staging:iio:dds:ad9951: allocate chip state with iio_dev
[linux-2.6/next.git] / arch / mips / pci / pci-octeon.c
blobed1c54284b8f27feb9966c7fea4b55c77d5997de
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2005-2009 Cavium Networks
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/swiotlb.h>
16 #include <asm/time.h>
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-npi-defs.h>
20 #include <asm/octeon/cvmx-pci-defs.h>
21 #include <asm/octeon/pci-octeon.h>
23 #include <dma-coherence.h>
25 #define USE_OCTEON_INTERNAL_ARBITER
28 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
29 * addresses. Use PCI endian swapping 1 so no address swapping is
30 * necessary. The Linux io routines will endian swap the data.
32 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
33 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
35 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
36 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
38 u64 octeon_bar1_pci_phys;
40 /**
41 * This is the bit decoding used for the Octeon PCI controller addresses
43 union octeon_pci_address {
44 uint64_t u64;
45 struct {
46 uint64_t upper:2;
47 uint64_t reserved:13;
48 uint64_t io:1;
49 uint64_t did:5;
50 uint64_t subdid:3;
51 uint64_t reserved2:4;
52 uint64_t endian_swap:2;
53 uint64_t reserved3:10;
54 uint64_t bus:8;
55 uint64_t dev:5;
56 uint64_t func:3;
57 uint64_t reg:8;
58 } s;
61 int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
62 u8 slot, u8 pin);
63 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
65 /**
66 * Map a PCI device to the appropriate interrupt line
68 * @dev: The Linux PCI device structure for the device to map
69 * @slot: The slot number for this device on __BUS 0__. Linux
70 * enumerates through all the bridges and figures out the
71 * slot on Bus 0 where this device eventually hooks to.
72 * @pin: The PCI interrupt pin read from the device, then swizzled
73 * as it goes through each bridge.
74 * Returns Interrupt number for the device
76 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
78 if (octeon_pcibios_map_irq)
79 return octeon_pcibios_map_irq(dev, slot, pin);
80 else
81 panic("octeon_pcibios_map_irq not set.");
86 * Called to perform platform specific PCI setup
88 int pcibios_plat_dev_init(struct pci_dev *dev)
90 uint16_t config;
91 uint32_t dconfig;
92 int pos;
94 * Force the Cache line setting to 64 bytes. The standard
95 * Linux bus scan doesn't seem to set it. Octeon really has
96 * 128 byte lines, but Intel bridges get really upset if you
97 * try and set values above 64 bytes. Value is specified in
98 * 32bit words.
100 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
101 /* Set latency timers for all devices */
102 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
104 /* Enable reporting System errors and parity errors on all devices */
105 /* Enable parity checking and error reporting */
106 pci_read_config_word(dev, PCI_COMMAND, &config);
107 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
108 pci_write_config_word(dev, PCI_COMMAND, config);
110 if (dev->subordinate) {
111 /* Set latency timers on sub bridges */
112 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
113 /* More bridge error detection */
114 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
115 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
116 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
119 /* Enable the PCIe normal error reporting */
120 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
121 if (pos) {
122 /* Update Device Control */
123 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
124 /* Correctable Error Reporting */
125 config |= PCI_EXP_DEVCTL_CERE;
126 /* Non-Fatal Error Reporting */
127 config |= PCI_EXP_DEVCTL_NFERE;
128 /* Fatal Error Reporting */
129 config |= PCI_EXP_DEVCTL_FERE;
130 /* Unsupported Request */
131 config |= PCI_EXP_DEVCTL_URRE;
132 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
135 /* Find the Advanced Error Reporting capability */
136 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
137 if (pos) {
138 /* Clear Uncorrectable Error Status */
139 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
140 &dconfig);
141 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
142 dconfig);
143 /* Enable reporting of all uncorrectable errors */
144 /* Uncorrectable Error Mask - turned on bits disable errors */
145 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
147 * Leave severity at HW default. This only controls if
148 * errors are reported as uncorrectable or
149 * correctable, not if the error is reported.
151 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
152 /* Clear Correctable Error Status */
153 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
154 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
155 /* Enable reporting of all correctable errors */
156 /* Correctable Error Mask - turned on bits disable errors */
157 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
158 /* Advanced Error Capabilities */
159 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
160 /* ECRC Generation Enable */
161 if (config & PCI_ERR_CAP_ECRC_GENC)
162 config |= PCI_ERR_CAP_ECRC_GENE;
163 /* ECRC Check Enable */
164 if (config & PCI_ERR_CAP_ECRC_CHKC)
165 config |= PCI_ERR_CAP_ECRC_CHKE;
166 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
167 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
168 /* Report all errors to the root complex */
169 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
170 PCI_ERR_ROOT_CMD_COR_EN |
171 PCI_ERR_ROOT_CMD_NONFATAL_EN |
172 PCI_ERR_ROOT_CMD_FATAL_EN);
173 /* Clear the Root status register */
174 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
175 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
178 dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
180 return 0;
184 * Return the mapping of PCI device number to IRQ line. Each
185 * character in the return string represents the interrupt
186 * line for the device at that position. Device 1 maps to the
187 * first character, etc. The characters A-D are used for PCI
188 * interrupts.
190 * Returns PCI interrupt mapping
192 const char *octeon_get_pci_interrupts(void)
195 * Returning an empty string causes the interrupts to be
196 * routed based on the PCI specification. From the PCI spec:
198 * INTA# of Device Number 0 is connected to IRQW on the system
199 * board. (Device Number has no significance regarding being
200 * located on the system board or in a connector.) INTA# of
201 * Device Number 1 is connected to IRQX on the system
202 * board. INTA# of Device Number 2 is connected to IRQY on the
203 * system board. INTA# of Device Number 3 is connected to IRQZ
204 * on the system board. The table below describes how each
205 * agent's INTx# lines are connected to the system board
206 * interrupt lines. The following equation can be used to
207 * determine to which INTx# signal on the system board a given
208 * device's INTx# line(s) is connected.
210 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
211 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
212 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
213 * INTD# = 3)
215 switch (octeon_bootinfo->board_type) {
216 case CVMX_BOARD_TYPE_NAO38:
217 /* This is really the NAC38 */
218 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
219 case CVMX_BOARD_TYPE_EBH3100:
220 case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
221 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
222 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
223 case CVMX_BOARD_TYPE_BBGW_REF:
224 return "AABCD";
225 case CVMX_BOARD_TYPE_THUNDER:
226 case CVMX_BOARD_TYPE_EBH3000:
227 default:
228 return "";
233 * Map a PCI device to the appropriate interrupt line
235 * @dev: The Linux PCI device structure for the device to map
236 * @slot: The slot number for this device on __BUS 0__. Linux
237 * enumerates through all the bridges and figures out the
238 * slot on Bus 0 where this device eventually hooks to.
239 * @pin: The PCI interrupt pin read from the device, then swizzled
240 * as it goes through each bridge.
241 * Returns Interrupt number for the device
243 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
244 u8 slot, u8 pin)
246 int irq_num;
247 const char *interrupts;
248 int dev_num;
250 /* Get the board specific interrupt mapping */
251 interrupts = octeon_get_pci_interrupts();
253 dev_num = dev->devfn >> 3;
254 if (dev_num < strlen(interrupts))
255 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
256 OCTEON_IRQ_PCI_INT0;
257 else
258 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
259 return irq_num;
264 * Read a value from configuration space
266 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
267 int reg, int size, u32 *val)
269 union octeon_pci_address pci_addr;
271 pci_addr.u64 = 0;
272 pci_addr.s.upper = 2;
273 pci_addr.s.io = 1;
274 pci_addr.s.did = 3;
275 pci_addr.s.subdid = 1;
276 pci_addr.s.endian_swap = 1;
277 pci_addr.s.bus = bus->number;
278 pci_addr.s.dev = devfn >> 3;
279 pci_addr.s.func = devfn & 0x7;
280 pci_addr.s.reg = reg;
282 #if PCI_CONFIG_SPACE_DELAY
283 udelay(PCI_CONFIG_SPACE_DELAY);
284 #endif
285 switch (size) {
286 case 4:
287 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
288 return PCIBIOS_SUCCESSFUL;
289 case 2:
290 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
291 return PCIBIOS_SUCCESSFUL;
292 case 1:
293 *val = cvmx_read64_uint8(pci_addr.u64);
294 return PCIBIOS_SUCCESSFUL;
296 return PCIBIOS_FUNC_NOT_SUPPORTED;
301 * Write a value to PCI configuration space
303 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
304 int reg, int size, u32 val)
306 union octeon_pci_address pci_addr;
308 pci_addr.u64 = 0;
309 pci_addr.s.upper = 2;
310 pci_addr.s.io = 1;
311 pci_addr.s.did = 3;
312 pci_addr.s.subdid = 1;
313 pci_addr.s.endian_swap = 1;
314 pci_addr.s.bus = bus->number;
315 pci_addr.s.dev = devfn >> 3;
316 pci_addr.s.func = devfn & 0x7;
317 pci_addr.s.reg = reg;
319 #if PCI_CONFIG_SPACE_DELAY
320 udelay(PCI_CONFIG_SPACE_DELAY);
321 #endif
322 switch (size) {
323 case 4:
324 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
325 return PCIBIOS_SUCCESSFUL;
326 case 2:
327 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
328 return PCIBIOS_SUCCESSFUL;
329 case 1:
330 cvmx_write64_uint8(pci_addr.u64, val);
331 return PCIBIOS_SUCCESSFUL;
333 return PCIBIOS_FUNC_NOT_SUPPORTED;
337 static struct pci_ops octeon_pci_ops = {
338 octeon_read_config,
339 octeon_write_config,
342 static struct resource octeon_pci_mem_resource = {
343 .start = 0,
344 .end = 0,
345 .name = "Octeon PCI MEM",
346 .flags = IORESOURCE_MEM,
350 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
351 * bridge
353 static struct resource octeon_pci_io_resource = {
354 .start = 0x4000,
355 .end = OCTEON_PCI_IOSPACE_SIZE - 1,
356 .name = "Octeon PCI IO",
357 .flags = IORESOURCE_IO,
360 static struct pci_controller octeon_pci_controller = {
361 .pci_ops = &octeon_pci_ops,
362 .mem_resource = &octeon_pci_mem_resource,
363 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
364 .io_resource = &octeon_pci_io_resource,
365 .io_offset = 0,
366 .io_map_base = OCTEON_PCI_IOSPACE_BASE,
371 * Low level initialize the Octeon PCI controller
373 static void octeon_pci_initialize(void)
375 union cvmx_pci_cfg01 cfg01;
376 union cvmx_npi_ctl_status ctl_status;
377 union cvmx_pci_ctl_status_2 ctl_status_2;
378 union cvmx_pci_cfg19 cfg19;
379 union cvmx_pci_cfg16 cfg16;
380 union cvmx_pci_cfg22 cfg22;
381 union cvmx_pci_cfg56 cfg56;
383 /* Reset the PCI Bus */
384 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
385 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
387 udelay(2000); /* Hold PCI reset for 2 ms */
389 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
390 ctl_status.s.max_word = 1;
391 ctl_status.s.timer = 1;
392 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
394 /* Deassert PCI reset and advertize PCX Host Mode Device Capability
395 (64b) */
396 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
397 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
399 udelay(2000); /* Wait 2 ms after deasserting PCI reset */
401 ctl_status_2.u32 = 0;
402 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
403 before any PCI reads. */
404 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
405 ctl_status_2.s.bar2_enb = 1;
406 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
407 ctl_status_2.s.bar2_esx = 1;
408 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
409 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
410 /* BAR1 hole */
411 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
412 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
413 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
414 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
415 ctl_status_2.s.bb1 = 1; /* BAR1 is big */
416 ctl_status_2.s.bb0 = 1; /* BAR0 is big */
419 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
420 udelay(2000); /* Wait 2 ms before doing PCI reads */
422 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
423 pr_notice("PCI Status: %s %s-bit\n",
424 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
425 ctl_status_2.s.ap_64ad ? "64" : "32");
427 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
428 union cvmx_pci_cnt_reg cnt_reg_start;
429 union cvmx_pci_cnt_reg cnt_reg_end;
430 unsigned long cycles, pci_clock;
432 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
433 cycles = read_c0_cvmcount();
434 udelay(1000);
435 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
436 cycles = read_c0_cvmcount() - cycles;
437 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
438 (cycles / (mips_hpt_frequency / 1000000));
439 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
443 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
444 * in PCI-X mode to allow four outstanding splits. Otherwise,
445 * should not change from its reset value. Don't write PCI_CFG19
446 * in PCI mode (0x82000001 reset value), write it to 0x82000004
447 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
448 * MRBCM -> must be one.
450 if (ctl_status_2.s.ap_pcix) {
451 cfg19.u32 = 0;
453 * Target Delayed/Split request outstanding maximum
454 * count. [1..31] and 0=32. NOTE: If the user
455 * programs these bits beyond the Designed Maximum
456 * outstanding count, then the designed maximum table
457 * depth will be used instead. No additional
458 * Deferred/Split transactions will be accepted if
459 * this outstanding maximum count is
460 * reached. Furthermore, no additional deferred/split
461 * transactions will be accepted if the I/O delay/ I/O
462 * Split Request outstanding maximum is reached.
464 cfg19.s.tdomc = 4;
466 * Master Deferred Read Request Outstanding Max Count
467 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
468 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
469 * 5 2 110 6 3 111 7 3 For example, if these bits are
470 * programmed to 100, the core can support 2 DAC
471 * cycles, 4 SAC cycles or a combination of 1 DAC and
472 * 2 SAC cycles. NOTE: For the PCI-X maximum
473 * outstanding split transactions, refer to
474 * CRE0[22:20].
476 cfg19.s.mdrrmc = 2;
478 * Master Request (Memory Read) Byte Count/Byte Enable
479 * select. 0 = Byte Enables valid. In PCI mode, a
480 * burst transaction cannot be performed using Memory
481 * Read command=4?h6. 1 = DWORD Byte Count valid
482 * (default). In PCI Mode, the memory read byte
483 * enables are automatically generated by the
484 * core. Note: N3 Master Request transaction sizes are
485 * always determined through the
486 * am_attr[<35:32>|<7:0>] field.
488 cfg19.s.mrbcm = 1;
489 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
493 cfg01.u32 = 0;
494 cfg01.s.msae = 1; /* Memory Space Access Enable */
495 cfg01.s.me = 1; /* Master Enable */
496 cfg01.s.pee = 1; /* PERR# Enable */
497 cfg01.s.see = 1; /* System Error Enable */
498 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
500 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
502 #ifdef USE_OCTEON_INTERNAL_ARBITER
504 * When OCTEON is a PCI host, most systems will use OCTEON's
505 * internal arbiter, so must enable it before any PCI/PCI-X
506 * traffic can occur.
509 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
511 pci_int_arb_cfg.u64 = 0;
512 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
513 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
515 #endif /* USE_OCTEON_INTERNAL_ARBITER */
518 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
519 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
520 * 1..7.
522 cfg16.u32 = 0;
523 cfg16.s.mltd = 1; /* Master Latency Timer Disable */
524 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
527 * Should be written to 0x4ff00. MTTV -> must be zero.
528 * FLUSH -> must be 1. MRV -> should be 0xFF.
530 cfg22.u32 = 0;
531 /* Master Retry Value [1..255] and 0=infinite */
532 cfg22.s.mrv = 0xff;
534 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
535 * N3K operation.
537 cfg22.s.flush = 1;
538 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
541 * MOST Indicates the maximum number of outstanding splits (in -1
542 * notation) when OCTEON is in PCI-X mode. PCI-X performance is
543 * affected by the MOST selection. Should generally be written
544 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
545 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
547 cfg56.u32 = 0;
548 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
549 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
550 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
551 cfg56.s.roe = 1; /* Relaxed Ordering Enable */
552 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
553 [0=512B,1=1024B,2=2048B,3=4096B] */
554 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
555 .. 7=32] */
557 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
560 * Affects PCI performance when OCTEON services reads to its
561 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
562 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
563 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
564 * these values need to be changed so they won't possibly prefetch off
565 * of the end of memory if PCI is DMAing a buffer at the end of
566 * memory. Note that these values differ from their reset values.
568 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
569 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
570 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
575 * Initialize the Octeon PCI controller
577 static int __init octeon_pci_setup(void)
579 union cvmx_npi_mem_access_subidx mem_access;
580 int index;
582 /* Only these chips have PCI */
583 if (octeon_has_feature(OCTEON_FEATURE_PCIE))
584 return 0;
586 /* Point pcibios_map_irq() to the PCI version of it */
587 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
589 /* Only use the big bars on chips that support it */
590 if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
591 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
592 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
593 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
594 else
595 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
597 /* PCI I/O and PCI MEM values */
598 set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
599 ioport_resource.start = 0;
600 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
601 if (!octeon_is_pci_host()) {
602 pr_notice("Not in host mode, PCI Controller not initialized\n");
603 return 0;
606 pr_notice("%s Octeon big bar support\n",
607 (octeon_dma_bar_type ==
608 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
610 octeon_pci_initialize();
612 mem_access.u64 = 0;
613 mem_access.s.esr = 1; /* Endian-Swap on read. */
614 mem_access.s.esw = 1; /* Endian-Swap on write. */
615 mem_access.s.nsr = 0; /* No-Snoop on read. */
616 mem_access.s.nsw = 0; /* No-Snoop on write. */
617 mem_access.s.ror = 0; /* Relax Read on read. */
618 mem_access.s.row = 0; /* Relax Order on write. */
619 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
620 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
623 * Remap the Octeon BAR 2 above all 32 bit devices
624 * (0x8000000000ul). This is done here so it is remapped
625 * before the readl()'s below. We don't want BAR2 overlapping
626 * with BAR0/BAR1 during these reads.
628 octeon_npi_write32(CVMX_NPI_PCI_CFG08,
629 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
630 octeon_npi_write32(CVMX_NPI_PCI_CFG09,
631 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
633 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
634 /* Remap the Octeon BAR 0 to 0-2GB */
635 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
636 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
639 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
640 * BAR 1 hole).
642 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
643 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
645 /* BAR1 movable mappings set for identity mapping */
646 octeon_bar1_pci_phys = 0x80000000ull;
647 for (index = 0; index < 32; index++) {
648 union cvmx_pci_bar1_indexx bar1_index;
650 bar1_index.u32 = 0;
651 /* Address bits[35:22] sent to L2C */
652 bar1_index.s.addr_idx =
653 (octeon_bar1_pci_phys >> 22) + index;
654 /* Don't put PCI accesses in L2. */
655 bar1_index.s.ca = 1;
656 /* Endian Swap Mode */
657 bar1_index.s.end_swp = 1;
658 /* Set '1' when the selected address range is valid. */
659 bar1_index.s.addr_v = 1;
660 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
661 bar1_index.u32);
664 /* Devices go after BAR1 */
665 octeon_pci_mem_resource.start =
666 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
667 (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
668 octeon_pci_mem_resource.end =
669 octeon_pci_mem_resource.start + (1ul << 30);
670 } else {
671 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
672 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
673 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
675 /* Remap the Octeon BAR 1 to map 0-128MB */
676 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
677 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
679 /* BAR1 movable regions contiguous to cover the swiotlb */
680 octeon_bar1_pci_phys =
681 virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
683 for (index = 0; index < 32; index++) {
684 union cvmx_pci_bar1_indexx bar1_index;
686 bar1_index.u32 = 0;
687 /* Address bits[35:22] sent to L2C */
688 bar1_index.s.addr_idx =
689 (octeon_bar1_pci_phys >> 22) + index;
690 /* Don't put PCI accesses in L2. */
691 bar1_index.s.ca = 1;
692 /* Endian Swap Mode */
693 bar1_index.s.end_swp = 1;
694 /* Set '1' when the selected address range is valid. */
695 bar1_index.s.addr_v = 1;
696 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
697 bar1_index.u32);
700 /* Devices go after BAR0 */
701 octeon_pci_mem_resource.start =
702 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
703 (4ul << 10);
704 octeon_pci_mem_resource.end =
705 octeon_pci_mem_resource.start + (1ul << 30);
708 register_pci_controller(&octeon_pci_controller);
711 * Clear any errors that might be pending from before the bus
712 * was setup properly.
714 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
716 octeon_pci_dma_init();
718 return 0;
721 arch_initcall(octeon_pci_setup);