PMU we just assume
666 * that we can just use it, hence a NO-OP here.
668 * Maybe an alpha_reserve_pmu() routine should be implemented but is
669 * anything else ever going to use it?
672 if (!hwc
->sample_period
) {
673 hwc
->sample_period
= alpha_pmu
->pmc_max_period
[0];
674 hwc
->last_period
= hwc
->sample_period
;
675 local64_set(&hwc
->period_left
, hwc
->sample_period
);
682 * Main entry point to initialise a HW performance event.
684 static int alpha_pmu_event_init(struct perf_event
*event
)
688 switch (event
->attr
.type
) {
690 case PERF_TYPE_HARDWARE
:
691 case PERF_TYPE_HW_CACHE
:
701 /* Do the real initialisation work. */
702 err
= __hw_perf_event_init(event
);
708 * Main entry point - enable HW performance counters.
710 static void alpha_pmu_enable(struct pmu
*pmu
)
712 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
720 if (cpuc
->n_events
> 0) {
721 /* Update cpuc with information from any new scheduled events. */
722 maybe_change_configuration(cpuc
);
724 /* Start counting the desired events. */
725 wrperfmon(PERFMON_CMD_LOGGING_OPTIONS
, EV67_PCTR_MODE_AGGREGATE
);
726 wrperfmon(PERFMON_CMD_DESIRED_EVENTS
, cpuc
->config
);
727 wrperfmon(PERFMON_CMD_ENABLE
, cpuc
->idx_mask
);
733 * Main entry point - disable HW performance counters.
736 static void alpha_pmu_disable(struct pmu
*pmu
)
738 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
746 wrperfmon(PERFMON_CMD_DISABLE
, cpuc
->idx_mask
);
749 static struct pmu pmu
= {
750 .pmu_enable
= alpha_pmu_enable
,
751 .pmu_disable
= alpha_pmu_disable
,
752 .event_init
= alpha_pmu_event_init
,
753 .add
= alpha_pmu_add
,
754 .del
= alpha_pmu_del
,
755 .start
= alpha_pmu_start
,
756 .stop
= alpha_pmu_stop
,
757 .read
= alpha_pmu_read
,
762 * Main entry point - don't know when this is called but it
763 * obviously dumps debug info.
765 void perf_event_print_debug(void)
772 if (!supported_cpu())
775 local_irq_save(flags
);
777 cpu
= smp_processor_id();
779 pcr
= wrperfmon(PERFMON_CMD_READ
, 0);
780 pcr0
= (pcr
>> alpha_pmu
->pmc_count_shift
[0]) & alpha_pmu
->pmc_count_mask
[0];
781 pcr1
= (pcr
>> alpha_pmu
->pmc_count_shift
[1]) & alpha_pmu
->pmc_count_mask
[1];
783 pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu
, pcr0
, pcr1
);
785 local_irq_restore(flags
);
790 * Performance Monitoring Interrupt Service Routine called when a PMC
791 * overflows. The PMC that overflowed is passed in la_ptr.
793 static void alpha_perf_event_irq_handler(unsigned long la_ptr
,
794 struct pt_regs
*regs
)
796 struct cpu_hw_events
*cpuc
;
797 struct perf_sample_data data
;
798 struct perf_event
*event
;
799 struct hw_perf_event
*hwc
;
802 __get_cpu_var(irq_pmi_count
)++;
803 cpuc
= &__get_cpu_var(cpu_hw_events
);
805 /* Completely counting through the PMC's period to trigger a new PMC
806 * overflow interrupt while in this interrupt routine is utterly
807 * disastrous! The EV6 and EV67 counters are sufficiently large to
808 * prevent this but to be really sure disable the PMCs.
810 wrperfmon(PERFMON_CMD_DISABLE
, cpuc
->idx_mask
);
812 /* la_ptr is the counter that overflowed. */
813 if (unlikely(la_ptr
>= alpha_pmu
->num_pmcs
)) {
814 /* This should never occur! */
816 pr_warning("PMI: silly index %ld\n", la_ptr
);
817 wrperfmon(PERFMON_CMD_ENABLE
, cpuc
->idx_mask
);
823 perf_sample_data_init(&data
, 0);
824 for (j
= 0; j
< cpuc
->n_events
; j
++) {
825 if (cpuc
->current_idx
[j
] == idx
)
829 if (unlikely(j
== cpuc
->n_events
)) {
830 /* This can occur if the event is disabled right on a PMC overflow. */
831 wrperfmon(PERFMON_CMD_ENABLE
, cpuc
->idx_mask
);
835 event
= cpuc
->event
[j
];
837 if (unlikely(!event
)) {
838 /* This should never occur! */
840 pr_warning("PMI: No event at index %d!\n", idx
);
841 wrperfmon(PERFMON_CMD_ENABLE
, cpuc
->idx_mask
);
846 alpha_perf_event_update(event
, hwc
, idx
, alpha_pmu
->pmc_max_period
[idx
]+1);
847 data
.period
= event
->hw
.last_period
;
849 if (alpha_perf_event_set_period(event
, hwc
, idx
)) {
850 if (perf_event_overflow(event
, 1, &data
, regs
)) {
851 /* Interrupts coming too quickly; "throttle" the
852 * counter, i.e., disable it for a little while.
854 alpha_pmu_stop(event
, 0);
857 wrperfmon(PERFMON_CMD_ENABLE
, cpuc
->idx_mask
);
865 * Init call to initialise performance events at kernel startup.
867 int __init
init_hw_perf_events(void)
869 pr_info("Performance events: ");
871 if (!supported_cpu()) {
872 pr_cont("No support for your CPU.\n");
876 pr_cont("Supported CPU type!\n");
878 /* Override performance counter IRQ vector */
880 perf_irq
= alpha_perf_event_irq_handler
;
882 /* And set up PMU specification */
883 alpha_pmu
= &ev67_pmu
;
885 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
889 early_initcall(init_hw_perf_events
);