staging:iio:dds:ad9951: allocate chip state with iio_dev
[linux-2.6/next.git] / arch / sparc / kernel / irq_32.c
blob9b89d842913c0da9166be2f07e9cc4c330d40ea9
1 /*
2 * Interrupt request handling routines. On the
3 * Sparc the IRQs are basically 'cast in stone'
4 * and you are supposed to probe the prom's device
5 * node trees to find out who's got which IRQ.
7 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
8 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
9 * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
10 * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
11 * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
14 #include <linux/kernel_stat.h>
15 #include <linux/seq_file.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cpudata.h>
19 #include <asm/pcic.h>
20 #include <asm/leon.h>
22 #include "kernel.h"
23 #include "irq.h"
25 #ifdef CONFIG_SMP
26 #define SMP_NOP2 "nop; nop;\n\t"
27 #define SMP_NOP3 "nop; nop; nop;\n\t"
28 #else
29 #define SMP_NOP2
30 #define SMP_NOP3
31 #endif /* SMP */
33 /* platform specific irq setup */
34 struct sparc_irq_config sparc_irq_config;
36 unsigned long arch_local_irq_save(void)
38 unsigned long retval;
39 unsigned long tmp;
41 __asm__ __volatile__(
42 "rd %%psr, %0\n\t"
43 SMP_NOP3 /* Sun4m + Cypress + SMP bug */
44 "or %0, %2, %1\n\t"
45 "wr %1, 0, %%psr\n\t"
46 "nop; nop; nop\n"
47 : "=&r" (retval), "=r" (tmp)
48 : "i" (PSR_PIL)
49 : "memory");
51 return retval;
53 EXPORT_SYMBOL(arch_local_irq_save);
55 void arch_local_irq_enable(void)
57 unsigned long tmp;
59 __asm__ __volatile__(
60 "rd %%psr, %0\n\t"
61 SMP_NOP3 /* Sun4m + Cypress + SMP bug */
62 "andn %0, %1, %0\n\t"
63 "wr %0, 0, %%psr\n\t"
64 "nop; nop; nop\n"
65 : "=&r" (tmp)
66 : "i" (PSR_PIL)
67 : "memory");
69 EXPORT_SYMBOL(arch_local_irq_enable);
71 void arch_local_irq_restore(unsigned long old_psr)
73 unsigned long tmp;
75 __asm__ __volatile__(
76 "rd %%psr, %0\n\t"
77 "and %2, %1, %2\n\t"
78 SMP_NOP2 /* Sun4m + Cypress + SMP bug */
79 "andn %0, %1, %0\n\t"
80 "wr %0, %2, %%psr\n\t"
81 "nop; nop; nop\n"
82 : "=&r" (tmp)
83 : "i" (PSR_PIL), "r" (old_psr)
84 : "memory");
86 EXPORT_SYMBOL(arch_local_irq_restore);
89 * Dave Redman (djhr@tadpole.co.uk)
91 * IRQ numbers.. These are no longer restricted to 15..
93 * this is done to enable SBUS cards and onboard IO to be masked
94 * correctly. using the interrupt level isn't good enough.
96 * For example:
97 * A device interrupting at sbus level6 and the Floppy both come in
98 * at IRQ11, but enabling and disabling them requires writing to
99 * different bits in the SLAVIO/SEC.
101 * As a result of these changes sun4m machines could now support
102 * directed CPU interrupts using the existing enable/disable irq code
103 * with tweaks.
105 * Sun4d complicates things even further. IRQ numbers are arbitrary
106 * 32-bit values in that case. Since this is similar to sparc64,
107 * we adopt a virtual IRQ numbering scheme as is done there.
108 * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
109 * just becomes a limit of how many interrupt sources we can handle in
110 * a single system. Even fully loaded SS2000 machines top off at
111 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
112 * is more than enough.
114 * We keep a map of per-PIL enable interrupts. These get wired
115 * up via the irq_chip->startup() method which gets invoked by
116 * the generic IRQ layer during request_irq().
120 /* Table of allocated irqs. Unused entries has irq == 0 */
121 static struct irq_bucket irq_table[NR_IRQS];
122 /* Protect access to irq_table */
123 static DEFINE_SPINLOCK(irq_table_lock);
125 /* Map between the irq identifier used in hw to the irq_bucket. */
126 struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
127 /* Protect access to irq_map */
128 static DEFINE_SPINLOCK(irq_map_lock);
130 /* Allocate a new irq from the irq_table */
131 unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
133 unsigned long flags;
134 unsigned int i;
136 spin_lock_irqsave(&irq_table_lock, flags);
137 for (i = 1; i < NR_IRQS; i++) {
138 if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
139 goto found;
142 for (i = 1; i < NR_IRQS; i++) {
143 if (!irq_table[i].irq)
144 break;
147 if (i < NR_IRQS) {
148 irq_table[i].real_irq = real_irq;
149 irq_table[i].irq = i;
150 irq_table[i].pil = pil;
151 } else {
152 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
153 i = 0;
155 found:
156 spin_unlock_irqrestore(&irq_table_lock, flags);
158 return i;
161 /* Based on a single pil handler_irq may need to call several
162 * interrupt handlers. Use irq_map as entry to irq_table,
163 * and let each entry in irq_table point to the next entry.
165 void irq_link(unsigned int irq)
167 struct irq_bucket *p;
168 unsigned long flags;
169 unsigned int pil;
171 BUG_ON(irq >= NR_IRQS);
173 spin_lock_irqsave(&irq_map_lock, flags);
175 p = &irq_table[irq];
176 pil = p->pil;
177 BUG_ON(pil > SUN4D_MAX_IRQ);
178 p->next = irq_map[pil];
179 irq_map[pil] = p;
181 spin_unlock_irqrestore(&irq_map_lock, flags);
184 void irq_unlink(unsigned int irq)
186 struct irq_bucket *p, **pnext;
187 unsigned long flags;
189 BUG_ON(irq >= NR_IRQS);
191 spin_lock_irqsave(&irq_map_lock, flags);
193 p = &irq_table[irq];
194 BUG_ON(p->pil > SUN4D_MAX_IRQ);
195 pnext = &irq_map[p->pil];
196 while (*pnext != p)
197 pnext = &(*pnext)->next;
198 *pnext = p->next;
200 spin_unlock_irqrestore(&irq_map_lock, flags);
204 /* /proc/interrupts printing */
205 int arch_show_interrupts(struct seq_file *p, int prec)
207 int j;
209 #ifdef CONFIG_SMP
210 seq_printf(p, "RES: ");
211 for_each_online_cpu(j)
212 seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
213 seq_printf(p, " IPI rescheduling interrupts\n");
214 seq_printf(p, "CAL: ");
215 for_each_online_cpu(j)
216 seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
217 seq_printf(p, " IPI function call interrupts\n");
218 #endif
219 seq_printf(p, "NMI: ");
220 for_each_online_cpu(j)
221 seq_printf(p, "%10u ", cpu_data(j).counter);
222 seq_printf(p, " Non-maskable interrupts\n");
223 return 0;
226 void handler_irq(unsigned int pil, struct pt_regs *regs)
228 struct pt_regs *old_regs;
229 struct irq_bucket *p;
231 BUG_ON(pil > 15);
232 old_regs = set_irq_regs(regs);
233 irq_enter();
235 p = irq_map[pil];
236 while (p) {
237 struct irq_bucket *next = p->next;
239 generic_handle_irq(p->irq);
240 p = next;
242 irq_exit();
243 set_irq_regs(old_regs);
246 #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
247 static unsigned int floppy_irq;
249 int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
251 unsigned int cpu_irq;
252 int err;
254 #if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON
255 struct tt_entry *trap_table;
256 #endif
258 err = request_irq(irq, irq_handler, 0, "floppy", NULL);
259 if (err)
260 return -1;
262 /* Save for later use in floppy interrupt handler */
263 floppy_irq = irq;
265 cpu_irq = (irq & (NR_IRQS - 1));
267 /* Dork with trap table if we get this far. */
268 #define INSTANTIATE(table) \
269 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
270 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
271 SPARC_BRANCH((unsigned long) floppy_hardint, \
272 (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
273 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
274 table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
276 INSTANTIATE(sparc_ttable)
277 #if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON
278 trap_table = &trapbase_cpu1;
279 INSTANTIATE(trap_table)
280 trap_table = &trapbase_cpu2;
281 INSTANTIATE(trap_table)
282 trap_table = &trapbase_cpu3;
283 INSTANTIATE(trap_table)
284 #endif
285 #undef INSTANTIATE
287 * XXX Correct thing whould be to flush only I- and D-cache lines
288 * which contain the handler in question. But as of time of the
289 * writing we have no CPU-neutral interface to fine-grained flushes.
291 flush_cache_all();
292 return 0;
294 EXPORT_SYMBOL(sparc_floppy_request_irq);
297 * These variables are used to access state from the assembler
298 * interrupt handler, floppy_hardint, so we cannot put these in
299 * the floppy driver image because that would not work in the
300 * modular case.
302 volatile unsigned char *fdc_status;
303 EXPORT_SYMBOL(fdc_status);
305 char *pdma_vaddr;
306 EXPORT_SYMBOL(pdma_vaddr);
308 unsigned long pdma_size;
309 EXPORT_SYMBOL(pdma_size);
311 volatile int doing_pdma;
312 EXPORT_SYMBOL(doing_pdma);
314 char *pdma_base;
315 EXPORT_SYMBOL(pdma_base);
317 unsigned long pdma_areasize;
318 EXPORT_SYMBOL(pdma_areasize);
320 /* Use the generic irq support to call floppy_interrupt
321 * which was setup using request_irq() in sparc_floppy_request_irq().
322 * We only have one floppy interrupt so we do not need to check
323 * for additional handlers being wired up by irq_link()
325 void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
327 struct pt_regs *old_regs;
329 old_regs = set_irq_regs(regs);
330 irq_enter();
331 generic_handle_irq(floppy_irq);
332 irq_exit();
333 set_irq_regs(old_regs);
335 #endif
337 /* djhr
338 * This could probably be made indirect too and assigned in the CPU
339 * bits of the code. That would be much nicer I think and would also
340 * fit in with the idea of being able to tune your kernel for your machine
341 * by removing unrequired machine and device support.
345 void __init init_IRQ(void)
347 switch (sparc_cpu_model) {
348 case sun4c:
349 case sun4:
350 sun4c_init_IRQ();
351 break;
353 case sun4m:
354 pcic_probe();
355 if (pcic_present())
356 sun4m_pci_init_IRQ();
357 else
358 sun4m_init_IRQ();
359 break;
361 case sun4d:
362 sun4d_init_IRQ();
363 break;
365 case sparc_leon:
366 leon_init_IRQ();
367 break;
369 default:
370 prom_printf("Cannot initialize IRQs on this Sun machine...");
371 break;
373 btfixup();