2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
55 #include <trace/events/rcu.h>
59 /* Data structures. */
61 static struct lock_class_key rcu_node_class
[NUM_RCU_LVLS
];
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
72 .signaled = RCU_GP_IDLE, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
82 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched
);
83 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
85 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh
);
86 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
88 static struct rcu_state
*rcu_state
;
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
99 int rcu_scheduler_active __read_mostly
;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
114 static int rcu_scheduler_fully_active __read_mostly
;
116 #ifdef CONFIG_RCU_BOOST
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
122 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu
);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
128 #endif /* #ifdef CONFIG_RCU_BOOST */
130 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
134 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information.
145 unsigned long rcutorture_testseq
;
146 unsigned long rcutorture_vernum
;
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change.
153 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
155 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
159 * Note a quiescent state. Because we do not need to know
160 * how many quiescent states passed, just if there was at least
161 * one since the start of the grace period, this just sets a flag.
162 * The caller must have disabled preemption.
164 void rcu_sched_qs(int cpu
)
166 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
168 rdp
->passed_quiesce_gpnum
= rdp
->gpnum
;
170 if (rdp
->passed_quiesce
== 0)
171 trace_rcu_grace_period("rcu_sched", rdp
->gpnum
, "cpuqs");
172 rdp
->passed_quiesce
= 1;
175 void rcu_bh_qs(int cpu
)
177 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
179 rdp
->passed_quiesce_gpnum
= rdp
->gpnum
;
181 if (rdp
->passed_quiesce
== 0)
182 trace_rcu_grace_period("rcu_bh", rdp
->gpnum
, "cpuqs");
183 rdp
->passed_quiesce
= 1;
187 * Note a context switch. This is a quiescent state for RCU-sched,
188 * and requires special handling for preemptible RCU.
189 * The caller must have disabled preemption.
191 void rcu_note_context_switch(int cpu
)
193 trace_rcu_utilization("Start context switch");
195 rcu_preempt_note_context_switch(cpu
);
196 trace_rcu_utilization("End context switch");
198 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
201 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
202 .dynticks_nesting
= 1,
203 .dynticks
= ATOMIC_INIT(1),
205 #endif /* #ifdef CONFIG_NO_HZ */
207 static int blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
208 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
209 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
211 module_param(blimit
, int, 0);
212 module_param(qhimark
, int, 0);
213 module_param(qlowmark
, int, 0);
215 int rcu_cpu_stall_suppress __read_mostly
;
216 module_param(rcu_cpu_stall_suppress
, int, 0644);
218 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
219 static int rcu_pending(int cpu
);
222 * Return the number of RCU-sched batches processed thus far for debug & stats.
224 long rcu_batches_completed_sched(void)
226 return rcu_sched_state
.completed
;
228 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
231 * Return the number of RCU BH batches processed thus far for debug & stats.
233 long rcu_batches_completed_bh(void)
235 return rcu_bh_state
.completed
;
237 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
240 * Force a quiescent state for RCU BH.
242 void rcu_bh_force_quiescent_state(void)
244 force_quiescent_state(&rcu_bh_state
, 0);
246 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
249 * Record the number of times rcutorture tests have been initiated and
250 * terminated. This information allows the debugfs tracing stats to be
251 * correlated to the rcutorture messages, even when the rcutorture module
252 * is being repeatedly loaded and unloaded. In other words, we cannot
253 * store this state in rcutorture itself.
255 void rcutorture_record_test_transition(void)
257 rcutorture_testseq
++;
258 rcutorture_vernum
= 0;
260 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
263 * Record the number of writer passes through the current rcutorture test.
264 * This is also used to correlate debugfs tracing stats with the rcutorture
267 void rcutorture_record_progress(unsigned long vernum
)
271 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
274 * Force a quiescent state for RCU-sched.
276 void rcu_sched_force_quiescent_state(void)
278 force_quiescent_state(&rcu_sched_state
, 0);
280 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
283 * Does the CPU have callbacks ready to be invoked?
286 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
288 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
292 * Does the current CPU require a yet-as-unscheduled grace period?
295 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
297 return *rdp
->nxttail
[RCU_DONE_TAIL
] && !rcu_gp_in_progress(rsp
);
301 * Return the root node of the specified rcu_state structure.
303 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
305 return &rsp
->node
[0];
311 * If the specified CPU is offline, tell the caller that it is in
312 * a quiescent state. Otherwise, whack it with a reschedule IPI.
313 * Grace periods can end up waiting on an offline CPU when that
314 * CPU is in the process of coming online -- it will be added to the
315 * rcu_node bitmasks before it actually makes it online. The same thing
316 * can happen while a CPU is in the process of coming online. Because this
317 * race is quite rare, we check for it after detecting that the grace
318 * period has been delayed rather than checking each and every CPU
319 * each and every time we start a new grace period.
321 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
324 * If the CPU is offline, it is in a quiescent state. We can
325 * trust its state not to change because interrupts are disabled.
327 if (cpu_is_offline(rdp
->cpu
)) {
328 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "ofl");
333 /* If preemptible RCU, no point in sending reschedule IPI. */
334 if (rdp
->preemptible
)
337 /* The CPU is online, so send it a reschedule IPI. */
338 if (rdp
->cpu
!= smp_processor_id())
339 smp_send_reschedule(rdp
->cpu
);
346 #endif /* #ifdef CONFIG_SMP */
351 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
353 * Enter nohz mode, in other words, -leave- the mode in which RCU
354 * read-side critical sections can occur. (Though RCU read-side
355 * critical sections can occur in irq handlers in nohz mode, a possibility
356 * handled by rcu_irq_enter() and rcu_irq_exit()).
358 void rcu_enter_nohz(void)
361 struct rcu_dynticks
*rdtp
;
363 local_irq_save(flags
);
364 rdtp
= &__get_cpu_var(rcu_dynticks
);
365 if (--rdtp
->dynticks_nesting
) {
366 local_irq_restore(flags
);
369 trace_rcu_dyntick("Start");
370 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
371 smp_mb__before_atomic_inc(); /* See above. */
372 atomic_inc(&rdtp
->dynticks
);
373 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
374 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
375 local_irq_restore(flags
);
379 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
381 * Exit nohz mode, in other words, -enter- the mode in which RCU
382 * read-side critical sections normally occur.
384 void rcu_exit_nohz(void)
387 struct rcu_dynticks
*rdtp
;
389 local_irq_save(flags
);
390 rdtp
= &__get_cpu_var(rcu_dynticks
);
391 if (rdtp
->dynticks_nesting
++) {
392 local_irq_restore(flags
);
395 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
396 atomic_inc(&rdtp
->dynticks
);
397 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
398 smp_mb__after_atomic_inc(); /* See above. */
399 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
400 trace_rcu_dyntick("End");
401 local_irq_restore(flags
);
405 * rcu_nmi_enter - inform RCU of entry to NMI context
407 * If the CPU was idle with dynamic ticks active, and there is no
408 * irq handler running, this updates rdtp->dynticks_nmi to let the
409 * RCU grace-period handling know that the CPU is active.
411 void rcu_nmi_enter(void)
413 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
415 if (rdtp
->dynticks_nmi_nesting
== 0 &&
416 (atomic_read(&rdtp
->dynticks
) & 0x1))
418 rdtp
->dynticks_nmi_nesting
++;
419 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
420 atomic_inc(&rdtp
->dynticks
);
421 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
422 smp_mb__after_atomic_inc(); /* See above. */
423 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
427 * rcu_nmi_exit - inform RCU of exit from NMI context
429 * If the CPU was idle with dynamic ticks active, and there is no
430 * irq handler running, this updates rdtp->dynticks_nmi to let the
431 * RCU grace-period handling know that the CPU is no longer active.
433 void rcu_nmi_exit(void)
435 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
437 if (rdtp
->dynticks_nmi_nesting
== 0 ||
438 --rdtp
->dynticks_nmi_nesting
!= 0)
440 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
441 smp_mb__before_atomic_inc(); /* See above. */
442 atomic_inc(&rdtp
->dynticks
);
443 smp_mb__after_atomic_inc(); /* Force delay to next write. */
444 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
448 * rcu_irq_enter - inform RCU of entry to hard irq context
450 * If the CPU was idle with dynamic ticks active, this updates the
451 * rdtp->dynticks to let the RCU handling know that the CPU is active.
453 void rcu_irq_enter(void)
459 * rcu_irq_exit - inform RCU of exit from hard irq context
461 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
462 * to put let the RCU handling be aware that the CPU is going back to idle
465 void rcu_irq_exit(void)
473 * Snapshot the specified CPU's dynticks counter so that we can later
474 * credit them with an implicit quiescent state. Return 1 if this CPU
475 * is in dynticks idle mode, which is an extended quiescent state.
477 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
479 smp_mb(); /* Work around some architectures weak impls. */
480 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
481 smp_mb(); /* Work around some architectures weak impls. */
486 * Return true if the specified CPU has passed through a quiescent
487 * state by virtue of being in or having passed through an dynticks
488 * idle state since the last call to dyntick_save_progress_counter()
491 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
496 smp_mb(); /* Work around some architectures weak impls. */
497 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
498 smp_mb(); /* Work around some architectures weak impls. */
499 snap
= (unsigned int)rdp
->dynticks_snap
;
502 * If the CPU passed through or entered a dynticks idle phase with
503 * no active irq/NMI handlers, then we can safely pretend that the CPU
504 * already acknowledged the request to pass through a quiescent
505 * state. Either way, that CPU cannot possibly be in an RCU
506 * read-side critical section that started before the beginning
507 * of the current RCU grace period.
509 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
510 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "dti");
515 /* Go check for the CPU being offline. */
516 return rcu_implicit_offline_qs(rdp
);
519 #endif /* #ifdef CONFIG_SMP */
521 #else /* #ifdef CONFIG_NO_HZ */
525 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
530 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
532 return rcu_implicit_offline_qs(rdp
);
535 #endif /* #ifdef CONFIG_SMP */
537 #endif /* #else #ifdef CONFIG_NO_HZ */
539 int rcu_cpu_stall_suppress __read_mostly
;
541 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
543 rsp
->gp_start
= jiffies
;
544 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
547 static void print_other_cpu_stall(struct rcu_state
*rsp
)
553 struct rcu_node
*rnp
= rcu_get_root(rsp
);
555 /* Only let one CPU complain about others per time interval. */
557 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
558 delta
= jiffies
- rsp
->jiffies_stall
;
559 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
560 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
563 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
566 * Now rat on any tasks that got kicked up to the root rcu_node
567 * due to CPU offlining.
569 ndetected
= rcu_print_task_stall(rnp
);
570 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
573 * OK, time to rat on our buddy...
574 * See Documentation/RCU/stallwarn.txt for info on how to debug
575 * RCU CPU stall warnings.
577 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks: {",
579 rcu_for_each_leaf_node(rsp
, rnp
) {
580 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
581 ndetected
+= rcu_print_task_stall(rnp
);
582 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
583 if (rnp
->qsmask
== 0)
585 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
586 if (rnp
->qsmask
& (1UL << cpu
)) {
587 printk(" %d", rnp
->grplo
+ cpu
);
591 printk("} (detected by %d, t=%ld jiffies)\n",
592 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
594 printk(KERN_ERR
"INFO: Stall ended before state dump start\n");
595 else if (!trigger_all_cpu_backtrace())
598 /* If so configured, complain about tasks blocking the grace period. */
600 rcu_print_detail_task_stall(rsp
);
602 force_quiescent_state(rsp
, 0); /* Kick them all. */
605 static void print_cpu_stall(struct rcu_state
*rsp
)
608 struct rcu_node
*rnp
= rcu_get_root(rsp
);
611 * OK, time to rat on ourselves...
612 * See Documentation/RCU/stallwarn.txt for info on how to debug
613 * RCU CPU stall warnings.
615 printk(KERN_ERR
"INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
616 rsp
->name
, smp_processor_id(), jiffies
- rsp
->gp_start
);
617 if (!trigger_all_cpu_backtrace())
620 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
621 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
623 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
624 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
626 set_need_resched(); /* kick ourselves to get things going. */
629 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
633 struct rcu_node
*rnp
;
635 if (rcu_cpu_stall_suppress
)
637 j
= ACCESS_ONCE(jiffies
);
638 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
640 if ((ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
642 /* We haven't checked in, so go dump stack. */
643 print_cpu_stall(rsp
);
645 } else if (rcu_gp_in_progress(rsp
) &&
646 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
648 /* They had a few time units to dump stack, so complain. */
649 print_other_cpu_stall(rsp
);
653 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
655 rcu_cpu_stall_suppress
= 1;
660 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
662 * Set the stall-warning timeout way off into the future, thus preventing
663 * any RCU CPU stall-warning messages from appearing in the current set of
666 * The caller must disable hard irqs.
668 void rcu_cpu_stall_reset(void)
670 rcu_sched_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
671 rcu_bh_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
672 rcu_preempt_stall_reset();
675 static struct notifier_block rcu_panic_block
= {
676 .notifier_call
= rcu_panic
,
679 static void __init
check_cpu_stall_init(void)
681 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
685 * Update CPU-local rcu_data state to record the newly noticed grace period.
686 * This is used both when we started the grace period and when we notice
687 * that someone else started the grace period. The caller must hold the
688 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
689 * and must have irqs disabled.
691 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
693 if (rdp
->gpnum
!= rnp
->gpnum
) {
695 * If the current grace period is waiting for this CPU,
696 * set up to detect a quiescent state, otherwise don't
697 * go looking for one.
699 rdp
->gpnum
= rnp
->gpnum
;
700 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpustart");
701 if (rnp
->qsmask
& rdp
->grpmask
) {
703 rdp
->passed_quiesce
= 0;
709 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
712 struct rcu_node
*rnp
;
714 local_irq_save(flags
);
716 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
717 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
718 local_irq_restore(flags
);
721 __note_new_gpnum(rsp
, rnp
, rdp
);
722 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
726 * Did someone else start a new RCU grace period start since we last
727 * checked? Update local state appropriately if so. Must be called
728 * on the CPU corresponding to rdp.
731 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
736 local_irq_save(flags
);
737 if (rdp
->gpnum
!= rsp
->gpnum
) {
738 note_new_gpnum(rsp
, rdp
);
741 local_irq_restore(flags
);
746 * Advance this CPU's callbacks, but only if the current grace period
747 * has ended. This may be called only from the CPU to whom the rdp
748 * belongs. In addition, the corresponding leaf rcu_node structure's
749 * ->lock must be held by the caller, with irqs disabled.
752 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
754 /* Did another grace period end? */
755 if (rdp
->completed
!= rnp
->completed
) {
757 /* Advance callbacks. No harm if list empty. */
758 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
759 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
760 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
762 /* Remember that we saw this grace-period completion. */
763 rdp
->completed
= rnp
->completed
;
764 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuend");
767 * If we were in an extended quiescent state, we may have
768 * missed some grace periods that others CPUs handled on
769 * our behalf. Catch up with this state to avoid noting
770 * spurious new grace periods. If another grace period
771 * has started, then rnp->gpnum will have advanced, so
772 * we will detect this later on.
774 if (ULONG_CMP_LT(rdp
->gpnum
, rdp
->completed
))
775 rdp
->gpnum
= rdp
->completed
;
778 * If RCU does not need a quiescent state from this CPU,
779 * then make sure that this CPU doesn't go looking for one.
781 if ((rnp
->qsmask
& rdp
->grpmask
) == 0)
787 * Advance this CPU's callbacks, but only if the current grace period
788 * has ended. This may be called only from the CPU to whom the rdp
792 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
795 struct rcu_node
*rnp
;
797 local_irq_save(flags
);
799 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
800 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
801 local_irq_restore(flags
);
804 __rcu_process_gp_end(rsp
, rnp
, rdp
);
805 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
809 * Do per-CPU grace-period initialization for running CPU. The caller
810 * must hold the lock of the leaf rcu_node structure corresponding to
814 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
816 /* Prior grace period ended, so advance callbacks for current CPU. */
817 __rcu_process_gp_end(rsp
, rnp
, rdp
);
820 * Because this CPU just now started the new grace period, we know
821 * that all of its callbacks will be covered by this upcoming grace
822 * period, even the ones that were registered arbitrarily recently.
823 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
825 * Other CPUs cannot be sure exactly when the grace period started.
826 * Therefore, their recently registered callbacks must pass through
827 * an additional RCU_NEXT_READY stage, so that they will be handled
828 * by the next RCU grace period.
830 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
831 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
833 /* Set state so that this CPU will detect the next quiescent state. */
834 __note_new_gpnum(rsp
, rnp
, rdp
);
838 * Start a new RCU grace period if warranted, re-initializing the hierarchy
839 * in preparation for detecting the next grace period. The caller must hold
840 * the root node's ->lock, which is released before return. Hard irqs must
844 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
845 __releases(rcu_get_root(rsp
)->lock
)
847 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
848 struct rcu_node
*rnp
= rcu_get_root(rsp
);
850 if (!rcu_scheduler_fully_active
||
851 !cpu_needs_another_gp(rsp
, rdp
) ||
853 if (rcu_scheduler_fully_active
&&
854 cpu_needs_another_gp(rsp
, rdp
))
855 rsp
->fqs_need_gp
= 1;
856 if (rnp
->completed
== rsp
->completed
) {
857 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
860 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
863 * Propagate new ->completed value to rcu_node structures
864 * so that other CPUs don't have to wait until the start
865 * of the next grace period to process their callbacks.
867 rcu_for_each_node_breadth_first(rsp
, rnp
) {
868 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
869 rnp
->completed
= rsp
->completed
;
870 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
872 local_irq_restore(flags
);
876 /* Advance to a new grace period and initialize state. */
878 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, "start");
879 WARN_ON_ONCE(rsp
->signaled
== RCU_GP_INIT
);
880 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
881 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
882 record_gp_stall_check_time(rsp
);
884 /* Special-case the common single-level case. */
885 if (NUM_RCU_NODES
== 1) {
886 rcu_preempt_check_blocked_tasks(rnp
);
887 rnp
->qsmask
= rnp
->qsmaskinit
;
888 rnp
->gpnum
= rsp
->gpnum
;
889 rnp
->completed
= rsp
->completed
;
890 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
891 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
892 rcu_preempt_boost_start_gp(rnp
);
893 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
894 rnp
->level
, rnp
->grplo
,
895 rnp
->grphi
, rnp
->qsmask
);
896 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
900 raw_spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
903 /* Exclude any concurrent CPU-hotplug operations. */
904 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
907 * Set the quiescent-state-needed bits in all the rcu_node
908 * structures for all currently online CPUs in breadth-first
909 * order, starting from the root rcu_node structure. This
910 * operation relies on the layout of the hierarchy within the
911 * rsp->node[] array. Note that other CPUs will access only
912 * the leaves of the hierarchy, which still indicate that no
913 * grace period is in progress, at least until the corresponding
914 * leaf node has been initialized. In addition, we have excluded
915 * CPU-hotplug operations.
917 * Note that the grace period cannot complete until we finish
918 * the initialization process, as there will be at least one
919 * qsmask bit set in the root node until that time, namely the
920 * one corresponding to this CPU, due to the fact that we have
923 rcu_for_each_node_breadth_first(rsp
, rnp
) {
924 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
925 rcu_preempt_check_blocked_tasks(rnp
);
926 rnp
->qsmask
= rnp
->qsmaskinit
;
927 rnp
->gpnum
= rsp
->gpnum
;
928 rnp
->completed
= rsp
->completed
;
929 if (rnp
== rdp
->mynode
)
930 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
931 rcu_preempt_boost_start_gp(rnp
);
932 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
933 rnp
->level
, rnp
->grplo
,
934 rnp
->grphi
, rnp
->qsmask
);
935 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
938 rnp
= rcu_get_root(rsp
);
939 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
940 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
941 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
942 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
946 * Report a full set of quiescent states to the specified rcu_state
947 * data structure. This involves cleaning up after the prior grace
948 * period and letting rcu_start_gp() start up the next grace period
949 * if one is needed. Note that the caller must hold rnp->lock, as
950 * required by rcu_start_gp(), which will release it.
952 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
953 __releases(rcu_get_root(rsp
)->lock
)
955 unsigned long gp_duration
;
957 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
960 * Ensure that all grace-period and pre-grace-period activity
961 * is seen before the assignment to rsp->completed.
963 smp_mb(); /* See above block comment. */
964 gp_duration
= jiffies
- rsp
->gp_start
;
965 if (gp_duration
> rsp
->gp_max
)
966 rsp
->gp_max
= gp_duration
;
967 rsp
->completed
= rsp
->gpnum
;
968 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, "end");
969 rsp
->signaled
= RCU_GP_IDLE
;
970 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
974 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
975 * Allows quiescent states for a group of CPUs to be reported at one go
976 * to the specified rcu_node structure, though all the CPUs in the group
977 * must be represented by the same rcu_node structure (which need not be
978 * a leaf rcu_node structure, though it often will be). That structure's
979 * lock must be held upon entry, and it is released before return.
982 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
983 struct rcu_node
*rnp
, unsigned long flags
)
984 __releases(rnp
->lock
)
986 struct rcu_node
*rnp_c
;
988 /* Walk up the rcu_node hierarchy. */
990 if (!(rnp
->qsmask
& mask
)) {
992 /* Our bit has already been cleared, so done. */
993 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
996 rnp
->qsmask
&= ~mask
;
997 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
998 mask
, rnp
->qsmask
, rnp
->level
,
999 rnp
->grplo
, rnp
->grphi
,
1001 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
1003 /* Other bits still set at this level, so done. */
1004 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1007 mask
= rnp
->grpmask
;
1008 if (rnp
->parent
== NULL
) {
1010 /* No more levels. Exit loop holding root lock. */
1014 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1017 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1018 WARN_ON_ONCE(rnp_c
->qsmask
);
1022 * Get here if we are the last CPU to pass through a quiescent
1023 * state for this grace period. Invoke rcu_report_qs_rsp()
1024 * to clean up and start the next grace period if one is needed.
1026 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
1030 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1031 * structure. This must be either called from the specified CPU, or
1032 * called when the specified CPU is known to be offline (and when it is
1033 * also known that no other CPU is concurrently trying to help the offline
1034 * CPU). The lastcomp argument is used to make sure we are still in the
1035 * grace period of interest. We don't want to end the current grace period
1036 * based on quiescent states detected in an earlier grace period!
1039 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastgp
)
1041 unsigned long flags
;
1043 struct rcu_node
*rnp
;
1046 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1047 if (lastgp
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
) {
1050 * The grace period in which this quiescent state was
1051 * recorded has ended, so don't report it upwards.
1052 * We will instead need a new quiescent state that lies
1053 * within the current grace period.
1055 rdp
->passed_quiesce
= 0; /* need qs for new gp. */
1056 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1059 mask
= rdp
->grpmask
;
1060 if ((rnp
->qsmask
& mask
) == 0) {
1061 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1063 rdp
->qs_pending
= 0;
1066 * This GP can't end until cpu checks in, so all of our
1067 * callbacks can be processed during the next GP.
1069 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1071 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1076 * Check to see if there is a new grace period of which this CPU
1077 * is not yet aware, and if so, set up local rcu_data state for it.
1078 * Otherwise, see if this CPU has just passed through its first
1079 * quiescent state for this grace period, and record that fact if so.
1082 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1084 /* If there is now a new grace period, record and return. */
1085 if (check_for_new_grace_period(rsp
, rdp
))
1089 * Does this CPU still need to do its part for current grace period?
1090 * If no, return and let the other CPUs do their part as well.
1092 if (!rdp
->qs_pending
)
1096 * Was there a quiescent state since the beginning of the grace
1097 * period? If no, then exit and wait for the next call.
1099 if (!rdp
->passed_quiesce
)
1103 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1106 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesce_gpnum
);
1109 #ifdef CONFIG_HOTPLUG_CPU
1112 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1113 * Synchronization is not required because this function executes
1114 * in stop_machine() context.
1116 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1119 /* current DYING CPU is cleared in the cpu_online_mask */
1120 int receive_cpu
= cpumask_any(cpu_online_mask
);
1121 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1122 struct rcu_data
*receive_rdp
= per_cpu_ptr(rsp
->rda
, receive_cpu
);
1124 if (rdp
->nxtlist
== NULL
)
1125 return; /* irqs disabled, so comparison is stable. */
1127 *receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
1128 receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1129 receive_rdp
->qlen
+= rdp
->qlen
;
1130 receive_rdp
->n_cbs_adopted
+= rdp
->qlen
;
1131 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1133 rdp
->nxtlist
= NULL
;
1134 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1135 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1140 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1141 * and move all callbacks from the outgoing CPU to the current one.
1142 * There can only be one CPU hotplug operation at a time, so no other
1143 * CPU can be attempting to update rcu_cpu_kthread_task.
1145 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
1147 unsigned long flags
;
1149 int need_report
= 0;
1150 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1151 struct rcu_node
*rnp
;
1153 rcu_stop_cpu_kthread(cpu
);
1155 /* Exclude any attempts to start a new grace period. */
1156 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
1158 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1159 rnp
= rdp
->mynode
; /* this is the outgoing CPU's rnp. */
1160 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1162 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1163 rnp
->qsmaskinit
&= ~mask
;
1164 if (rnp
->qsmaskinit
!= 0) {
1165 if (rnp
!= rdp
->mynode
)
1166 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1168 trace_rcu_grace_period(rsp
->name
,
1170 !!(rnp
->qsmask
& mask
),
1174 if (rnp
== rdp
->mynode
) {
1175 trace_rcu_grace_period(rsp
->name
,
1177 !!(rnp
->qsmask
& mask
),
1179 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1181 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1182 mask
= rnp
->grpmask
;
1184 } while (rnp
!= NULL
);
1187 * We still hold the leaf rcu_node structure lock here, and
1188 * irqs are still disabled. The reason for this subterfuge is
1189 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1190 * held leads to deadlock.
1192 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1194 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1195 rcu_report_unblock_qs_rnp(rnp
, flags
);
1197 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1198 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1199 rcu_report_exp_rnp(rsp
, rnp
);
1200 rcu_node_kthread_setaffinity(rnp
, -1);
1204 * Remove the specified CPU from the RCU hierarchy and move any pending
1205 * callbacks that it might have to the current CPU. This code assumes
1206 * that at least one CPU in the system will remain running at all times.
1207 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1209 static void rcu_offline_cpu(int cpu
)
1211 __rcu_offline_cpu(cpu
, &rcu_sched_state
);
1212 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
1213 rcu_preempt_offline_cpu(cpu
);
1216 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1218 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1222 static void rcu_offline_cpu(int cpu
)
1226 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1229 * Invoke any RCU callbacks that have made it to the end of their grace
1230 * period. Thottle as specified by rdp->blimit.
1232 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1234 unsigned long flags
;
1235 struct rcu_head
*next
, *list
, **tail
;
1238 /* If no callbacks are ready, just return.*/
1239 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
1240 trace_rcu_batch_start(rsp
->name
, 0, 0);
1241 trace_rcu_batch_end(rsp
->name
, 0);
1246 * Extract the list of ready callbacks, disabling to prevent
1247 * races with call_rcu() from interrupt handlers.
1249 local_irq_save(flags
);
1251 trace_rcu_batch_start(rsp
->name
, rdp
->qlen
, bl
);
1252 list
= rdp
->nxtlist
;
1253 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1254 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1255 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1256 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1257 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1258 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1259 local_irq_restore(flags
);
1261 /* Invoke callbacks. */
1266 debug_rcu_head_unqueue(list
);
1267 __rcu_reclaim(rsp
->name
, list
);
1273 local_irq_save(flags
);
1274 trace_rcu_batch_end(rsp
->name
, count
);
1276 /* Update count, and requeue any remaining callbacks. */
1278 rdp
->n_cbs_invoked
+= count
;
1280 *tail
= rdp
->nxtlist
;
1281 rdp
->nxtlist
= list
;
1282 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1283 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1284 rdp
->nxttail
[count
] = tail
;
1289 /* Reinstate batch limit if we have worked down the excess. */
1290 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1291 rdp
->blimit
= blimit
;
1293 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1294 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1295 rdp
->qlen_last_fqs_check
= 0;
1296 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1297 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1298 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1300 local_irq_restore(flags
);
1302 /* Re-invoke RCU core processing if there are callbacks remaining. */
1303 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1308 * Check to see if this CPU is in a non-context-switch quiescent state
1309 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1310 * Also schedule RCU core processing.
1312 * This function must be called with hardirqs disabled. It is normally
1313 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1314 * false, there is no point in invoking rcu_check_callbacks().
1316 void rcu_check_callbacks(int cpu
, int user
)
1318 trace_rcu_utilization("Start scheduler-tick");
1320 (idle_cpu(cpu
) && rcu_scheduler_active
&&
1321 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
1324 * Get here if this CPU took its interrupt from user
1325 * mode or from the idle loop, and if this is not a
1326 * nested interrupt. In this case, the CPU is in
1327 * a quiescent state, so note it.
1329 * No memory barrier is required here because both
1330 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1331 * variables that other CPUs neither access nor modify,
1332 * at least not while the corresponding CPU is online.
1338 } else if (!in_softirq()) {
1341 * Get here if this CPU did not take its interrupt from
1342 * softirq, in other words, if it is not interrupting
1343 * a rcu_bh read-side critical section. This is an _bh
1344 * critical section, so note it.
1349 rcu_preempt_check_callbacks(cpu
);
1350 if (rcu_pending(cpu
))
1352 trace_rcu_utilization("End scheduler-tick");
1358 * Scan the leaf rcu_node structures, processing dyntick state for any that
1359 * have not yet encountered a quiescent state, using the function specified.
1360 * Also initiate boosting for any threads blocked on the root rcu_node.
1362 * The caller must have suppressed start of new grace periods.
1364 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
1368 unsigned long flags
;
1370 struct rcu_node
*rnp
;
1372 rcu_for_each_leaf_node(rsp
, rnp
) {
1374 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1375 if (!rcu_gp_in_progress(rsp
)) {
1376 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1379 if (rnp
->qsmask
== 0) {
1380 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
1385 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1386 if ((rnp
->qsmask
& bit
) != 0 &&
1387 f(per_cpu_ptr(rsp
->rda
, cpu
)))
1392 /* rcu_report_qs_rnp() releases rnp->lock. */
1393 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
1396 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1398 rnp
= rcu_get_root(rsp
);
1399 if (rnp
->qsmask
== 0) {
1400 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1401 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1406 * Force quiescent states on reluctant CPUs, and also detect which
1407 * CPUs are in dyntick-idle mode.
1409 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1411 unsigned long flags
;
1412 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1414 trace_rcu_utilization("Start fqs");
1415 if (!rcu_gp_in_progress(rsp
)) {
1416 trace_rcu_utilization("End fqs");
1417 return; /* No grace period in progress, nothing to force. */
1419 if (!raw_spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1420 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1421 trace_rcu_utilization("End fqs");
1422 return; /* Someone else is already on the job. */
1424 if (relaxed
&& ULONG_CMP_GE(rsp
->jiffies_force_qs
, jiffies
))
1425 goto unlock_fqs_ret
; /* no emergency and done recently. */
1427 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1428 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1429 if(!rcu_gp_in_progress(rsp
)) {
1430 rsp
->n_force_qs_ngp
++;
1431 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1432 goto unlock_fqs_ret
; /* no GP in progress, time updated. */
1434 rsp
->fqs_active
= 1;
1435 switch (rsp
->signaled
) {
1439 break; /* grace period idle or initializing, ignore. */
1441 case RCU_SAVE_DYNTICK
:
1442 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1443 break; /* So gcc recognizes the dead code. */
1445 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1447 /* Record dyntick-idle state. */
1448 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1449 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1450 if (rcu_gp_in_progress(rsp
))
1451 rsp
->signaled
= RCU_FORCE_QS
;
1456 /* Check dyntick-idle state, send IPI to laggarts. */
1457 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1458 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1460 /* Leave state in case more forcing is required. */
1462 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1465 rsp
->fqs_active
= 0;
1466 if (rsp
->fqs_need_gp
) {
1467 raw_spin_unlock(&rsp
->fqslock
); /* irqs remain disabled */
1468 rsp
->fqs_need_gp
= 0;
1469 rcu_start_gp(rsp
, flags
); /* releases rnp->lock */
1470 trace_rcu_utilization("End fqs");
1473 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1475 raw_spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1476 trace_rcu_utilization("End fqs");
1479 #else /* #ifdef CONFIG_SMP */
1481 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1486 #endif /* #else #ifdef CONFIG_SMP */
1489 * This does the RCU core processing work for the specified rcu_state
1490 * and rcu_data structures. This may be called only from the CPU to
1491 * whom the rdp belongs.
1494 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1496 unsigned long flags
;
1498 WARN_ON_ONCE(rdp
->beenonline
== 0);
1501 * If an RCU GP has gone long enough, go check for dyntick
1502 * idle CPUs and, if needed, send resched IPIs.
1504 if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1505 force_quiescent_state(rsp
, 1);
1508 * Advance callbacks in response to end of earlier grace
1509 * period that some other CPU ended.
1511 rcu_process_gp_end(rsp
, rdp
);
1513 /* Update RCU state based on any recent quiescent states. */
1514 rcu_check_quiescent_state(rsp
, rdp
);
1516 /* Does this CPU require a not-yet-started grace period? */
1517 if (cpu_needs_another_gp(rsp
, rdp
)) {
1518 raw_spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1519 rcu_start_gp(rsp
, flags
); /* releases above lock */
1522 /* If there are callbacks ready, invoke them. */
1523 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1524 invoke_rcu_callbacks(rsp
, rdp
);
1528 * Do RCU core processing for the current CPU.
1530 static void rcu_process_callbacks(struct softirq_action
*unused
)
1532 trace_rcu_utilization("Start RCU core");
1533 __rcu_process_callbacks(&rcu_sched_state
,
1534 &__get_cpu_var(rcu_sched_data
));
1535 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1536 rcu_preempt_process_callbacks();
1538 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1539 rcu_needs_cpu_flush();
1540 trace_rcu_utilization("End RCU core");
1544 * Schedule RCU callback invocation. If the specified type of RCU
1545 * does not support RCU priority boosting, just do a direct call,
1546 * otherwise wake up the per-CPU kernel kthread. Note that because we
1547 * are running on the current CPU with interrupts disabled, the
1548 * rcu_cpu_kthread_task cannot disappear out from under us.
1550 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1552 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active
)))
1554 if (likely(!rsp
->boost
)) {
1555 rcu_do_batch(rsp
, rdp
);
1558 invoke_rcu_callbacks_kthread();
1561 static void invoke_rcu_core(void)
1563 raise_softirq(RCU_SOFTIRQ
);
1567 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1568 struct rcu_state
*rsp
)
1570 unsigned long flags
;
1571 struct rcu_data
*rdp
;
1573 debug_rcu_head_queue(head
);
1577 smp_mb(); /* Ensure RCU update seen before callback registry. */
1580 * Opportunistically note grace-period endings and beginnings.
1581 * Note that we might see a beginning right after we see an
1582 * end, but never vice versa, since this CPU has to pass through
1583 * a quiescent state betweentimes.
1585 local_irq_save(flags
);
1586 rdp
= this_cpu_ptr(rsp
->rda
);
1588 /* Add the callback to our list. */
1589 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1590 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1593 if (__is_kfree_rcu_offset((unsigned long)func
))
1594 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
1597 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen
);
1599 /* If interrupts were disabled, don't dive into RCU core. */
1600 if (irqs_disabled_flags(flags
)) {
1601 local_irq_restore(flags
);
1606 * Force the grace period if too many callbacks or too long waiting.
1607 * Enforce hysteresis, and don't invoke force_quiescent_state()
1608 * if some other CPU has recently done so. Also, don't bother
1609 * invoking force_quiescent_state() if the newly enqueued callback
1610 * is the only one waiting for a grace period to complete.
1612 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1614 /* Are we ignoring a completed grace period? */
1615 rcu_process_gp_end(rsp
, rdp
);
1616 check_for_new_grace_period(rsp
, rdp
);
1618 /* Start a new grace period if one not already started. */
1619 if (!rcu_gp_in_progress(rsp
)) {
1620 unsigned long nestflag
;
1621 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1623 raw_spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1624 rcu_start_gp(rsp
, nestflag
); /* rlses rnp_root->lock */
1626 /* Give the grace period a kick. */
1627 rdp
->blimit
= LONG_MAX
;
1628 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1629 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1630 force_quiescent_state(rsp
, 0);
1631 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1632 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1634 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1635 force_quiescent_state(rsp
, 1);
1636 local_irq_restore(flags
);
1640 * Queue an RCU-sched callback for invocation after a grace period.
1642 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1644 __call_rcu(head
, func
, &rcu_sched_state
);
1646 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1649 * Queue an RCU for invocation after a quicker grace period.
1651 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1653 __call_rcu(head
, func
, &rcu_bh_state
);
1655 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1658 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1660 * Control will return to the caller some time after a full rcu-sched
1661 * grace period has elapsed, in other words after all currently executing
1662 * rcu-sched read-side critical sections have completed. These read-side
1663 * critical sections are delimited by rcu_read_lock_sched() and
1664 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1665 * local_irq_disable(), and so on may be used in place of
1666 * rcu_read_lock_sched().
1668 * This means that all preempt_disable code sequences, including NMI and
1669 * hardware-interrupt handlers, in progress on entry will have completed
1670 * before this primitive returns. However, this does not guarantee that
1671 * softirq handlers will have completed, since in some kernels, these
1672 * handlers can run in process context, and can block.
1674 * This primitive provides the guarantees made by the (now removed)
1675 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1676 * guarantees that rcu_read_lock() sections will have completed.
1677 * In "classic RCU", these two guarantees happen to be one and
1678 * the same, but can differ in realtime RCU implementations.
1680 void synchronize_sched(void)
1682 if (rcu_blocking_is_gp())
1684 wait_rcu_gp(call_rcu_sched
);
1686 EXPORT_SYMBOL_GPL(synchronize_sched
);
1689 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1691 * Control will return to the caller some time after a full rcu_bh grace
1692 * period has elapsed, in other words after all currently executing rcu_bh
1693 * read-side critical sections have completed. RCU read-side critical
1694 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1695 * and may be nested.
1697 void synchronize_rcu_bh(void)
1699 if (rcu_blocking_is_gp())
1701 wait_rcu_gp(call_rcu_bh
);
1703 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
1706 * Check to see if there is any immediate RCU-related work to be done
1707 * by the current CPU, for the specified type of RCU, returning 1 if so.
1708 * The checks are in order of increasing expense: checks that can be
1709 * carried out against CPU-local state are performed first. However,
1710 * we must check for CPU stalls first, else we might not get a chance.
1712 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1714 struct rcu_node
*rnp
= rdp
->mynode
;
1716 rdp
->n_rcu_pending
++;
1718 /* Check for CPU stalls, if enabled. */
1719 check_cpu_stall(rsp
, rdp
);
1721 /* Is the RCU core waiting for a quiescent state from this CPU? */
1722 if (rcu_scheduler_fully_active
&&
1723 rdp
->qs_pending
&& !rdp
->passed_quiesce
) {
1726 * If force_quiescent_state() coming soon and this CPU
1727 * needs a quiescent state, and this is either RCU-sched
1728 * or RCU-bh, force a local reschedule.
1730 rdp
->n_rp_qs_pending
++;
1731 if (!rdp
->preemptible
&&
1732 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
) - 1,
1735 } else if (rdp
->qs_pending
&& rdp
->passed_quiesce
) {
1736 rdp
->n_rp_report_qs
++;
1740 /* Does this CPU have callbacks ready to invoke? */
1741 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
1742 rdp
->n_rp_cb_ready
++;
1746 /* Has RCU gone idle with this CPU needing another grace period? */
1747 if (cpu_needs_another_gp(rsp
, rdp
)) {
1748 rdp
->n_rp_cpu_needs_gp
++;
1752 /* Has another RCU grace period completed? */
1753 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
1754 rdp
->n_rp_gp_completed
++;
1758 /* Has a new RCU grace period started? */
1759 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
1760 rdp
->n_rp_gp_started
++;
1764 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1765 if (rcu_gp_in_progress(rsp
) &&
1766 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
)) {
1767 rdp
->n_rp_need_fqs
++;
1772 rdp
->n_rp_need_nothing
++;
1777 * Check to see if there is any immediate RCU-related work to be done
1778 * by the current CPU, returning 1 if so. This function is part of the
1779 * RCU implementation; it is -not- an exported member of the RCU API.
1781 static int rcu_pending(int cpu
)
1783 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
1784 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
1785 rcu_preempt_pending(cpu
);
1789 * Check to see if any future RCU-related work will need to be done
1790 * by the current CPU, even if none need be done immediately, returning
1793 static int rcu_needs_cpu_quick_check(int cpu
)
1795 /* RCU callbacks either ready or pending? */
1796 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
1797 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
1798 rcu_preempt_needs_cpu(cpu
);
1801 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
1802 static atomic_t rcu_barrier_cpu_count
;
1803 static DEFINE_MUTEX(rcu_barrier_mutex
);
1804 static struct completion rcu_barrier_completion
;
1806 static void rcu_barrier_callback(struct rcu_head
*notused
)
1808 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1809 complete(&rcu_barrier_completion
);
1813 * Called with preemption disabled, and from cross-cpu IRQ context.
1815 static void rcu_barrier_func(void *type
)
1817 int cpu
= smp_processor_id();
1818 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
1819 void (*call_rcu_func
)(struct rcu_head
*head
,
1820 void (*func
)(struct rcu_head
*head
));
1822 atomic_inc(&rcu_barrier_cpu_count
);
1823 call_rcu_func
= type
;
1824 call_rcu_func(head
, rcu_barrier_callback
);
1828 * Orchestrate the specified type of RCU barrier, waiting for all
1829 * RCU callbacks of the specified type to complete.
1831 static void _rcu_barrier(struct rcu_state
*rsp
,
1832 void (*call_rcu_func
)(struct rcu_head
*head
,
1833 void (*func
)(struct rcu_head
*head
)))
1835 BUG_ON(in_interrupt());
1836 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1837 mutex_lock(&rcu_barrier_mutex
);
1838 init_completion(&rcu_barrier_completion
);
1840 * Initialize rcu_barrier_cpu_count to 1, then invoke
1841 * rcu_barrier_func() on each CPU, so that each CPU also has
1842 * incremented rcu_barrier_cpu_count. Only then is it safe to
1843 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1844 * might complete its grace period before all of the other CPUs
1845 * did their increment, causing this function to return too
1846 * early. Note that on_each_cpu() disables irqs, which prevents
1847 * any CPUs from coming online or going offline until each online
1848 * CPU has queued its RCU-barrier callback.
1850 atomic_set(&rcu_barrier_cpu_count
, 1);
1851 on_each_cpu(rcu_barrier_func
, (void *)call_rcu_func
, 1);
1852 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1853 complete(&rcu_barrier_completion
);
1854 wait_for_completion(&rcu_barrier_completion
);
1855 mutex_unlock(&rcu_barrier_mutex
);
1859 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1861 void rcu_barrier_bh(void)
1863 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
1865 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
1868 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1870 void rcu_barrier_sched(void)
1872 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
1874 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
1877 * Do boot-time initialization of a CPU's per-CPU RCU data.
1880 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
1882 unsigned long flags
;
1884 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1885 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1887 /* Set up local state, ensuring consistent view of global state. */
1888 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1889 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
1890 rdp
->nxtlist
= NULL
;
1891 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1892 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1895 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
1896 #endif /* #ifdef CONFIG_NO_HZ */
1899 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1903 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1904 * offline event can be happening at a given time. Note also that we
1905 * can accept some slop in the rsp->completed access due to the fact
1906 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1908 static void __cpuinit
1909 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
1911 unsigned long flags
;
1913 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1914 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1916 /* Set up local state, ensuring consistent view of global state. */
1917 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1918 rdp
->beenonline
= 1; /* We have now been online. */
1919 rdp
->preemptible
= preemptible
;
1920 rdp
->qlen_last_fqs_check
= 0;
1921 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1922 rdp
->blimit
= blimit
;
1923 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1926 * A new grace period might start here. If so, we won't be part
1927 * of it, but that is OK, as we are currently in a quiescent state.
1930 /* Exclude any attempts to start a new GP on large systems. */
1931 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1933 /* Add CPU to rcu_node bitmasks. */
1935 mask
= rdp
->grpmask
;
1937 /* Exclude any attempts to start a new GP on small systems. */
1938 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1939 rnp
->qsmaskinit
|= mask
;
1940 mask
= rnp
->grpmask
;
1941 if (rnp
== rdp
->mynode
) {
1943 * If there is a grace period in progress, we will
1944 * set up to wait for it next time we run the
1947 rdp
->gpnum
= rnp
->completed
;
1948 rdp
->completed
= rnp
->completed
;
1949 rdp
->passed_quiesce
= 0;
1950 rdp
->qs_pending
= 0;
1951 rdp
->passed_quiesce_gpnum
= rnp
->gpnum
- 1;
1952 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuonl");
1954 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
1956 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
1958 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
1961 static void __cpuinit
rcu_prepare_cpu(int cpu
)
1963 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
1964 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
1965 rcu_preempt_init_percpu_data(cpu
);
1969 * Handle CPU online/offline notification events.
1971 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1972 unsigned long action
, void *hcpu
)
1974 long cpu
= (long)hcpu
;
1975 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
1976 struct rcu_node
*rnp
= rdp
->mynode
;
1978 trace_rcu_utilization("Start CPU hotplug");
1980 case CPU_UP_PREPARE
:
1981 case CPU_UP_PREPARE_FROZEN
:
1982 rcu_prepare_cpu(cpu
);
1983 rcu_prepare_kthreads(cpu
);
1986 case CPU_DOWN_FAILED
:
1987 rcu_node_kthread_setaffinity(rnp
, -1);
1988 rcu_cpu_kthread_setrt(cpu
, 1);
1990 case CPU_DOWN_PREPARE
:
1991 rcu_node_kthread_setaffinity(rnp
, cpu
);
1992 rcu_cpu_kthread_setrt(cpu
, 0);
1995 case CPU_DYING_FROZEN
:
1997 * The whole machine is "stopped" except this CPU, so we can
1998 * touch any data without introducing corruption. We send the
1999 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2001 rcu_send_cbs_to_online(&rcu_bh_state
);
2002 rcu_send_cbs_to_online(&rcu_sched_state
);
2003 rcu_preempt_send_cbs_to_online();
2006 case CPU_DEAD_FROZEN
:
2007 case CPU_UP_CANCELED
:
2008 case CPU_UP_CANCELED_FROZEN
:
2009 rcu_offline_cpu(cpu
);
2014 trace_rcu_utilization("End CPU hotplug");
2019 * This function is invoked towards the end of the scheduler's initialization
2020 * process. Before this is called, the idle task might contain
2021 * RCU read-side critical sections (during which time, this idle
2022 * task is booting the system). After this function is called, the
2023 * idle tasks are prohibited from containing RCU read-side critical
2024 * sections. This function also enables RCU lockdep checking.
2026 void rcu_scheduler_starting(void)
2028 WARN_ON(num_online_cpus() != 1);
2029 WARN_ON(nr_context_switches() > 0);
2030 rcu_scheduler_active
= 1;
2034 * Compute the per-level fanout, either using the exact fanout specified
2035 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2037 #ifdef CONFIG_RCU_FANOUT_EXACT
2038 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2042 for (i
= NUM_RCU_LVLS
- 1; i
> 0; i
--)
2043 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
2044 rsp
->levelspread
[0] = RCU_FANOUT_LEAF
;
2046 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2047 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2054 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2055 ccur
= rsp
->levelcnt
[i
];
2056 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
2060 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2063 * Helper function for rcu_init() that initializes one rcu_state structure.
2065 static void __init
rcu_init_one(struct rcu_state
*rsp
,
2066 struct rcu_data __percpu
*rda
)
2068 static char *buf
[] = { "rcu_node_level_0",
2071 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2075 struct rcu_node
*rnp
;
2077 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
2079 /* Initialize the level-tracking arrays. */
2081 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
2082 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
2083 rcu_init_levelspread(rsp
);
2085 /* Initialize the elements themselves, starting from the leaves. */
2087 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2088 cpustride
*= rsp
->levelspread
[i
];
2089 rnp
= rsp
->level
[i
];
2090 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
2091 raw_spin_lock_init(&rnp
->lock
);
2092 lockdep_set_class_and_name(&rnp
->lock
,
2093 &rcu_node_class
[i
], buf
[i
]);
2096 rnp
->qsmaskinit
= 0;
2097 rnp
->grplo
= j
* cpustride
;
2098 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
2099 if (rnp
->grphi
>= NR_CPUS
)
2100 rnp
->grphi
= NR_CPUS
- 1;
2106 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
2107 rnp
->grpmask
= 1UL << rnp
->grpnum
;
2108 rnp
->parent
= rsp
->level
[i
- 1] +
2109 j
/ rsp
->levelspread
[i
- 1];
2112 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
2117 rnp
= rsp
->level
[NUM_RCU_LVLS
- 1];
2118 for_each_possible_cpu(i
) {
2119 while (i
> rnp
->grphi
)
2121 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
2122 rcu_boot_init_percpu_data(i
, rsp
);
2126 void __init
rcu_init(void)
2130 rcu_bootup_announce();
2131 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
2132 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
2133 __rcu_init_preempt();
2134 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
2137 * We don't need protection against CPU-hotplug here because
2138 * this is called early in boot, before either interrupts
2139 * or the scheduler are operational.
2141 cpu_notifier(rcu_cpu_notify
, 0);
2142 for_each_online_cpu(cpu
)
2143 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
2144 check_cpu_stall_init();
2147 #include "rcutree_plugin.h"