Merge remote-tracking branch 'driver-core/driver-core-next'
[linux-2.6/next.git] / drivers / mtd / nand / cafe_nand.c
blob11a56df89eab3831f747dfd322bfcacd62e526bc
1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * The data sheet for this device can be found at:
5 * http://wiki.laptop.org/go/Datasheets
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9 */
11 #define DEBUG
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <asm/io.h>
26 #define CAFE_NAND_CTRL1 0x00
27 #define CAFE_NAND_CTRL2 0x04
28 #define CAFE_NAND_CTRL3 0x08
29 #define CAFE_NAND_STATUS 0x0c
30 #define CAFE_NAND_IRQ 0x10
31 #define CAFE_NAND_IRQ_MASK 0x14
32 #define CAFE_NAND_DATA_LEN 0x18
33 #define CAFE_NAND_ADDR1 0x1c
34 #define CAFE_NAND_ADDR2 0x20
35 #define CAFE_NAND_TIMING1 0x24
36 #define CAFE_NAND_TIMING2 0x28
37 #define CAFE_NAND_TIMING3 0x2c
38 #define CAFE_NAND_NONMEM 0x30
39 #define CAFE_NAND_ECC_RESULT 0x3C
40 #define CAFE_NAND_DMA_CTRL 0x40
41 #define CAFE_NAND_DMA_ADDR0 0x44
42 #define CAFE_NAND_DMA_ADDR1 0x48
43 #define CAFE_NAND_ECC_SYN01 0x50
44 #define CAFE_NAND_ECC_SYN23 0x54
45 #define CAFE_NAND_ECC_SYN45 0x58
46 #define CAFE_NAND_ECC_SYN67 0x5c
47 #define CAFE_NAND_READ_DATA 0x1000
48 #define CAFE_NAND_WRITE_DATA 0x2000
50 #define CAFE_GLOBAL_CTRL 0x3004
51 #define CAFE_GLOBAL_IRQ 0x3008
52 #define CAFE_GLOBAL_IRQ_MASK 0x300c
53 #define CAFE_NAND_RESET 0x3034
55 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
56 #define CTRL1_CHIPSELECT (1<<19)
58 struct cafe_priv {
59 struct nand_chip nand;
60 struct pci_dev *pdev;
61 void __iomem *mmio;
62 struct rs_control *rs;
63 uint32_t ctl1;
64 uint32_t ctl2;
65 int datalen;
66 int nr_data;
67 int data_pos;
68 int page_addr;
69 dma_addr_t dmaaddr;
70 unsigned char *dmabuf;
73 static int usedma = 1;
74 module_param(usedma, int, 0644);
76 static int skipbbt = 0;
77 module_param(skipbbt, int, 0644);
79 static int debug = 0;
80 module_param(debug, int, 0644);
82 static int regdebug = 0;
83 module_param(regdebug, int, 0644);
85 static int checkecc = 1;
86 module_param(checkecc, int, 0644);
88 static unsigned int numtimings;
89 static int timing[3];
90 module_param_array(timing, int, &numtimings, 0644);
92 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94 /* Hrm. Why isn't this already conditional on something in the struct device? */
95 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
97 /* Make it easier to switch to PIO if we need to */
98 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
99 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
101 static int cafe_device_ready(struct mtd_info *mtd)
103 struct cafe_priv *cafe = mtd->priv;
104 int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
105 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
107 cafe_writel(cafe, irqs, NAND_IRQ);
109 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
110 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
111 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
113 return result;
117 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
119 struct cafe_priv *cafe = mtd->priv;
121 if (usedma)
122 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
123 else
124 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
126 cafe->datalen += len;
128 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
129 len, cafe->datalen);
132 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
134 struct cafe_priv *cafe = mtd->priv;
136 if (usedma)
137 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
138 else
139 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
141 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
142 len, cafe->datalen);
143 cafe->datalen += len;
146 static uint8_t cafe_read_byte(struct mtd_info *mtd)
148 struct cafe_priv *cafe = mtd->priv;
149 uint8_t d;
151 cafe_read_buf(mtd, &d, 1);
152 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
154 return d;
157 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
158 int column, int page_addr)
160 struct cafe_priv *cafe = mtd->priv;
161 int adrbytes = 0;
162 uint32_t ctl1;
163 uint32_t doneint = 0x80000000;
165 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
166 command, column, page_addr);
168 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
169 /* Second half of a command we already calculated */
170 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
171 ctl1 = cafe->ctl1;
172 cafe->ctl2 &= ~(1<<30);
173 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
174 cafe->ctl1, cafe->nr_data);
175 goto do_command;
177 /* Reset ECC engine */
178 cafe_writel(cafe, 0, NAND_CTRL2);
180 /* Emulate NAND_CMD_READOOB on large-page chips */
181 if (mtd->writesize > 512 &&
182 command == NAND_CMD_READOOB) {
183 column += mtd->writesize;
184 command = NAND_CMD_READ0;
187 /* FIXME: Do we need to send read command before sending data
188 for small-page chips, to position the buffer correctly? */
190 if (column != -1) {
191 cafe_writel(cafe, column, NAND_ADDR1);
192 adrbytes = 2;
193 if (page_addr != -1)
194 goto write_adr2;
195 } else if (page_addr != -1) {
196 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
197 page_addr >>= 16;
198 write_adr2:
199 cafe_writel(cafe, page_addr, NAND_ADDR2);
200 adrbytes += 2;
201 if (mtd->size > mtd->writesize << 16)
202 adrbytes++;
205 cafe->data_pos = cafe->datalen = 0;
207 /* Set command valid bit, mask in the chip select bit */
208 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
210 /* Set RD or WR bits as appropriate */
211 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
212 ctl1 |= (1<<26); /* rd */
213 /* Always 5 bytes, for now */
214 cafe->datalen = 4;
215 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
216 adrbytes = 1;
217 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
218 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
219 ctl1 |= 1<<26; /* rd */
220 /* For now, assume just read to end of page */
221 cafe->datalen = mtd->writesize + mtd->oobsize - column;
222 } else if (command == NAND_CMD_SEQIN)
223 ctl1 |= 1<<25; /* wr */
225 /* Set number of address bytes */
226 if (adrbytes)
227 ctl1 |= ((adrbytes-1)|8) << 27;
229 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
230 /* Ignore the first command of a pair; the hardware
231 deals with them both at once, later */
232 cafe->ctl1 = ctl1;
233 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
234 cafe->ctl1, cafe->datalen);
235 return;
237 /* RNDOUT and READ0 commands need a following byte */
238 if (command == NAND_CMD_RNDOUT)
239 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
240 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
241 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
243 do_command:
244 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
245 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
247 /* NB: The datasheet lies -- we really should be subtracting 1 here */
248 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
249 cafe_writel(cafe, 0x90000000, NAND_IRQ);
250 if (usedma && (ctl1 & (3<<25))) {
251 uint32_t dmactl = 0xc0000000 + cafe->datalen;
252 /* If WR or RD bits set, set up DMA */
253 if (ctl1 & (1<<26)) {
254 /* It's a read */
255 dmactl |= (1<<29);
256 /* ... so it's done when the DMA is done, not just
257 the command. */
258 doneint = 0x10000000;
260 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
262 cafe->datalen = 0;
264 if (unlikely(regdebug)) {
265 int i;
266 printk("About to write command %08x to register 0\n", ctl1);
267 for (i=4; i< 0x5c; i+=4)
268 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
271 cafe_writel(cafe, ctl1, NAND_CTRL1);
272 /* Apply this short delay always to ensure that we do wait tWB in
273 * any case on any machine. */
274 ndelay(100);
276 if (1) {
277 int c;
278 uint32_t irqs;
280 for (c = 500000; c != 0; c--) {
281 irqs = cafe_readl(cafe, NAND_IRQ);
282 if (irqs & doneint)
283 break;
284 udelay(1);
285 if (!(c % 100000))
286 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
287 cpu_relax();
289 cafe_writel(cafe, doneint, NAND_IRQ);
290 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
291 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
294 WARN_ON(cafe->ctl2 & (1<<30));
296 switch (command) {
298 case NAND_CMD_CACHEDPROG:
299 case NAND_CMD_PAGEPROG:
300 case NAND_CMD_ERASE1:
301 case NAND_CMD_ERASE2:
302 case NAND_CMD_SEQIN:
303 case NAND_CMD_RNDIN:
304 case NAND_CMD_STATUS:
305 case NAND_CMD_DEPLETE1:
306 case NAND_CMD_RNDOUT:
307 case NAND_CMD_STATUS_ERROR:
308 case NAND_CMD_STATUS_ERROR0:
309 case NAND_CMD_STATUS_ERROR1:
310 case NAND_CMD_STATUS_ERROR2:
311 case NAND_CMD_STATUS_ERROR3:
312 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
313 return;
315 nand_wait_ready(mtd);
316 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
319 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
321 struct cafe_priv *cafe = mtd->priv;
323 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325 /* Mask the appropriate bit into the stored value of ctl1
326 which will be used by cafe_nand_cmdfunc() */
327 if (chipnr)
328 cafe->ctl1 |= CTRL1_CHIPSELECT;
329 else
330 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
333 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335 struct mtd_info *mtd = id;
336 struct cafe_priv *cafe = mtd->priv;
337 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
338 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
339 if (!irqs)
340 return IRQ_NONE;
342 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
343 return IRQ_HANDLED;
346 static void cafe_nand_bug(struct mtd_info *mtd)
348 BUG();
351 static int cafe_nand_write_oob(struct mtd_info *mtd,
352 struct nand_chip *chip, int page)
354 int status = 0;
356 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
357 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
358 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
359 status = chip->waitfunc(mtd, chip);
361 return status & NAND_STATUS_FAIL ? -EIO : 0;
364 /* Don't use -- use nand_read_oob_std for now */
365 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
366 int page, int sndcmd)
368 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
369 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
370 return 1;
373 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
374 * @mtd: mtd info structure
375 * @chip: nand chip info structure
376 * @buf: buffer to store read data
378 * The hw generator calculates the error syndrome automatically. Therefor
379 * we need a special oob layout and handling.
381 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
382 uint8_t *buf, int page)
384 struct cafe_priv *cafe = mtd->priv;
386 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
387 cafe_readl(cafe, NAND_ECC_RESULT),
388 cafe_readl(cafe, NAND_ECC_SYN01));
390 chip->read_buf(mtd, buf, mtd->writesize);
391 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
393 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
394 unsigned short syn[8], pat[4];
395 int pos[4];
396 u8 *oob = chip->oob_poi;
397 int i, n;
399 for (i=0; i<8; i+=2) {
400 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
401 syn[i] = cafe->rs->index_of[tmp & 0xfff];
402 syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
405 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
406 pat);
408 for (i = 0; i < n; i++) {
409 int p = pos[i];
411 /* The 12-bit symbols are mapped to bytes here */
413 if (p > 1374) {
414 /* out of range */
415 n = -1374;
416 } else if (p == 0) {
417 /* high four bits do not correspond to data */
418 if (pat[i] > 0xff)
419 n = -2048;
420 else
421 buf[0] ^= pat[i];
422 } else if (p == 1365) {
423 buf[2047] ^= pat[i] >> 4;
424 oob[0] ^= pat[i] << 4;
425 } else if (p > 1365) {
426 if ((p & 1) == 1) {
427 oob[3*p/2 - 2048] ^= pat[i] >> 4;
428 oob[3*p/2 - 2047] ^= pat[i] << 4;
429 } else {
430 oob[3*p/2 - 2049] ^= pat[i] >> 8;
431 oob[3*p/2 - 2048] ^= pat[i];
433 } else if ((p & 1) == 1) {
434 buf[3*p/2] ^= pat[i] >> 4;
435 buf[3*p/2 + 1] ^= pat[i] << 4;
436 } else {
437 buf[3*p/2 - 1] ^= pat[i] >> 8;
438 buf[3*p/2] ^= pat[i];
442 if (n < 0) {
443 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
444 cafe_readl(cafe, NAND_ADDR2) * 2048);
445 for (i = 0; i < 0x5c; i += 4)
446 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
447 mtd->ecc_stats.failed++;
448 } else {
449 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
450 mtd->ecc_stats.corrected += n;
454 return 0;
457 static struct nand_ecclayout cafe_oobinfo_2048 = {
458 .eccbytes = 14,
459 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
460 .oobfree = {{14, 50}}
463 /* Ick. The BBT code really ought to be able to work this bit out
464 for itself from the above, at least for the 2KiB case */
465 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
466 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
468 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
469 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
472 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
473 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
474 | NAND_BBT_2BIT | NAND_BBT_VERSION,
475 .offs = 14,
476 .len = 4,
477 .veroffs = 18,
478 .maxblocks = 4,
479 .pattern = cafe_bbt_pattern_2048
482 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
483 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
484 | NAND_BBT_2BIT | NAND_BBT_VERSION,
485 .offs = 14,
486 .len = 4,
487 .veroffs = 18,
488 .maxblocks = 4,
489 .pattern = cafe_mirror_pattern_2048
492 static struct nand_ecclayout cafe_oobinfo_512 = {
493 .eccbytes = 14,
494 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
495 .oobfree = {{14, 2}}
498 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
499 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
500 | NAND_BBT_2BIT | NAND_BBT_VERSION,
501 .offs = 14,
502 .len = 1,
503 .veroffs = 15,
504 .maxblocks = 4,
505 .pattern = cafe_bbt_pattern_512
508 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
509 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
510 | NAND_BBT_2BIT | NAND_BBT_VERSION,
511 .offs = 14,
512 .len = 1,
513 .veroffs = 15,
514 .maxblocks = 4,
515 .pattern = cafe_mirror_pattern_512
519 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
520 struct nand_chip *chip, const uint8_t *buf)
522 struct cafe_priv *cafe = mtd->priv;
524 chip->write_buf(mtd, buf, mtd->writesize);
525 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
527 /* Set up ECC autogeneration */
528 cafe->ctl2 |= (1<<30);
531 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
532 const uint8_t *buf, int page, int cached, int raw)
534 int status;
536 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
538 if (unlikely(raw))
539 chip->ecc.write_page_raw(mtd, chip, buf);
540 else
541 chip->ecc.write_page(mtd, chip, buf);
544 * Cached progamming disabled for now, Not sure if its worth the
545 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
547 cached = 0;
549 if (!cached || !(chip->options & NAND_CACHEPRG)) {
551 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
552 status = chip->waitfunc(mtd, chip);
554 * See if operation failed and additional status checks are
555 * available
557 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
558 status = chip->errstat(mtd, chip, FL_WRITING, status,
559 page);
561 if (status & NAND_STATUS_FAIL)
562 return -EIO;
563 } else {
564 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
565 status = chip->waitfunc(mtd, chip);
568 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
569 /* Send command to read back the data */
570 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
572 if (chip->verify_buf(mtd, buf, mtd->writesize))
573 return -EIO;
574 #endif
575 return 0;
578 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
580 return 0;
583 /* F_2[X]/(X**6+X+1) */
584 static unsigned short __devinit gf64_mul(u8 a, u8 b)
586 u8 c;
587 unsigned int i;
589 c = 0;
590 for (i = 0; i < 6; i++) {
591 if (a & 1)
592 c ^= b;
593 a >>= 1;
594 b <<= 1;
595 if ((b & 0x40) != 0)
596 b ^= 0x43;
599 return c;
602 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
603 static u16 __devinit gf4096_mul(u16 a, u16 b)
605 u8 ah, al, bh, bl, ch, cl;
607 ah = a >> 6;
608 al = a & 0x3f;
609 bh = b >> 6;
610 bl = b & 0x3f;
612 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
613 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
615 return (ch << 6) ^ cl;
618 static int __devinit cafe_mul(int x)
620 if (x == 0)
621 return 1;
622 return gf4096_mul(x, 0xe01);
625 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
626 const struct pci_device_id *ent)
628 struct mtd_info *mtd;
629 struct cafe_priv *cafe;
630 uint32_t ctrl;
631 int err = 0;
633 /* Very old versions shared the same PCI ident for all three
634 functions on the chip. Verify the class too... */
635 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
636 return -ENODEV;
638 err = pci_enable_device(pdev);
639 if (err)
640 return err;
642 pci_set_master(pdev);
644 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
645 if (!mtd) {
646 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
647 return -ENOMEM;
649 cafe = (void *)(&mtd[1]);
651 mtd->dev.parent = &pdev->dev;
652 mtd->priv = cafe;
653 mtd->owner = THIS_MODULE;
655 cafe->pdev = pdev;
656 cafe->mmio = pci_iomap(pdev, 0, 0);
657 if (!cafe->mmio) {
658 dev_warn(&pdev->dev, "failed to iomap\n");
659 err = -ENOMEM;
660 goto out_free_mtd;
662 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
663 &cafe->dmaaddr, GFP_KERNEL);
664 if (!cafe->dmabuf) {
665 err = -ENOMEM;
666 goto out_ior;
668 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
670 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
671 if (!cafe->rs) {
672 err = -ENOMEM;
673 goto out_ior;
676 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
677 cafe->nand.dev_ready = cafe_device_ready;
678 cafe->nand.read_byte = cafe_read_byte;
679 cafe->nand.read_buf = cafe_read_buf;
680 cafe->nand.write_buf = cafe_write_buf;
681 cafe->nand.select_chip = cafe_select_chip;
683 cafe->nand.chip_delay = 0;
685 /* Enable the following for a flash based bad block table */
686 cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
687 cafe->nand.options = NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
689 if (skipbbt) {
690 cafe->nand.options |= NAND_SKIP_BBTSCAN;
691 cafe->nand.block_bad = cafe_nand_block_bad;
694 if (numtimings && numtimings != 3) {
695 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
698 if (numtimings == 3) {
699 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
700 timing[0], timing[1], timing[2]);
701 } else {
702 timing[0] = cafe_readl(cafe, NAND_TIMING1);
703 timing[1] = cafe_readl(cafe, NAND_TIMING2);
704 timing[2] = cafe_readl(cafe, NAND_TIMING3);
706 if (timing[0] | timing[1] | timing[2]) {
707 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
708 timing[0], timing[1], timing[2]);
709 } else {
710 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
711 timing[0] = timing[1] = timing[2] = 0xffffffff;
715 /* Start off by resetting the NAND controller completely */
716 cafe_writel(cafe, 1, NAND_RESET);
717 cafe_writel(cafe, 0, NAND_RESET);
719 cafe_writel(cafe, timing[0], NAND_TIMING1);
720 cafe_writel(cafe, timing[1], NAND_TIMING2);
721 cafe_writel(cafe, timing[2], NAND_TIMING3);
723 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
724 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
725 "CAFE NAND", mtd);
726 if (err) {
727 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
728 goto out_free_dma;
731 /* Disable master reset, enable NAND clock */
732 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
733 ctrl &= 0xffffeff0;
734 ctrl |= 0x00007000;
735 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
736 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
737 cafe_writel(cafe, 0, NAND_DMA_CTRL);
739 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
740 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
742 /* Set up DMA address */
743 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
744 if (sizeof(cafe->dmaaddr) > 4)
745 /* Shift in two parts to shut the compiler up */
746 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
747 else
748 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
750 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
751 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
753 /* Enable NAND IRQ in global IRQ mask register */
754 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
755 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
756 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
758 /* Scan to find existence of the device */
759 if (nand_scan_ident(mtd, 2, NULL)) {
760 err = -ENXIO;
761 goto out_irq;
764 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
765 if (mtd->writesize == 2048)
766 cafe->ctl2 |= 1<<29; /* 2KiB page size */
768 /* Set up ECC according to the type of chip we found */
769 if (mtd->writesize == 2048) {
770 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
771 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
772 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
773 } else if (mtd->writesize == 512) {
774 cafe->nand.ecc.layout = &cafe_oobinfo_512;
775 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
776 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
777 } else {
778 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
779 mtd->writesize);
780 goto out_irq;
782 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
783 cafe->nand.ecc.size = mtd->writesize;
784 cafe->nand.ecc.bytes = 14;
785 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
786 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
787 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
788 cafe->nand.write_page = cafe_nand_write_page;
789 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
790 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
791 cafe->nand.ecc.read_page = cafe_nand_read_page;
792 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
794 err = nand_scan_tail(mtd);
795 if (err)
796 goto out_irq;
798 pci_set_drvdata(pdev, mtd);
800 mtd->name = "cafe_nand";
801 mtd_device_parse_register(mtd, part_probes, 0, NULL, 0);
803 goto out;
805 out_irq:
806 /* Disable NAND IRQ in global IRQ mask register */
807 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
808 free_irq(pdev->irq, mtd);
809 out_free_dma:
810 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
811 out_ior:
812 pci_iounmap(pdev, cafe->mmio);
813 out_free_mtd:
814 kfree(mtd);
815 out:
816 return err;
819 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
821 struct mtd_info *mtd = pci_get_drvdata(pdev);
822 struct cafe_priv *cafe = mtd->priv;
824 /* Disable NAND IRQ in global IRQ mask register */
825 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
826 free_irq(pdev->irq, mtd);
827 nand_release(mtd);
828 free_rs(cafe->rs);
829 pci_iounmap(pdev, cafe->mmio);
830 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
831 kfree(mtd);
834 static const struct pci_device_id cafe_nand_tbl[] = {
835 { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
836 PCI_ANY_ID, PCI_ANY_ID },
840 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
842 static int cafe_nand_resume(struct pci_dev *pdev)
844 uint32_t ctrl;
845 struct mtd_info *mtd = pci_get_drvdata(pdev);
846 struct cafe_priv *cafe = mtd->priv;
848 /* Start off by resetting the NAND controller completely */
849 cafe_writel(cafe, 1, NAND_RESET);
850 cafe_writel(cafe, 0, NAND_RESET);
851 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
853 /* Restore timing configuration */
854 cafe_writel(cafe, timing[0], NAND_TIMING1);
855 cafe_writel(cafe, timing[1], NAND_TIMING2);
856 cafe_writel(cafe, timing[2], NAND_TIMING3);
858 /* Disable master reset, enable NAND clock */
859 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
860 ctrl &= 0xffffeff0;
861 ctrl |= 0x00007000;
862 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
863 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
864 cafe_writel(cafe, 0, NAND_DMA_CTRL);
865 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
866 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
868 /* Set up DMA address */
869 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
870 if (sizeof(cafe->dmaaddr) > 4)
871 /* Shift in two parts to shut the compiler up */
872 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
873 else
874 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
876 /* Enable NAND IRQ in global IRQ mask register */
877 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
878 return 0;
881 static struct pci_driver cafe_nand_pci_driver = {
882 .name = "CAFÉ NAND",
883 .id_table = cafe_nand_tbl,
884 .probe = cafe_nand_probe,
885 .remove = __devexit_p(cafe_nand_remove),
886 .resume = cafe_nand_resume,
889 static int __init cafe_nand_init(void)
891 return pci_register_driver(&cafe_nand_pci_driver);
894 static void __exit cafe_nand_exit(void)
896 pci_unregister_driver(&cafe_nand_pci_driver);
898 module_init(cafe_nand_init);
899 module_exit(cafe_nand_exit);
901 MODULE_LICENSE("GPL");
902 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
903 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");