[PATCH] i386/x86-64: Fix NMI watchdog suspend/resume
[linux-2.6/next.git] / arch / i386 / kernel / traps.c
blob3c85c89f68d831e82a174da07b178cdcc699e320
1 /*
2 * linux/arch/i386/traps.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/highmem.h>
25 #include <linux/kallsyms.h>
26 #include <linux/ptrace.h>
27 #include <linux/utsname.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
32 #ifdef CONFIG_EISA
33 #include <linux/ioport.h>
34 #include <linux/eisa.h>
35 #endif
37 #ifdef CONFIG_MCA
38 #include <linux/mca.h>
39 #endif
41 #include <asm/processor.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/atomic.h>
46 #include <asm/debugreg.h>
47 #include <asm/desc.h>
48 #include <asm/i387.h>
49 #include <asm/nmi.h>
50 #include <asm/unwind.h>
51 #include <asm/smp.h>
52 #include <asm/arch_hooks.h>
53 #include <asm/kdebug.h>
55 #include <linux/module.h>
57 #include "mach_traps.h"
59 asmlinkage int system_call(void);
61 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
62 { 0, 0 }, { 0, 0 } };
64 /* Do we ignore FPU interrupts ? */
65 char ignore_fpu_irq = 0;
68 * The IDT has to be page-aligned to simplify the Pentium
69 * F0 0F bug workaround.. We have a special link segment
70 * for this.
72 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
74 asmlinkage void divide_error(void);
75 asmlinkage void debug(void);
76 asmlinkage void nmi(void);
77 asmlinkage void int3(void);
78 asmlinkage void overflow(void);
79 asmlinkage void bounds(void);
80 asmlinkage void invalid_op(void);
81 asmlinkage void device_not_available(void);
82 asmlinkage void coprocessor_segment_overrun(void);
83 asmlinkage void invalid_TSS(void);
84 asmlinkage void segment_not_present(void);
85 asmlinkage void stack_segment(void);
86 asmlinkage void general_protection(void);
87 asmlinkage void page_fault(void);
88 asmlinkage void coprocessor_error(void);
89 asmlinkage void simd_coprocessor_error(void);
90 asmlinkage void alignment_check(void);
91 asmlinkage void spurious_interrupt_bug(void);
92 asmlinkage void machine_check(void);
94 static int kstack_depth_to_print = 24;
95 #ifdef CONFIG_STACK_UNWIND
96 static int call_trace = 1;
97 #else
98 #define call_trace (-1)
99 #endif
100 ATOMIC_NOTIFIER_HEAD(i386die_chain);
102 int register_die_notifier(struct notifier_block *nb)
104 vmalloc_sync_all();
105 return atomic_notifier_chain_register(&i386die_chain, nb);
107 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
109 int unregister_die_notifier(struct notifier_block *nb)
111 return atomic_notifier_chain_unregister(&i386die_chain, nb);
113 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
115 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
117 return p > (void *)tinfo &&
118 p < (void *)tinfo + THREAD_SIZE - 3;
122 * Print one address/symbol entries per line.
124 static inline void print_addr_and_symbol(unsigned long addr, char *log_lvl)
126 printk(" [<%08lx>] ", addr);
128 print_symbol("%s\n", addr);
131 static inline unsigned long print_context_stack(struct thread_info *tinfo,
132 unsigned long *stack, unsigned long ebp,
133 char *log_lvl)
135 unsigned long addr;
137 #ifdef CONFIG_FRAME_POINTER
138 while (valid_stack_ptr(tinfo, (void *)ebp)) {
139 addr = *(unsigned long *)(ebp + 4);
140 print_addr_and_symbol(addr, log_lvl);
142 * break out of recursive entries (such as
143 * end_of_stack_stop_unwind_function):
145 if (ebp == *(unsigned long *)ebp)
146 break;
147 ebp = *(unsigned long *)ebp;
149 #else
150 while (valid_stack_ptr(tinfo, stack)) {
151 addr = *stack++;
152 if (__kernel_text_address(addr))
153 print_addr_and_symbol(addr, log_lvl);
155 #endif
156 return ebp;
159 static asmlinkage int
160 show_trace_unwind(struct unwind_frame_info *info, void *log_lvl)
162 int n = 0;
164 while (unwind(info) == 0 && UNW_PC(info)) {
165 n++;
166 print_addr_and_symbol(UNW_PC(info), log_lvl);
167 if (arch_unw_user_mode(info))
168 break;
170 return n;
173 static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
174 unsigned long *stack, char *log_lvl)
176 unsigned long ebp;
178 if (!task)
179 task = current;
181 if (call_trace >= 0) {
182 int unw_ret = 0;
183 struct unwind_frame_info info;
185 if (regs) {
186 if (unwind_init_frame_info(&info, task, regs) == 0)
187 unw_ret = show_trace_unwind(&info, log_lvl);
188 } else if (task == current)
189 unw_ret = unwind_init_running(&info, show_trace_unwind, log_lvl);
190 else {
191 if (unwind_init_blocked(&info, task) == 0)
192 unw_ret = show_trace_unwind(&info, log_lvl);
194 if (unw_ret > 0) {
195 if (call_trace == 1 && !arch_unw_user_mode(&info)) {
196 print_symbol("DWARF2 unwinder stuck at %s\n",
197 UNW_PC(&info));
198 if (UNW_SP(&info) >= PAGE_OFFSET) {
199 printk("Leftover inexact backtrace:\n");
200 stack = (void *)UNW_SP(&info);
201 } else
202 printk("Full inexact backtrace again:\n");
203 } else if (call_trace >= 1)
204 return;
205 else
206 printk("Full inexact backtrace again:\n");
207 } else
208 printk("Inexact backtrace:\n");
211 if (task == current) {
212 /* Grab ebp right from our regs */
213 asm ("movl %%ebp, %0" : "=r" (ebp) : );
214 } else {
215 /* ebp is the last reg pushed by switch_to */
216 ebp = *(unsigned long *) task->thread.esp;
219 while (1) {
220 struct thread_info *context;
221 context = (struct thread_info *)
222 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
223 ebp = print_context_stack(context, stack, ebp, log_lvl);
224 stack = (unsigned long*)context->previous_esp;
225 if (!stack)
226 break;
227 printk("%s =======================\n", log_lvl);
231 void show_trace(struct task_struct *task, struct pt_regs *regs, unsigned long * stack)
233 show_trace_log_lvl(task, regs, stack, "");
236 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
237 unsigned long *esp, char *log_lvl)
239 unsigned long *stack;
240 int i;
242 if (esp == NULL) {
243 if (task)
244 esp = (unsigned long*)task->thread.esp;
245 else
246 esp = (unsigned long *)&esp;
249 stack = esp;
250 for(i = 0; i < kstack_depth_to_print; i++) {
251 if (kstack_end(stack))
252 break;
253 if (i && ((i % 8) == 0))
254 printk("\n%s ", log_lvl);
255 printk("%08lx ", *stack++);
257 printk("\n%sCall Trace:\n", log_lvl);
258 show_trace_log_lvl(task, regs, esp, log_lvl);
261 void show_stack(struct task_struct *task, unsigned long *esp)
263 printk(" ");
264 show_stack_log_lvl(task, NULL, esp, "");
268 * The architecture-independent dump_stack generator
270 void dump_stack(void)
272 unsigned long stack;
274 show_trace(current, NULL, &stack);
277 EXPORT_SYMBOL(dump_stack);
279 void show_registers(struct pt_regs *regs)
281 int i;
282 int in_kernel = 1;
283 unsigned long esp;
284 unsigned short ss;
286 esp = (unsigned long) (&regs->esp);
287 savesegment(ss, ss);
288 if (user_mode_vm(regs)) {
289 in_kernel = 0;
290 esp = regs->esp;
291 ss = regs->xss & 0xffff;
293 print_modules();
294 printk(KERN_EMERG "CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\n"
295 "EFLAGS: %08lx (%s %.*s) \n",
296 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
297 print_tainted(), regs->eflags, system_utsname.release,
298 (int)strcspn(system_utsname.version, " "),
299 system_utsname.version);
300 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
301 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
302 regs->eax, regs->ebx, regs->ecx, regs->edx);
303 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
304 regs->esi, regs->edi, regs->ebp, esp);
305 printk(KERN_EMERG "ds: %04x es: %04x ss: %04x\n",
306 regs->xds & 0xffff, regs->xes & 0xffff, ss);
307 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
308 TASK_COMM_LEN, current->comm, current->pid,
309 current_thread_info(), current, current->thread_info);
311 * When in-kernel, we also print out the stack and code at the
312 * time of the fault..
314 if (in_kernel) {
315 u8 __user *eip;
317 printk("\n" KERN_EMERG "Stack: ");
318 show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
320 printk(KERN_EMERG "Code: ");
322 eip = (u8 __user *)regs->eip - 43;
323 for (i = 0; i < 64; i++, eip++) {
324 unsigned char c;
326 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
327 printk(" Bad EIP value.");
328 break;
330 if (eip == (u8 __user *)regs->eip)
331 printk("<%02x> ", c);
332 else
333 printk("%02x ", c);
336 printk("\n");
339 static void handle_BUG(struct pt_regs *regs)
341 unsigned long eip = regs->eip;
342 unsigned short ud2;
344 if (eip < PAGE_OFFSET)
345 return;
346 if (__get_user(ud2, (unsigned short __user *)eip))
347 return;
348 if (ud2 != 0x0b0f)
349 return;
351 printk(KERN_EMERG "------------[ cut here ]------------\n");
353 #ifdef CONFIG_DEBUG_BUGVERBOSE
354 do {
355 unsigned short line;
356 char *file;
357 char c;
359 if (__get_user(line, (unsigned short __user *)(eip + 2)))
360 break;
361 if (__get_user(file, (char * __user *)(eip + 4)) ||
362 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
363 file = "<bad filename>";
365 printk(KERN_EMERG "kernel BUG at %s:%d!\n", file, line);
366 return;
367 } while (0);
368 #endif
369 printk(KERN_EMERG "Kernel BUG at [verbose debug info unavailable]\n");
372 /* This is gone through when something in the kernel
373 * has done something bad and is about to be terminated.
375 void die(const char * str, struct pt_regs * regs, long err)
377 static struct {
378 spinlock_t lock;
379 u32 lock_owner;
380 int lock_owner_depth;
381 } die = {
382 .lock = SPIN_LOCK_UNLOCKED,
383 .lock_owner = -1,
384 .lock_owner_depth = 0
386 static int die_counter;
387 unsigned long flags;
389 oops_enter();
391 if (die.lock_owner != raw_smp_processor_id()) {
392 console_verbose();
393 spin_lock_irqsave(&die.lock, flags);
394 die.lock_owner = smp_processor_id();
395 die.lock_owner_depth = 0;
396 bust_spinlocks(1);
398 else
399 local_save_flags(flags);
401 if (++die.lock_owner_depth < 3) {
402 int nl = 0;
403 unsigned long esp;
404 unsigned short ss;
406 handle_BUG(regs);
407 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
408 #ifdef CONFIG_PREEMPT
409 printk(KERN_EMERG "PREEMPT ");
410 nl = 1;
411 #endif
412 #ifdef CONFIG_SMP
413 if (!nl)
414 printk(KERN_EMERG);
415 printk("SMP ");
416 nl = 1;
417 #endif
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 if (!nl)
420 printk(KERN_EMERG);
421 printk("DEBUG_PAGEALLOC");
422 nl = 1;
423 #endif
424 if (nl)
425 printk("\n");
426 if (notify_die(DIE_OOPS, str, regs, err,
427 current->thread.trap_no, SIGSEGV) !=
428 NOTIFY_STOP) {
429 show_registers(regs);
430 /* Executive summary in case the oops scrolled away */
431 esp = (unsigned long) (&regs->esp);
432 savesegment(ss, ss);
433 if (user_mode(regs)) {
434 esp = regs->esp;
435 ss = regs->xss & 0xffff;
437 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
438 print_symbol("%s", regs->eip);
439 printk(" SS:ESP %04x:%08lx\n", ss, esp);
441 else
442 regs = NULL;
443 } else
444 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
446 bust_spinlocks(0);
447 die.lock_owner = -1;
448 spin_unlock_irqrestore(&die.lock, flags);
450 if (!regs)
451 return;
453 if (kexec_should_crash(current))
454 crash_kexec(regs);
456 if (in_interrupt())
457 panic("Fatal exception in interrupt");
459 if (panic_on_oops)
460 panic("Fatal exception");
462 oops_exit();
463 do_exit(SIGSEGV);
466 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
468 if (!user_mode_vm(regs))
469 die(str, regs, err);
472 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
473 struct pt_regs * regs, long error_code,
474 siginfo_t *info)
476 struct task_struct *tsk = current;
477 tsk->thread.error_code = error_code;
478 tsk->thread.trap_no = trapnr;
480 if (regs->eflags & VM_MASK) {
481 if (vm86)
482 goto vm86_trap;
483 goto trap_signal;
486 if (!user_mode(regs))
487 goto kernel_trap;
489 trap_signal: {
490 if (info)
491 force_sig_info(signr, info, tsk);
492 else
493 force_sig(signr, tsk);
494 return;
497 kernel_trap: {
498 if (!fixup_exception(regs))
499 die(str, regs, error_code);
500 return;
503 vm86_trap: {
504 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
505 if (ret) goto trap_signal;
506 return;
510 #define DO_ERROR(trapnr, signr, str, name) \
511 fastcall void do_##name(struct pt_regs * regs, long error_code) \
513 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
514 == NOTIFY_STOP) \
515 return; \
516 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
519 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
520 fastcall void do_##name(struct pt_regs * regs, long error_code) \
522 siginfo_t info; \
523 info.si_signo = signr; \
524 info.si_errno = 0; \
525 info.si_code = sicode; \
526 info.si_addr = (void __user *)siaddr; \
527 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
528 == NOTIFY_STOP) \
529 return; \
530 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
533 #define DO_VM86_ERROR(trapnr, signr, str, name) \
534 fastcall void do_##name(struct pt_regs * regs, long error_code) \
536 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
537 == NOTIFY_STOP) \
538 return; \
539 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
542 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
543 fastcall void do_##name(struct pt_regs * regs, long error_code) \
545 siginfo_t info; \
546 info.si_signo = signr; \
547 info.si_errno = 0; \
548 info.si_code = sicode; \
549 info.si_addr = (void __user *)siaddr; \
550 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
551 == NOTIFY_STOP) \
552 return; \
553 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
556 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
557 #ifndef CONFIG_KPROBES
558 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
559 #endif
560 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
561 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
562 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
563 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
564 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
565 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
566 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
567 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
568 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
570 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
571 long error_code)
573 int cpu = get_cpu();
574 struct tss_struct *tss = &per_cpu(init_tss, cpu);
575 struct thread_struct *thread = &current->thread;
578 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
579 * invalid offset set (the LAZY one) and the faulting thread has
580 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
581 * and we set the offset field correctly. Then we let the CPU to
582 * restart the faulting instruction.
584 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
585 thread->io_bitmap_ptr) {
586 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
587 thread->io_bitmap_max);
589 * If the previously set map was extending to higher ports
590 * than the current one, pad extra space with 0xff (no access).
592 if (thread->io_bitmap_max < tss->io_bitmap_max)
593 memset((char *) tss->io_bitmap +
594 thread->io_bitmap_max, 0xff,
595 tss->io_bitmap_max - thread->io_bitmap_max);
596 tss->io_bitmap_max = thread->io_bitmap_max;
597 tss->io_bitmap_base = IO_BITMAP_OFFSET;
598 tss->io_bitmap_owner = thread;
599 put_cpu();
600 return;
602 put_cpu();
604 current->thread.error_code = error_code;
605 current->thread.trap_no = 13;
607 if (regs->eflags & VM_MASK)
608 goto gp_in_vm86;
610 if (!user_mode(regs))
611 goto gp_in_kernel;
613 current->thread.error_code = error_code;
614 current->thread.trap_no = 13;
615 force_sig(SIGSEGV, current);
616 return;
618 gp_in_vm86:
619 local_irq_enable();
620 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
621 return;
623 gp_in_kernel:
624 if (!fixup_exception(regs)) {
625 if (notify_die(DIE_GPF, "general protection fault", regs,
626 error_code, 13, SIGSEGV) == NOTIFY_STOP)
627 return;
628 die("general protection fault", regs, error_code);
632 static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
634 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
635 "CPU %d.\n", reason, smp_processor_id());
636 printk(KERN_EMERG "You probably have a hardware problem with your RAM "
637 "chips\n");
638 if (panic_on_unrecovered_nmi)
639 panic("NMI: Not continuing");
641 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
643 /* Clear and disable the memory parity error line. */
644 clear_mem_error(reason);
647 static void io_check_error(unsigned char reason, struct pt_regs * regs)
649 unsigned long i;
651 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
652 show_registers(regs);
654 /* Re-enable the IOCK line, wait for a few seconds */
655 reason = (reason & 0xf) | 8;
656 outb(reason, 0x61);
657 i = 2000;
658 while (--i) udelay(1000);
659 reason &= ~8;
660 outb(reason, 0x61);
663 static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
665 #ifdef CONFIG_MCA
666 /* Might actually be able to figure out what the guilty party
667 * is. */
668 if( MCA_bus ) {
669 mca_handle_nmi();
670 return;
672 #endif
673 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
674 "CPU %d.\n", reason, smp_processor_id());
675 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
676 if (panic_on_unrecovered_nmi)
677 panic("NMI: Not continuing");
679 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
682 static DEFINE_SPINLOCK(nmi_print_lock);
684 void die_nmi (struct pt_regs *regs, const char *msg)
686 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
687 NOTIFY_STOP)
688 return;
690 spin_lock(&nmi_print_lock);
692 * We are in trouble anyway, lets at least try
693 * to get a message out.
695 bust_spinlocks(1);
696 printk(KERN_EMERG "%s", msg);
697 printk(" on CPU%d, eip %08lx, registers:\n",
698 smp_processor_id(), regs->eip);
699 show_registers(regs);
700 printk(KERN_EMERG "console shuts up ...\n");
701 console_silent();
702 spin_unlock(&nmi_print_lock);
703 bust_spinlocks(0);
705 /* If we are in kernel we are probably nested up pretty bad
706 * and might aswell get out now while we still can.
708 if (!user_mode_vm(regs)) {
709 current->thread.trap_no = 2;
710 crash_kexec(regs);
713 do_exit(SIGSEGV);
716 static void default_do_nmi(struct pt_regs * regs)
718 unsigned char reason = 0;
720 /* Only the BSP gets external NMIs from the system. */
721 if (!smp_processor_id())
722 reason = get_nmi_reason();
724 if (!(reason & 0xc0)) {
725 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
726 == NOTIFY_STOP)
727 return;
728 #ifdef CONFIG_X86_LOCAL_APIC
730 * Ok, so this is none of the documented NMI sources,
731 * so it must be the NMI watchdog.
733 if (nmi_watchdog_tick(regs, reason))
734 return;
735 if (!do_nmi_callback(regs, smp_processor_id()))
736 #endif
737 unknown_nmi_error(reason, regs);
739 return;
741 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
742 return;
743 if (reason & 0x80)
744 mem_parity_error(reason, regs);
745 if (reason & 0x40)
746 io_check_error(reason, regs);
748 * Reassert NMI in case it became active meanwhile
749 * as it's edge-triggered.
751 reassert_nmi();
754 fastcall void do_nmi(struct pt_regs * regs, long error_code)
756 int cpu;
758 nmi_enter();
760 cpu = smp_processor_id();
762 ++nmi_count(cpu);
764 default_do_nmi(regs);
766 nmi_exit();
769 #ifdef CONFIG_KPROBES
770 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
772 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
773 == NOTIFY_STOP)
774 return;
775 /* This is an interrupt gate, because kprobes wants interrupts
776 disabled. Normal trap handlers don't. */
777 restore_interrupts(regs);
778 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
780 #endif
783 * Our handling of the processor debug registers is non-trivial.
784 * We do not clear them on entry and exit from the kernel. Therefore
785 * it is possible to get a watchpoint trap here from inside the kernel.
786 * However, the code in ./ptrace.c has ensured that the user can
787 * only set watchpoints on userspace addresses. Therefore the in-kernel
788 * watchpoint trap can only occur in code which is reading/writing
789 * from user space. Such code must not hold kernel locks (since it
790 * can equally take a page fault), therefore it is safe to call
791 * force_sig_info even though that claims and releases locks.
793 * Code in ./signal.c ensures that the debug control register
794 * is restored before we deliver any signal, and therefore that
795 * user code runs with the correct debug control register even though
796 * we clear it here.
798 * Being careful here means that we don't have to be as careful in a
799 * lot of more complicated places (task switching can be a bit lazy
800 * about restoring all the debug state, and ptrace doesn't have to
801 * find every occurrence of the TF bit that could be saved away even
802 * by user code)
804 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
806 unsigned int condition;
807 struct task_struct *tsk = current;
809 get_debugreg(condition, 6);
811 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
812 SIGTRAP) == NOTIFY_STOP)
813 return;
814 /* It's safe to allow irq's after DR6 has been saved */
815 if (regs->eflags & X86_EFLAGS_IF)
816 local_irq_enable();
818 /* Mask out spurious debug traps due to lazy DR7 setting */
819 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
820 if (!tsk->thread.debugreg[7])
821 goto clear_dr7;
824 if (regs->eflags & VM_MASK)
825 goto debug_vm86;
827 /* Save debug status register where ptrace can see it */
828 tsk->thread.debugreg[6] = condition;
831 * Single-stepping through TF: make sure we ignore any events in
832 * kernel space (but re-enable TF when returning to user mode).
834 if (condition & DR_STEP) {
836 * We already checked v86 mode above, so we can
837 * check for kernel mode by just checking the CPL
838 * of CS.
840 if (!user_mode(regs))
841 goto clear_TF_reenable;
844 /* Ok, finally something we can handle */
845 send_sigtrap(tsk, regs, error_code);
847 /* Disable additional traps. They'll be re-enabled when
848 * the signal is delivered.
850 clear_dr7:
851 set_debugreg(0, 7);
852 return;
854 debug_vm86:
855 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
856 return;
858 clear_TF_reenable:
859 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
860 regs->eflags &= ~TF_MASK;
861 return;
865 * Note that we play around with the 'TS' bit in an attempt to get
866 * the correct behaviour even in the presence of the asynchronous
867 * IRQ13 behaviour
869 void math_error(void __user *eip)
871 struct task_struct * task;
872 siginfo_t info;
873 unsigned short cwd, swd;
876 * Save the info for the exception handler and clear the error.
878 task = current;
879 save_init_fpu(task);
880 task->thread.trap_no = 16;
881 task->thread.error_code = 0;
882 info.si_signo = SIGFPE;
883 info.si_errno = 0;
884 info.si_code = __SI_FAULT;
885 info.si_addr = eip;
887 * (~cwd & swd) will mask out exceptions that are not set to unmasked
888 * status. 0x3f is the exception bits in these regs, 0x200 is the
889 * C1 reg you need in case of a stack fault, 0x040 is the stack
890 * fault bit. We should only be taking one exception at a time,
891 * so if this combination doesn't produce any single exception,
892 * then we have a bad program that isn't syncronizing its FPU usage
893 * and it will suffer the consequences since we won't be able to
894 * fully reproduce the context of the exception
896 cwd = get_fpu_cwd(task);
897 swd = get_fpu_swd(task);
898 switch (swd & ~cwd & 0x3f) {
899 case 0x000: /* No unmasked exception */
900 return;
901 default: /* Multiple exceptions */
902 break;
903 case 0x001: /* Invalid Op */
905 * swd & 0x240 == 0x040: Stack Underflow
906 * swd & 0x240 == 0x240: Stack Overflow
907 * User must clear the SF bit (0x40) if set
909 info.si_code = FPE_FLTINV;
910 break;
911 case 0x002: /* Denormalize */
912 case 0x010: /* Underflow */
913 info.si_code = FPE_FLTUND;
914 break;
915 case 0x004: /* Zero Divide */
916 info.si_code = FPE_FLTDIV;
917 break;
918 case 0x008: /* Overflow */
919 info.si_code = FPE_FLTOVF;
920 break;
921 case 0x020: /* Precision */
922 info.si_code = FPE_FLTRES;
923 break;
925 force_sig_info(SIGFPE, &info, task);
928 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
930 ignore_fpu_irq = 1;
931 math_error((void __user *)regs->eip);
934 static void simd_math_error(void __user *eip)
936 struct task_struct * task;
937 siginfo_t info;
938 unsigned short mxcsr;
941 * Save the info for the exception handler and clear the error.
943 task = current;
944 save_init_fpu(task);
945 task->thread.trap_no = 19;
946 task->thread.error_code = 0;
947 info.si_signo = SIGFPE;
948 info.si_errno = 0;
949 info.si_code = __SI_FAULT;
950 info.si_addr = eip;
952 * The SIMD FPU exceptions are handled a little differently, as there
953 * is only a single status/control register. Thus, to determine which
954 * unmasked exception was caught we must mask the exception mask bits
955 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
957 mxcsr = get_fpu_mxcsr(task);
958 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
959 case 0x000:
960 default:
961 break;
962 case 0x001: /* Invalid Op */
963 info.si_code = FPE_FLTINV;
964 break;
965 case 0x002: /* Denormalize */
966 case 0x010: /* Underflow */
967 info.si_code = FPE_FLTUND;
968 break;
969 case 0x004: /* Zero Divide */
970 info.si_code = FPE_FLTDIV;
971 break;
972 case 0x008: /* Overflow */
973 info.si_code = FPE_FLTOVF;
974 break;
975 case 0x020: /* Precision */
976 info.si_code = FPE_FLTRES;
977 break;
979 force_sig_info(SIGFPE, &info, task);
982 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
983 long error_code)
985 if (cpu_has_xmm) {
986 /* Handle SIMD FPU exceptions on PIII+ processors. */
987 ignore_fpu_irq = 1;
988 simd_math_error((void __user *)regs->eip);
989 } else {
991 * Handle strange cache flush from user space exception
992 * in all other cases. This is undocumented behaviour.
994 if (regs->eflags & VM_MASK) {
995 handle_vm86_fault((struct kernel_vm86_regs *)regs,
996 error_code);
997 return;
999 current->thread.trap_no = 19;
1000 current->thread.error_code = error_code;
1001 die_if_kernel("cache flush denied", regs, error_code);
1002 force_sig(SIGSEGV, current);
1006 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1007 long error_code)
1009 #if 0
1010 /* No need to warn about this any longer. */
1011 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1012 #endif
1015 fastcall void setup_x86_bogus_stack(unsigned char * stk)
1017 unsigned long *switch16_ptr, *switch32_ptr;
1018 struct pt_regs *regs;
1019 unsigned long stack_top, stack_bot;
1020 unsigned short iret_frame16_off;
1021 int cpu = smp_processor_id();
1022 /* reserve the space on 32bit stack for the magic switch16 pointer */
1023 memmove(stk, stk + 8, sizeof(struct pt_regs));
1024 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
1025 regs = (struct pt_regs *)stk;
1026 /* now the switch32 on 16bit stack */
1027 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1028 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1029 switch32_ptr = (unsigned long *)(stack_top - 8);
1030 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
1031 /* copy iret frame on 16bit stack */
1032 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
1033 /* fill in the switch pointers */
1034 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
1035 switch16_ptr[1] = __ESPFIX_SS;
1036 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
1037 8 - CPU_16BIT_STACK_SIZE;
1038 switch32_ptr[1] = __KERNEL_DS;
1041 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
1043 unsigned long *switch32_ptr;
1044 unsigned char *stack16, *stack32;
1045 unsigned long stack_top, stack_bot;
1046 int len;
1047 int cpu = smp_processor_id();
1048 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1049 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1050 switch32_ptr = (unsigned long *)(stack_top - 8);
1051 /* copy the data from 16bit stack to 32bit stack */
1052 len = CPU_16BIT_STACK_SIZE - 8 - sp;
1053 stack16 = (unsigned char *)(stack_bot + sp);
1054 stack32 = (unsigned char *)
1055 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
1056 memcpy(stack32, stack16, len);
1057 return stack32;
1061 * 'math_state_restore()' saves the current math information in the
1062 * old math state array, and gets the new ones from the current task
1064 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1065 * Don't touch unless you *really* know how it works.
1067 * Must be called with kernel preemption disabled (in this case,
1068 * local interrupts are disabled at the call-site in entry.S).
1070 asmlinkage void math_state_restore(struct pt_regs regs)
1072 struct thread_info *thread = current_thread_info();
1073 struct task_struct *tsk = thread->task;
1075 clts(); /* Allow maths ops (or we recurse) */
1076 if (!tsk_used_math(tsk))
1077 init_fpu(tsk);
1078 restore_fpu(tsk);
1079 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1082 #ifndef CONFIG_MATH_EMULATION
1084 asmlinkage void math_emulate(long arg)
1086 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1087 printk(KERN_EMERG "killing %s.\n",current->comm);
1088 force_sig(SIGFPE,current);
1089 schedule();
1092 #endif /* CONFIG_MATH_EMULATION */
1094 #ifdef CONFIG_X86_F00F_BUG
1095 void __init trap_init_f00f_bug(void)
1097 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1100 * Update the IDT descriptor and reload the IDT so that
1101 * it uses the read-only mapped virtual address.
1103 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1104 load_idt(&idt_descr);
1106 #endif
1108 #define _set_gate(gate_addr,type,dpl,addr,seg) \
1109 do { \
1110 int __d0, __d1; \
1111 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
1112 "movw %4,%%dx\n\t" \
1113 "movl %%eax,%0\n\t" \
1114 "movl %%edx,%1" \
1115 :"=m" (*((long *) (gate_addr))), \
1116 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
1117 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
1118 "3" ((char *) (addr)),"2" ((seg) << 16)); \
1119 } while (0)
1123 * This needs to use 'idt_table' rather than 'idt', and
1124 * thus use the _nonmapped_ version of the IDT, as the
1125 * Pentium F0 0F bugfix can have resulted in the mapped
1126 * IDT being write-protected.
1128 void set_intr_gate(unsigned int n, void *addr)
1130 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
1134 * This routine sets up an interrupt gate at directory privilege level 3.
1136 static inline void set_system_intr_gate(unsigned int n, void *addr)
1138 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
1141 static void __init set_trap_gate(unsigned int n, void *addr)
1143 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
1146 static void __init set_system_gate(unsigned int n, void *addr)
1148 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
1151 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1153 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
1157 void __init trap_init(void)
1159 #ifdef CONFIG_EISA
1160 void __iomem *p = ioremap(0x0FFFD9, 4);
1161 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1162 EISA_bus = 1;
1164 iounmap(p);
1165 #endif
1167 #ifdef CONFIG_X86_LOCAL_APIC
1168 init_apic_mappings();
1169 #endif
1171 set_trap_gate(0,&divide_error);
1172 set_intr_gate(1,&debug);
1173 set_intr_gate(2,&nmi);
1174 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1175 set_system_gate(4,&overflow);
1176 set_trap_gate(5,&bounds);
1177 set_trap_gate(6,&invalid_op);
1178 set_trap_gate(7,&device_not_available);
1179 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1180 set_trap_gate(9,&coprocessor_segment_overrun);
1181 set_trap_gate(10,&invalid_TSS);
1182 set_trap_gate(11,&segment_not_present);
1183 set_trap_gate(12,&stack_segment);
1184 set_trap_gate(13,&general_protection);
1185 set_intr_gate(14,&page_fault);
1186 set_trap_gate(15,&spurious_interrupt_bug);
1187 set_trap_gate(16,&coprocessor_error);
1188 set_trap_gate(17,&alignment_check);
1189 #ifdef CONFIG_X86_MCE
1190 set_trap_gate(18,&machine_check);
1191 #endif
1192 set_trap_gate(19,&simd_coprocessor_error);
1194 if (cpu_has_fxsr) {
1196 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1197 * Generates a compile-time "error: zero width for bit-field" if
1198 * the alignment is wrong.
1200 struct fxsrAlignAssert {
1201 int _:!(offsetof(struct task_struct,
1202 thread.i387.fxsave) & 15);
1205 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1206 set_in_cr4(X86_CR4_OSFXSR);
1207 printk("done.\n");
1209 if (cpu_has_xmm) {
1210 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1211 "support... ");
1212 set_in_cr4(X86_CR4_OSXMMEXCPT);
1213 printk("done.\n");
1216 set_system_gate(SYSCALL_VECTOR,&system_call);
1219 * Should be a barrier for any external CPU state.
1221 cpu_init();
1223 trap_init_hook();
1226 static int __init kstack_setup(char *s)
1228 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1229 return 1;
1231 __setup("kstack=", kstack_setup);
1233 #ifdef CONFIG_STACK_UNWIND
1234 static int __init call_trace_setup(char *s)
1236 if (strcmp(s, "old") == 0)
1237 call_trace = -1;
1238 else if (strcmp(s, "both") == 0)
1239 call_trace = 0;
1240 else if (strcmp(s, "newfallback") == 0)
1241 call_trace = 1;
1242 else if (strcmp(s, "new") == 2)
1243 call_trace = 2;
1244 return 1;
1246 __setup("call_trace=", call_trace_setup);
1247 #endif