ocfs2: add cleancache support
[linux-2.6/next.git] / drivers / mtd / nand / omap2.c
blobda9a351c9d79f55b1dae9afa7b8cbd9ba117da9c
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
23 #include <plat/dma.h>
24 #include <plat/gpmc.h>
25 #include <plat/nand.h>
27 #define DRIVER_NAME "omap2-nand"
28 #define OMAP_NAND_TIMEOUT_MS 5000
30 #define NAND_Ecc_P1e (1 << 0)
31 #define NAND_Ecc_P2e (1 << 1)
32 #define NAND_Ecc_P4e (1 << 2)
33 #define NAND_Ecc_P8e (1 << 3)
34 #define NAND_Ecc_P16e (1 << 4)
35 #define NAND_Ecc_P32e (1 << 5)
36 #define NAND_Ecc_P64e (1 << 6)
37 #define NAND_Ecc_P128e (1 << 7)
38 #define NAND_Ecc_P256e (1 << 8)
39 #define NAND_Ecc_P512e (1 << 9)
40 #define NAND_Ecc_P1024e (1 << 10)
41 #define NAND_Ecc_P2048e (1 << 11)
43 #define NAND_Ecc_P1o (1 << 16)
44 #define NAND_Ecc_P2o (1 << 17)
45 #define NAND_Ecc_P4o (1 << 18)
46 #define NAND_Ecc_P8o (1 << 19)
47 #define NAND_Ecc_P16o (1 << 20)
48 #define NAND_Ecc_P32o (1 << 21)
49 #define NAND_Ecc_P64o (1 << 22)
50 #define NAND_Ecc_P128o (1 << 23)
51 #define NAND_Ecc_P256o (1 << 24)
52 #define NAND_Ecc_P512o (1 << 25)
53 #define NAND_Ecc_P1024o (1 << 26)
54 #define NAND_Ecc_P2048o (1 << 27)
56 #define TF(value) (value ? 1 : 0)
58 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
59 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
60 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
61 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
62 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
63 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
64 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
65 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
67 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
68 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
69 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
70 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
71 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
72 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
73 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
74 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
76 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
77 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
78 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
79 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
80 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
81 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
82 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
83 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
85 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
86 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
87 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
88 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
89 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
90 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
91 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
92 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
94 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
95 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
97 #ifdef CONFIG_MTD_PARTITIONS
98 static const char *part_probes[] = { "cmdlinepart", NULL };
99 #endif
101 /* oob info generated runtime depending on ecc algorithm and layout selected */
102 static struct nand_ecclayout omap_oobinfo;
103 /* Define some generic bad / good block scan pattern which are used
104 * while scanning a device for factory marked good / bad blocks
106 static uint8_t scan_ff_pattern[] = { 0xff };
107 static struct nand_bbt_descr bb_descrip_flashbased = {
108 .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
109 .offs = 0,
110 .len = 1,
111 .pattern = scan_ff_pattern,
115 struct omap_nand_info {
116 struct nand_hw_control controller;
117 struct omap_nand_platform_data *pdata;
118 struct mtd_info mtd;
119 struct mtd_partition *parts;
120 struct nand_chip nand;
121 struct platform_device *pdev;
123 int gpmc_cs;
124 unsigned long phys_base;
125 struct completion comp;
126 int dma_ch;
127 int gpmc_irq;
128 enum {
129 OMAP_NAND_IO_READ = 0, /* read */
130 OMAP_NAND_IO_WRITE, /* write */
131 } iomode;
132 u_char *buf;
133 int buf_len;
137 * omap_hwcontrol - hardware specific access to control-lines
138 * @mtd: MTD device structure
139 * @cmd: command to device
140 * @ctrl:
141 * NAND_NCE: bit 0 -> don't care
142 * NAND_CLE: bit 1 -> Command Latch
143 * NAND_ALE: bit 2 -> Address Latch
145 * NOTE: boards may use different bits for these!!
147 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
149 struct omap_nand_info *info = container_of(mtd,
150 struct omap_nand_info, mtd);
152 if (cmd != NAND_CMD_NONE) {
153 if (ctrl & NAND_CLE)
154 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
156 else if (ctrl & NAND_ALE)
157 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
159 else /* NAND_NCE */
160 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
165 * omap_read_buf8 - read data from NAND controller into buffer
166 * @mtd: MTD device structure
167 * @buf: buffer to store date
168 * @len: number of bytes to read
170 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
172 struct nand_chip *nand = mtd->priv;
174 ioread8_rep(nand->IO_ADDR_R, buf, len);
178 * omap_write_buf8 - write buffer to NAND controller
179 * @mtd: MTD device structure
180 * @buf: data buffer
181 * @len: number of bytes to write
183 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
185 struct omap_nand_info *info = container_of(mtd,
186 struct omap_nand_info, mtd);
187 u_char *p = (u_char *)buf;
188 u32 status = 0;
190 while (len--) {
191 iowrite8(*p++, info->nand.IO_ADDR_W);
192 /* wait until buffer is available for write */
193 do {
194 status = gpmc_read_status(GPMC_STATUS_BUFFER);
195 } while (!status);
200 * omap_read_buf16 - read data from NAND controller into buffer
201 * @mtd: MTD device structure
202 * @buf: buffer to store date
203 * @len: number of bytes to read
205 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
207 struct nand_chip *nand = mtd->priv;
209 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
213 * omap_write_buf16 - write buffer to NAND controller
214 * @mtd: MTD device structure
215 * @buf: data buffer
216 * @len: number of bytes to write
218 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
220 struct omap_nand_info *info = container_of(mtd,
221 struct omap_nand_info, mtd);
222 u16 *p = (u16 *) buf;
223 u32 status = 0;
224 /* FIXME try bursts of writesw() or DMA ... */
225 len >>= 1;
227 while (len--) {
228 iowrite16(*p++, info->nand.IO_ADDR_W);
229 /* wait until buffer is available for write */
230 do {
231 status = gpmc_read_status(GPMC_STATUS_BUFFER);
232 } while (!status);
237 * omap_read_buf_pref - read data from NAND controller into buffer
238 * @mtd: MTD device structure
239 * @buf: buffer to store date
240 * @len: number of bytes to read
242 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
244 struct omap_nand_info *info = container_of(mtd,
245 struct omap_nand_info, mtd);
246 uint32_t r_count = 0;
247 int ret = 0;
248 u32 *p = (u32 *)buf;
250 /* take care of subpage reads */
251 if (len % 4) {
252 if (info->nand.options & NAND_BUSWIDTH_16)
253 omap_read_buf16(mtd, buf, len % 4);
254 else
255 omap_read_buf8(mtd, buf, len % 4);
256 p = (u32 *) (buf + len % 4);
257 len -= len % 4;
260 /* configure and start prefetch transfer */
261 ret = gpmc_prefetch_enable(info->gpmc_cs,
262 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
263 if (ret) {
264 /* PFPW engine is busy, use cpu copy method */
265 if (info->nand.options & NAND_BUSWIDTH_16)
266 omap_read_buf16(mtd, buf, len);
267 else
268 omap_read_buf8(mtd, buf, len);
269 } else {
270 p = (u32 *) buf;
271 do {
272 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
273 r_count = r_count >> 2;
274 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
275 p += r_count;
276 len -= r_count << 2;
277 } while (len);
278 /* disable and stop the PFPW engine */
279 gpmc_prefetch_reset(info->gpmc_cs);
284 * omap_write_buf_pref - write buffer to NAND controller
285 * @mtd: MTD device structure
286 * @buf: data buffer
287 * @len: number of bytes to write
289 static void omap_write_buf_pref(struct mtd_info *mtd,
290 const u_char *buf, int len)
292 struct omap_nand_info *info = container_of(mtd,
293 struct omap_nand_info, mtd);
294 uint32_t w_count = 0;
295 int i = 0, ret = 0;
296 u16 *p;
297 unsigned long tim, limit;
299 /* take care of subpage writes */
300 if (len % 2 != 0) {
301 writeb(*buf, info->nand.IO_ADDR_W);
302 p = (u16 *)(buf + 1);
303 len--;
306 /* configure and start prefetch transfer */
307 ret = gpmc_prefetch_enable(info->gpmc_cs,
308 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
309 if (ret) {
310 /* PFPW engine is busy, use cpu copy method */
311 if (info->nand.options & NAND_BUSWIDTH_16)
312 omap_write_buf16(mtd, buf, len);
313 else
314 omap_write_buf8(mtd, buf, len);
315 } else {
316 p = (u16 *) buf;
317 while (len) {
318 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
319 w_count = w_count >> 1;
320 for (i = 0; (i < w_count) && len; i++, len -= 2)
321 iowrite16(*p++, info->nand.IO_ADDR_W);
323 /* wait for data to flushed-out before reset the prefetch */
324 tim = 0;
325 limit = (loops_per_jiffy *
326 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
327 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
328 cpu_relax();
330 /* disable and stop the PFPW engine */
331 gpmc_prefetch_reset(info->gpmc_cs);
336 * omap_nand_dma_cb: callback on the completion of dma transfer
337 * @lch: logical channel
338 * @ch_satuts: channel status
339 * @data: pointer to completion data structure
341 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
343 complete((struct completion *) data);
347 * omap_nand_dma_transfer: configer and start dma transfer
348 * @mtd: MTD device structure
349 * @addr: virtual address in RAM of source/destination
350 * @len: number of data bytes to be transferred
351 * @is_write: flag for read/write operation
353 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
354 unsigned int len, int is_write)
356 struct omap_nand_info *info = container_of(mtd,
357 struct omap_nand_info, mtd);
358 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
359 DMA_FROM_DEVICE;
360 dma_addr_t dma_addr;
361 int ret;
362 unsigned long tim, limit;
364 /* The fifo depth is 64 bytes max.
365 * But configure the FIFO-threahold to 32 to get a sync at each frame
366 * and frame length is 32 bytes.
368 int buf_len = len >> 6;
370 if (addr >= high_memory) {
371 struct page *p1;
373 if (((size_t)addr & PAGE_MASK) !=
374 ((size_t)(addr + len - 1) & PAGE_MASK))
375 goto out_copy;
376 p1 = vmalloc_to_page(addr);
377 if (!p1)
378 goto out_copy;
379 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
382 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
383 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
384 dev_err(&info->pdev->dev,
385 "Couldn't DMA map a %d byte buffer\n", len);
386 goto out_copy;
389 if (is_write) {
390 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
391 info->phys_base, 0, 0);
392 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
393 dma_addr, 0, 0);
394 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
395 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
396 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
397 } else {
398 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
399 info->phys_base, 0, 0);
400 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
401 dma_addr, 0, 0);
402 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
403 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
404 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
406 /* configure and start prefetch transfer */
407 ret = gpmc_prefetch_enable(info->gpmc_cs,
408 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
409 if (ret)
410 /* PFPW engine is busy, use cpu copy method */
411 goto out_copy;
413 init_completion(&info->comp);
415 omap_start_dma(info->dma_ch);
417 /* setup and start DMA using dma_addr */
418 wait_for_completion(&info->comp);
419 tim = 0;
420 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
421 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
422 cpu_relax();
424 /* disable and stop the PFPW engine */
425 gpmc_prefetch_reset(info->gpmc_cs);
427 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
428 return 0;
430 out_copy:
431 if (info->nand.options & NAND_BUSWIDTH_16)
432 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
433 : omap_write_buf16(mtd, (u_char *) addr, len);
434 else
435 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
436 : omap_write_buf8(mtd, (u_char *) addr, len);
437 return 0;
441 * omap_read_buf_dma_pref - read data from NAND controller into buffer
442 * @mtd: MTD device structure
443 * @buf: buffer to store date
444 * @len: number of bytes to read
446 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
448 if (len <= mtd->oobsize)
449 omap_read_buf_pref(mtd, buf, len);
450 else
451 /* start transfer in DMA mode */
452 omap_nand_dma_transfer(mtd, buf, len, 0x0);
456 * omap_write_buf_dma_pref - write buffer to NAND controller
457 * @mtd: MTD device structure
458 * @buf: data buffer
459 * @len: number of bytes to write
461 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
462 const u_char *buf, int len)
464 if (len <= mtd->oobsize)
465 omap_write_buf_pref(mtd, buf, len);
466 else
467 /* start transfer in DMA mode */
468 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
472 * omap_nand_irq - GMPC irq handler
473 * @this_irq: gpmc irq number
474 * @dev: omap_nand_info structure pointer is passed here
476 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
478 struct omap_nand_info *info = (struct omap_nand_info *) dev;
479 u32 bytes;
480 u32 irq_stat;
482 irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
483 bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
484 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
485 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
486 if (irq_stat & 0x2)
487 goto done;
489 if (info->buf_len && (info->buf_len < bytes))
490 bytes = info->buf_len;
491 else if (!info->buf_len)
492 bytes = 0;
493 iowrite32_rep(info->nand.IO_ADDR_W,
494 (u32 *)info->buf, bytes >> 2);
495 info->buf = info->buf + bytes;
496 info->buf_len -= bytes;
498 } else {
499 ioread32_rep(info->nand.IO_ADDR_R,
500 (u32 *)info->buf, bytes >> 2);
501 info->buf = info->buf + bytes;
503 if (irq_stat & 0x2)
504 goto done;
506 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
508 return IRQ_HANDLED;
510 done:
511 complete(&info->comp);
512 /* disable irq */
513 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
515 /* clear status */
516 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
518 return IRQ_HANDLED;
522 * omap_read_buf_irq_pref - read data from NAND controller into buffer
523 * @mtd: MTD device structure
524 * @buf: buffer to store date
525 * @len: number of bytes to read
527 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
529 struct omap_nand_info *info = container_of(mtd,
530 struct omap_nand_info, mtd);
531 int ret = 0;
533 if (len <= mtd->oobsize) {
534 omap_read_buf_pref(mtd, buf, len);
535 return;
538 info->iomode = OMAP_NAND_IO_READ;
539 info->buf = buf;
540 init_completion(&info->comp);
542 /* configure and start prefetch transfer */
543 ret = gpmc_prefetch_enable(info->gpmc_cs,
544 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
545 if (ret)
546 /* PFPW engine is busy, use cpu copy method */
547 goto out_copy;
549 info->buf_len = len;
550 /* enable irq */
551 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
552 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
554 /* waiting for read to complete */
555 wait_for_completion(&info->comp);
557 /* disable and stop the PFPW engine */
558 gpmc_prefetch_reset(info->gpmc_cs);
559 return;
561 out_copy:
562 if (info->nand.options & NAND_BUSWIDTH_16)
563 omap_read_buf16(mtd, buf, len);
564 else
565 omap_read_buf8(mtd, buf, len);
569 * omap_write_buf_irq_pref - write buffer to NAND controller
570 * @mtd: MTD device structure
571 * @buf: data buffer
572 * @len: number of bytes to write
574 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
575 const u_char *buf, int len)
577 struct omap_nand_info *info = container_of(mtd,
578 struct omap_nand_info, mtd);
579 int ret = 0;
580 unsigned long tim, limit;
582 if (len <= mtd->oobsize) {
583 omap_write_buf_pref(mtd, buf, len);
584 return;
587 info->iomode = OMAP_NAND_IO_WRITE;
588 info->buf = (u_char *) buf;
589 init_completion(&info->comp);
591 /* configure and start prefetch transfer : size=24 */
592 ret = gpmc_prefetch_enable(info->gpmc_cs,
593 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
594 if (ret)
595 /* PFPW engine is busy, use cpu copy method */
596 goto out_copy;
598 info->buf_len = len;
599 /* enable irq */
600 gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
601 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
603 /* waiting for write to complete */
604 wait_for_completion(&info->comp);
605 /* wait for data to flushed-out before reset the prefetch */
606 tim = 0;
607 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
608 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
609 cpu_relax();
611 /* disable and stop the PFPW engine */
612 gpmc_prefetch_reset(info->gpmc_cs);
613 return;
615 out_copy:
616 if (info->nand.options & NAND_BUSWIDTH_16)
617 omap_write_buf16(mtd, buf, len);
618 else
619 omap_write_buf8(mtd, buf, len);
623 * omap_verify_buf - Verify chip data against buffer
624 * @mtd: MTD device structure
625 * @buf: buffer containing the data to compare
626 * @len: number of bytes to compare
628 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
630 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
631 mtd);
632 u16 *p = (u16 *) buf;
634 len >>= 1;
635 while (len--) {
636 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
637 return -EFAULT;
640 return 0;
644 * gen_true_ecc - This function will generate true ECC value
645 * @ecc_buf: buffer to store ecc code
647 * This generated true ECC value can be used when correcting
648 * data read from NAND flash memory core
650 static void gen_true_ecc(u8 *ecc_buf)
652 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
653 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
655 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
656 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
657 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
658 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
659 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
660 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
664 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
665 * @ecc_data1: ecc code from nand spare area
666 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
667 * @page_data: page data
669 * This function compares two ECC's and indicates if there is an error.
670 * If the error can be corrected it will be corrected to the buffer.
671 * If there is no error, %0 is returned. If there is an error but it
672 * was corrected, %1 is returned. Otherwise, %-1 is returned.
674 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
675 u8 *ecc_data2, /* read from register */
676 u8 *page_data)
678 uint i;
679 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
680 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
681 u8 ecc_bit[24];
682 u8 ecc_sum = 0;
683 u8 find_bit = 0;
684 uint find_byte = 0;
685 int isEccFF;
687 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
689 gen_true_ecc(ecc_data1);
690 gen_true_ecc(ecc_data2);
692 for (i = 0; i <= 2; i++) {
693 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
694 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
697 for (i = 0; i < 8; i++) {
698 tmp0_bit[i] = *ecc_data1 % 2;
699 *ecc_data1 = *ecc_data1 / 2;
702 for (i = 0; i < 8; i++) {
703 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
704 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
707 for (i = 0; i < 8; i++) {
708 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
709 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
712 for (i = 0; i < 8; i++) {
713 comp0_bit[i] = *ecc_data2 % 2;
714 *ecc_data2 = *ecc_data2 / 2;
717 for (i = 0; i < 8; i++) {
718 comp1_bit[i] = *(ecc_data2 + 1) % 2;
719 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
722 for (i = 0; i < 8; i++) {
723 comp2_bit[i] = *(ecc_data2 + 2) % 2;
724 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
727 for (i = 0; i < 6; i++)
728 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
730 for (i = 0; i < 8; i++)
731 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
733 for (i = 0; i < 8; i++)
734 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
736 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
737 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
739 for (i = 0; i < 24; i++)
740 ecc_sum += ecc_bit[i];
742 switch (ecc_sum) {
743 case 0:
744 /* Not reached because this function is not called if
745 * ECC values are equal
747 return 0;
749 case 1:
750 /* Uncorrectable error */
751 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
752 return -1;
754 case 11:
755 /* UN-Correctable error */
756 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
757 return -1;
759 case 12:
760 /* Correctable error */
761 find_byte = (ecc_bit[23] << 8) +
762 (ecc_bit[21] << 7) +
763 (ecc_bit[19] << 6) +
764 (ecc_bit[17] << 5) +
765 (ecc_bit[15] << 4) +
766 (ecc_bit[13] << 3) +
767 (ecc_bit[11] << 2) +
768 (ecc_bit[9] << 1) +
769 ecc_bit[7];
771 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
773 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
774 "offset: %d, bit: %d\n", find_byte, find_bit);
776 page_data[find_byte] ^= (1 << find_bit);
778 return 1;
779 default:
780 if (isEccFF) {
781 if (ecc_data2[0] == 0 &&
782 ecc_data2[1] == 0 &&
783 ecc_data2[2] == 0)
784 return 0;
786 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
787 return -1;
792 * omap_correct_data - Compares the ECC read with HW generated ECC
793 * @mtd: MTD device structure
794 * @dat: page data
795 * @read_ecc: ecc read from nand flash
796 * @calc_ecc: ecc read from HW ECC registers
798 * Compares the ecc read from nand spare area with ECC registers values
799 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
800 * detection and correction. If there are no errors, %0 is returned. If
801 * there were errors and all of the errors were corrected, the number of
802 * corrected errors is returned. If uncorrectable errors exist, %-1 is
803 * returned.
805 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
806 u_char *read_ecc, u_char *calc_ecc)
808 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
809 mtd);
810 int blockCnt = 0, i = 0, ret = 0;
811 int stat = 0;
813 /* Ex NAND_ECC_HW12_2048 */
814 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
815 (info->nand.ecc.size == 2048))
816 blockCnt = 4;
817 else
818 blockCnt = 1;
820 for (i = 0; i < blockCnt; i++) {
821 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
822 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
823 if (ret < 0)
824 return ret;
825 /* keep track of the number of corrected errors */
826 stat += ret;
828 read_ecc += 3;
829 calc_ecc += 3;
830 dat += 512;
832 return stat;
836 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
837 * @mtd: MTD device structure
838 * @dat: The pointer to data on which ecc is computed
839 * @ecc_code: The ecc_code buffer
841 * Using noninverted ECC can be considered ugly since writing a blank
842 * page ie. padding will clear the ECC bytes. This is no problem as long
843 * nobody is trying to write data on the seemingly unused page. Reading
844 * an erased page will produce an ECC mismatch between generated and read
845 * ECC bytes that has to be dealt with separately.
847 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
848 u_char *ecc_code)
850 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
851 mtd);
852 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
856 * omap_enable_hwecc - This function enables the hardware ecc functionality
857 * @mtd: MTD device structure
858 * @mode: Read/Write mode
860 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
862 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
863 mtd);
864 struct nand_chip *chip = mtd->priv;
865 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
867 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
871 * omap_wait - wait until the command is done
872 * @mtd: MTD device structure
873 * @chip: NAND Chip structure
875 * Wait function is called during Program and erase operations and
876 * the way it is called from MTD layer, we should wait till the NAND
877 * chip is ready after the programming/erase operation has completed.
879 * Erase can take up to 400ms and program up to 20ms according to
880 * general NAND and SmartMedia specs
882 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
884 struct nand_chip *this = mtd->priv;
885 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
886 mtd);
887 unsigned long timeo = jiffies;
888 int status = NAND_STATUS_FAIL, state = this->state;
890 if (state == FL_ERASING)
891 timeo += (HZ * 400) / 1000;
892 else
893 timeo += (HZ * 20) / 1000;
895 gpmc_nand_write(info->gpmc_cs,
896 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
897 while (time_before(jiffies, timeo)) {
898 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
899 if (status & NAND_STATUS_READY)
900 break;
901 cond_resched();
903 return status;
907 * omap_dev_ready - calls the platform specific dev_ready function
908 * @mtd: MTD device structure
910 static int omap_dev_ready(struct mtd_info *mtd)
912 unsigned int val = 0;
913 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
914 mtd);
916 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
917 if ((val & 0x100) == 0x100) {
918 /* Clear IRQ Interrupt */
919 val |= 0x100;
920 val &= ~(0x0);
921 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
922 } else {
923 unsigned int cnt = 0;
924 while (cnt++ < 0x1FF) {
925 if ((val & 0x100) == 0x100)
926 return 0;
927 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
931 return 1;
934 static int __devinit omap_nand_probe(struct platform_device *pdev)
936 struct omap_nand_info *info;
937 struct omap_nand_platform_data *pdata;
938 int err;
939 int i, offset;
941 pdata = pdev->dev.platform_data;
942 if (pdata == NULL) {
943 dev_err(&pdev->dev, "platform data missing\n");
944 return -ENODEV;
947 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
948 if (!info)
949 return -ENOMEM;
951 platform_set_drvdata(pdev, info);
953 spin_lock_init(&info->controller.lock);
954 init_waitqueue_head(&info->controller.wq);
956 info->pdev = pdev;
958 info->gpmc_cs = pdata->cs;
959 info->phys_base = pdata->phys_base;
961 info->mtd.priv = &info->nand;
962 info->mtd.name = dev_name(&pdev->dev);
963 info->mtd.owner = THIS_MODULE;
965 info->nand.options = pdata->devsize;
966 info->nand.options |= NAND_SKIP_BBTSCAN;
968 /* NAND write protect off */
969 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
971 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
972 pdev->dev.driver->name)) {
973 err = -EBUSY;
974 goto out_free_info;
977 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
978 if (!info->nand.IO_ADDR_R) {
979 err = -ENOMEM;
980 goto out_release_mem_region;
983 info->nand.controller = &info->controller;
985 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
986 info->nand.cmd_ctrl = omap_hwcontrol;
989 * If RDY/BSY line is connected to OMAP then use the omap ready
990 * funcrtion and the generic nand_wait function which reads the status
991 * register after monitoring the RDY/BSY line.Otherwise use a standard
992 * chip delay which is slightly more than tR (AC Timing) of the NAND
993 * device and read status register until you get a failure or success
995 if (pdata->dev_ready) {
996 info->nand.dev_ready = omap_dev_ready;
997 info->nand.chip_delay = 0;
998 } else {
999 info->nand.waitfunc = omap_wait;
1000 info->nand.chip_delay = 50;
1003 switch (pdata->xfer_type) {
1004 case NAND_OMAP_PREFETCH_POLLED:
1005 info->nand.read_buf = omap_read_buf_pref;
1006 info->nand.write_buf = omap_write_buf_pref;
1007 break;
1009 case NAND_OMAP_POLLED:
1010 if (info->nand.options & NAND_BUSWIDTH_16) {
1011 info->nand.read_buf = omap_read_buf16;
1012 info->nand.write_buf = omap_write_buf16;
1013 } else {
1014 info->nand.read_buf = omap_read_buf8;
1015 info->nand.write_buf = omap_write_buf8;
1017 break;
1019 case NAND_OMAP_PREFETCH_DMA:
1020 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1021 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1022 if (err < 0) {
1023 info->dma_ch = -1;
1024 dev_err(&pdev->dev, "DMA request failed!\n");
1025 goto out_release_mem_region;
1026 } else {
1027 omap_set_dma_dest_burst_mode(info->dma_ch,
1028 OMAP_DMA_DATA_BURST_16);
1029 omap_set_dma_src_burst_mode(info->dma_ch,
1030 OMAP_DMA_DATA_BURST_16);
1032 info->nand.read_buf = omap_read_buf_dma_pref;
1033 info->nand.write_buf = omap_write_buf_dma_pref;
1035 break;
1037 case NAND_OMAP_PREFETCH_IRQ:
1038 err = request_irq(pdata->gpmc_irq,
1039 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1040 if (err) {
1041 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1042 pdata->gpmc_irq, err);
1043 goto out_release_mem_region;
1044 } else {
1045 info->gpmc_irq = pdata->gpmc_irq;
1046 info->nand.read_buf = omap_read_buf_irq_pref;
1047 info->nand.write_buf = omap_write_buf_irq_pref;
1049 break;
1051 default:
1052 dev_err(&pdev->dev,
1053 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1054 err = -EINVAL;
1055 goto out_release_mem_region;
1058 info->nand.verify_buf = omap_verify_buf;
1060 /* selsect the ecc type */
1061 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1062 info->nand.ecc.mode = NAND_ECC_SOFT;
1063 else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1064 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1065 info->nand.ecc.bytes = 3;
1066 info->nand.ecc.size = 512;
1067 info->nand.ecc.calculate = omap_calculate_ecc;
1068 info->nand.ecc.hwctl = omap_enable_hwecc;
1069 info->nand.ecc.correct = omap_correct_data;
1070 info->nand.ecc.mode = NAND_ECC_HW;
1073 /* DIP switches on some boards change between 8 and 16 bit
1074 * bus widths for flash. Try the other width if the first try fails.
1076 if (nand_scan(&info->mtd, 1)) {
1077 info->nand.options ^= NAND_BUSWIDTH_16;
1078 if (nand_scan(&info->mtd, 1)) {
1079 err = -ENXIO;
1080 goto out_release_mem_region;
1084 /* rom code layout */
1085 if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1087 if (info->nand.options & NAND_BUSWIDTH_16)
1088 offset = 2;
1089 else {
1090 offset = 1;
1091 info->nand.badblock_pattern = &bb_descrip_flashbased;
1093 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1094 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1095 omap_oobinfo.eccpos[i] = i+offset;
1097 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1098 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1099 (offset + omap_oobinfo.eccbytes);
1101 info->nand.ecc.layout = &omap_oobinfo;
1104 #ifdef CONFIG_MTD_PARTITIONS
1105 err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
1106 if (err > 0)
1107 add_mtd_partitions(&info->mtd, info->parts, err);
1108 else if (pdata->parts)
1109 add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
1110 else
1111 #endif
1112 add_mtd_device(&info->mtd);
1114 platform_set_drvdata(pdev, &info->mtd);
1116 return 0;
1118 out_release_mem_region:
1119 release_mem_region(info->phys_base, NAND_IO_SIZE);
1120 out_free_info:
1121 kfree(info);
1123 return err;
1126 static int omap_nand_remove(struct platform_device *pdev)
1128 struct mtd_info *mtd = platform_get_drvdata(pdev);
1129 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1130 mtd);
1132 platform_set_drvdata(pdev, NULL);
1133 if (info->dma_ch != -1)
1134 omap_free_dma(info->dma_ch);
1136 if (info->gpmc_irq)
1137 free_irq(info->gpmc_irq, info);
1139 /* Release NAND device, its internal structures and partitions */
1140 nand_release(&info->mtd);
1141 iounmap(info->nand.IO_ADDR_R);
1142 kfree(&info->mtd);
1143 return 0;
1146 static struct platform_driver omap_nand_driver = {
1147 .probe = omap_nand_probe,
1148 .remove = omap_nand_remove,
1149 .driver = {
1150 .name = DRIVER_NAME,
1151 .owner = THIS_MODULE,
1155 static int __init omap_nand_init(void)
1157 pr_info("%s driver initializing\n", DRIVER_NAME);
1159 return platform_driver_register(&omap_nand_driver);
1162 static void __exit omap_nand_exit(void)
1164 platform_driver_unregister(&omap_nand_driver);
1167 module_init(omap_nand_init);
1168 module_exit(omap_nand_exit);
1170 MODULE_ALIAS("platform:" DRIVER_NAME);
1171 MODULE_LICENSE("GPL");
1172 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");