Merge remote-tracking branch 'driver-core/driver-core-next'
[linux-2.6/next.git] / drivers / mtd / nand / omap2.c
blob19b283f2c80c39b40c7e065ff92ee100131d61eb
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
23 #include <plat/dma.h>
24 #include <plat/gpmc.h>
25 #include <plat/nand.h>
27 #define DRIVER_NAME "omap2-nand"
28 #define OMAP_NAND_TIMEOUT_MS 5000
30 #define NAND_Ecc_P1e (1 << 0)
31 #define NAND_Ecc_P2e (1 << 1)
32 #define NAND_Ecc_P4e (1 << 2)
33 #define NAND_Ecc_P8e (1 << 3)
34 #define NAND_Ecc_P16e (1 << 4)
35 #define NAND_Ecc_P32e (1 << 5)
36 #define NAND_Ecc_P64e (1 << 6)
37 #define NAND_Ecc_P128e (1 << 7)
38 #define NAND_Ecc_P256e (1 << 8)
39 #define NAND_Ecc_P512e (1 << 9)
40 #define NAND_Ecc_P1024e (1 << 10)
41 #define NAND_Ecc_P2048e (1 << 11)
43 #define NAND_Ecc_P1o (1 << 16)
44 #define NAND_Ecc_P2o (1 << 17)
45 #define NAND_Ecc_P4o (1 << 18)
46 #define NAND_Ecc_P8o (1 << 19)
47 #define NAND_Ecc_P16o (1 << 20)
48 #define NAND_Ecc_P32o (1 << 21)
49 #define NAND_Ecc_P64o (1 << 22)
50 #define NAND_Ecc_P128o (1 << 23)
51 #define NAND_Ecc_P256o (1 << 24)
52 #define NAND_Ecc_P512o (1 << 25)
53 #define NAND_Ecc_P1024o (1 << 26)
54 #define NAND_Ecc_P2048o (1 << 27)
56 #define TF(value) (value ? 1 : 0)
58 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
59 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
60 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
61 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
62 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
63 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
64 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
65 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
67 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
68 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
69 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
70 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
71 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
72 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
73 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
74 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
76 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
77 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
78 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
79 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
80 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
81 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
82 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
83 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
85 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
86 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
87 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
88 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
89 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
90 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
91 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
92 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
94 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
95 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
97 /* oob info generated runtime depending on ecc algorithm and layout selected */
98 static struct nand_ecclayout omap_oobinfo;
99 /* Define some generic bad / good block scan pattern which are used
100 * while scanning a device for factory marked good / bad blocks
102 static uint8_t scan_ff_pattern[] = { 0xff };
103 static struct nand_bbt_descr bb_descrip_flashbased = {
104 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
105 .offs = 0,
106 .len = 1,
107 .pattern = scan_ff_pattern,
111 struct omap_nand_info {
112 struct nand_hw_control controller;
113 struct omap_nand_platform_data *pdata;
114 struct mtd_info mtd;
115 struct nand_chip nand;
116 struct platform_device *pdev;
118 int gpmc_cs;
119 unsigned long phys_base;
120 struct completion comp;
121 int dma_ch;
122 int gpmc_irq;
123 enum {
124 OMAP_NAND_IO_READ = 0, /* read */
125 OMAP_NAND_IO_WRITE, /* write */
126 } iomode;
127 u_char *buf;
128 int buf_len;
132 * omap_hwcontrol - hardware specific access to control-lines
133 * @mtd: MTD device structure
134 * @cmd: command to device
135 * @ctrl:
136 * NAND_NCE: bit 0 -> don't care
137 * NAND_CLE: bit 1 -> Command Latch
138 * NAND_ALE: bit 2 -> Address Latch
140 * NOTE: boards may use different bits for these!!
142 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
144 struct omap_nand_info *info = container_of(mtd,
145 struct omap_nand_info, mtd);
147 if (cmd != NAND_CMD_NONE) {
148 if (ctrl & NAND_CLE)
149 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
151 else if (ctrl & NAND_ALE)
152 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
154 else /* NAND_NCE */
155 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
160 * omap_read_buf8 - read data from NAND controller into buffer
161 * @mtd: MTD device structure
162 * @buf: buffer to store date
163 * @len: number of bytes to read
165 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
167 struct nand_chip *nand = mtd->priv;
169 ioread8_rep(nand->IO_ADDR_R, buf, len);
173 * omap_write_buf8 - write buffer to NAND controller
174 * @mtd: MTD device structure
175 * @buf: data buffer
176 * @len: number of bytes to write
178 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
180 struct omap_nand_info *info = container_of(mtd,
181 struct omap_nand_info, mtd);
182 u_char *p = (u_char *)buf;
183 u32 status = 0;
185 while (len--) {
186 iowrite8(*p++, info->nand.IO_ADDR_W);
187 /* wait until buffer is available for write */
188 do {
189 status = gpmc_read_status(GPMC_STATUS_BUFFER);
190 } while (!status);
195 * omap_read_buf16 - read data from NAND controller into buffer
196 * @mtd: MTD device structure
197 * @buf: buffer to store date
198 * @len: number of bytes to read
200 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
202 struct nand_chip *nand = mtd->priv;
204 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
208 * omap_write_buf16 - write buffer to NAND controller
209 * @mtd: MTD device structure
210 * @buf: data buffer
211 * @len: number of bytes to write
213 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
215 struct omap_nand_info *info = container_of(mtd,
216 struct omap_nand_info, mtd);
217 u16 *p = (u16 *) buf;
218 u32 status = 0;
219 /* FIXME try bursts of writesw() or DMA ... */
220 len >>= 1;
222 while (len--) {
223 iowrite16(*p++, info->nand.IO_ADDR_W);
224 /* wait until buffer is available for write */
225 do {
226 status = gpmc_read_status(GPMC_STATUS_BUFFER);
227 } while (!status);
232 * omap_read_buf_pref - read data from NAND controller into buffer
233 * @mtd: MTD device structure
234 * @buf: buffer to store date
235 * @len: number of bytes to read
237 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
239 struct omap_nand_info *info = container_of(mtd,
240 struct omap_nand_info, mtd);
241 uint32_t r_count = 0;
242 int ret = 0;
243 u32 *p = (u32 *)buf;
245 /* take care of subpage reads */
246 if (len % 4) {
247 if (info->nand.options & NAND_BUSWIDTH_16)
248 omap_read_buf16(mtd, buf, len % 4);
249 else
250 omap_read_buf8(mtd, buf, len % 4);
251 p = (u32 *) (buf + len % 4);
252 len -= len % 4;
255 /* configure and start prefetch transfer */
256 ret = gpmc_prefetch_enable(info->gpmc_cs,
257 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
258 if (ret) {
259 /* PFPW engine is busy, use cpu copy method */
260 if (info->nand.options & NAND_BUSWIDTH_16)
261 omap_read_buf16(mtd, (u_char *)p, len);
262 else
263 omap_read_buf8(mtd, (u_char *)p, len);
264 } else {
265 do {
266 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
267 r_count = r_count >> 2;
268 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
269 p += r_count;
270 len -= r_count << 2;
271 } while (len);
272 /* disable and stop the PFPW engine */
273 gpmc_prefetch_reset(info->gpmc_cs);
278 * omap_write_buf_pref - write buffer to NAND controller
279 * @mtd: MTD device structure
280 * @buf: data buffer
281 * @len: number of bytes to write
283 static void omap_write_buf_pref(struct mtd_info *mtd,
284 const u_char *buf, int len)
286 struct omap_nand_info *info = container_of(mtd,
287 struct omap_nand_info, mtd);
288 uint32_t w_count = 0;
289 int i = 0, ret = 0;
290 u16 *p = (u16 *)buf;
291 unsigned long tim, limit;
293 /* take care of subpage writes */
294 if (len % 2 != 0) {
295 writeb(*buf, info->nand.IO_ADDR_W);
296 p = (u16 *)(buf + 1);
297 len--;
300 /* configure and start prefetch transfer */
301 ret = gpmc_prefetch_enable(info->gpmc_cs,
302 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
303 if (ret) {
304 /* PFPW engine is busy, use cpu copy method */
305 if (info->nand.options & NAND_BUSWIDTH_16)
306 omap_write_buf16(mtd, (u_char *)p, len);
307 else
308 omap_write_buf8(mtd, (u_char *)p, len);
309 } else {
310 while (len) {
311 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
312 w_count = w_count >> 1;
313 for (i = 0; (i < w_count) && len; i++, len -= 2)
314 iowrite16(*p++, info->nand.IO_ADDR_W);
316 /* wait for data to flushed-out before reset the prefetch */
317 tim = 0;
318 limit = (loops_per_jiffy *
319 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
320 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
321 cpu_relax();
323 /* disable and stop the PFPW engine */
324 gpmc_prefetch_reset(info->gpmc_cs);
329 * omap_nand_dma_cb: callback on the completion of dma transfer
330 * @lch: logical channel
331 * @ch_satuts: channel status
332 * @data: pointer to completion data structure
334 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
336 complete((struct completion *) data);
340 * omap_nand_dma_transfer: configer and start dma transfer
341 * @mtd: MTD device structure
342 * @addr: virtual address in RAM of source/destination
343 * @len: number of data bytes to be transferred
344 * @is_write: flag for read/write operation
346 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
347 unsigned int len, int is_write)
349 struct omap_nand_info *info = container_of(mtd,
350 struct omap_nand_info, mtd);
351 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
352 DMA_FROM_DEVICE;
353 dma_addr_t dma_addr;
354 int ret;
355 unsigned long tim, limit;
357 /* The fifo depth is 64 bytes max.
358 * But configure the FIFO-threahold to 32 to get a sync at each frame
359 * and frame length is 32 bytes.
361 int buf_len = len >> 6;
363 if (addr >= high_memory) {
364 struct page *p1;
366 if (((size_t)addr & PAGE_MASK) !=
367 ((size_t)(addr + len - 1) & PAGE_MASK))
368 goto out_copy;
369 p1 = vmalloc_to_page(addr);
370 if (!p1)
371 goto out_copy;
372 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
375 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
376 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
377 dev_err(&info->pdev->dev,
378 "Couldn't DMA map a %d byte buffer\n", len);
379 goto out_copy;
382 if (is_write) {
383 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
384 info->phys_base, 0, 0);
385 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
386 dma_addr, 0, 0);
387 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
388 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
389 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
390 } else {
391 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
392 info->phys_base, 0, 0);
393 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
394 dma_addr, 0, 0);
395 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
396 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
397 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
399 /* configure and start prefetch transfer */
400 ret = gpmc_prefetch_enable(info->gpmc_cs,
401 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
402 if (ret)
403 /* PFPW engine is busy, use cpu copy method */
404 goto out_copy;
406 init_completion(&info->comp);
408 omap_start_dma(info->dma_ch);
410 /* setup and start DMA using dma_addr */
411 wait_for_completion(&info->comp);
412 tim = 0;
413 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
414 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
415 cpu_relax();
417 /* disable and stop the PFPW engine */
418 gpmc_prefetch_reset(info->gpmc_cs);
420 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
421 return 0;
423 out_copy:
424 if (info->nand.options & NAND_BUSWIDTH_16)
425 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
426 : omap_write_buf16(mtd, (u_char *) addr, len);
427 else
428 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
429 : omap_write_buf8(mtd, (u_char *) addr, len);
430 return 0;
434 * omap_read_buf_dma_pref - read data from NAND controller into buffer
435 * @mtd: MTD device structure
436 * @buf: buffer to store date
437 * @len: number of bytes to read
439 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
441 if (len <= mtd->oobsize)
442 omap_read_buf_pref(mtd, buf, len);
443 else
444 /* start transfer in DMA mode */
445 omap_nand_dma_transfer(mtd, buf, len, 0x0);
449 * omap_write_buf_dma_pref - write buffer to NAND controller
450 * @mtd: MTD device structure
451 * @buf: data buffer
452 * @len: number of bytes to write
454 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
455 const u_char *buf, int len)
457 if (len <= mtd->oobsize)
458 omap_write_buf_pref(mtd, buf, len);
459 else
460 /* start transfer in DMA mode */
461 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
465 * omap_nand_irq - GMPC irq handler
466 * @this_irq: gpmc irq number
467 * @dev: omap_nand_info structure pointer is passed here
469 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
471 struct omap_nand_info *info = (struct omap_nand_info *) dev;
472 u32 bytes;
473 u32 irq_stat;
475 irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
476 bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
477 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
478 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
479 if (irq_stat & 0x2)
480 goto done;
482 if (info->buf_len && (info->buf_len < bytes))
483 bytes = info->buf_len;
484 else if (!info->buf_len)
485 bytes = 0;
486 iowrite32_rep(info->nand.IO_ADDR_W,
487 (u32 *)info->buf, bytes >> 2);
488 info->buf = info->buf + bytes;
489 info->buf_len -= bytes;
491 } else {
492 ioread32_rep(info->nand.IO_ADDR_R,
493 (u32 *)info->buf, bytes >> 2);
494 info->buf = info->buf + bytes;
496 if (irq_stat & 0x2)
497 goto done;
499 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
501 return IRQ_HANDLED;
503 done:
504 complete(&info->comp);
505 /* disable irq */
506 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
508 /* clear status */
509 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
511 return IRQ_HANDLED;
515 * omap_read_buf_irq_pref - read data from NAND controller into buffer
516 * @mtd: MTD device structure
517 * @buf: buffer to store date
518 * @len: number of bytes to read
520 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
522 struct omap_nand_info *info = container_of(mtd,
523 struct omap_nand_info, mtd);
524 int ret = 0;
526 if (len <= mtd->oobsize) {
527 omap_read_buf_pref(mtd, buf, len);
528 return;
531 info->iomode = OMAP_NAND_IO_READ;
532 info->buf = buf;
533 init_completion(&info->comp);
535 /* configure and start prefetch transfer */
536 ret = gpmc_prefetch_enable(info->gpmc_cs,
537 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
538 if (ret)
539 /* PFPW engine is busy, use cpu copy method */
540 goto out_copy;
542 info->buf_len = len;
543 /* enable irq */
544 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
545 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
547 /* waiting for read to complete */
548 wait_for_completion(&info->comp);
550 /* disable and stop the PFPW engine */
551 gpmc_prefetch_reset(info->gpmc_cs);
552 return;
554 out_copy:
555 if (info->nand.options & NAND_BUSWIDTH_16)
556 omap_read_buf16(mtd, buf, len);
557 else
558 omap_read_buf8(mtd, buf, len);
562 * omap_write_buf_irq_pref - write buffer to NAND controller
563 * @mtd: MTD device structure
564 * @buf: data buffer
565 * @len: number of bytes to write
567 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
568 const u_char *buf, int len)
570 struct omap_nand_info *info = container_of(mtd,
571 struct omap_nand_info, mtd);
572 int ret = 0;
573 unsigned long tim, limit;
575 if (len <= mtd->oobsize) {
576 omap_write_buf_pref(mtd, buf, len);
577 return;
580 info->iomode = OMAP_NAND_IO_WRITE;
581 info->buf = (u_char *) buf;
582 init_completion(&info->comp);
584 /* configure and start prefetch transfer : size=24 */
585 ret = gpmc_prefetch_enable(info->gpmc_cs,
586 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
587 if (ret)
588 /* PFPW engine is busy, use cpu copy method */
589 goto out_copy;
591 info->buf_len = len;
592 /* enable irq */
593 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
594 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
596 /* waiting for write to complete */
597 wait_for_completion(&info->comp);
598 /* wait for data to flushed-out before reset the prefetch */
599 tim = 0;
600 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
601 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
602 cpu_relax();
604 /* disable and stop the PFPW engine */
605 gpmc_prefetch_reset(info->gpmc_cs);
606 return;
608 out_copy:
609 if (info->nand.options & NAND_BUSWIDTH_16)
610 omap_write_buf16(mtd, buf, len);
611 else
612 omap_write_buf8(mtd, buf, len);
616 * omap_verify_buf - Verify chip data against buffer
617 * @mtd: MTD device structure
618 * @buf: buffer containing the data to compare
619 * @len: number of bytes to compare
621 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
623 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
624 mtd);
625 u16 *p = (u16 *) buf;
627 len >>= 1;
628 while (len--) {
629 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
630 return -EFAULT;
633 return 0;
637 * gen_true_ecc - This function will generate true ECC value
638 * @ecc_buf: buffer to store ecc code
640 * This generated true ECC value can be used when correcting
641 * data read from NAND flash memory core
643 static void gen_true_ecc(u8 *ecc_buf)
645 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
646 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
648 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
649 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
650 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
651 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
652 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
653 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
657 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
658 * @ecc_data1: ecc code from nand spare area
659 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
660 * @page_data: page data
662 * This function compares two ECC's and indicates if there is an error.
663 * If the error can be corrected it will be corrected to the buffer.
664 * If there is no error, %0 is returned. If there is an error but it
665 * was corrected, %1 is returned. Otherwise, %-1 is returned.
667 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
668 u8 *ecc_data2, /* read from register */
669 u8 *page_data)
671 uint i;
672 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
673 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
674 u8 ecc_bit[24];
675 u8 ecc_sum = 0;
676 u8 find_bit = 0;
677 uint find_byte = 0;
678 int isEccFF;
680 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
682 gen_true_ecc(ecc_data1);
683 gen_true_ecc(ecc_data2);
685 for (i = 0; i <= 2; i++) {
686 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
687 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
690 for (i = 0; i < 8; i++) {
691 tmp0_bit[i] = *ecc_data1 % 2;
692 *ecc_data1 = *ecc_data1 / 2;
695 for (i = 0; i < 8; i++) {
696 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
697 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
700 for (i = 0; i < 8; i++) {
701 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
702 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
705 for (i = 0; i < 8; i++) {
706 comp0_bit[i] = *ecc_data2 % 2;
707 *ecc_data2 = *ecc_data2 / 2;
710 for (i = 0; i < 8; i++) {
711 comp1_bit[i] = *(ecc_data2 + 1) % 2;
712 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
715 for (i = 0; i < 8; i++) {
716 comp2_bit[i] = *(ecc_data2 + 2) % 2;
717 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
720 for (i = 0; i < 6; i++)
721 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
723 for (i = 0; i < 8; i++)
724 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
726 for (i = 0; i < 8; i++)
727 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
729 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
730 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
732 for (i = 0; i < 24; i++)
733 ecc_sum += ecc_bit[i];
735 switch (ecc_sum) {
736 case 0:
737 /* Not reached because this function is not called if
738 * ECC values are equal
740 return 0;
742 case 1:
743 /* Uncorrectable error */
744 pr_debug("ECC UNCORRECTED_ERROR 1\n");
745 return -1;
747 case 11:
748 /* UN-Correctable error */
749 pr_debug("ECC UNCORRECTED_ERROR B\n");
750 return -1;
752 case 12:
753 /* Correctable error */
754 find_byte = (ecc_bit[23] << 8) +
755 (ecc_bit[21] << 7) +
756 (ecc_bit[19] << 6) +
757 (ecc_bit[17] << 5) +
758 (ecc_bit[15] << 4) +
759 (ecc_bit[13] << 3) +
760 (ecc_bit[11] << 2) +
761 (ecc_bit[9] << 1) +
762 ecc_bit[7];
764 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
766 pr_debug("Correcting single bit ECC error at offset: "
767 "%d, bit: %d\n", find_byte, find_bit);
769 page_data[find_byte] ^= (1 << find_bit);
771 return 1;
772 default:
773 if (isEccFF) {
774 if (ecc_data2[0] == 0 &&
775 ecc_data2[1] == 0 &&
776 ecc_data2[2] == 0)
777 return 0;
779 pr_debug("UNCORRECTED_ERROR default\n");
780 return -1;
785 * omap_correct_data - Compares the ECC read with HW generated ECC
786 * @mtd: MTD device structure
787 * @dat: page data
788 * @read_ecc: ecc read from nand flash
789 * @calc_ecc: ecc read from HW ECC registers
791 * Compares the ecc read from nand spare area with ECC registers values
792 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
793 * detection and correction. If there are no errors, %0 is returned. If
794 * there were errors and all of the errors were corrected, the number of
795 * corrected errors is returned. If uncorrectable errors exist, %-1 is
796 * returned.
798 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
799 u_char *read_ecc, u_char *calc_ecc)
801 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
802 mtd);
803 int blockCnt = 0, i = 0, ret = 0;
804 int stat = 0;
806 /* Ex NAND_ECC_HW12_2048 */
807 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
808 (info->nand.ecc.size == 2048))
809 blockCnt = 4;
810 else
811 blockCnt = 1;
813 for (i = 0; i < blockCnt; i++) {
814 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
815 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
816 if (ret < 0)
817 return ret;
818 /* keep track of the number of corrected errors */
819 stat += ret;
821 read_ecc += 3;
822 calc_ecc += 3;
823 dat += 512;
825 return stat;
829 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
830 * @mtd: MTD device structure
831 * @dat: The pointer to data on which ecc is computed
832 * @ecc_code: The ecc_code buffer
834 * Using noninverted ECC can be considered ugly since writing a blank
835 * page ie. padding will clear the ECC bytes. This is no problem as long
836 * nobody is trying to write data on the seemingly unused page. Reading
837 * an erased page will produce an ECC mismatch between generated and read
838 * ECC bytes that has to be dealt with separately.
840 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
841 u_char *ecc_code)
843 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
844 mtd);
845 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
849 * omap_enable_hwecc - This function enables the hardware ecc functionality
850 * @mtd: MTD device structure
851 * @mode: Read/Write mode
853 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
855 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
856 mtd);
857 struct nand_chip *chip = mtd->priv;
858 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
860 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
864 * omap_wait - wait until the command is done
865 * @mtd: MTD device structure
866 * @chip: NAND Chip structure
868 * Wait function is called during Program and erase operations and
869 * the way it is called from MTD layer, we should wait till the NAND
870 * chip is ready after the programming/erase operation has completed.
872 * Erase can take up to 400ms and program up to 20ms according to
873 * general NAND and SmartMedia specs
875 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
877 struct nand_chip *this = mtd->priv;
878 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
879 mtd);
880 unsigned long timeo = jiffies;
881 int status = NAND_STATUS_FAIL, state = this->state;
883 if (state == FL_ERASING)
884 timeo += (HZ * 400) / 1000;
885 else
886 timeo += (HZ * 20) / 1000;
888 gpmc_nand_write(info->gpmc_cs,
889 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
890 while (time_before(jiffies, timeo)) {
891 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
892 if (status & NAND_STATUS_READY)
893 break;
894 cond_resched();
896 return status;
900 * omap_dev_ready - calls the platform specific dev_ready function
901 * @mtd: MTD device structure
903 static int omap_dev_ready(struct mtd_info *mtd)
905 unsigned int val = 0;
906 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
907 mtd);
909 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
910 if ((val & 0x100) == 0x100) {
911 /* Clear IRQ Interrupt */
912 val |= 0x100;
913 val &= ~(0x0);
914 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
915 } else {
916 unsigned int cnt = 0;
917 while (cnt++ < 0x1FF) {
918 if ((val & 0x100) == 0x100)
919 return 0;
920 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
924 return 1;
927 static int __devinit omap_nand_probe(struct platform_device *pdev)
929 struct omap_nand_info *info;
930 struct omap_nand_platform_data *pdata;
931 int err;
932 int i, offset;
934 pdata = pdev->dev.platform_data;
935 if (pdata == NULL) {
936 dev_err(&pdev->dev, "platform data missing\n");
937 return -ENODEV;
940 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
941 if (!info)
942 return -ENOMEM;
944 platform_set_drvdata(pdev, info);
946 spin_lock_init(&info->controller.lock);
947 init_waitqueue_head(&info->controller.wq);
949 info->pdev = pdev;
951 info->gpmc_cs = pdata->cs;
952 info->phys_base = pdata->phys_base;
954 info->mtd.priv = &info->nand;
955 info->mtd.name = dev_name(&pdev->dev);
956 info->mtd.owner = THIS_MODULE;
958 info->nand.options = pdata->devsize;
959 info->nand.options |= NAND_SKIP_BBTSCAN;
961 /* NAND write protect off */
962 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
964 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
965 pdev->dev.driver->name)) {
966 err = -EBUSY;
967 goto out_free_info;
970 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
971 if (!info->nand.IO_ADDR_R) {
972 err = -ENOMEM;
973 goto out_release_mem_region;
976 info->nand.controller = &info->controller;
978 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
979 info->nand.cmd_ctrl = omap_hwcontrol;
982 * If RDY/BSY line is connected to OMAP then use the omap ready
983 * funcrtion and the generic nand_wait function which reads the status
984 * register after monitoring the RDY/BSY line.Otherwise use a standard
985 * chip delay which is slightly more than tR (AC Timing) of the NAND
986 * device and read status register until you get a failure or success
988 if (pdata->dev_ready) {
989 info->nand.dev_ready = omap_dev_ready;
990 info->nand.chip_delay = 0;
991 } else {
992 info->nand.waitfunc = omap_wait;
993 info->nand.chip_delay = 50;
996 switch (pdata->xfer_type) {
997 case NAND_OMAP_PREFETCH_POLLED:
998 info->nand.read_buf = omap_read_buf_pref;
999 info->nand.write_buf = omap_write_buf_pref;
1000 break;
1002 case NAND_OMAP_POLLED:
1003 if (info->nand.options & NAND_BUSWIDTH_16) {
1004 info->nand.read_buf = omap_read_buf16;
1005 info->nand.write_buf = omap_write_buf16;
1006 } else {
1007 info->nand.read_buf = omap_read_buf8;
1008 info->nand.write_buf = omap_write_buf8;
1010 break;
1012 case NAND_OMAP_PREFETCH_DMA:
1013 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1014 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1015 if (err < 0) {
1016 info->dma_ch = -1;
1017 dev_err(&pdev->dev, "DMA request failed!\n");
1018 goto out_release_mem_region;
1019 } else {
1020 omap_set_dma_dest_burst_mode(info->dma_ch,
1021 OMAP_DMA_DATA_BURST_16);
1022 omap_set_dma_src_burst_mode(info->dma_ch,
1023 OMAP_DMA_DATA_BURST_16);
1025 info->nand.read_buf = omap_read_buf_dma_pref;
1026 info->nand.write_buf = omap_write_buf_dma_pref;
1028 break;
1030 case NAND_OMAP_PREFETCH_IRQ:
1031 err = request_irq(pdata->gpmc_irq,
1032 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1033 if (err) {
1034 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1035 pdata->gpmc_irq, err);
1036 goto out_release_mem_region;
1037 } else {
1038 info->gpmc_irq = pdata->gpmc_irq;
1039 info->nand.read_buf = omap_read_buf_irq_pref;
1040 info->nand.write_buf = omap_write_buf_irq_pref;
1042 break;
1044 default:
1045 dev_err(&pdev->dev,
1046 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1047 err = -EINVAL;
1048 goto out_release_mem_region;
1051 info->nand.verify_buf = omap_verify_buf;
1053 /* selsect the ecc type */
1054 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1055 info->nand.ecc.mode = NAND_ECC_SOFT;
1056 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1057 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1058 info->nand.ecc.bytes = 3;
1059 info->nand.ecc.size = 512;
1060 info->nand.ecc.calculate = omap_calculate_ecc;
1061 info->nand.ecc.hwctl = omap_enable_hwecc;
1062 info->nand.ecc.correct = omap_correct_data;
1063 info->nand.ecc.mode = NAND_ECC_HW;
1066 /* DIP switches on some boards change between 8 and 16 bit
1067 * bus widths for flash. Try the other width if the first try fails.
1069 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1070 info->nand.options ^= NAND_BUSWIDTH_16;
1071 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1072 err = -ENXIO;
1073 goto out_release_mem_region;
1077 /* rom code layout */
1078 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1080 if (info->nand.options & NAND_BUSWIDTH_16)
1081 offset = 2;
1082 else {
1083 offset = 1;
1084 info->nand.badblock_pattern = &bb_descrip_flashbased;
1086 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1087 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1088 omap_oobinfo.eccpos[i] = i+offset;
1090 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1091 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1092 (offset + omap_oobinfo.eccbytes);
1094 info->nand.ecc.layout = &omap_oobinfo;
1097 /* second phase scan */
1098 if (nand_scan_tail(&info->mtd)) {
1099 err = -ENXIO;
1100 goto out_release_mem_region;
1103 mtd_device_parse_register(&info->mtd, NULL, 0,
1104 pdata->parts, pdata->nr_parts);
1106 platform_set_drvdata(pdev, &info->mtd);
1108 return 0;
1110 out_release_mem_region:
1111 release_mem_region(info->phys_base, NAND_IO_SIZE);
1112 out_free_info:
1113 kfree(info);
1115 return err;
1118 static int omap_nand_remove(struct platform_device *pdev)
1120 struct mtd_info *mtd = platform_get_drvdata(pdev);
1121 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1122 mtd);
1124 platform_set_drvdata(pdev, NULL);
1125 if (info->dma_ch != -1)
1126 omap_free_dma(info->dma_ch);
1128 if (info->gpmc_irq)
1129 free_irq(info->gpmc_irq, info);
1131 /* Release NAND device, its internal structures and partitions */
1132 nand_release(&info->mtd);
1133 iounmap(info->nand.IO_ADDR_R);
1134 kfree(&info->mtd);
1135 return 0;
1138 static struct platform_driver omap_nand_driver = {
1139 .probe = omap_nand_probe,
1140 .remove = omap_nand_remove,
1141 .driver = {
1142 .name = DRIVER_NAME,
1143 .owner = THIS_MODULE,
1147 static int __init omap_nand_init(void)
1149 pr_info("%s driver initializing\n", DRIVER_NAME);
1151 return platform_driver_register(&omap_nand_driver);
1154 static void __exit omap_nand_exit(void)
1156 platform_driver_unregister(&omap_nand_driver);
1159 module_init(omap_nand_init);
1160 module_exit(omap_nand_exit);
1162 MODULE_ALIAS("platform:" DRIVER_NAME);
1163 MODULE_LICENSE("GPL");
1164 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");