2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements commit-related functionality of the LEB properties
28 #include <linux/crc16.h>
32 * first_dirty_cnode - find first dirty cnode.
33 * @c: UBIFS file-system description object
34 * @nnode: nnode at which to start
36 * This function returns the first dirty cnode or %NULL if there is not one.
38 static struct ubifs_cnode
*first_dirty_cnode(struct ubifs_nnode
*nnode
)
44 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
45 struct ubifs_cnode
*cnode
;
47 cnode
= nnode
->nbranch
[i
].cnode
;
49 test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
50 if (cnode
->level
== 0)
52 nnode
= (struct ubifs_nnode
*)cnode
;
58 return (struct ubifs_cnode
*)nnode
;
63 * next_dirty_cnode - find next dirty cnode.
64 * @cnode: cnode from which to begin searching
66 * This function returns the next dirty cnode or %NULL if there is not one.
68 static struct ubifs_cnode
*next_dirty_cnode(struct ubifs_cnode
*cnode
)
70 struct ubifs_nnode
*nnode
;
74 nnode
= cnode
->parent
;
77 for (i
= cnode
->iip
+ 1; i
< UBIFS_LPT_FANOUT
; i
++) {
78 cnode
= nnode
->nbranch
[i
].cnode
;
79 if (cnode
&& test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
80 if (cnode
->level
== 0)
81 return cnode
; /* cnode is a pnode */
82 /* cnode is a nnode */
83 return first_dirty_cnode((struct ubifs_nnode
*)cnode
);
86 return (struct ubifs_cnode
*)nnode
;
90 * get_cnodes_to_commit - create list of dirty cnodes to commit.
91 * @c: UBIFS file-system description object
93 * This function returns the number of cnodes to commit.
95 static int get_cnodes_to_commit(struct ubifs_info
*c
)
97 struct ubifs_cnode
*cnode
, *cnext
;
103 if (!test_bit(DIRTY_CNODE
, &c
->nroot
->flags
))
106 c
->lpt_cnext
= first_dirty_cnode(c
->nroot
);
107 cnode
= c
->lpt_cnext
;
112 ubifs_assert(!test_bit(COW_ZNODE
, &cnode
->flags
));
113 __set_bit(COW_ZNODE
, &cnode
->flags
);
114 cnext
= next_dirty_cnode(cnode
);
116 cnode
->cnext
= c
->lpt_cnext
;
119 cnode
->cnext
= cnext
;
123 dbg_cmt("committing %d cnodes", cnt
);
124 dbg_lp("committing %d cnodes", cnt
);
125 ubifs_assert(cnt
== c
->dirty_nn_cnt
+ c
->dirty_pn_cnt
);
130 * upd_ltab - update LPT LEB properties.
131 * @c: UBIFS file-system description object
133 * @free: amount of free space
134 * @dirty: amount of dirty space to add
136 static void upd_ltab(struct ubifs_info
*c
, int lnum
, int free
, int dirty
)
138 dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 lnum
, c
->ltab
[lnum
- c
->lpt_first
].free
,
140 c
->ltab
[lnum
- c
->lpt_first
].dirty
, free
, dirty
);
141 ubifs_assert(lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
142 c
->ltab
[lnum
- c
->lpt_first
].free
= free
;
143 c
->ltab
[lnum
- c
->lpt_first
].dirty
+= dirty
;
147 * alloc_lpt_leb - allocate an LPT LEB that is empty.
148 * @c: UBIFS file-system description object
149 * @lnum: LEB number is passed and returned here
151 * This function finds the next empty LEB in the ltab starting from @lnum. If a
152 * an empty LEB is found it is returned in @lnum and the function returns %0.
153 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
154 * never to run out of space.
156 static int alloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
160 n
= *lnum
- c
->lpt_first
+ 1;
161 for (i
= n
; i
< c
->lpt_lebs
; i
++) {
162 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
164 if (c
->ltab
[i
].free
== c
->leb_size
) {
166 *lnum
= i
+ c
->lpt_first
;
171 for (i
= 0; i
< n
; i
++) {
172 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
174 if (c
->ltab
[i
].free
== c
->leb_size
) {
176 *lnum
= i
+ c
->lpt_first
;
184 * layout_cnodes - layout cnodes for commit.
185 * @c: UBIFS file-system description object
187 * This function returns %0 on success and a negative error code on failure.
189 static int layout_cnodes(struct ubifs_info
*c
)
191 int lnum
, offs
, len
, alen
, done_lsave
, done_ltab
, err
;
192 struct ubifs_cnode
*cnode
;
194 err
= dbg_chk_lpt_sz(c
, 0, 0);
197 cnode
= c
->lpt_cnext
;
200 lnum
= c
->nhead_lnum
;
201 offs
= c
->nhead_offs
;
202 /* Try to place lsave and ltab nicely */
203 done_lsave
= !c
->big_lpt
;
205 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
207 c
->lsave_lnum
= lnum
;
208 c
->lsave_offs
= offs
;
210 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
213 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
218 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
224 c
->dirty_nn_cnt
-= 1;
227 c
->dirty_pn_cnt
-= 1;
229 while (offs
+ len
> c
->leb_size
) {
230 alen
= ALIGN(offs
, c
->min_io_size
);
231 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
232 dbg_chk_lpt_sz(c
, 2, alen
- offs
);
233 err
= alloc_lpt_leb(c
, &lnum
);
237 ubifs_assert(lnum
>= c
->lpt_first
&&
238 lnum
<= c
->lpt_last
);
239 /* Try to place lsave and ltab nicely */
242 c
->lsave_lnum
= lnum
;
243 c
->lsave_offs
= offs
;
245 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
253 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
259 cnode
->parent
->nbranch
[cnode
->iip
].lnum
= lnum
;
260 cnode
->parent
->nbranch
[cnode
->iip
].offs
= offs
;
266 dbg_chk_lpt_sz(c
, 1, len
);
267 cnode
= cnode
->cnext
;
268 } while (cnode
&& cnode
!= c
->lpt_cnext
);
270 /* Make sure to place LPT's save table */
272 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
273 alen
= ALIGN(offs
, c
->min_io_size
);
274 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
275 dbg_chk_lpt_sz(c
, 2, alen
- offs
);
276 err
= alloc_lpt_leb(c
, &lnum
);
280 ubifs_assert(lnum
>= c
->lpt_first
&&
281 lnum
<= c
->lpt_last
);
284 c
->lsave_lnum
= lnum
;
285 c
->lsave_offs
= offs
;
287 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
290 /* Make sure to place LPT's own lprops table */
292 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
293 alen
= ALIGN(offs
, c
->min_io_size
);
294 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
295 dbg_chk_lpt_sz(c
, 2, alen
- offs
);
296 err
= alloc_lpt_leb(c
, &lnum
);
300 ubifs_assert(lnum
>= c
->lpt_first
&&
301 lnum
<= c
->lpt_last
);
307 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
310 alen
= ALIGN(offs
, c
->min_io_size
);
311 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
312 dbg_chk_lpt_sz(c
, 4, alen
- offs
);
313 err
= dbg_chk_lpt_sz(c
, 3, alen
);
319 ubifs_err("LPT out of space");
320 dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 "done_lsave %d", lnum
, offs
, len
, done_ltab
, done_lsave
);
322 dbg_dump_lpt_info(c
);
327 * realloc_lpt_leb - allocate an LPT LEB that is empty.
328 * @c: UBIFS file-system description object
329 * @lnum: LEB number is passed and returned here
331 * This function duplicates exactly the results of the function alloc_lpt_leb.
332 * It is used during end commit to reallocate the same LEB numbers that were
333 * allocated by alloc_lpt_leb during start commit.
335 * This function finds the next LEB that was allocated by the alloc_lpt_leb
336 * function starting from @lnum. If a LEB is found it is returned in @lnum and
337 * the function returns %0. Otherwise the function returns -ENOSPC.
338 * Note however, that LPT is designed never to run out of space.
340 static int realloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
344 n
= *lnum
- c
->lpt_first
+ 1;
345 for (i
= n
; i
< c
->lpt_lebs
; i
++)
346 if (c
->ltab
[i
].cmt
) {
348 *lnum
= i
+ c
->lpt_first
;
352 for (i
= 0; i
< n
; i
++)
353 if (c
->ltab
[i
].cmt
) {
355 *lnum
= i
+ c
->lpt_first
;
362 * write_cnodes - write cnodes for commit.
363 * @c: UBIFS file-system description object
365 * This function returns %0 on success and a negative error code on failure.
367 static int write_cnodes(struct ubifs_info
*c
)
369 int lnum
, offs
, len
, from
, err
, wlen
, alen
, done_ltab
, done_lsave
;
370 struct ubifs_cnode
*cnode
;
371 void *buf
= c
->lpt_buf
;
373 cnode
= c
->lpt_cnext
;
376 lnum
= c
->nhead_lnum
;
377 offs
= c
->nhead_offs
;
379 /* Ensure empty LEB is unmapped */
381 err
= ubifs_leb_unmap(c
, lnum
);
385 /* Try to place lsave and ltab nicely */
386 done_lsave
= !c
->big_lpt
;
388 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
390 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
392 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
395 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
397 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
399 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
402 /* Loop for each cnode */
408 while (offs
+ len
> c
->leb_size
) {
411 alen
= ALIGN(wlen
, c
->min_io_size
);
412 memset(buf
+ offs
, 0xff, alen
- wlen
);
413 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
,
414 alen
, UBI_SHORTTERM
);
417 dbg_chk_lpt_sz(c
, 4, alen
- wlen
);
419 dbg_chk_lpt_sz(c
, 2, 0);
420 err
= realloc_lpt_leb(c
, &lnum
);
425 ubifs_assert(lnum
>= c
->lpt_first
&&
426 lnum
<= c
->lpt_last
);
427 err
= ubifs_leb_unmap(c
, lnum
);
430 /* Try to place lsave and ltab nicely */
433 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
435 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
440 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
442 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
448 ubifs_pack_nnode(c
, buf
+ offs
,
449 (struct ubifs_nnode
*)cnode
);
451 ubifs_pack_pnode(c
, buf
+ offs
,
452 (struct ubifs_pnode
*)cnode
);
454 * The reason for the barriers is the same as in case of TNC.
455 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
456 * 'dirty_cow_pnode()' are the functions for which this is
459 clear_bit(DIRTY_CNODE
, &cnode
->flags
);
460 smp_mb__before_clear_bit();
461 clear_bit(COW_ZNODE
, &cnode
->flags
);
462 smp_mb__after_clear_bit();
464 dbg_chk_lpt_sz(c
, 1, len
);
465 cnode
= cnode
->cnext
;
466 } while (cnode
&& cnode
!= c
->lpt_cnext
);
468 /* Make sure to place LPT's save table */
470 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
472 alen
= ALIGN(wlen
, c
->min_io_size
);
473 memset(buf
+ offs
, 0xff, alen
- wlen
);
474 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
,
478 dbg_chk_lpt_sz(c
, 2, alen
- wlen
);
479 err
= realloc_lpt_leb(c
, &lnum
);
483 ubifs_assert(lnum
>= c
->lpt_first
&&
484 lnum
<= c
->lpt_last
);
485 err
= ubifs_leb_unmap(c
, lnum
);
490 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
492 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
495 /* Make sure to place LPT's own lprops table */
497 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
499 alen
= ALIGN(wlen
, c
->min_io_size
);
500 memset(buf
+ offs
, 0xff, alen
- wlen
);
501 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
,
505 dbg_chk_lpt_sz(c
, 2, alen
- wlen
);
506 err
= realloc_lpt_leb(c
, &lnum
);
510 ubifs_assert(lnum
>= c
->lpt_first
&&
511 lnum
<= c
->lpt_last
);
512 err
= ubifs_leb_unmap(c
, lnum
);
517 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
519 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
522 /* Write remaining data in buffer */
524 alen
= ALIGN(wlen
, c
->min_io_size
);
525 memset(buf
+ offs
, 0xff, alen
- wlen
);
526 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
, UBI_SHORTTERM
);
530 dbg_chk_lpt_sz(c
, 4, alen
- wlen
);
531 err
= dbg_chk_lpt_sz(c
, 3, ALIGN(offs
, c
->min_io_size
));
535 c
->nhead_lnum
= lnum
;
536 c
->nhead_offs
= ALIGN(offs
, c
->min_io_size
);
538 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
539 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
540 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
542 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
547 ubifs_err("LPT out of space mismatch");
548 dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
549 "%d, done_lsave %d", lnum
, offs
, len
, done_ltab
, done_lsave
);
550 dbg_dump_lpt_info(c
);
555 * next_pnode - find next pnode.
556 * @c: UBIFS file-system description object
559 * This function returns the next pnode or %NULL if there are no more pnodes.
561 static struct ubifs_pnode
*next_pnode(struct ubifs_info
*c
,
562 struct ubifs_pnode
*pnode
)
564 struct ubifs_nnode
*nnode
;
567 /* Try to go right */
568 nnode
= pnode
->parent
;
569 iip
= pnode
->iip
+ 1;
570 if (iip
< UBIFS_LPT_FANOUT
) {
571 /* We assume here that LEB zero is never an LPT LEB */
572 if (nnode
->nbranch
[iip
].lnum
)
573 return ubifs_get_pnode(c
, nnode
, iip
);
578 /* Go up while can't go right */
580 iip
= nnode
->iip
+ 1;
581 nnode
= nnode
->parent
;
584 /* We assume here that LEB zero is never an LPT LEB */
585 } while (iip
>= UBIFS_LPT_FANOUT
|| !nnode
->nbranch
[iip
].lnum
);
588 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
590 return (void *)nnode
;
592 /* Go down to level 1 */
593 while (nnode
->level
> 1) {
594 nnode
= ubifs_get_nnode(c
, nnode
, 0);
596 return (void *)nnode
;
599 return ubifs_get_pnode(c
, nnode
, 0);
603 * pnode_lookup - lookup a pnode in the LPT.
604 * @c: UBIFS file-system description object
605 * @i: pnode number (0 to main_lebs - 1)
607 * This function returns a pointer to the pnode on success or a negative
608 * error code on failure.
610 static struct ubifs_pnode
*pnode_lookup(struct ubifs_info
*c
, int i
)
612 int err
, h
, iip
, shft
;
613 struct ubifs_nnode
*nnode
;
616 err
= ubifs_read_nnode(c
, NULL
, 0);
620 i
<<= UBIFS_LPT_FANOUT_SHIFT
;
622 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
623 for (h
= 1; h
< c
->lpt_hght
; h
++) {
624 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
625 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
626 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
628 return ERR_PTR(PTR_ERR(nnode
));
630 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
631 return ubifs_get_pnode(c
, nnode
, iip
);
635 * add_pnode_dirt - add dirty space to LPT LEB properties.
636 * @c: UBIFS file-system description object
637 * @pnode: pnode for which to add dirt
639 static void add_pnode_dirt(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
641 ubifs_add_lpt_dirt(c
, pnode
->parent
->nbranch
[pnode
->iip
].lnum
,
646 * do_make_pnode_dirty - mark a pnode dirty.
647 * @c: UBIFS file-system description object
648 * @pnode: pnode to mark dirty
650 static void do_make_pnode_dirty(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
652 /* Assumes cnext list is empty i.e. not called during commit */
653 if (!test_and_set_bit(DIRTY_CNODE
, &pnode
->flags
)) {
654 struct ubifs_nnode
*nnode
;
656 c
->dirty_pn_cnt
+= 1;
657 add_pnode_dirt(c
, pnode
);
658 /* Mark parent and ancestors dirty too */
659 nnode
= pnode
->parent
;
661 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
662 c
->dirty_nn_cnt
+= 1;
663 ubifs_add_nnode_dirt(c
, nnode
);
664 nnode
= nnode
->parent
;
672 * make_tree_dirty - mark the entire LEB properties tree dirty.
673 * @c: UBIFS file-system description object
675 * This function is used by the "small" LPT model to cause the entire LEB
676 * properties tree to be written. The "small" LPT model does not use LPT
677 * garbage collection because it is more efficient to write the entire tree
678 * (because it is small).
680 * This function returns %0 on success and a negative error code on failure.
682 static int make_tree_dirty(struct ubifs_info
*c
)
684 struct ubifs_pnode
*pnode
;
686 pnode
= pnode_lookup(c
, 0);
688 do_make_pnode_dirty(c
, pnode
);
689 pnode
= next_pnode(c
, pnode
);
691 return PTR_ERR(pnode
);
697 * need_write_all - determine if the LPT area is running out of free space.
698 * @c: UBIFS file-system description object
700 * This function returns %1 if the LPT area is running out of free space and %0
703 static int need_write_all(struct ubifs_info
*c
)
708 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
709 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
710 free
+= c
->leb_size
- c
->nhead_offs
;
711 else if (c
->ltab
[i
].free
== c
->leb_size
)
713 else if (c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
716 /* Less than twice the size left */
717 if (free
<= c
->lpt_sz
* 2)
723 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
724 * @c: UBIFS file-system description object
726 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
727 * free space and so may be reused as soon as the next commit is completed.
728 * This function is called during start commit to mark LPT LEBs for trivial GC.
730 static void lpt_tgc_start(struct ubifs_info
*c
)
734 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
735 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
737 if (c
->ltab
[i
].dirty
> 0 &&
738 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
) {
740 c
->ltab
[i
].free
= c
->leb_size
;
741 c
->ltab
[i
].dirty
= 0;
742 dbg_lp("LEB %d", i
+ c
->lpt_first
);
748 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
749 * @c: UBIFS file-system description object
751 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
752 * free space and so may be reused as soon as the next commit is completed.
753 * This function is called after the commit is completed (master node has been
754 * written) and unmaps LPT LEBs that were marked for trivial GC.
756 static int lpt_tgc_end(struct ubifs_info
*c
)
760 for (i
= 0; i
< c
->lpt_lebs
; i
++)
761 if (c
->ltab
[i
].tgc
) {
762 err
= ubifs_leb_unmap(c
, i
+ c
->lpt_first
);
766 dbg_lp("LEB %d", i
+ c
->lpt_first
);
772 * populate_lsave - fill the lsave array with important LEB numbers.
773 * @c: the UBIFS file-system description object
775 * This function is only called for the "big" model. It records a small number
776 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
777 * most important to least important): empty, freeable, freeable index, dirty
778 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
779 * their pnodes into memory. That will stop us from having to scan the LPT
780 * straight away. For the "small" model we assume that scanning the LPT is no
783 static void populate_lsave(struct ubifs_info
*c
)
785 struct ubifs_lprops
*lprops
;
786 struct ubifs_lpt_heap
*heap
;
789 ubifs_assert(c
->big_lpt
);
790 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
791 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
792 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
794 list_for_each_entry(lprops
, &c
->empty_list
, list
) {
795 c
->lsave
[cnt
++] = lprops
->lnum
;
796 if (cnt
>= c
->lsave_cnt
)
799 list_for_each_entry(lprops
, &c
->freeable_list
, list
) {
800 c
->lsave
[cnt
++] = lprops
->lnum
;
801 if (cnt
>= c
->lsave_cnt
)
804 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
) {
805 c
->lsave
[cnt
++] = lprops
->lnum
;
806 if (cnt
>= c
->lsave_cnt
)
809 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
810 for (i
= 0; i
< heap
->cnt
; i
++) {
811 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
812 if (cnt
>= c
->lsave_cnt
)
815 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
816 for (i
= 0; i
< heap
->cnt
; i
++) {
817 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
818 if (cnt
>= c
->lsave_cnt
)
821 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
822 for (i
= 0; i
< heap
->cnt
; i
++) {
823 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
824 if (cnt
>= c
->lsave_cnt
)
827 /* Fill it up completely */
828 while (cnt
< c
->lsave_cnt
)
829 c
->lsave
[cnt
++] = c
->main_first
;
833 * nnode_lookup - lookup a nnode in the LPT.
834 * @c: UBIFS file-system description object
837 * This function returns a pointer to the nnode on success or a negative
838 * error code on failure.
840 static struct ubifs_nnode
*nnode_lookup(struct ubifs_info
*c
, int i
)
843 struct ubifs_nnode
*nnode
;
846 err
= ubifs_read_nnode(c
, NULL
, 0);
852 iip
= i
& (UBIFS_LPT_FANOUT
- 1);
853 i
>>= UBIFS_LPT_FANOUT_SHIFT
;
856 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
864 * make_nnode_dirty - find a nnode and, if found, make it dirty.
865 * @c: UBIFS file-system description object
866 * @node_num: nnode number of nnode to make dirty
867 * @lnum: LEB number where nnode was written
868 * @offs: offset where nnode was written
870 * This function is used by LPT garbage collection. LPT garbage collection is
871 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
872 * simply involves marking all the nodes in the LEB being garbage-collected as
873 * dirty. The dirty nodes are written next commit, after which the LEB is free
876 * This function returns %0 on success and a negative error code on failure.
878 static int make_nnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
881 struct ubifs_nnode
*nnode
;
883 nnode
= nnode_lookup(c
, node_num
);
885 return PTR_ERR(nnode
);
887 struct ubifs_nbranch
*branch
;
889 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
890 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
891 return 0; /* nnode is obsolete */
892 } else if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
893 return 0; /* nnode is obsolete */
894 /* Assumes cnext list is empty i.e. not called during commit */
895 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
896 c
->dirty_nn_cnt
+= 1;
897 ubifs_add_nnode_dirt(c
, nnode
);
898 /* Mark parent and ancestors dirty too */
899 nnode
= nnode
->parent
;
901 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
902 c
->dirty_nn_cnt
+= 1;
903 ubifs_add_nnode_dirt(c
, nnode
);
904 nnode
= nnode
->parent
;
913 * make_pnode_dirty - find a pnode and, if found, make it dirty.
914 * @c: UBIFS file-system description object
915 * @node_num: pnode number of pnode to make dirty
916 * @lnum: LEB number where pnode was written
917 * @offs: offset where pnode was written
919 * This function is used by LPT garbage collection. LPT garbage collection is
920 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
921 * simply involves marking all the nodes in the LEB being garbage-collected as
922 * dirty. The dirty nodes are written next commit, after which the LEB is free
925 * This function returns %0 on success and a negative error code on failure.
927 static int make_pnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
930 struct ubifs_pnode
*pnode
;
931 struct ubifs_nbranch
*branch
;
933 pnode
= pnode_lookup(c
, node_num
);
935 return PTR_ERR(pnode
);
936 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
937 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
939 do_make_pnode_dirty(c
, pnode
);
944 * make_ltab_dirty - make ltab node dirty.
945 * @c: UBIFS file-system description object
946 * @lnum: LEB number where ltab was written
947 * @offs: offset where ltab was written
949 * This function is used by LPT garbage collection. LPT garbage collection is
950 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
951 * simply involves marking all the nodes in the LEB being garbage-collected as
952 * dirty. The dirty nodes are written next commit, after which the LEB is free
955 * This function returns %0 on success and a negative error code on failure.
957 static int make_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
959 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
960 return 0; /* This ltab node is obsolete */
961 if (!(c
->lpt_drty_flgs
& LTAB_DIRTY
)) {
962 c
->lpt_drty_flgs
|= LTAB_DIRTY
;
963 ubifs_add_lpt_dirt(c
, c
->ltab_lnum
, c
->ltab_sz
);
969 * make_lsave_dirty - make lsave node dirty.
970 * @c: UBIFS file-system description object
971 * @lnum: LEB number where lsave was written
972 * @offs: offset where lsave was written
974 * This function is used by LPT garbage collection. LPT garbage collection is
975 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
976 * simply involves marking all the nodes in the LEB being garbage-collected as
977 * dirty. The dirty nodes are written next commit, after which the LEB is free
980 * This function returns %0 on success and a negative error code on failure.
982 static int make_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
984 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
985 return 0; /* This lsave node is obsolete */
986 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
987 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
988 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
994 * make_node_dirty - make node dirty.
995 * @c: UBIFS file-system description object
996 * @node_type: LPT node type
997 * @node_num: node number
998 * @lnum: LEB number where node was written
999 * @offs: offset where node was written
1001 * This function is used by LPT garbage collection. LPT garbage collection is
1002 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1003 * simply involves marking all the nodes in the LEB being garbage-collected as
1004 * dirty. The dirty nodes are written next commit, after which the LEB is free
1007 * This function returns %0 on success and a negative error code on failure.
1009 static int make_node_dirty(struct ubifs_info
*c
, int node_type
, int node_num
,
1012 switch (node_type
) {
1013 case UBIFS_LPT_NNODE
:
1014 return make_nnode_dirty(c
, node_num
, lnum
, offs
);
1015 case UBIFS_LPT_PNODE
:
1016 return make_pnode_dirty(c
, node_num
, lnum
, offs
);
1017 case UBIFS_LPT_LTAB
:
1018 return make_ltab_dirty(c
, lnum
, offs
);
1019 case UBIFS_LPT_LSAVE
:
1020 return make_lsave_dirty(c
, lnum
, offs
);
1026 * get_lpt_node_len - return the length of a node based on its type.
1027 * @c: UBIFS file-system description object
1028 * @node_type: LPT node type
1030 static int get_lpt_node_len(struct ubifs_info
*c
, int node_type
)
1032 switch (node_type
) {
1033 case UBIFS_LPT_NNODE
:
1035 case UBIFS_LPT_PNODE
:
1037 case UBIFS_LPT_LTAB
:
1039 case UBIFS_LPT_LSAVE
:
1046 * get_pad_len - return the length of padding in a buffer.
1047 * @c: UBIFS file-system description object
1049 * @len: length of buffer
1051 static int get_pad_len(struct ubifs_info
*c
, uint8_t *buf
, int len
)
1055 if (c
->min_io_size
== 1)
1057 offs
= c
->leb_size
- len
;
1058 pad_len
= ALIGN(offs
, c
->min_io_size
) - offs
;
1063 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1064 * @c: UBIFS file-system description object
1066 * @node_num: node number is returned here
1068 static int get_lpt_node_type(struct ubifs_info
*c
, uint8_t *buf
, int *node_num
)
1070 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1071 int pos
= 0, node_type
;
1073 node_type
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1074 *node_num
= ubifs_unpack_bits(&addr
, &pos
, c
->pcnt_bits
);
1079 * is_a_node - determine if a buffer contains a node.
1080 * @c: UBIFS file-system description object
1082 * @len: length of buffer
1084 * This function returns %1 if the buffer contains a node or %0 if it does not.
1086 static int is_a_node(struct ubifs_info
*c
, uint8_t *buf
, int len
)
1088 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1089 int pos
= 0, node_type
, node_len
;
1090 uint16_t crc
, calc_crc
;
1092 if (len
< UBIFS_LPT_CRC_BYTES
+ (UBIFS_LPT_TYPE_BITS
+ 7) / 8)
1094 node_type
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1095 if (node_type
== UBIFS_LPT_NOT_A_NODE
)
1097 node_len
= get_lpt_node_len(c
, node_type
);
1098 if (!node_len
|| node_len
> len
)
1102 crc
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_CRC_BITS
);
1103 calc_crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
1104 node_len
- UBIFS_LPT_CRC_BYTES
);
1105 if (crc
!= calc_crc
)
1112 * lpt_gc_lnum - garbage collect a LPT LEB.
1113 * @c: UBIFS file-system description object
1114 * @lnum: LEB number to garbage collect
1116 * LPT garbage collection is used only for the "big" LPT model
1117 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1118 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1119 * next commit, after which the LEB is free to be reused.
1121 * This function returns %0 on success and a negative error code on failure.
1123 static int lpt_gc_lnum(struct ubifs_info
*c
, int lnum
)
1125 int err
, len
= c
->leb_size
, node_type
, node_num
, node_len
, offs
;
1126 void *buf
= c
->lpt_buf
;
1128 dbg_lp("LEB %d", lnum
);
1129 err
= ubi_read(c
->ubi
, lnum
, buf
, 0, c
->leb_size
);
1131 ubifs_err("cannot read LEB %d, error %d", lnum
, err
);
1135 if (!is_a_node(c
, buf
, len
)) {
1138 pad_len
= get_pad_len(c
, buf
, len
);
1146 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1147 node_len
= get_lpt_node_len(c
, node_type
);
1148 offs
= c
->leb_size
- len
;
1149 ubifs_assert(node_len
!= 0);
1150 mutex_lock(&c
->lp_mutex
);
1151 err
= make_node_dirty(c
, node_type
, node_num
, lnum
, offs
);
1152 mutex_unlock(&c
->lp_mutex
);
1162 * lpt_gc - LPT garbage collection.
1163 * @c: UBIFS file-system description object
1165 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1166 * Returns %0 on success and a negative error code on failure.
1168 static int lpt_gc(struct ubifs_info
*c
)
1170 int i
, lnum
= -1, dirty
= 0;
1172 mutex_lock(&c
->lp_mutex
);
1173 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1174 ubifs_assert(!c
->ltab
[i
].tgc
);
1175 if (i
+ c
->lpt_first
== c
->nhead_lnum
||
1176 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
1178 if (c
->ltab
[i
].dirty
> dirty
) {
1179 dirty
= c
->ltab
[i
].dirty
;
1180 lnum
= i
+ c
->lpt_first
;
1183 mutex_unlock(&c
->lp_mutex
);
1186 return lpt_gc_lnum(c
, lnum
);
1190 * ubifs_lpt_start_commit - UBIFS commit starts.
1191 * @c: the UBIFS file-system description object
1193 * This function has to be called when UBIFS starts the commit operation.
1194 * This function "freezes" all currently dirty LEB properties and does not
1195 * change them anymore. Further changes are saved and tracked separately
1196 * because they are not part of this commit. This function returns zero in case
1197 * of success and a negative error code in case of failure.
1199 int ubifs_lpt_start_commit(struct ubifs_info
*c
)
1205 mutex_lock(&c
->lp_mutex
);
1206 err
= dbg_chk_lpt_free_spc(c
);
1209 err
= dbg_check_ltab(c
);
1213 if (c
->check_lpt_free
) {
1215 * We ensure there is enough free space in
1216 * ubifs_lpt_post_commit() by marking nodes dirty. That
1217 * information is lost when we unmount, so we also need
1218 * to check free space once after mounting also.
1220 c
->check_lpt_free
= 0;
1221 while (need_write_all(c
)) {
1222 mutex_unlock(&c
->lp_mutex
);
1226 mutex_lock(&c
->lp_mutex
);
1232 if (!c
->dirty_pn_cnt
) {
1233 dbg_cmt("no cnodes to commit");
1238 if (!c
->big_lpt
&& need_write_all(c
)) {
1239 /* If needed, write everything */
1240 err
= make_tree_dirty(c
);
1249 cnt
= get_cnodes_to_commit(c
);
1250 ubifs_assert(cnt
!= 0);
1252 err
= layout_cnodes(c
);
1256 /* Copy the LPT's own lprops for end commit to write */
1257 memcpy(c
->ltab_cmt
, c
->ltab
,
1258 sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1259 c
->lpt_drty_flgs
&= ~(LTAB_DIRTY
| LSAVE_DIRTY
);
1262 mutex_unlock(&c
->lp_mutex
);
1267 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1268 * @c: UBIFS file-system description object
1270 static void free_obsolete_cnodes(struct ubifs_info
*c
)
1272 struct ubifs_cnode
*cnode
, *cnext
;
1274 cnext
= c
->lpt_cnext
;
1279 cnext
= cnode
->cnext
;
1280 if (test_bit(OBSOLETE_CNODE
, &cnode
->flags
))
1283 cnode
->cnext
= NULL
;
1284 } while (cnext
!= c
->lpt_cnext
);
1285 c
->lpt_cnext
= NULL
;
1289 * ubifs_lpt_end_commit - finish the commit operation.
1290 * @c: the UBIFS file-system description object
1292 * This function has to be called when the commit operation finishes. It
1293 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1294 * the media. Returns zero in case of success and a negative error code in case
1297 int ubifs_lpt_end_commit(struct ubifs_info
*c
)
1306 err
= write_cnodes(c
);
1310 mutex_lock(&c
->lp_mutex
);
1311 free_obsolete_cnodes(c
);
1312 mutex_unlock(&c
->lp_mutex
);
1318 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1319 * @c: UBIFS file-system description object
1321 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1322 * commit for the "big" LPT model.
1324 int ubifs_lpt_post_commit(struct ubifs_info
*c
)
1328 mutex_lock(&c
->lp_mutex
);
1329 err
= lpt_tgc_end(c
);
1333 while (need_write_all(c
)) {
1334 mutex_unlock(&c
->lp_mutex
);
1338 mutex_lock(&c
->lp_mutex
);
1341 mutex_unlock(&c
->lp_mutex
);
1346 * first_nnode - find the first nnode in memory.
1347 * @c: UBIFS file-system description object
1348 * @hght: height of tree where nnode found is returned here
1350 * This function returns a pointer to the nnode found or %NULL if no nnode is
1351 * found. This function is a helper to 'ubifs_lpt_free()'.
1353 static struct ubifs_nnode
*first_nnode(struct ubifs_info
*c
, int *hght
)
1355 struct ubifs_nnode
*nnode
;
1362 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1364 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1365 if (nnode
->nbranch
[i
].nnode
) {
1367 nnode
= nnode
->nbranch
[i
].nnode
;
1379 * next_nnode - find the next nnode in memory.
1380 * @c: UBIFS file-system description object
1381 * @nnode: nnode from which to start.
1382 * @hght: height of tree where nnode is, is passed and returned here
1384 * This function returns a pointer to the nnode found or %NULL if no nnode is
1385 * found. This function is a helper to 'ubifs_lpt_free()'.
1387 static struct ubifs_nnode
*next_nnode(struct ubifs_info
*c
,
1388 struct ubifs_nnode
*nnode
, int *hght
)
1390 struct ubifs_nnode
*parent
;
1391 int iip
, h
, i
, found
;
1393 parent
= nnode
->parent
;
1396 if (nnode
->iip
== UBIFS_LPT_FANOUT
- 1) {
1400 for (iip
= nnode
->iip
+ 1; iip
< UBIFS_LPT_FANOUT
; iip
++) {
1401 nnode
= parent
->nbranch
[iip
].nnode
;
1409 for (h
= *hght
+ 1; h
< c
->lpt_hght
; h
++) {
1411 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1412 if (nnode
->nbranch
[i
].nnode
) {
1414 nnode
= nnode
->nbranch
[i
].nnode
;
1426 * ubifs_lpt_free - free resources owned by the LPT.
1427 * @c: UBIFS file-system description object
1428 * @wr_only: free only resources used for writing
1430 void ubifs_lpt_free(struct ubifs_info
*c
, int wr_only
)
1432 struct ubifs_nnode
*nnode
;
1435 /* Free write-only things first */
1437 free_obsolete_cnodes(c
); /* Leftover from a failed commit */
1449 /* Now free the rest */
1451 nnode
= first_nnode(c
, &hght
);
1453 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++)
1454 kfree(nnode
->nbranch
[i
].nnode
);
1455 nnode
= next_nnode(c
, nnode
, &hght
);
1457 for (i
= 0; i
< LPROPS_HEAP_CNT
; i
++)
1458 kfree(c
->lpt_heap
[i
].arr
);
1459 kfree(c
->dirty_idx
.arr
);
1462 kfree(c
->lpt_nod_buf
);
1465 #ifdef CONFIG_UBIFS_FS_DEBUG
1468 * dbg_is_all_ff - determine if a buffer contains only 0xff bytes.
1470 * @len: buffer length
1472 static int dbg_is_all_ff(uint8_t *buf
, int len
)
1476 for (i
= 0; i
< len
; i
++)
1483 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1484 * @c: the UBIFS file-system description object
1485 * @lnum: LEB number where nnode was written
1486 * @offs: offset where nnode was written
1488 static int dbg_is_nnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1490 struct ubifs_nnode
*nnode
;
1493 /* Entire tree is in memory so first_nnode / next_nnode are ok */
1494 nnode
= first_nnode(c
, &hght
);
1495 for (; nnode
; nnode
= next_nnode(c
, nnode
, &hght
)) {
1496 struct ubifs_nbranch
*branch
;
1499 if (nnode
->parent
) {
1500 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
1501 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1503 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1507 if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
1509 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1518 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1519 * @c: the UBIFS file-system description object
1520 * @lnum: LEB number where pnode was written
1521 * @offs: offset where pnode was written
1523 static int dbg_is_pnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1527 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1528 for (i
= 0; i
< cnt
; i
++) {
1529 struct ubifs_pnode
*pnode
;
1530 struct ubifs_nbranch
*branch
;
1533 pnode
= pnode_lookup(c
, i
);
1535 return PTR_ERR(pnode
);
1536 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
1537 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1539 if (test_bit(DIRTY_CNODE
, &pnode
->flags
))
1547 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1548 * @c: the UBIFS file-system description object
1549 * @lnum: LEB number where ltab node was written
1550 * @offs: offset where ltab node was written
1552 static int dbg_is_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1554 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
1556 return (c
->lpt_drty_flgs
& LTAB_DIRTY
) != 0;
1560 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1561 * @c: the UBIFS file-system description object
1562 * @lnum: LEB number where lsave node was written
1563 * @offs: offset where lsave node was written
1565 static int dbg_is_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1567 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
1569 return (c
->lpt_drty_flgs
& LSAVE_DIRTY
) != 0;
1573 * dbg_is_node_dirty - determine if a node is dirty.
1574 * @c: the UBIFS file-system description object
1575 * @node_type: node type
1576 * @lnum: LEB number where node was written
1577 * @offs: offset where node was written
1579 static int dbg_is_node_dirty(struct ubifs_info
*c
, int node_type
, int lnum
,
1582 switch (node_type
) {
1583 case UBIFS_LPT_NNODE
:
1584 return dbg_is_nnode_dirty(c
, lnum
, offs
);
1585 case UBIFS_LPT_PNODE
:
1586 return dbg_is_pnode_dirty(c
, lnum
, offs
);
1587 case UBIFS_LPT_LTAB
:
1588 return dbg_is_ltab_dirty(c
, lnum
, offs
);
1589 case UBIFS_LPT_LSAVE
:
1590 return dbg_is_lsave_dirty(c
, lnum
, offs
);
1596 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1597 * @c: the UBIFS file-system description object
1598 * @lnum: LEB number where node was written
1599 * @offs: offset where node was written
1601 * This function returns %0 on success and a negative error code on failure.
1603 static int dbg_check_ltab_lnum(struct ubifs_info
*c
, int lnum
)
1605 int err
, len
= c
->leb_size
, dirty
= 0, node_type
, node_num
, node_len
;
1607 void *buf
= c
->dbg_buf
;
1609 dbg_lp("LEB %d", lnum
);
1610 err
= ubi_read(c
->ubi
, lnum
, buf
, 0, c
->leb_size
);
1612 dbg_msg("ubi_read failed, LEB %d, error %d", lnum
, err
);
1616 if (!is_a_node(c
, buf
, len
)) {
1619 pad_len
= get_pad_len(c
, buf
, len
);
1626 if (!dbg_is_all_ff(buf
, len
)) {
1627 dbg_msg("invalid empty space in LEB %d at %d",
1628 lnum
, c
->leb_size
- len
);
1631 i
= lnum
- c
->lpt_first
;
1632 if (len
!= c
->ltab
[i
].free
) {
1633 dbg_msg("invalid free space in LEB %d "
1634 "(free %d, expected %d)",
1635 lnum
, len
, c
->ltab
[i
].free
);
1638 if (dirty
!= c
->ltab
[i
].dirty
) {
1639 dbg_msg("invalid dirty space in LEB %d "
1640 "(dirty %d, expected %d)",
1641 lnum
, dirty
, c
->ltab
[i
].dirty
);
1646 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1647 node_len
= get_lpt_node_len(c
, node_type
);
1648 ret
= dbg_is_node_dirty(c
, node_type
, lnum
, c
->leb_size
- len
);
1657 * dbg_check_ltab - check the free and dirty space in the ltab.
1658 * @c: the UBIFS file-system description object
1660 * This function returns %0 on success and a negative error code on failure.
1662 int dbg_check_ltab(struct ubifs_info
*c
)
1664 int lnum
, err
, i
, cnt
;
1666 if (!(ubifs_chk_flags
& UBIFS_CHK_LPROPS
))
1669 /* Bring the entire tree into memory */
1670 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1671 for (i
= 0; i
< cnt
; i
++) {
1672 struct ubifs_pnode
*pnode
;
1674 pnode
= pnode_lookup(c
, i
);
1676 return PTR_ERR(pnode
);
1681 err
= dbg_check_lpt_nodes(c
, (struct ubifs_cnode
*)c
->nroot
, 0, 0);
1685 /* Check each LEB */
1686 for (lnum
= c
->lpt_first
; lnum
<= c
->lpt_last
; lnum
++) {
1687 err
= dbg_check_ltab_lnum(c
, lnum
);
1689 dbg_err("failed at LEB %d", lnum
);
1694 dbg_lp("succeeded");
1699 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1700 * @c: the UBIFS file-system description object
1702 * This function returns %0 on success and a negative error code on failure.
1704 int dbg_chk_lpt_free_spc(struct ubifs_info
*c
)
1709 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1710 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
1712 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
1713 free
+= c
->leb_size
- c
->nhead_offs
;
1714 else if (c
->ltab
[i
].free
== c
->leb_size
)
1715 free
+= c
->leb_size
;
1717 if (free
< c
->lpt_sz
) {
1718 dbg_err("LPT space error: free %lld lpt_sz %lld",
1720 dbg_dump_lpt_info(c
);
1727 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1728 * @c: the UBIFS file-system description object
1730 * @len: length written
1732 * This function returns %0 on success and a negative error code on failure.
1734 int dbg_chk_lpt_sz(struct ubifs_info
*c
, int action
, int len
)
1736 long long chk_lpt_sz
, lpt_sz
;
1743 c
->chk_lpt_lebs
= 0;
1744 c
->chk_lpt_wastage
= 0;
1745 if (c
->dirty_pn_cnt
> c
->pnode_cnt
) {
1746 dbg_err("dirty pnodes %d exceed max %d",
1747 c
->dirty_pn_cnt
, c
->pnode_cnt
);
1750 if (c
->dirty_nn_cnt
> c
->nnode_cnt
) {
1751 dbg_err("dirty nnodes %d exceed max %d",
1752 c
->dirty_nn_cnt
, c
->nnode_cnt
);
1757 c
->chk_lpt_sz
+= len
;
1760 c
->chk_lpt_sz
+= len
;
1761 c
->chk_lpt_wastage
+= len
;
1762 c
->chk_lpt_lebs
+= 1;
1765 chk_lpt_sz
= c
->leb_size
;
1766 chk_lpt_sz
*= c
->chk_lpt_lebs
;
1767 chk_lpt_sz
+= len
- c
->nhead_offs
;
1768 if (c
->chk_lpt_sz
!= chk_lpt_sz
) {
1769 dbg_err("LPT wrote %lld but space used was %lld",
1770 c
->chk_lpt_sz
, chk_lpt_sz
);
1773 if (c
->chk_lpt_sz
> c
->lpt_sz
) {
1774 dbg_err("LPT wrote %lld but lpt_sz is %lld",
1775 c
->chk_lpt_sz
, c
->lpt_sz
);
1778 if (c
->chk_lpt_sz2
&& c
->chk_lpt_sz
!= c
->chk_lpt_sz2
) {
1779 dbg_err("LPT layout size %lld but wrote %lld",
1780 c
->chk_lpt_sz
, c
->chk_lpt_sz2
);
1783 if (c
->chk_lpt_sz2
&& c
->new_nhead_offs
!= len
) {
1784 dbg_err("LPT new nhead offs: expected %d was %d",
1785 c
->new_nhead_offs
, len
);
1788 lpt_sz
= (long long)c
->pnode_cnt
* c
->pnode_sz
;
1789 lpt_sz
+= (long long)c
->nnode_cnt
* c
->nnode_sz
;
1790 lpt_sz
+= c
->ltab_sz
;
1792 lpt_sz
+= c
->lsave_sz
;
1793 if (c
->chk_lpt_sz
- c
->chk_lpt_wastage
> lpt_sz
) {
1794 dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1795 c
->chk_lpt_sz
, c
->chk_lpt_wastage
, lpt_sz
);
1799 dbg_dump_lpt_info(c
);
1800 c
->chk_lpt_sz2
= c
->chk_lpt_sz
;
1802 c
->chk_lpt_wastage
= 0;
1803 c
->chk_lpt_lebs
= 0;
1804 c
->new_nhead_offs
= len
;
1807 c
->chk_lpt_sz
+= len
;
1808 c
->chk_lpt_wastage
+= len
;
1815 #endif /* CONFIG_UBIFS_FS_DEBUG */