1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2004-2011 Emulex. All rights reserved. *
5 * EMULEX and SLI are trademarks of Emulex. *
7 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
9 * This program is free software; you can redistribute it and/or *
10 * modify it under the terms of version 2 of the GNU General *
11 * Public License as published by the Free Software Foundation. *
12 * This program is distributed in the hope that it will be useful. *
13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17 * TO BE LEGALLY INVALID. See the GNU General Public License for *
18 * more details, a copy of which can be found in the file COPYING *
19 * included with this package. *
20 *******************************************************************/
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <asm/unaligned.h>
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_device.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 #include <scsi/scsi_tcq.h>
32 #include <scsi/scsi_transport_fc.h>
34 #include "lpfc_version.h"
38 #include "lpfc_sli4.h"
40 #include "lpfc_disc.h"
41 #include "lpfc_scsi.h"
43 #include "lpfc_logmsg.h"
44 #include "lpfc_crtn.h"
45 #include "lpfc_vport.h"
47 #define LPFC_RESET_WAIT 2
48 #define LPFC_ABORT_WAIT 2
52 static char *dif_op_str
[] = {
54 "SCSI_PROT_READ_INSERT",
55 "SCSI_PROT_WRITE_STRIP",
56 "SCSI_PROT_READ_STRIP",
57 "SCSI_PROT_WRITE_INSERT",
58 "SCSI_PROT_READ_PASS",
59 "SCSI_PROT_WRITE_PASS",
62 lpfc_release_scsi_buf_s4(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*psb
);
64 lpfc_release_scsi_buf_s3(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*psb
);
67 lpfc_debug_save_data(struct lpfc_hba
*phba
, struct scsi_cmnd
*cmnd
)
70 struct scatterlist
*sgde
= scsi_sglist(cmnd
);
72 if (!_dump_buf_data
) {
73 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
74 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
81 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
82 "9051 BLKGRD: ERROR: data scatterlist is null\n");
86 dst
= (void *) _dump_buf_data
;
89 memcpy(dst
, src
, sgde
->length
);
96 lpfc_debug_save_dif(struct lpfc_hba
*phba
, struct scsi_cmnd
*cmnd
)
99 struct scatterlist
*sgde
= scsi_prot_sglist(cmnd
);
101 if (!_dump_buf_dif
) {
102 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
103 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
109 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
110 "9053 BLKGRD: ERROR: prot scatterlist is null\n");
117 memcpy(dst
, src
, sgde
->length
);
119 sgde
= sg_next(sgde
);
124 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
125 * @phba: Pointer to HBA object.
126 * @lpfc_cmd: lpfc scsi command object pointer.
128 * This function is called from the lpfc_prep_task_mgmt_cmd function to
129 * set the last bit in the response sge entry.
132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba
*phba
,
133 struct lpfc_scsi_buf
*lpfc_cmd
)
135 struct sli4_sge
*sgl
= (struct sli4_sge
*)lpfc_cmd
->fcp_bpl
;
138 sgl
->word2
= le32_to_cpu(sgl
->word2
);
139 bf_set(lpfc_sli4_sge_last
, sgl
, 1);
140 sgl
->word2
= cpu_to_le32(sgl
->word2
);
145 * lpfc_update_stats - Update statistical data for the command completion
146 * @phba: Pointer to HBA object.
147 * @lpfc_cmd: lpfc scsi command object pointer.
149 * This function is called when there is a command completion and this
150 * function updates the statistical data for the command completion.
153 lpfc_update_stats(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*lpfc_cmd
)
155 struct lpfc_rport_data
*rdata
= lpfc_cmd
->rdata
;
156 struct lpfc_nodelist
*pnode
= rdata
->pnode
;
157 struct scsi_cmnd
*cmd
= lpfc_cmd
->pCmd
;
159 struct Scsi_Host
*shost
= cmd
->device
->host
;
160 struct lpfc_vport
*vport
= (struct lpfc_vport
*) shost
->hostdata
;
161 unsigned long latency
;
167 latency
= jiffies_to_msecs((long)jiffies
- (long)lpfc_cmd
->start_time
);
169 spin_lock_irqsave(shost
->host_lock
, flags
);
170 if (!vport
->stat_data_enabled
||
171 vport
->stat_data_blocked
||
174 (phba
->bucket_type
== LPFC_NO_BUCKET
)) {
175 spin_unlock_irqrestore(shost
->host_lock
, flags
);
179 if (phba
->bucket_type
== LPFC_LINEAR_BUCKET
) {
180 i
= (latency
+ phba
->bucket_step
- 1 - phba
->bucket_base
)/
182 /* check array subscript bounds */
185 else if (i
>= LPFC_MAX_BUCKET_COUNT
)
186 i
= LPFC_MAX_BUCKET_COUNT
- 1;
188 for (i
= 0; i
< LPFC_MAX_BUCKET_COUNT
-1; i
++)
189 if (latency
<= (phba
->bucket_base
+
190 ((1<<i
)*phba
->bucket_step
)))
194 pnode
->lat_data
[i
].cmd_count
++;
195 spin_unlock_irqrestore(shost
->host_lock
, flags
);
199 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
200 * @phba: Pointer to HBA context object.
201 * @vport: Pointer to vport object.
202 * @ndlp: Pointer to FC node associated with the target.
203 * @lun: Lun number of the scsi device.
204 * @old_val: Old value of the queue depth.
205 * @new_val: New value of the queue depth.
207 * This function sends an event to the mgmt application indicating
208 * there is a change in the scsi device queue depth.
211 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba
*phba
,
212 struct lpfc_vport
*vport
,
213 struct lpfc_nodelist
*ndlp
,
218 struct lpfc_fast_path_event
*fast_path_evt
;
221 fast_path_evt
= lpfc_alloc_fast_evt(phba
);
225 fast_path_evt
->un
.queue_depth_evt
.scsi_event
.event_type
=
227 fast_path_evt
->un
.queue_depth_evt
.scsi_event
.subcategory
=
228 LPFC_EVENT_VARQUEDEPTH
;
230 /* Report all luns with change in queue depth */
231 fast_path_evt
->un
.queue_depth_evt
.scsi_event
.lun
= lun
;
232 if (ndlp
&& NLP_CHK_NODE_ACT(ndlp
)) {
233 memcpy(&fast_path_evt
->un
.queue_depth_evt
.scsi_event
.wwpn
,
234 &ndlp
->nlp_portname
, sizeof(struct lpfc_name
));
235 memcpy(&fast_path_evt
->un
.queue_depth_evt
.scsi_event
.wwnn
,
236 &ndlp
->nlp_nodename
, sizeof(struct lpfc_name
));
239 fast_path_evt
->un
.queue_depth_evt
.oldval
= old_val
;
240 fast_path_evt
->un
.queue_depth_evt
.newval
= new_val
;
241 fast_path_evt
->vport
= vport
;
243 fast_path_evt
->work_evt
.evt
= LPFC_EVT_FASTPATH_MGMT_EVT
;
244 spin_lock_irqsave(&phba
->hbalock
, flags
);
245 list_add_tail(&fast_path_evt
->work_evt
.evt_listp
, &phba
->work_list
);
246 spin_unlock_irqrestore(&phba
->hbalock
, flags
);
247 lpfc_worker_wake_up(phba
);
253 * lpfc_change_queue_depth - Alter scsi device queue depth
254 * @sdev: Pointer the scsi device on which to change the queue depth.
255 * @qdepth: New queue depth to set the sdev to.
256 * @reason: The reason for the queue depth change.
258 * This function is called by the midlayer and the LLD to alter the queue
259 * depth for a scsi device. This function sets the queue depth to the new
260 * value and sends an event out to log the queue depth change.
263 lpfc_change_queue_depth(struct scsi_device
*sdev
, int qdepth
, int reason
)
265 struct lpfc_vport
*vport
= (struct lpfc_vport
*) sdev
->host
->hostdata
;
266 struct lpfc_hba
*phba
= vport
->phba
;
267 struct lpfc_rport_data
*rdata
;
268 unsigned long new_queue_depth
, old_queue_depth
;
270 old_queue_depth
= sdev
->queue_depth
;
271 scsi_adjust_queue_depth(sdev
, scsi_get_tag_type(sdev
), qdepth
);
272 new_queue_depth
= sdev
->queue_depth
;
273 rdata
= sdev
->hostdata
;
275 lpfc_send_sdev_queuedepth_change_event(phba
, vport
,
276 rdata
->pnode
, sdev
->lun
,
279 return sdev
->queue_depth
;
283 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
284 * @phba: The Hba for which this call is being executed.
286 * This routine is called when there is resource error in driver or firmware.
287 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
288 * posts at most 1 event each second. This routine wakes up worker thread of
289 * @phba to process WORKER_RAM_DOWN_EVENT event.
291 * This routine should be called with no lock held.
294 lpfc_rampdown_queue_depth(struct lpfc_hba
*phba
)
299 spin_lock_irqsave(&phba
->hbalock
, flags
);
300 atomic_inc(&phba
->num_rsrc_err
);
301 phba
->last_rsrc_error_time
= jiffies
;
303 if ((phba
->last_ramp_down_time
+ QUEUE_RAMP_DOWN_INTERVAL
) > jiffies
) {
304 spin_unlock_irqrestore(&phba
->hbalock
, flags
);
308 phba
->last_ramp_down_time
= jiffies
;
310 spin_unlock_irqrestore(&phba
->hbalock
, flags
);
312 spin_lock_irqsave(&phba
->pport
->work_port_lock
, flags
);
313 evt_posted
= phba
->pport
->work_port_events
& WORKER_RAMP_DOWN_QUEUE
;
315 phba
->pport
->work_port_events
|= WORKER_RAMP_DOWN_QUEUE
;
316 spin_unlock_irqrestore(&phba
->pport
->work_port_lock
, flags
);
319 lpfc_worker_wake_up(phba
);
324 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
325 * @phba: The Hba for which this call is being executed.
327 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
328 * post at most 1 event every 5 minute after last_ramp_up_time or
329 * last_rsrc_error_time. This routine wakes up worker thread of @phba
330 * to process WORKER_RAM_DOWN_EVENT event.
332 * This routine should be called with no lock held.
335 lpfc_rampup_queue_depth(struct lpfc_vport
*vport
,
336 uint32_t queue_depth
)
339 struct lpfc_hba
*phba
= vport
->phba
;
341 atomic_inc(&phba
->num_cmd_success
);
343 if (vport
->cfg_lun_queue_depth
<= queue_depth
)
345 spin_lock_irqsave(&phba
->hbalock
, flags
);
346 if (time_before(jiffies
,
347 phba
->last_ramp_up_time
+ QUEUE_RAMP_UP_INTERVAL
) ||
349 phba
->last_rsrc_error_time
+ QUEUE_RAMP_UP_INTERVAL
)) {
350 spin_unlock_irqrestore(&phba
->hbalock
, flags
);
353 phba
->last_ramp_up_time
= jiffies
;
354 spin_unlock_irqrestore(&phba
->hbalock
, flags
);
356 spin_lock_irqsave(&phba
->pport
->work_port_lock
, flags
);
357 evt_posted
= phba
->pport
->work_port_events
& WORKER_RAMP_UP_QUEUE
;
359 phba
->pport
->work_port_events
|= WORKER_RAMP_UP_QUEUE
;
360 spin_unlock_irqrestore(&phba
->pport
->work_port_lock
, flags
);
363 lpfc_worker_wake_up(phba
);
368 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
369 * @phba: The Hba for which this call is being executed.
371 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker
372 * thread.This routine reduces queue depth for all scsi device on each vport
373 * associated with @phba.
376 lpfc_ramp_down_queue_handler(struct lpfc_hba
*phba
)
378 struct lpfc_vport
**vports
;
379 struct Scsi_Host
*shost
;
380 struct scsi_device
*sdev
;
381 unsigned long new_queue_depth
;
382 unsigned long num_rsrc_err
, num_cmd_success
;
385 num_rsrc_err
= atomic_read(&phba
->num_rsrc_err
);
386 num_cmd_success
= atomic_read(&phba
->num_cmd_success
);
388 vports
= lpfc_create_vport_work_array(phba
);
390 for (i
= 0; i
<= phba
->max_vports
&& vports
[i
] != NULL
; i
++) {
391 shost
= lpfc_shost_from_vport(vports
[i
]);
392 shost_for_each_device(sdev
, shost
) {
394 sdev
->queue_depth
* num_rsrc_err
/
395 (num_rsrc_err
+ num_cmd_success
);
396 if (!new_queue_depth
)
397 new_queue_depth
= sdev
->queue_depth
- 1;
399 new_queue_depth
= sdev
->queue_depth
-
401 lpfc_change_queue_depth(sdev
, new_queue_depth
,
402 SCSI_QDEPTH_DEFAULT
);
405 lpfc_destroy_vport_work_array(phba
, vports
);
406 atomic_set(&phba
->num_rsrc_err
, 0);
407 atomic_set(&phba
->num_cmd_success
, 0);
411 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
412 * @phba: The Hba for which this call is being executed.
414 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker
415 * thread.This routine increases queue depth for all scsi device on each vport
416 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
417 * num_cmd_success to zero.
420 lpfc_ramp_up_queue_handler(struct lpfc_hba
*phba
)
422 struct lpfc_vport
**vports
;
423 struct Scsi_Host
*shost
;
424 struct scsi_device
*sdev
;
427 vports
= lpfc_create_vport_work_array(phba
);
429 for (i
= 0; i
<= phba
->max_vports
&& vports
[i
] != NULL
; i
++) {
430 shost
= lpfc_shost_from_vport(vports
[i
]);
431 shost_for_each_device(sdev
, shost
) {
432 if (vports
[i
]->cfg_lun_queue_depth
<=
435 lpfc_change_queue_depth(sdev
,
437 SCSI_QDEPTH_RAMP_UP
);
440 lpfc_destroy_vport_work_array(phba
, vports
);
441 atomic_set(&phba
->num_rsrc_err
, 0);
442 atomic_set(&phba
->num_cmd_success
, 0);
446 * lpfc_scsi_dev_block - set all scsi hosts to block state
447 * @phba: Pointer to HBA context object.
449 * This function walks vport list and set each SCSI host to block state
450 * by invoking fc_remote_port_delete() routine. This function is invoked
451 * with EEH when device's PCI slot has been permanently disabled.
454 lpfc_scsi_dev_block(struct lpfc_hba
*phba
)
456 struct lpfc_vport
**vports
;
457 struct Scsi_Host
*shost
;
458 struct scsi_device
*sdev
;
459 struct fc_rport
*rport
;
462 vports
= lpfc_create_vport_work_array(phba
);
464 for (i
= 0; i
<= phba
->max_vports
&& vports
[i
] != NULL
; i
++) {
465 shost
= lpfc_shost_from_vport(vports
[i
]);
466 shost_for_each_device(sdev
, shost
) {
467 rport
= starget_to_rport(scsi_target(sdev
));
468 fc_remote_port_delete(rport
);
471 lpfc_destroy_vport_work_array(phba
, vports
);
475 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
476 * @vport: The virtual port for which this call being executed.
477 * @num_to_allocate: The requested number of buffers to allocate.
479 * This routine allocates a scsi buffer for device with SLI-3 interface spec,
480 * the scsi buffer contains all the necessary information needed to initiate
481 * a SCSI I/O. The non-DMAable buffer region contains information to build
482 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
483 * and the initial BPL. In addition to allocating memory, the FCP CMND and
484 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
487 * int - number of scsi buffers that were allocated.
488 * 0 = failure, less than num_to_alloc is a partial failure.
491 lpfc_new_scsi_buf_s3(struct lpfc_vport
*vport
, int num_to_alloc
)
493 struct lpfc_hba
*phba
= vport
->phba
;
494 struct lpfc_scsi_buf
*psb
;
495 struct ulp_bde64
*bpl
;
497 dma_addr_t pdma_phys_fcp_cmd
;
498 dma_addr_t pdma_phys_fcp_rsp
;
499 dma_addr_t pdma_phys_bpl
;
503 for (bcnt
= 0; bcnt
< num_to_alloc
; bcnt
++) {
504 psb
= kzalloc(sizeof(struct lpfc_scsi_buf
), GFP_KERNEL
);
509 * Get memory from the pci pool to map the virt space to pci
510 * bus space for an I/O. The DMA buffer includes space for the
511 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
512 * necessary to support the sg_tablesize.
514 psb
->data
= pci_pool_alloc(phba
->lpfc_scsi_dma_buf_pool
,
515 GFP_KERNEL
, &psb
->dma_handle
);
521 /* Initialize virtual ptrs to dma_buf region. */
522 memset(psb
->data
, 0, phba
->cfg_sg_dma_buf_size
);
524 /* Allocate iotag for psb->cur_iocbq. */
525 iotag
= lpfc_sli_next_iotag(phba
, &psb
->cur_iocbq
);
527 pci_pool_free(phba
->lpfc_scsi_dma_buf_pool
,
528 psb
->data
, psb
->dma_handle
);
532 psb
->cur_iocbq
.iocb_flag
|= LPFC_IO_FCP
;
534 psb
->fcp_cmnd
= psb
->data
;
535 psb
->fcp_rsp
= psb
->data
+ sizeof(struct fcp_cmnd
);
536 psb
->fcp_bpl
= psb
->data
+ sizeof(struct fcp_cmnd
) +
537 sizeof(struct fcp_rsp
);
539 /* Initialize local short-hand pointers. */
541 pdma_phys_fcp_cmd
= psb
->dma_handle
;
542 pdma_phys_fcp_rsp
= psb
->dma_handle
+ sizeof(struct fcp_cmnd
);
543 pdma_phys_bpl
= psb
->dma_handle
+ sizeof(struct fcp_cmnd
) +
544 sizeof(struct fcp_rsp
);
547 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
548 * are sg list bdes. Initialize the first two and leave the
549 * rest for queuecommand.
551 bpl
[0].addrHigh
= le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd
));
552 bpl
[0].addrLow
= le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd
));
553 bpl
[0].tus
.f
.bdeSize
= sizeof(struct fcp_cmnd
);
554 bpl
[0].tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64
;
555 bpl
[0].tus
.w
= le32_to_cpu(bpl
[0].tus
.w
);
557 /* Setup the physical region for the FCP RSP */
558 bpl
[1].addrHigh
= le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp
));
559 bpl
[1].addrLow
= le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp
));
560 bpl
[1].tus
.f
.bdeSize
= sizeof(struct fcp_rsp
);
561 bpl
[1].tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64
;
562 bpl
[1].tus
.w
= le32_to_cpu(bpl
[1].tus
.w
);
565 * Since the IOCB for the FCP I/O is built into this
566 * lpfc_scsi_buf, initialize it with all known data now.
568 iocb
= &psb
->cur_iocbq
.iocb
;
569 iocb
->un
.fcpi64
.bdl
.ulpIoTag32
= 0;
570 if ((phba
->sli_rev
== 3) &&
571 !(phba
->sli3_options
& LPFC_SLI3_BG_ENABLED
)) {
572 /* fill in immediate fcp command BDE */
573 iocb
->un
.fcpi64
.bdl
.bdeFlags
= BUFF_TYPE_BDE_IMMED
;
574 iocb
->un
.fcpi64
.bdl
.bdeSize
= sizeof(struct fcp_cmnd
);
575 iocb
->un
.fcpi64
.bdl
.addrLow
= offsetof(IOCB_t
,
577 iocb
->un
.fcpi64
.bdl
.addrHigh
= 0;
578 iocb
->ulpBdeCount
= 0;
580 /* fill in response BDE */
581 iocb
->unsli3
.fcp_ext
.rbde
.tus
.f
.bdeFlags
=
583 iocb
->unsli3
.fcp_ext
.rbde
.tus
.f
.bdeSize
=
584 sizeof(struct fcp_rsp
);
585 iocb
->unsli3
.fcp_ext
.rbde
.addrLow
=
586 putPaddrLow(pdma_phys_fcp_rsp
);
587 iocb
->unsli3
.fcp_ext
.rbde
.addrHigh
=
588 putPaddrHigh(pdma_phys_fcp_rsp
);
590 iocb
->un
.fcpi64
.bdl
.bdeFlags
= BUFF_TYPE_BLP_64
;
591 iocb
->un
.fcpi64
.bdl
.bdeSize
=
592 (2 * sizeof(struct ulp_bde64
));
593 iocb
->un
.fcpi64
.bdl
.addrLow
=
594 putPaddrLow(pdma_phys_bpl
);
595 iocb
->un
.fcpi64
.bdl
.addrHigh
=
596 putPaddrHigh(pdma_phys_bpl
);
597 iocb
->ulpBdeCount
= 1;
600 iocb
->ulpClass
= CLASS3
;
601 psb
->status
= IOSTAT_SUCCESS
;
602 /* Put it back into the SCSI buffer list */
603 psb
->cur_iocbq
.context1
= psb
;
604 lpfc_release_scsi_buf_s3(phba
, psb
);
612 * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport
613 * @vport: pointer to lpfc vport data structure.
615 * This routine is invoked by the vport cleanup for deletions and the cleanup
616 * for an ndlp on removal.
619 lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport
*vport
)
621 struct lpfc_hba
*phba
= vport
->phba
;
622 struct lpfc_scsi_buf
*psb
, *next_psb
;
623 unsigned long iflag
= 0;
625 spin_lock_irqsave(&phba
->hbalock
, iflag
);
626 spin_lock(&phba
->sli4_hba
.abts_scsi_buf_list_lock
);
627 list_for_each_entry_safe(psb
, next_psb
,
628 &phba
->sli4_hba
.lpfc_abts_scsi_buf_list
, list
) {
629 if (psb
->rdata
&& psb
->rdata
->pnode
630 && psb
->rdata
->pnode
->vport
== vport
)
633 spin_unlock(&phba
->sli4_hba
.abts_scsi_buf_list_lock
);
634 spin_unlock_irqrestore(&phba
->hbalock
, iflag
);
638 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
639 * @phba: pointer to lpfc hba data structure.
640 * @axri: pointer to the fcp xri abort wcqe structure.
642 * This routine is invoked by the worker thread to process a SLI4 fast-path
646 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba
*phba
,
647 struct sli4_wcqe_xri_aborted
*axri
)
649 uint16_t xri
= bf_get(lpfc_wcqe_xa_xri
, axri
);
650 uint16_t rxid
= bf_get(lpfc_wcqe_xa_remote_xid
, axri
);
651 struct lpfc_scsi_buf
*psb
, *next_psb
;
652 unsigned long iflag
= 0;
653 struct lpfc_iocbq
*iocbq
;
655 struct lpfc_nodelist
*ndlp
;
657 struct lpfc_sli_ring
*pring
= &phba
->sli
.ring
[LPFC_ELS_RING
];
659 spin_lock_irqsave(&phba
->hbalock
, iflag
);
660 spin_lock(&phba
->sli4_hba
.abts_scsi_buf_list_lock
);
661 list_for_each_entry_safe(psb
, next_psb
,
662 &phba
->sli4_hba
.lpfc_abts_scsi_buf_list
, list
) {
663 if (psb
->cur_iocbq
.sli4_xritag
== xri
) {
664 list_del(&psb
->list
);
666 psb
->status
= IOSTAT_SUCCESS
;
668 &phba
->sli4_hba
.abts_scsi_buf_list_lock
);
669 if (psb
->rdata
&& psb
->rdata
->pnode
)
670 ndlp
= psb
->rdata
->pnode
;
674 rrq_empty
= list_empty(&phba
->active_rrq_list
);
675 spin_unlock_irqrestore(&phba
->hbalock
, iflag
);
677 lpfc_set_rrq_active(phba
, ndlp
, xri
, rxid
, 1);
678 lpfc_release_scsi_buf_s4(phba
, psb
);
680 lpfc_worker_wake_up(phba
);
684 spin_unlock(&phba
->sli4_hba
.abts_scsi_buf_list_lock
);
685 for (i
= 1; i
<= phba
->sli
.last_iotag
; i
++) {
686 iocbq
= phba
->sli
.iocbq_lookup
[i
];
688 if (!(iocbq
->iocb_flag
& LPFC_IO_FCP
) ||
689 (iocbq
->iocb_flag
& LPFC_IO_LIBDFC
))
691 if (iocbq
->sli4_xritag
!= xri
)
693 psb
= container_of(iocbq
, struct lpfc_scsi_buf
, cur_iocbq
);
695 spin_unlock_irqrestore(&phba
->hbalock
, iflag
);
697 lpfc_worker_wake_up(phba
);
701 spin_unlock_irqrestore(&phba
->hbalock
, iflag
);
705 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
706 * @phba: pointer to lpfc hba data structure.
708 * This routine walks the list of scsi buffers that have been allocated and
709 * repost them to the HBA by using SGL block post. This is needed after a
710 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
711 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
712 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
714 * Returns: 0 = success, non-zero failure.
717 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba
*phba
)
719 struct lpfc_scsi_buf
*psb
;
720 int index
, status
, bcnt
= 0, rcnt
= 0, rc
= 0;
723 for (index
= 0; index
< phba
->sli4_hba
.scsi_xri_cnt
; index
++) {
724 psb
= phba
->sli4_hba
.lpfc_scsi_psb_array
[index
];
726 /* Remove from SCSI buffer list */
727 list_del(&psb
->list
);
728 /* Add it to a local SCSI buffer list */
729 list_add_tail(&psb
->list
, &sblist
);
730 if (++rcnt
== LPFC_NEMBED_MBOX_SGL_CNT
) {
735 /* A hole present in the XRI array, need to skip */
738 if (index
== phba
->sli4_hba
.scsi_xri_cnt
- 1)
739 /* End of XRI array for SCSI buffer, complete */
742 /* Continue until collect up to a nembed page worth of sgls */
745 /* Now, post the SCSI buffer list sgls as a block */
746 status
= lpfc_sli4_post_scsi_sgl_block(phba
, &sblist
, bcnt
);
747 /* Reset SCSI buffer count for next round of posting */
749 while (!list_empty(&sblist
)) {
750 list_remove_head(&sblist
, psb
, struct lpfc_scsi_buf
,
753 /* Put this back on the abort scsi list */
758 psb
->status
= IOSTAT_SUCCESS
;
760 /* Put it back into the SCSI buffer list */
761 lpfc_release_scsi_buf_s4(phba
, psb
);
768 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
769 * @vport: The virtual port for which this call being executed.
770 * @num_to_allocate: The requested number of buffers to allocate.
772 * This routine allocates a scsi buffer for device with SLI-4 interface spec,
773 * the scsi buffer contains all the necessary information needed to initiate
777 * int - number of scsi buffers that were allocated.
778 * 0 = failure, less than num_to_alloc is a partial failure.
781 lpfc_new_scsi_buf_s4(struct lpfc_vport
*vport
, int num_to_alloc
)
783 struct lpfc_hba
*phba
= vport
->phba
;
784 struct lpfc_scsi_buf
*psb
;
785 struct sli4_sge
*sgl
;
787 dma_addr_t pdma_phys_fcp_cmd
;
788 dma_addr_t pdma_phys_fcp_rsp
;
789 dma_addr_t pdma_phys_bpl
, pdma_phys_bpl1
;
790 uint16_t iotag
, last_xritag
= NO_XRI
;
791 int status
= 0, index
;
793 int non_sequential_xri
= 0;
796 for (bcnt
= 0; bcnt
< num_to_alloc
; bcnt
++) {
797 psb
= kzalloc(sizeof(struct lpfc_scsi_buf
), GFP_KERNEL
);
802 * Get memory from the pci pool to map the virt space to pci bus
803 * space for an I/O. The DMA buffer includes space for the
804 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
805 * necessary to support the sg_tablesize.
807 psb
->data
= pci_pool_alloc(phba
->lpfc_scsi_dma_buf_pool
,
808 GFP_KERNEL
, &psb
->dma_handle
);
814 /* Initialize virtual ptrs to dma_buf region. */
815 memset(psb
->data
, 0, phba
->cfg_sg_dma_buf_size
);
817 /* Allocate iotag for psb->cur_iocbq. */
818 iotag
= lpfc_sli_next_iotag(phba
, &psb
->cur_iocbq
);
820 pci_pool_free(phba
->lpfc_scsi_dma_buf_pool
,
821 psb
->data
, psb
->dma_handle
);
826 psb
->cur_iocbq
.sli4_xritag
= lpfc_sli4_next_xritag(phba
);
827 if (psb
->cur_iocbq
.sli4_xritag
== NO_XRI
) {
828 pci_pool_free(phba
->lpfc_scsi_dma_buf_pool
,
829 psb
->data
, psb
->dma_handle
);
833 if (last_xritag
!= NO_XRI
834 && psb
->cur_iocbq
.sli4_xritag
!= (last_xritag
+1)) {
835 non_sequential_xri
= 1;
837 list_add_tail(&psb
->list
, &sblist
);
838 last_xritag
= psb
->cur_iocbq
.sli4_xritag
;
840 index
= phba
->sli4_hba
.scsi_xri_cnt
++;
841 psb
->cur_iocbq
.iocb_flag
|= LPFC_IO_FCP
;
843 psb
->fcp_bpl
= psb
->data
;
844 psb
->fcp_cmnd
= (psb
->data
+ phba
->cfg_sg_dma_buf_size
)
845 - (sizeof(struct fcp_cmnd
) + sizeof(struct fcp_rsp
));
846 psb
->fcp_rsp
= (struct fcp_rsp
*)((uint8_t *)psb
->fcp_cmnd
+
847 sizeof(struct fcp_cmnd
));
849 /* Initialize local short-hand pointers. */
850 sgl
= (struct sli4_sge
*)psb
->fcp_bpl
;
851 pdma_phys_bpl
= psb
->dma_handle
;
853 (psb
->dma_handle
+ phba
->cfg_sg_dma_buf_size
)
854 - (sizeof(struct fcp_cmnd
) + sizeof(struct fcp_rsp
));
855 pdma_phys_fcp_rsp
= pdma_phys_fcp_cmd
+ sizeof(struct fcp_cmnd
);
858 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
859 * are sg list bdes. Initialize the first two and leave the
860 * rest for queuecommand.
862 sgl
->addr_hi
= cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd
));
863 sgl
->addr_lo
= cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd
));
864 bf_set(lpfc_sli4_sge_last
, sgl
, 0);
865 sgl
->word2
= cpu_to_le32(sgl
->word2
);
866 sgl
->sge_len
= cpu_to_le32(sizeof(struct fcp_cmnd
));
869 /* Setup the physical region for the FCP RSP */
870 sgl
->addr_hi
= cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp
));
871 sgl
->addr_lo
= cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp
));
872 bf_set(lpfc_sli4_sge_last
, sgl
, 1);
873 sgl
->word2
= cpu_to_le32(sgl
->word2
);
874 sgl
->sge_len
= cpu_to_le32(sizeof(struct fcp_rsp
));
877 * Since the IOCB for the FCP I/O is built into this
878 * lpfc_scsi_buf, initialize it with all known data now.
880 iocb
= &psb
->cur_iocbq
.iocb
;
881 iocb
->un
.fcpi64
.bdl
.ulpIoTag32
= 0;
882 iocb
->un
.fcpi64
.bdl
.bdeFlags
= BUFF_TYPE_BDE_64
;
883 /* setting the BLP size to 2 * sizeof BDE may not be correct.
884 * We are setting the bpl to point to out sgl. An sgl's
885 * entries are 16 bytes, a bpl entries are 12 bytes.
887 iocb
->un
.fcpi64
.bdl
.bdeSize
= sizeof(struct fcp_cmnd
);
888 iocb
->un
.fcpi64
.bdl
.addrLow
= putPaddrLow(pdma_phys_fcp_cmd
);
889 iocb
->un
.fcpi64
.bdl
.addrHigh
= putPaddrHigh(pdma_phys_fcp_cmd
);
890 iocb
->ulpBdeCount
= 1;
892 iocb
->ulpClass
= CLASS3
;
893 psb
->cur_iocbq
.context1
= psb
;
894 if (phba
->cfg_sg_dma_buf_size
> SGL_PAGE_SIZE
)
895 pdma_phys_bpl1
= pdma_phys_bpl
+ SGL_PAGE_SIZE
;
898 psb
->dma_phys_bpl
= pdma_phys_bpl
;
899 phba
->sli4_hba
.lpfc_scsi_psb_array
[index
] = psb
;
900 if (non_sequential_xri
) {
901 status
= lpfc_sli4_post_sgl(phba
, pdma_phys_bpl
,
903 psb
->cur_iocbq
.sli4_xritag
);
905 /* Put this back on the abort scsi list */
909 psb
->status
= IOSTAT_SUCCESS
;
911 /* Put it back into the SCSI buffer list */
912 lpfc_release_scsi_buf_s4(phba
, psb
);
917 status
= lpfc_sli4_post_scsi_sgl_block(phba
, &sblist
, bcnt
);
918 /* Reset SCSI buffer count for next round of posting */
919 while (!list_empty(&sblist
)) {
920 list_remove_head(&sblist
, psb
, struct lpfc_scsi_buf
,
923 /* Put this back on the abort scsi list */
927 psb
->status
= IOSTAT_SUCCESS
;
929 /* Put it back into the SCSI buffer list */
930 lpfc_release_scsi_buf_s4(phba
, psb
);
934 return bcnt
+ non_sequential_xri
;
938 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
939 * @vport: The virtual port for which this call being executed.
940 * @num_to_allocate: The requested number of buffers to allocate.
942 * This routine wraps the actual SCSI buffer allocator function pointer from
943 * the lpfc_hba struct.
946 * int - number of scsi buffers that were allocated.
947 * 0 = failure, less than num_to_alloc is a partial failure.
950 lpfc_new_scsi_buf(struct lpfc_vport
*vport
, int num_to_alloc
)
952 return vport
->phba
->lpfc_new_scsi_buf(vport
, num_to_alloc
);
956 * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
957 * @phba: The HBA for which this call is being executed.
959 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
960 * and returns to caller.
964 * Pointer to lpfc_scsi_buf - Success
966 static struct lpfc_scsi_buf
*
967 lpfc_get_scsi_buf_s3(struct lpfc_hba
*phba
, struct lpfc_nodelist
*ndlp
)
969 struct lpfc_scsi_buf
* lpfc_cmd
= NULL
;
970 struct list_head
*scsi_buf_list
= &phba
->lpfc_scsi_buf_list
;
971 unsigned long iflag
= 0;
973 spin_lock_irqsave(&phba
->scsi_buf_list_lock
, iflag
);
974 list_remove_head(scsi_buf_list
, lpfc_cmd
, struct lpfc_scsi_buf
, list
);
976 lpfc_cmd
->seg_cnt
= 0;
977 lpfc_cmd
->nonsg_phys
= 0;
978 lpfc_cmd
->prot_seg_cnt
= 0;
980 spin_unlock_irqrestore(&phba
->scsi_buf_list_lock
, iflag
);
984 * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
985 * @phba: The HBA for which this call is being executed.
987 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
988 * and returns to caller.
992 * Pointer to lpfc_scsi_buf - Success
994 static struct lpfc_scsi_buf
*
995 lpfc_get_scsi_buf_s4(struct lpfc_hba
*phba
, struct lpfc_nodelist
*ndlp
)
997 struct lpfc_scsi_buf
*lpfc_cmd
;
998 unsigned long iflag
= 0;
1001 spin_lock_irqsave(&phba
->scsi_buf_list_lock
, iflag
);
1002 list_for_each_entry(lpfc_cmd
, &phba
->lpfc_scsi_buf_list
,
1004 if (lpfc_test_rrq_active(phba
, ndlp
,
1005 lpfc_cmd
->cur_iocbq
.sli4_xritag
))
1007 list_del(&lpfc_cmd
->list
);
1009 lpfc_cmd
->seg_cnt
= 0;
1010 lpfc_cmd
->nonsg_phys
= 0;
1011 lpfc_cmd
->prot_seg_cnt
= 0;
1014 spin_unlock_irqrestore(&phba
->scsi_buf_list_lock
,
1022 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
1023 * @phba: The HBA for which this call is being executed.
1025 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
1026 * and returns to caller.
1030 * Pointer to lpfc_scsi_buf - Success
1032 static struct lpfc_scsi_buf
*
1033 lpfc_get_scsi_buf(struct lpfc_hba
*phba
, struct lpfc_nodelist
*ndlp
)
1035 return phba
->lpfc_get_scsi_buf(phba
, ndlp
);
1039 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
1040 * @phba: The Hba for which this call is being executed.
1041 * @psb: The scsi buffer which is being released.
1043 * This routine releases @psb scsi buffer by adding it to tail of @phba
1044 * lpfc_scsi_buf_list list.
1047 lpfc_release_scsi_buf_s3(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*psb
)
1049 unsigned long iflag
= 0;
1051 spin_lock_irqsave(&phba
->scsi_buf_list_lock
, iflag
);
1053 list_add_tail(&psb
->list
, &phba
->lpfc_scsi_buf_list
);
1054 spin_unlock_irqrestore(&phba
->scsi_buf_list_lock
, iflag
);
1058 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
1059 * @phba: The Hba for which this call is being executed.
1060 * @psb: The scsi buffer which is being released.
1062 * This routine releases @psb scsi buffer by adding it to tail of @phba
1063 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
1064 * and cannot be reused for at least RA_TOV amount of time if it was
1068 lpfc_release_scsi_buf_s4(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*psb
)
1070 unsigned long iflag
= 0;
1072 if (psb
->exch_busy
) {
1073 spin_lock_irqsave(&phba
->sli4_hba
.abts_scsi_buf_list_lock
,
1076 list_add_tail(&psb
->list
,
1077 &phba
->sli4_hba
.lpfc_abts_scsi_buf_list
);
1078 spin_unlock_irqrestore(&phba
->sli4_hba
.abts_scsi_buf_list_lock
,
1082 spin_lock_irqsave(&phba
->scsi_buf_list_lock
, iflag
);
1084 list_add_tail(&psb
->list
, &phba
->lpfc_scsi_buf_list
);
1085 spin_unlock_irqrestore(&phba
->scsi_buf_list_lock
, iflag
);
1090 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
1091 * @phba: The Hba for which this call is being executed.
1092 * @psb: The scsi buffer which is being released.
1094 * This routine releases @psb scsi buffer by adding it to tail of @phba
1095 * lpfc_scsi_buf_list list.
1098 lpfc_release_scsi_buf(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*psb
)
1101 phba
->lpfc_release_scsi_buf(phba
, psb
);
1105 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
1106 * @phba: The Hba for which this call is being executed.
1107 * @lpfc_cmd: The scsi buffer which is going to be mapped.
1109 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1110 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
1111 * through sg elements and format the bdea. This routine also initializes all
1112 * IOCB fields which are dependent on scsi command request buffer.
1119 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*lpfc_cmd
)
1121 struct scsi_cmnd
*scsi_cmnd
= lpfc_cmd
->pCmd
;
1122 struct scatterlist
*sgel
= NULL
;
1123 struct fcp_cmnd
*fcp_cmnd
= lpfc_cmd
->fcp_cmnd
;
1124 struct ulp_bde64
*bpl
= lpfc_cmd
->fcp_bpl
;
1125 struct lpfc_iocbq
*iocbq
= &lpfc_cmd
->cur_iocbq
;
1126 IOCB_t
*iocb_cmd
= &lpfc_cmd
->cur_iocbq
.iocb
;
1127 struct ulp_bde64
*data_bde
= iocb_cmd
->unsli3
.fcp_ext
.dbde
;
1128 dma_addr_t physaddr
;
1129 uint32_t num_bde
= 0;
1130 int nseg
, datadir
= scsi_cmnd
->sc_data_direction
;
1133 * There are three possibilities here - use scatter-gather segment, use
1134 * the single mapping, or neither. Start the lpfc command prep by
1135 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1139 if (scsi_sg_count(scsi_cmnd
)) {
1141 * The driver stores the segment count returned from pci_map_sg
1142 * because this a count of dma-mappings used to map the use_sg
1143 * pages. They are not guaranteed to be the same for those
1144 * architectures that implement an IOMMU.
1147 nseg
= dma_map_sg(&phba
->pcidev
->dev
, scsi_sglist(scsi_cmnd
),
1148 scsi_sg_count(scsi_cmnd
), datadir
);
1149 if (unlikely(!nseg
))
1152 lpfc_cmd
->seg_cnt
= nseg
;
1153 if (lpfc_cmd
->seg_cnt
> phba
->cfg_sg_seg_cnt
) {
1154 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1155 "9064 BLKGRD: %s: Too many sg segments from "
1156 "dma_map_sg. Config %d, seg_cnt %d\n",
1157 __func__
, phba
->cfg_sg_seg_cnt
,
1159 scsi_dma_unmap(scsi_cmnd
);
1164 * The driver established a maximum scatter-gather segment count
1165 * during probe that limits the number of sg elements in any
1166 * single scsi command. Just run through the seg_cnt and format
1168 * When using SLI-3 the driver will try to fit all the BDEs into
1169 * the IOCB. If it can't then the BDEs get added to a BPL as it
1170 * does for SLI-2 mode.
1172 scsi_for_each_sg(scsi_cmnd
, sgel
, nseg
, num_bde
) {
1173 physaddr
= sg_dma_address(sgel
);
1174 if (phba
->sli_rev
== 3 &&
1175 !(phba
->sli3_options
& LPFC_SLI3_BG_ENABLED
) &&
1176 !(iocbq
->iocb_flag
& DSS_SECURITY_OP
) &&
1177 nseg
<= LPFC_EXT_DATA_BDE_COUNT
) {
1178 data_bde
->tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64
;
1179 data_bde
->tus
.f
.bdeSize
= sg_dma_len(sgel
);
1180 data_bde
->addrLow
= putPaddrLow(physaddr
);
1181 data_bde
->addrHigh
= putPaddrHigh(physaddr
);
1184 bpl
->tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64
;
1185 bpl
->tus
.f
.bdeSize
= sg_dma_len(sgel
);
1186 bpl
->tus
.w
= le32_to_cpu(bpl
->tus
.w
);
1188 le32_to_cpu(putPaddrLow(physaddr
));
1190 le32_to_cpu(putPaddrHigh(physaddr
));
1197 * Finish initializing those IOCB fields that are dependent on the
1198 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
1199 * explicitly reinitialized and for SLI-3 the extended bde count is
1200 * explicitly reinitialized since all iocb memory resources are reused.
1202 if (phba
->sli_rev
== 3 &&
1203 !(phba
->sli3_options
& LPFC_SLI3_BG_ENABLED
) &&
1204 !(iocbq
->iocb_flag
& DSS_SECURITY_OP
)) {
1205 if (num_bde
> LPFC_EXT_DATA_BDE_COUNT
) {
1207 * The extended IOCB format can only fit 3 BDE or a BPL.
1208 * This I/O has more than 3 BDE so the 1st data bde will
1209 * be a BPL that is filled in here.
1211 physaddr
= lpfc_cmd
->dma_handle
;
1212 data_bde
->tus
.f
.bdeFlags
= BUFF_TYPE_BLP_64
;
1213 data_bde
->tus
.f
.bdeSize
= (num_bde
*
1214 sizeof(struct ulp_bde64
));
1215 physaddr
+= (sizeof(struct fcp_cmnd
) +
1216 sizeof(struct fcp_rsp
) +
1217 (2 * sizeof(struct ulp_bde64
)));
1218 data_bde
->addrHigh
= putPaddrHigh(physaddr
);
1219 data_bde
->addrLow
= putPaddrLow(physaddr
);
1220 /* ebde count includes the response bde and data bpl */
1221 iocb_cmd
->unsli3
.fcp_ext
.ebde_count
= 2;
1223 /* ebde count includes the response bde and data bdes */
1224 iocb_cmd
->unsli3
.fcp_ext
.ebde_count
= (num_bde
+ 1);
1227 iocb_cmd
->un
.fcpi64
.bdl
.bdeSize
=
1228 ((num_bde
+ 2) * sizeof(struct ulp_bde64
));
1229 iocb_cmd
->unsli3
.fcp_ext
.ebde_count
= (num_bde
+ 1);
1231 fcp_cmnd
->fcpDl
= cpu_to_be32(scsi_bufflen(scsi_cmnd
));
1234 * Due to difference in data length between DIF/non-DIF paths,
1235 * we need to set word 4 of IOCB here
1237 iocb_cmd
->un
.fcpi
.fcpi_parm
= scsi_bufflen(scsi_cmnd
);
1242 * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it
1243 * @sc: The SCSI command to examine
1244 * @txopt: (out) BlockGuard operation for transmitted data
1245 * @rxopt: (out) BlockGuard operation for received data
1247 * Returns: zero on success; non-zero if tx and/or rx op cannot be determined
1251 lpfc_sc_to_bg_opcodes(struct lpfc_hba
*phba
, struct scsi_cmnd
*sc
,
1252 uint8_t *txop
, uint8_t *rxop
)
1254 uint8_t guard_type
= scsi_host_get_guard(sc
->device
->host
);
1257 if (guard_type
== SHOST_DIX_GUARD_IP
) {
1258 switch (scsi_get_prot_op(sc
)) {
1259 case SCSI_PROT_READ_INSERT
:
1260 case SCSI_PROT_WRITE_STRIP
:
1261 *txop
= BG_OP_IN_CSUM_OUT_NODIF
;
1262 *rxop
= BG_OP_IN_NODIF_OUT_CSUM
;
1265 case SCSI_PROT_READ_STRIP
:
1266 case SCSI_PROT_WRITE_INSERT
:
1267 *txop
= BG_OP_IN_NODIF_OUT_CRC
;
1268 *rxop
= BG_OP_IN_CRC_OUT_NODIF
;
1271 case SCSI_PROT_READ_PASS
:
1272 case SCSI_PROT_WRITE_PASS
:
1273 *txop
= BG_OP_IN_CSUM_OUT_CRC
;
1274 *rxop
= BG_OP_IN_CRC_OUT_CSUM
;
1277 case SCSI_PROT_NORMAL
:
1279 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1280 "9063 BLKGRD: Bad op/guard:%d/%d combination\n",
1281 scsi_get_prot_op(sc
), guard_type
);
1286 } else if (guard_type
== SHOST_DIX_GUARD_CRC
) {
1287 switch (scsi_get_prot_op(sc
)) {
1288 case SCSI_PROT_READ_STRIP
:
1289 case SCSI_PROT_WRITE_INSERT
:
1290 *txop
= BG_OP_IN_NODIF_OUT_CRC
;
1291 *rxop
= BG_OP_IN_CRC_OUT_NODIF
;
1294 case SCSI_PROT_READ_PASS
:
1295 case SCSI_PROT_WRITE_PASS
:
1296 *txop
= BG_OP_IN_CRC_OUT_CRC
;
1297 *rxop
= BG_OP_IN_CRC_OUT_CRC
;
1300 case SCSI_PROT_READ_INSERT
:
1301 case SCSI_PROT_WRITE_STRIP
:
1302 case SCSI_PROT_NORMAL
:
1304 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1305 "9075 BLKGRD: Bad op/guard:%d/%d combination\n",
1306 scsi_get_prot_op(sc
), guard_type
);
1311 /* unsupported format */
1318 struct scsi_dif_tuple
{
1319 __be16 guard_tag
; /* Checksum */
1320 __be16 app_tag
; /* Opaque storage */
1321 __be32 ref_tag
; /* Target LBA or indirect LBA */
1324 static inline unsigned
1325 lpfc_cmd_blksize(struct scsi_cmnd
*sc
)
1327 return sc
->device
->sector_size
;
1331 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
1332 * @sc: in: SCSI command
1333 * @apptagmask: out: app tag mask
1334 * @apptagval: out: app tag value
1335 * @reftag: out: ref tag (reference tag)
1338 * Extract DIF parameters from the command if possible. Otherwise,
1339 * use default parameters.
1343 lpfc_get_cmd_dif_parms(struct scsi_cmnd
*sc
, uint16_t *apptagmask
,
1344 uint16_t *apptagval
, uint32_t *reftag
)
1346 struct scsi_dif_tuple
*spt
;
1347 unsigned char op
= scsi_get_prot_op(sc
);
1348 unsigned int protcnt
= scsi_prot_sg_count(sc
);
1351 if (protcnt
&& (op
== SCSI_PROT_WRITE_STRIP
||
1352 op
== SCSI_PROT_WRITE_PASS
)) {
1355 spt
= page_address(sg_page(scsi_prot_sglist(sc
))) +
1356 scsi_prot_sglist(sc
)[0].offset
;
1359 *reftag
= cpu_to_be32(spt
->ref_tag
);
1362 /* SBC defines ref tag to be lower 32bits of LBA */
1363 *reftag
= (uint32_t) (0xffffffff & scsi_get_lba(sc
));
1370 * This function sets up buffer list for protection groups of
1371 * type LPFC_PG_TYPE_NO_DIF
1373 * This is usually used when the HBA is instructed to generate
1374 * DIFs and insert them into data stream (or strip DIF from
1375 * incoming data stream)
1377 * The buffer list consists of just one protection group described
1379 * +-------------------------+
1380 * start of prot group --> | PDE_5 |
1381 * +-------------------------+
1383 * +-------------------------+
1385 * +-------------------------+
1386 * |more Data BDE's ... (opt)|
1387 * +-------------------------+
1389 * @sc: pointer to scsi command we're working on
1390 * @bpl: pointer to buffer list for protection groups
1391 * @datacnt: number of segments of data that have been dma mapped
1393 * Note: Data s/g buffers have been dma mapped
1396 lpfc_bg_setup_bpl(struct lpfc_hba
*phba
, struct scsi_cmnd
*sc
,
1397 struct ulp_bde64
*bpl
, int datasegcnt
)
1399 struct scatterlist
*sgde
= NULL
; /* s/g data entry */
1400 struct lpfc_pde5
*pde5
= NULL
;
1401 struct lpfc_pde6
*pde6
= NULL
;
1402 dma_addr_t physaddr
;
1403 int i
= 0, num_bde
= 0, status
;
1404 int datadir
= sc
->sc_data_direction
;
1407 uint16_t apptagmask
, apptagval
;
1410 status
= lpfc_sc_to_bg_opcodes(phba
, sc
, &txop
, &rxop
);
1414 /* extract some info from the scsi command for pde*/
1415 blksize
= lpfc_cmd_blksize(sc
);
1416 lpfc_get_cmd_dif_parms(sc
, &apptagmask
, &apptagval
, &reftag
);
1418 /* setup PDE5 with what we have */
1419 pde5
= (struct lpfc_pde5
*) bpl
;
1420 memset(pde5
, 0, sizeof(struct lpfc_pde5
));
1421 bf_set(pde5_type
, pde5
, LPFC_PDE5_DESCRIPTOR
);
1422 pde5
->reftag
= reftag
;
1424 /* Endianness conversion if necessary for PDE5 */
1425 pde5
->word0
= cpu_to_le32(pde5
->word0
);
1426 pde5
->reftag
= cpu_to_le32(pde5
->reftag
);
1428 /* advance bpl and increment bde count */
1431 pde6
= (struct lpfc_pde6
*) bpl
;
1433 /* setup PDE6 with the rest of the info */
1434 memset(pde6
, 0, sizeof(struct lpfc_pde6
));
1435 bf_set(pde6_type
, pde6
, LPFC_PDE6_DESCRIPTOR
);
1436 bf_set(pde6_optx
, pde6
, txop
);
1437 bf_set(pde6_oprx
, pde6
, rxop
);
1438 if (datadir
== DMA_FROM_DEVICE
) {
1439 bf_set(pde6_ce
, pde6
, 1);
1440 bf_set(pde6_re
, pde6
, 1);
1441 bf_set(pde6_ae
, pde6
, 1);
1443 bf_set(pde6_ai
, pde6
, 1);
1444 bf_set(pde6_apptagval
, pde6
, apptagval
);
1446 /* Endianness conversion if necessary for PDE6 */
1447 pde6
->word0
= cpu_to_le32(pde6
->word0
);
1448 pde6
->word1
= cpu_to_le32(pde6
->word1
);
1449 pde6
->word2
= cpu_to_le32(pde6
->word2
);
1451 /* advance bpl and increment bde count */
1455 /* assumption: caller has already run dma_map_sg on command data */
1456 scsi_for_each_sg(sc
, sgde
, datasegcnt
, i
) {
1457 physaddr
= sg_dma_address(sgde
);
1458 bpl
->addrLow
= le32_to_cpu(putPaddrLow(physaddr
));
1459 bpl
->addrHigh
= le32_to_cpu(putPaddrHigh(physaddr
));
1460 bpl
->tus
.f
.bdeSize
= sg_dma_len(sgde
);
1461 if (datadir
== DMA_TO_DEVICE
)
1462 bpl
->tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64
;
1464 bpl
->tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64I
;
1465 bpl
->tus
.w
= le32_to_cpu(bpl
->tus
.w
);
1475 * This function sets up buffer list for protection groups of
1476 * type LPFC_PG_TYPE_DIF_BUF
1478 * This is usually used when DIFs are in their own buffers,
1479 * separate from the data. The HBA can then by instructed
1480 * to place the DIFs in the outgoing stream. For read operations,
1481 * The HBA could extract the DIFs and place it in DIF buffers.
1483 * The buffer list for this type consists of one or more of the
1484 * protection groups described below:
1485 * +-------------------------+
1486 * start of first prot group --> | PDE_5 |
1487 * +-------------------------+
1489 * +-------------------------+
1490 * | PDE_7 (Prot BDE) |
1491 * +-------------------------+
1493 * +-------------------------+
1494 * |more Data BDE's ... (opt)|
1495 * +-------------------------+
1496 * start of new prot group --> | PDE_5 |
1497 * +-------------------------+
1499 * +-------------------------+
1501 * @sc: pointer to scsi command we're working on
1502 * @bpl: pointer to buffer list for protection groups
1503 * @datacnt: number of segments of data that have been dma mapped
1504 * @protcnt: number of segment of protection data that have been dma mapped
1506 * Note: It is assumed that both data and protection s/g buffers have been
1510 lpfc_bg_setup_bpl_prot(struct lpfc_hba
*phba
, struct scsi_cmnd
*sc
,
1511 struct ulp_bde64
*bpl
, int datacnt
, int protcnt
)
1513 struct scatterlist
*sgde
= NULL
; /* s/g data entry */
1514 struct scatterlist
*sgpe
= NULL
; /* s/g prot entry */
1515 struct lpfc_pde5
*pde5
= NULL
;
1516 struct lpfc_pde6
*pde6
= NULL
;
1517 struct lpfc_pde7
*pde7
= NULL
;
1518 dma_addr_t dataphysaddr
, protphysaddr
;
1519 unsigned short curr_data
= 0, curr_prot
= 0;
1520 unsigned int split_offset
;
1521 unsigned int protgroup_len
, protgroup_offset
= 0, protgroup_remainder
;
1522 unsigned int protgrp_blks
, protgrp_bytes
;
1523 unsigned int remainder
, subtotal
;
1525 int datadir
= sc
->sc_data_direction
;
1526 unsigned char pgdone
= 0, alldone
= 0;
1529 uint16_t apptagmask
, apptagval
;
1533 sgpe
= scsi_prot_sglist(sc
);
1534 sgde
= scsi_sglist(sc
);
1536 if (!sgpe
|| !sgde
) {
1537 lpfc_printf_log(phba
, KERN_ERR
, LOG_FCP
,
1538 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
1543 status
= lpfc_sc_to_bg_opcodes(phba
, sc
, &txop
, &rxop
);
1547 /* extract some info from the scsi command */
1548 blksize
= lpfc_cmd_blksize(sc
);
1549 lpfc_get_cmd_dif_parms(sc
, &apptagmask
, &apptagval
, &reftag
);
1553 /* setup PDE5 with what we have */
1554 pde5
= (struct lpfc_pde5
*) bpl
;
1555 memset(pde5
, 0, sizeof(struct lpfc_pde5
));
1556 bf_set(pde5_type
, pde5
, LPFC_PDE5_DESCRIPTOR
);
1557 pde5
->reftag
= reftag
;
1559 /* Endianness conversion if necessary for PDE5 */
1560 pde5
->word0
= cpu_to_le32(pde5
->word0
);
1561 pde5
->reftag
= cpu_to_le32(pde5
->reftag
);
1563 /* advance bpl and increment bde count */
1566 pde6
= (struct lpfc_pde6
*) bpl
;
1568 /* setup PDE6 with the rest of the info */
1569 memset(pde6
, 0, sizeof(struct lpfc_pde6
));
1570 bf_set(pde6_type
, pde6
, LPFC_PDE6_DESCRIPTOR
);
1571 bf_set(pde6_optx
, pde6
, txop
);
1572 bf_set(pde6_oprx
, pde6
, rxop
);
1573 bf_set(pde6_ce
, pde6
, 1);
1574 bf_set(pde6_re
, pde6
, 1);
1575 bf_set(pde6_ae
, pde6
, 1);
1576 bf_set(pde6_ai
, pde6
, 1);
1577 bf_set(pde6_apptagval
, pde6
, apptagval
);
1579 /* Endianness conversion if necessary for PDE6 */
1580 pde6
->word0
= cpu_to_le32(pde6
->word0
);
1581 pde6
->word1
= cpu_to_le32(pde6
->word1
);
1582 pde6
->word2
= cpu_to_le32(pde6
->word2
);
1584 /* advance bpl and increment bde count */
1588 /* setup the first BDE that points to protection buffer */
1589 protphysaddr
= sg_dma_address(sgpe
) + protgroup_offset
;
1590 protgroup_len
= sg_dma_len(sgpe
) - protgroup_offset
;
1592 /* must be integer multiple of the DIF block length */
1593 BUG_ON(protgroup_len
% 8);
1595 pde7
= (struct lpfc_pde7
*) bpl
;
1596 memset(pde7
, 0, sizeof(struct lpfc_pde7
));
1597 bf_set(pde7_type
, pde7
, LPFC_PDE7_DESCRIPTOR
);
1599 pde7
->addrHigh
= le32_to_cpu(putPaddrLow(protphysaddr
));
1600 pde7
->addrLow
= le32_to_cpu(putPaddrHigh(protphysaddr
));
1602 protgrp_blks
= protgroup_len
/ 8;
1603 protgrp_bytes
= protgrp_blks
* blksize
;
1605 /* check if this pde is crossing the 4K boundary; if so split */
1606 if ((pde7
->addrLow
& 0xfff) + protgroup_len
> 0x1000) {
1607 protgroup_remainder
= 0x1000 - (pde7
->addrLow
& 0xfff);
1608 protgroup_offset
+= protgroup_remainder
;
1609 protgrp_blks
= protgroup_remainder
/ 8;
1610 protgrp_bytes
= protgroup_remainder
* blksize
;
1612 protgroup_offset
= 0;
1618 /* setup BDE's for data blocks associated with DIF data */
1620 subtotal
= 0; /* total bytes processed for current prot grp */
1623 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1624 "9065 BLKGRD:%s Invalid data segment\n",
1629 dataphysaddr
= sg_dma_address(sgde
) + split_offset
;
1630 bpl
->addrLow
= le32_to_cpu(putPaddrLow(dataphysaddr
));
1631 bpl
->addrHigh
= le32_to_cpu(putPaddrHigh(dataphysaddr
));
1633 remainder
= sg_dma_len(sgde
) - split_offset
;
1635 if ((subtotal
+ remainder
) <= protgrp_bytes
) {
1636 /* we can use this whole buffer */
1637 bpl
->tus
.f
.bdeSize
= remainder
;
1640 if ((subtotal
+ remainder
) == protgrp_bytes
)
1643 /* must split this buffer with next prot grp */
1644 bpl
->tus
.f
.bdeSize
= protgrp_bytes
- subtotal
;
1645 split_offset
+= bpl
->tus
.f
.bdeSize
;
1648 subtotal
+= bpl
->tus
.f
.bdeSize
;
1650 if (datadir
== DMA_TO_DEVICE
)
1651 bpl
->tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64
;
1653 bpl
->tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64I
;
1654 bpl
->tus
.w
= le32_to_cpu(bpl
->tus
.w
);
1662 /* Move to the next s/g segment if possible */
1663 sgde
= sg_next(sgde
);
1667 if (protgroup_offset
) {
1668 /* update the reference tag */
1669 reftag
+= protgrp_blks
;
1675 if (curr_prot
== protcnt
) {
1677 } else if (curr_prot
< protcnt
) {
1678 /* advance to next prot buffer */
1679 sgpe
= sg_next(sgpe
);
1682 /* update the reference tag */
1683 reftag
+= protgrp_blks
;
1685 /* if we're here, we have a bug */
1686 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1687 "9054 BLKGRD: bug in %s\n", __func__
);
1698 * Given a SCSI command that supports DIF, determine composition of protection
1699 * groups involved in setting up buffer lists
1702 * for DIF (for both read and write)
1705 lpfc_prot_group_type(struct lpfc_hba
*phba
, struct scsi_cmnd
*sc
)
1707 int ret
= LPFC_PG_TYPE_INVALID
;
1708 unsigned char op
= scsi_get_prot_op(sc
);
1711 case SCSI_PROT_READ_STRIP
:
1712 case SCSI_PROT_WRITE_INSERT
:
1713 ret
= LPFC_PG_TYPE_NO_DIF
;
1715 case SCSI_PROT_READ_INSERT
:
1716 case SCSI_PROT_WRITE_STRIP
:
1717 case SCSI_PROT_READ_PASS
:
1718 case SCSI_PROT_WRITE_PASS
:
1719 ret
= LPFC_PG_TYPE_DIF_BUF
;
1722 lpfc_printf_log(phba
, KERN_ERR
, LOG_FCP
,
1723 "9021 Unsupported protection op:%d\n", op
);
1731 * This is the protection/DIF aware version of
1732 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
1733 * two functions eventually, but for now, it's here
1736 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba
*phba
,
1737 struct lpfc_scsi_buf
*lpfc_cmd
)
1739 struct scsi_cmnd
*scsi_cmnd
= lpfc_cmd
->pCmd
;
1740 struct fcp_cmnd
*fcp_cmnd
= lpfc_cmd
->fcp_cmnd
;
1741 struct ulp_bde64
*bpl
= lpfc_cmd
->fcp_bpl
;
1742 IOCB_t
*iocb_cmd
= &lpfc_cmd
->cur_iocbq
.iocb
;
1743 uint32_t num_bde
= 0;
1744 int datasegcnt
, protsegcnt
, datadir
= scsi_cmnd
->sc_data_direction
;
1745 int prot_group_type
= 0;
1750 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
1751 * fcp_rsp regions to the first data bde entry
1754 if (scsi_sg_count(scsi_cmnd
)) {
1756 * The driver stores the segment count returned from pci_map_sg
1757 * because this a count of dma-mappings used to map the use_sg
1758 * pages. They are not guaranteed to be the same for those
1759 * architectures that implement an IOMMU.
1761 datasegcnt
= dma_map_sg(&phba
->pcidev
->dev
,
1762 scsi_sglist(scsi_cmnd
),
1763 scsi_sg_count(scsi_cmnd
), datadir
);
1764 if (unlikely(!datasegcnt
))
1767 lpfc_cmd
->seg_cnt
= datasegcnt
;
1768 if (lpfc_cmd
->seg_cnt
> phba
->cfg_sg_seg_cnt
) {
1769 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1770 "9067 BLKGRD: %s: Too many sg segments"
1771 " from dma_map_sg. Config %d, seg_cnt"
1773 __func__
, phba
->cfg_sg_seg_cnt
,
1775 scsi_dma_unmap(scsi_cmnd
);
1779 prot_group_type
= lpfc_prot_group_type(phba
, scsi_cmnd
);
1781 switch (prot_group_type
) {
1782 case LPFC_PG_TYPE_NO_DIF
:
1783 num_bde
= lpfc_bg_setup_bpl(phba
, scsi_cmnd
, bpl
,
1785 /* we should have 2 or more entries in buffer list */
1789 case LPFC_PG_TYPE_DIF_BUF
:{
1791 * This type indicates that protection buffers are
1792 * passed to the driver, so that needs to be prepared
1795 protsegcnt
= dma_map_sg(&phba
->pcidev
->dev
,
1796 scsi_prot_sglist(scsi_cmnd
),
1797 scsi_prot_sg_count(scsi_cmnd
), datadir
);
1798 if (unlikely(!protsegcnt
)) {
1799 scsi_dma_unmap(scsi_cmnd
);
1803 lpfc_cmd
->prot_seg_cnt
= protsegcnt
;
1804 if (lpfc_cmd
->prot_seg_cnt
1805 > phba
->cfg_prot_sg_seg_cnt
) {
1806 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1807 "9068 BLKGRD: %s: Too many prot sg "
1808 "segments from dma_map_sg. Config %d,"
1809 "prot_seg_cnt %d\n", __func__
,
1810 phba
->cfg_prot_sg_seg_cnt
,
1811 lpfc_cmd
->prot_seg_cnt
);
1812 dma_unmap_sg(&phba
->pcidev
->dev
,
1813 scsi_prot_sglist(scsi_cmnd
),
1814 scsi_prot_sg_count(scsi_cmnd
),
1816 scsi_dma_unmap(scsi_cmnd
);
1820 num_bde
= lpfc_bg_setup_bpl_prot(phba
, scsi_cmnd
, bpl
,
1821 datasegcnt
, protsegcnt
);
1822 /* we should have 3 or more entries in buffer list */
1827 case LPFC_PG_TYPE_INVALID
:
1829 lpfc_printf_log(phba
, KERN_ERR
, LOG_FCP
,
1830 "9022 Unexpected protection group %i\n",
1837 * Finish initializing those IOCB fields that are dependent on the
1838 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly
1839 * reinitialized since all iocb memory resources are used many times
1840 * for transmit, receive, and continuation bpl's.
1842 iocb_cmd
->un
.fcpi64
.bdl
.bdeSize
= (2 * sizeof(struct ulp_bde64
));
1843 iocb_cmd
->un
.fcpi64
.bdl
.bdeSize
+= (num_bde
* sizeof(struct ulp_bde64
));
1844 iocb_cmd
->ulpBdeCount
= 1;
1845 iocb_cmd
->ulpLe
= 1;
1847 fcpdl
= scsi_bufflen(scsi_cmnd
);
1849 if (scsi_get_prot_type(scsi_cmnd
) == SCSI_PROT_DIF_TYPE1
) {
1851 * We are in DIF Type 1 mode
1852 * Every data block has a 8 byte DIF (trailer)
1853 * attached to it. Must ajust FCP data length
1855 blksize
= lpfc_cmd_blksize(scsi_cmnd
);
1856 diflen
= (fcpdl
/ blksize
) * 8;
1859 fcp_cmnd
->fcpDl
= be32_to_cpu(fcpdl
);
1862 * Due to difference in data length between DIF/non-DIF paths,
1863 * we need to set word 4 of IOCB here
1865 iocb_cmd
->un
.fcpi
.fcpi_parm
= fcpdl
;
1869 lpfc_printf_log(phba
, KERN_ERR
, LOG_FCP
,
1870 "9023 Could not setup all needed BDE's"
1871 "prot_group_type=%d, num_bde=%d\n",
1872 prot_group_type
, num_bde
);
1877 * This function checks for BlockGuard errors detected by
1878 * the HBA. In case of errors, the ASC/ASCQ fields in the
1879 * sense buffer will be set accordingly, paired with
1880 * ILLEGAL_REQUEST to signal to the kernel that the HBA
1881 * detected corruption.
1884 * 0 - No error found
1885 * 1 - BlockGuard error found
1886 * -1 - Internal error (bad profile, ...etc)
1889 lpfc_parse_bg_err(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*lpfc_cmd
,
1890 struct lpfc_iocbq
*pIocbOut
)
1892 struct scsi_cmnd
*cmd
= lpfc_cmd
->pCmd
;
1893 struct sli3_bg_fields
*bgf
= &pIocbOut
->iocb
.unsli3
.sli3_bg
;
1895 uint32_t bghm
= bgf
->bghm
;
1896 uint32_t bgstat
= bgf
->bgstat
;
1897 uint64_t failing_sector
= 0;
1899 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
, "9069 BLKGRD: BG ERROR in cmd"
1900 " 0x%x lba 0x%llx blk cnt 0x%x "
1901 "bgstat=0x%x bghm=0x%x\n",
1902 cmd
->cmnd
[0], (unsigned long long)scsi_get_lba(cmd
),
1903 blk_rq_sectors(cmd
->request
), bgstat
, bghm
);
1905 spin_lock(&_dump_buf_lock
);
1906 if (!_dump_buf_done
) {
1907 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
, "9070 BLKGRD: Saving"
1908 " Data for %u blocks to debugfs\n",
1909 (cmd
->cmnd
[7] << 8 | cmd
->cmnd
[8]));
1910 lpfc_debug_save_data(phba
, cmd
);
1912 /* If we have a prot sgl, save the DIF buffer */
1913 if (lpfc_prot_group_type(phba
, cmd
) ==
1914 LPFC_PG_TYPE_DIF_BUF
) {
1915 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
, "9071 BLKGRD: "
1916 "Saving DIF for %u blocks to debugfs\n",
1917 (cmd
->cmnd
[7] << 8 | cmd
->cmnd
[8]));
1918 lpfc_debug_save_dif(phba
, cmd
);
1923 spin_unlock(&_dump_buf_lock
);
1925 if (lpfc_bgs_get_invalid_prof(bgstat
)) {
1926 cmd
->result
= ScsiResult(DID_ERROR
, 0);
1927 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
, "9072 BLKGRD: Invalid"
1928 " BlockGuard profile. bgstat:0x%x\n",
1934 if (lpfc_bgs_get_uninit_dif_block(bgstat
)) {
1935 cmd
->result
= ScsiResult(DID_ERROR
, 0);
1936 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
, "9073 BLKGRD: "
1937 "Invalid BlockGuard DIF Block. bgstat:0x%x\n",
1943 if (lpfc_bgs_get_guard_err(bgstat
)) {
1946 scsi_build_sense_buffer(1, cmd
->sense_buffer
, ILLEGAL_REQUEST
,
1948 cmd
->result
= DRIVER_SENSE
<< 24
1949 | ScsiResult(DID_ABORT
, SAM_STAT_CHECK_CONDITION
);
1950 phba
->bg_guard_err_cnt
++;
1951 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1952 "9055 BLKGRD: guard_tag error\n");
1955 if (lpfc_bgs_get_reftag_err(bgstat
)) {
1958 scsi_build_sense_buffer(1, cmd
->sense_buffer
, ILLEGAL_REQUEST
,
1960 cmd
->result
= DRIVER_SENSE
<< 24
1961 | ScsiResult(DID_ABORT
, SAM_STAT_CHECK_CONDITION
);
1963 phba
->bg_reftag_err_cnt
++;
1964 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1965 "9056 BLKGRD: ref_tag error\n");
1968 if (lpfc_bgs_get_apptag_err(bgstat
)) {
1971 scsi_build_sense_buffer(1, cmd
->sense_buffer
, ILLEGAL_REQUEST
,
1973 cmd
->result
= DRIVER_SENSE
<< 24
1974 | ScsiResult(DID_ABORT
, SAM_STAT_CHECK_CONDITION
);
1976 phba
->bg_apptag_err_cnt
++;
1977 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
1978 "9061 BLKGRD: app_tag error\n");
1981 if (lpfc_bgs_get_hi_water_mark_present(bgstat
)) {
1983 * setup sense data descriptor 0 per SPC-4 as an information
1984 * field, and put the failing LBA in it
1986 cmd
->sense_buffer
[8] = 0; /* Information */
1987 cmd
->sense_buffer
[9] = 0xa; /* Add. length */
1988 bghm
/= cmd
->device
->sector_size
;
1990 failing_sector
= scsi_get_lba(cmd
);
1991 failing_sector
+= bghm
;
1993 put_unaligned_be64(failing_sector
, &cmd
->sense_buffer
[10]);
1997 /* No error was reported - problem in FW? */
1998 cmd
->result
= ScsiResult(DID_ERROR
, 0);
1999 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
2000 "9057 BLKGRD: no errors reported!\n");
2008 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
2009 * @phba: The Hba for which this call is being executed.
2010 * @lpfc_cmd: The scsi buffer which is going to be mapped.
2012 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
2013 * field of @lpfc_cmd for device with SLI-4 interface spec.
2020 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*lpfc_cmd
)
2022 struct scsi_cmnd
*scsi_cmnd
= lpfc_cmd
->pCmd
;
2023 struct scatterlist
*sgel
= NULL
;
2024 struct fcp_cmnd
*fcp_cmnd
= lpfc_cmd
->fcp_cmnd
;
2025 struct sli4_sge
*sgl
= (struct sli4_sge
*)lpfc_cmd
->fcp_bpl
;
2026 struct sli4_sge
*first_data_sgl
;
2027 IOCB_t
*iocb_cmd
= &lpfc_cmd
->cur_iocbq
.iocb
;
2028 dma_addr_t physaddr
;
2029 uint32_t num_bde
= 0;
2031 uint32_t dma_offset
= 0;
2033 struct ulp_bde64
*bde
;
2036 * There are three possibilities here - use scatter-gather segment, use
2037 * the single mapping, or neither. Start the lpfc command prep by
2038 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2041 if (scsi_sg_count(scsi_cmnd
)) {
2043 * The driver stores the segment count returned from pci_map_sg
2044 * because this a count of dma-mappings used to map the use_sg
2045 * pages. They are not guaranteed to be the same for those
2046 * architectures that implement an IOMMU.
2049 nseg
= scsi_dma_map(scsi_cmnd
);
2050 if (unlikely(!nseg
))
2053 /* clear the last flag in the fcp_rsp map entry */
2054 sgl
->word2
= le32_to_cpu(sgl
->word2
);
2055 bf_set(lpfc_sli4_sge_last
, sgl
, 0);
2056 sgl
->word2
= cpu_to_le32(sgl
->word2
);
2058 first_data_sgl
= sgl
;
2059 lpfc_cmd
->seg_cnt
= nseg
;
2060 if (lpfc_cmd
->seg_cnt
> phba
->cfg_sg_seg_cnt
) {
2061 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
, "9074 BLKGRD:"
2062 " %s: Too many sg segments from "
2063 "dma_map_sg. Config %d, seg_cnt %d\n",
2064 __func__
, phba
->cfg_sg_seg_cnt
,
2066 scsi_dma_unmap(scsi_cmnd
);
2071 * The driver established a maximum scatter-gather segment count
2072 * during probe that limits the number of sg elements in any
2073 * single scsi command. Just run through the seg_cnt and format
2075 * When using SLI-3 the driver will try to fit all the BDEs into
2076 * the IOCB. If it can't then the BDEs get added to a BPL as it
2077 * does for SLI-2 mode.
2079 scsi_for_each_sg(scsi_cmnd
, sgel
, nseg
, num_bde
) {
2080 physaddr
= sg_dma_address(sgel
);
2081 dma_len
= sg_dma_len(sgel
);
2082 sgl
->addr_lo
= cpu_to_le32(putPaddrLow(physaddr
));
2083 sgl
->addr_hi
= cpu_to_le32(putPaddrHigh(physaddr
));
2084 if ((num_bde
+ 1) == nseg
)
2085 bf_set(lpfc_sli4_sge_last
, sgl
, 1);
2087 bf_set(lpfc_sli4_sge_last
, sgl
, 0);
2088 bf_set(lpfc_sli4_sge_offset
, sgl
, dma_offset
);
2089 sgl
->word2
= cpu_to_le32(sgl
->word2
);
2090 sgl
->sge_len
= cpu_to_le32(dma_len
);
2091 dma_offset
+= dma_len
;
2094 /* setup the performance hint (first data BDE) if enabled */
2095 if (phba
->sli3_options
& LPFC_SLI4_PERFH_ENABLED
) {
2096 bde
= (struct ulp_bde64
*)
2097 &(iocb_cmd
->unsli3
.sli3Words
[5]);
2098 bde
->addrLow
= first_data_sgl
->addr_lo
;
2099 bde
->addrHigh
= first_data_sgl
->addr_hi
;
2100 bde
->tus
.f
.bdeSize
=
2101 le32_to_cpu(first_data_sgl
->sge_len
);
2102 bde
->tus
.f
.bdeFlags
= BUFF_TYPE_BDE_64
;
2103 bde
->tus
.w
= cpu_to_le32(bde
->tus
.w
);
2107 /* clear the last flag in the fcp_rsp map entry */
2108 sgl
->word2
= le32_to_cpu(sgl
->word2
);
2109 bf_set(lpfc_sli4_sge_last
, sgl
, 1);
2110 sgl
->word2
= cpu_to_le32(sgl
->word2
);
2114 * Finish initializing those IOCB fields that are dependent on the
2115 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
2116 * explicitly reinitialized.
2117 * all iocb memory resources are reused.
2119 fcp_cmnd
->fcpDl
= cpu_to_be32(scsi_bufflen(scsi_cmnd
));
2122 * Due to difference in data length between DIF/non-DIF paths,
2123 * we need to set word 4 of IOCB here
2125 iocb_cmd
->un
.fcpi
.fcpi_parm
= scsi_bufflen(scsi_cmnd
);
2130 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
2131 * @phba: The Hba for which this call is being executed.
2132 * @lpfc_cmd: The scsi buffer which is going to be mapped.
2134 * This routine wraps the actual DMA mapping function pointer from the
2142 lpfc_scsi_prep_dma_buf(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*lpfc_cmd
)
2144 return phba
->lpfc_scsi_prep_dma_buf(phba
, lpfc_cmd
);
2148 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error
2149 * @phba: Pointer to hba context object.
2150 * @vport: Pointer to vport object.
2151 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
2152 * @rsp_iocb: Pointer to response iocb object which reported error.
2154 * This function posts an event when there is a SCSI command reporting
2155 * error from the scsi device.
2158 lpfc_send_scsi_error_event(struct lpfc_hba
*phba
, struct lpfc_vport
*vport
,
2159 struct lpfc_scsi_buf
*lpfc_cmd
, struct lpfc_iocbq
*rsp_iocb
) {
2160 struct scsi_cmnd
*cmnd
= lpfc_cmd
->pCmd
;
2161 struct fcp_rsp
*fcprsp
= lpfc_cmd
->fcp_rsp
;
2162 uint32_t resp_info
= fcprsp
->rspStatus2
;
2163 uint32_t scsi_status
= fcprsp
->rspStatus3
;
2164 uint32_t fcpi_parm
= rsp_iocb
->iocb
.un
.fcpi
.fcpi_parm
;
2165 struct lpfc_fast_path_event
*fast_path_evt
= NULL
;
2166 struct lpfc_nodelist
*pnode
= lpfc_cmd
->rdata
->pnode
;
2167 unsigned long flags
;
2169 if (!pnode
|| !NLP_CHK_NODE_ACT(pnode
))
2172 /* If there is queuefull or busy condition send a scsi event */
2173 if ((cmnd
->result
== SAM_STAT_TASK_SET_FULL
) ||
2174 (cmnd
->result
== SAM_STAT_BUSY
)) {
2175 fast_path_evt
= lpfc_alloc_fast_evt(phba
);
2178 fast_path_evt
->un
.scsi_evt
.event_type
=
2180 fast_path_evt
->un
.scsi_evt
.subcategory
=
2181 (cmnd
->result
== SAM_STAT_TASK_SET_FULL
) ?
2182 LPFC_EVENT_QFULL
: LPFC_EVENT_DEVBSY
;
2183 fast_path_evt
->un
.scsi_evt
.lun
= cmnd
->device
->lun
;
2184 memcpy(&fast_path_evt
->un
.scsi_evt
.wwpn
,
2185 &pnode
->nlp_portname
, sizeof(struct lpfc_name
));
2186 memcpy(&fast_path_evt
->un
.scsi_evt
.wwnn
,
2187 &pnode
->nlp_nodename
, sizeof(struct lpfc_name
));
2188 } else if ((resp_info
& SNS_LEN_VALID
) && fcprsp
->rspSnsLen
&&
2189 ((cmnd
->cmnd
[0] == READ_10
) || (cmnd
->cmnd
[0] == WRITE_10
))) {
2190 fast_path_evt
= lpfc_alloc_fast_evt(phba
);
2193 fast_path_evt
->un
.check_cond_evt
.scsi_event
.event_type
=
2195 fast_path_evt
->un
.check_cond_evt
.scsi_event
.subcategory
=
2196 LPFC_EVENT_CHECK_COND
;
2197 fast_path_evt
->un
.check_cond_evt
.scsi_event
.lun
=
2199 memcpy(&fast_path_evt
->un
.check_cond_evt
.scsi_event
.wwpn
,
2200 &pnode
->nlp_portname
, sizeof(struct lpfc_name
));
2201 memcpy(&fast_path_evt
->un
.check_cond_evt
.scsi_event
.wwnn
,
2202 &pnode
->nlp_nodename
, sizeof(struct lpfc_name
));
2203 fast_path_evt
->un
.check_cond_evt
.sense_key
=
2204 cmnd
->sense_buffer
[2] & 0xf;
2205 fast_path_evt
->un
.check_cond_evt
.asc
= cmnd
->sense_buffer
[12];
2206 fast_path_evt
->un
.check_cond_evt
.ascq
= cmnd
->sense_buffer
[13];
2207 } else if ((cmnd
->sc_data_direction
== DMA_FROM_DEVICE
) &&
2209 ((be32_to_cpu(fcprsp
->rspResId
) != fcpi_parm
) ||
2210 ((scsi_status
== SAM_STAT_GOOD
) &&
2211 !(resp_info
& (RESID_UNDER
| RESID_OVER
))))) {
2213 * If status is good or resid does not match with fcp_param and
2214 * there is valid fcpi_parm, then there is a read_check error
2216 fast_path_evt
= lpfc_alloc_fast_evt(phba
);
2219 fast_path_evt
->un
.read_check_error
.header
.event_type
=
2220 FC_REG_FABRIC_EVENT
;
2221 fast_path_evt
->un
.read_check_error
.header
.subcategory
=
2222 LPFC_EVENT_FCPRDCHKERR
;
2223 memcpy(&fast_path_evt
->un
.read_check_error
.header
.wwpn
,
2224 &pnode
->nlp_portname
, sizeof(struct lpfc_name
));
2225 memcpy(&fast_path_evt
->un
.read_check_error
.header
.wwnn
,
2226 &pnode
->nlp_nodename
, sizeof(struct lpfc_name
));
2227 fast_path_evt
->un
.read_check_error
.lun
= cmnd
->device
->lun
;
2228 fast_path_evt
->un
.read_check_error
.opcode
= cmnd
->cmnd
[0];
2229 fast_path_evt
->un
.read_check_error
.fcpiparam
=
2234 fast_path_evt
->vport
= vport
;
2235 spin_lock_irqsave(&phba
->hbalock
, flags
);
2236 list_add_tail(&fast_path_evt
->work_evt
.evt_listp
, &phba
->work_list
);
2237 spin_unlock_irqrestore(&phba
->hbalock
, flags
);
2238 lpfc_worker_wake_up(phba
);
2243 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
2244 * @phba: The HBA for which this call is being executed.
2245 * @psb: The scsi buffer which is going to be un-mapped.
2247 * This routine does DMA un-mapping of scatter gather list of scsi command
2248 * field of @lpfc_cmd for device with SLI-3 interface spec.
2251 lpfc_scsi_unprep_dma_buf(struct lpfc_hba
*phba
, struct lpfc_scsi_buf
*psb
)
2254 * There are only two special cases to consider. (1) the scsi command
2255 * requested scatter-gather usage or (2) the scsi command allocated
2256 * a request buffer, but did not request use_sg. There is a third
2257 * case, but it does not require resource deallocation.
2259 if (psb
->seg_cnt
> 0)
2260 scsi_dma_unmap(psb
->pCmd
);
2261 if (psb
->prot_seg_cnt
> 0)
2262 dma_unmap_sg(&phba
->pcidev
->dev
, scsi_prot_sglist(psb
->pCmd
),
2263 scsi_prot_sg_count(psb
->pCmd
),
2264 psb
->pCmd
->sc_data_direction
);
2268 * lpfc_handler_fcp_err - FCP response handler
2269 * @vport: The virtual port for which this call is being executed.
2270 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2271 * @rsp_iocb: The response IOCB which contains FCP error.
2273 * This routine is called to process response IOCB with status field
2274 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
2275 * based upon SCSI and FCP error.
2278 lpfc_handle_fcp_err(struct lpfc_vport
*vport
, struct lpfc_scsi_buf
*lpfc_cmd
,
2279 struct lpfc_iocbq
*rsp_iocb
)
2281 struct scsi_cmnd
*cmnd
= lpfc_cmd
->pCmd
;
2282 struct fcp_cmnd
*fcpcmd
= lpfc_cmd
->fcp_cmnd
;
2283 struct fcp_rsp
*fcprsp
= lpfc_cmd
->fcp_rsp
;
2284 uint32_t fcpi_parm
= rsp_iocb
->iocb
.un
.fcpi
.fcpi_parm
;
2285 uint32_t resp_info
= fcprsp
->rspStatus2
;
2286 uint32_t scsi_status
= fcprsp
->rspStatus3
;
2288 uint32_t host_status
= DID_OK
;
2289 uint32_t rsplen
= 0;
2290 uint32_t logit
= LOG_FCP
| LOG_FCP_ERROR
;
2294 * If this is a task management command, there is no
2295 * scsi packet associated with this lpfc_cmd. The driver
2298 if (fcpcmd
->fcpCntl2
) {
2303 if (resp_info
& RSP_LEN_VALID
) {
2304 rsplen
= be32_to_cpu(fcprsp
->rspRspLen
);
2305 if (rsplen
!= 0 && rsplen
!= 4 && rsplen
!= 8) {
2306 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
2307 "2719 Invalid response length: "
2308 "tgt x%x lun x%x cmnd x%x rsplen x%x\n",
2310 cmnd
->device
->lun
, cmnd
->cmnd
[0],
2312 host_status
= DID_ERROR
;
2315 if (fcprsp
->rspInfo3
!= RSP_NO_FAILURE
) {
2316 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
2317 "2757 Protocol failure detected during "
2318 "processing of FCP I/O op: "
2319 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n",
2321 cmnd
->device
->lun
, cmnd
->cmnd
[0],
2323 host_status
= DID_ERROR
;
2328 if ((resp_info
& SNS_LEN_VALID
) && fcprsp
->rspSnsLen
) {
2329 uint32_t snslen
= be32_to_cpu(fcprsp
->rspSnsLen
);
2330 if (snslen
> SCSI_SENSE_BUFFERSIZE
)
2331 snslen
= SCSI_SENSE_BUFFERSIZE
;
2333 if (resp_info
& RSP_LEN_VALID
)
2334 rsplen
= be32_to_cpu(fcprsp
->rspRspLen
);
2335 memcpy(cmnd
->sense_buffer
, &fcprsp
->rspInfo0
+ rsplen
, snslen
);
2337 lp
= (uint32_t *)cmnd
->sense_buffer
;
2339 if (!scsi_status
&& (resp_info
& RESID_UNDER
))
2342 lpfc_printf_vlog(vport
, KERN_WARNING
, logit
,
2343 "9024 FCP command x%x failed: x%x SNS x%x x%x "
2344 "Data: x%x x%x x%x x%x x%x\n",
2345 cmnd
->cmnd
[0], scsi_status
,
2346 be32_to_cpu(*lp
), be32_to_cpu(*(lp
+ 3)), resp_info
,
2347 be32_to_cpu(fcprsp
->rspResId
),
2348 be32_to_cpu(fcprsp
->rspSnsLen
),
2349 be32_to_cpu(fcprsp
->rspRspLen
),
2352 scsi_set_resid(cmnd
, 0);
2353 if (resp_info
& RESID_UNDER
) {
2354 scsi_set_resid(cmnd
, be32_to_cpu(fcprsp
->rspResId
));
2356 lpfc_printf_vlog(vport
, KERN_INFO
, LOG_FCP
,
2357 "9025 FCP Read Underrun, expected %d, "
2358 "residual %d Data: x%x x%x x%x\n",
2359 be32_to_cpu(fcpcmd
->fcpDl
),
2360 scsi_get_resid(cmnd
), fcpi_parm
, cmnd
->cmnd
[0],
2364 * If there is an under run check if under run reported by
2365 * storage array is same as the under run reported by HBA.
2366 * If this is not same, there is a dropped frame.
2368 if ((cmnd
->sc_data_direction
== DMA_FROM_DEVICE
) &&
2370 (scsi_get_resid(cmnd
) != fcpi_parm
)) {
2371 lpfc_printf_vlog(vport
, KERN_WARNING
,
2372 LOG_FCP
| LOG_FCP_ERROR
,
2373 "9026 FCP Read Check Error "
2374 "and Underrun Data: x%x x%x x%x x%x\n",
2375 be32_to_cpu(fcpcmd
->fcpDl
),
2376 scsi_get_resid(cmnd
), fcpi_parm
,
2378 scsi_set_resid(cmnd
, scsi_bufflen(cmnd
));
2379 host_status
= DID_ERROR
;
2382 * The cmnd->underflow is the minimum number of bytes that must
2383 * be transferred for this command. Provided a sense condition
2384 * is not present, make sure the actual amount transferred is at
2385 * least the underflow value or fail.
2387 if (!(resp_info
& SNS_LEN_VALID
) &&
2388 (scsi_status
== SAM_STAT_GOOD
) &&
2389 (scsi_bufflen(cmnd
) - scsi_get_resid(cmnd
)
2390 < cmnd
->underflow
)) {
2391 lpfc_printf_vlog(vport
, KERN_INFO
, LOG_FCP
,
2392 "9027 FCP command x%x residual "
2393 "underrun converted to error "
2394 "Data: x%x x%x x%x\n",
2395 cmnd
->cmnd
[0], scsi_bufflen(cmnd
),
2396 scsi_get_resid(cmnd
), cmnd
->underflow
);
2397 host_status
= DID_ERROR
;
2399 } else if (resp_info
& RESID_OVER
) {
2400 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
,
2401 "9028 FCP command x%x residual overrun error. "
2402 "Data: x%x x%x\n", cmnd
->cmnd
[0],
2403 scsi_bufflen(cmnd
), scsi_get_resid(cmnd
));
2404 host_status
= DID_ERROR
;
2407 * Check SLI validation that all the transfer was actually done
2408 * (fcpi_parm should be zero). Apply check only to reads.
2410 } else if (fcpi_parm
&& (cmnd
->sc_data_direction
== DMA_FROM_DEVICE
)) {
2411 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
| LOG_FCP_ERROR
,
2412 "9029 FCP Read Check Error Data: "
2413 "x%x x%x x%x x%x x%x\n",
2414 be32_to_cpu(fcpcmd
->fcpDl
),
2415 be32_to_cpu(fcprsp
->rspResId
),
2416 fcpi_parm
, cmnd
->cmnd
[0], scsi_status
);
2417 switch (scsi_status
) {
2419 case SAM_STAT_CHECK_CONDITION
:
2420 /* Fabric dropped a data frame. Fail any successful
2421 * command in which we detected dropped frames.
2422 * A status of good or some check conditions could
2423 * be considered a successful command.
2425 host_status
= DID_ERROR
;
2428 scsi_set_resid(cmnd
, scsi_bufflen(cmnd
));
2432 cmnd
->result
= ScsiResult(host_status
, scsi_status
);
2433 lpfc_send_scsi_error_event(vport
->phba
, vport
, lpfc_cmd
, rsp_iocb
);
2437 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
2438 * @phba: The Hba for which this call is being executed.
2439 * @pIocbIn: The command IOCBQ for the scsi cmnd.
2440 * @pIocbOut: The response IOCBQ for the scsi cmnd.
2442 * This routine assigns scsi command result by looking into response IOCB
2443 * status field appropriately. This routine handles QUEUE FULL condition as
2444 * well by ramping down device queue depth.
2447 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba
*phba
, struct lpfc_iocbq
*pIocbIn
,
2448 struct lpfc_iocbq
*pIocbOut
)
2450 struct lpfc_scsi_buf
*lpfc_cmd
=
2451 (struct lpfc_scsi_buf
*) pIocbIn
->context1
;
2452 struct lpfc_vport
*vport
= pIocbIn
->vport
;
2453 struct lpfc_rport_data
*rdata
= lpfc_cmd
->rdata
;
2454 struct lpfc_nodelist
*pnode
= rdata
->pnode
;
2455 struct scsi_cmnd
*cmd
;
2457 struct scsi_device
*tmp_sdev
;
2459 unsigned long flags
;
2460 struct lpfc_fast_path_event
*fast_path_evt
;
2461 struct Scsi_Host
*shost
;
2462 uint32_t queue_depth
, scsi_id
;
2464 /* Sanity check on return of outstanding command */
2465 if (!(lpfc_cmd
->pCmd
))
2467 cmd
= lpfc_cmd
->pCmd
;
2468 shost
= cmd
->device
->host
;
2470 lpfc_cmd
->result
= pIocbOut
->iocb
.un
.ulpWord
[4];
2471 lpfc_cmd
->status
= pIocbOut
->iocb
.ulpStatus
;
2472 /* pick up SLI4 exhange busy status from HBA */
2473 lpfc_cmd
->exch_busy
= pIocbOut
->iocb_flag
& LPFC_EXCHANGE_BUSY
;
2475 if (pnode
&& NLP_CHK_NODE_ACT(pnode
))
2476 atomic_dec(&pnode
->cmd_pending
);
2478 if (lpfc_cmd
->status
) {
2479 if (lpfc_cmd
->status
== IOSTAT_LOCAL_REJECT
&&
2480 (lpfc_cmd
->result
& IOERR_DRVR_MASK
))
2481 lpfc_cmd
->status
= IOSTAT_DRIVER_REJECT
;
2482 else if (lpfc_cmd
->status
>= IOSTAT_CNT
)
2483 lpfc_cmd
->status
= IOSTAT_DEFAULT
;
2485 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
,
2486 "9030 FCP cmd x%x failed <%d/%d> "
2487 "status: x%x result: x%x Data: x%x x%x\n",
2489 cmd
->device
? cmd
->device
->id
: 0xffff,
2490 cmd
->device
? cmd
->device
->lun
: 0xffff,
2491 lpfc_cmd
->status
, lpfc_cmd
->result
,
2492 pIocbOut
->iocb
.ulpContext
,
2493 lpfc_cmd
->cur_iocbq
.iocb
.ulpIoTag
);
2495 switch (lpfc_cmd
->status
) {
2496 case IOSTAT_FCP_RSP_ERROR
:
2497 /* Call FCP RSP handler to determine result */
2498 lpfc_handle_fcp_err(vport
, lpfc_cmd
, pIocbOut
);
2500 case IOSTAT_NPORT_BSY
:
2501 case IOSTAT_FABRIC_BSY
:
2502 cmd
->result
= ScsiResult(DID_TRANSPORT_DISRUPTED
, 0);
2503 fast_path_evt
= lpfc_alloc_fast_evt(phba
);
2506 fast_path_evt
->un
.fabric_evt
.event_type
=
2507 FC_REG_FABRIC_EVENT
;
2508 fast_path_evt
->un
.fabric_evt
.subcategory
=
2509 (lpfc_cmd
->status
== IOSTAT_NPORT_BSY
) ?
2510 LPFC_EVENT_PORT_BUSY
: LPFC_EVENT_FABRIC_BUSY
;
2511 if (pnode
&& NLP_CHK_NODE_ACT(pnode
)) {
2512 memcpy(&fast_path_evt
->un
.fabric_evt
.wwpn
,
2513 &pnode
->nlp_portname
,
2514 sizeof(struct lpfc_name
));
2515 memcpy(&fast_path_evt
->un
.fabric_evt
.wwnn
,
2516 &pnode
->nlp_nodename
,
2517 sizeof(struct lpfc_name
));
2519 fast_path_evt
->vport
= vport
;
2520 fast_path_evt
->work_evt
.evt
=
2521 LPFC_EVT_FASTPATH_MGMT_EVT
;
2522 spin_lock_irqsave(&phba
->hbalock
, flags
);
2523 list_add_tail(&fast_path_evt
->work_evt
.evt_listp
,
2525 spin_unlock_irqrestore(&phba
->hbalock
, flags
);
2526 lpfc_worker_wake_up(phba
);
2528 case IOSTAT_LOCAL_REJECT
:
2529 case IOSTAT_REMOTE_STOP
:
2530 if (lpfc_cmd
->result
== IOERR_ELXSEC_KEY_UNWRAP_ERROR
||
2532 IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR
||
2533 lpfc_cmd
->result
== IOERR_ELXSEC_CRYPTO_ERROR
||
2535 IOERR_ELXSEC_CRYPTO_COMPARE_ERROR
) {
2536 cmd
->result
= ScsiResult(DID_NO_CONNECT
, 0);
2539 if (lpfc_cmd
->result
== IOERR_INVALID_RPI
||
2540 lpfc_cmd
->result
== IOERR_NO_RESOURCES
||
2541 lpfc_cmd
->result
== IOERR_ABORT_REQUESTED
||
2542 lpfc_cmd
->result
== IOERR_SLER_CMD_RCV_FAILURE
) {
2543 cmd
->result
= ScsiResult(DID_REQUEUE
, 0);
2546 if ((lpfc_cmd
->result
== IOERR_RX_DMA_FAILED
||
2547 lpfc_cmd
->result
== IOERR_TX_DMA_FAILED
) &&
2548 pIocbOut
->iocb
.unsli3
.sli3_bg
.bgstat
) {
2549 if (scsi_get_prot_op(cmd
) != SCSI_PROT_NORMAL
) {
2551 * This is a response for a BG enabled
2552 * cmd. Parse BG error
2554 lpfc_parse_bg_err(phba
, lpfc_cmd
,
2558 lpfc_printf_vlog(vport
, KERN_WARNING
,
2560 "9031 non-zero BGSTAT "
2561 "on unprotected cmd\n");
2564 if ((lpfc_cmd
->status
== IOSTAT_REMOTE_STOP
)
2565 && (phba
->sli_rev
== LPFC_SLI_REV4
)
2566 && (pnode
&& NLP_CHK_NODE_ACT(pnode
))) {
2567 /* This IO was aborted by the target, we don't
2568 * know the rxid and because we did not send the
2569 * ABTS we cannot generate and RRQ.
2571 lpfc_set_rrq_active(phba
, pnode
,
2572 lpfc_cmd
->cur_iocbq
.sli4_xritag
,
2575 /* else: fall through */
2577 cmd
->result
= ScsiResult(DID_ERROR
, 0);
2581 if (!pnode
|| !NLP_CHK_NODE_ACT(pnode
)
2582 || (pnode
->nlp_state
!= NLP_STE_MAPPED_NODE
))
2583 cmd
->result
= ScsiResult(DID_TRANSPORT_DISRUPTED
,
2586 cmd
->result
= ScsiResult(DID_OK
, 0);
2588 if (cmd
->result
|| lpfc_cmd
->fcp_rsp
->rspSnsLen
) {
2589 uint32_t *lp
= (uint32_t *)cmd
->sense_buffer
;
2591 lpfc_printf_vlog(vport
, KERN_INFO
, LOG_FCP
,
2592 "0710 Iodone <%d/%d> cmd %p, error "
2593 "x%x SNS x%x x%x Data: x%x x%x\n",
2594 cmd
->device
->id
, cmd
->device
->lun
, cmd
,
2595 cmd
->result
, *lp
, *(lp
+ 3), cmd
->retries
,
2596 scsi_get_resid(cmd
));
2599 lpfc_update_stats(phba
, lpfc_cmd
);
2600 result
= cmd
->result
;
2601 if (vport
->cfg_max_scsicmpl_time
&&
2602 time_after(jiffies
, lpfc_cmd
->start_time
+
2603 msecs_to_jiffies(vport
->cfg_max_scsicmpl_time
))) {
2604 spin_lock_irqsave(shost
->host_lock
, flags
);
2605 if (pnode
&& NLP_CHK_NODE_ACT(pnode
)) {
2606 if (pnode
->cmd_qdepth
>
2607 atomic_read(&pnode
->cmd_pending
) &&
2608 (atomic_read(&pnode
->cmd_pending
) >
2609 LPFC_MIN_TGT_QDEPTH
) &&
2610 ((cmd
->cmnd
[0] == READ_10
) ||
2611 (cmd
->cmnd
[0] == WRITE_10
)))
2613 atomic_read(&pnode
->cmd_pending
);
2615 pnode
->last_change_time
= jiffies
;
2617 spin_unlock_irqrestore(shost
->host_lock
, flags
);
2618 } else if (pnode
&& NLP_CHK_NODE_ACT(pnode
)) {
2619 if ((pnode
->cmd_qdepth
< vport
->cfg_tgt_queue_depth
) &&
2620 time_after(jiffies
, pnode
->last_change_time
+
2621 msecs_to_jiffies(LPFC_TGTQ_INTERVAL
))) {
2622 spin_lock_irqsave(shost
->host_lock
, flags
);
2623 depth
= pnode
->cmd_qdepth
* LPFC_TGTQ_RAMPUP_PCENT
2625 depth
= depth
? depth
: 1;
2626 pnode
->cmd_qdepth
+= depth
;
2627 if (pnode
->cmd_qdepth
> vport
->cfg_tgt_queue_depth
)
2628 pnode
->cmd_qdepth
= vport
->cfg_tgt_queue_depth
;
2629 pnode
->last_change_time
= jiffies
;
2630 spin_unlock_irqrestore(shost
->host_lock
, flags
);
2634 lpfc_scsi_unprep_dma_buf(phba
, lpfc_cmd
);
2636 /* The sdev is not guaranteed to be valid post scsi_done upcall. */
2637 queue_depth
= cmd
->device
->queue_depth
;
2638 scsi_id
= cmd
->device
->id
;
2639 cmd
->scsi_done(cmd
);
2641 if (phba
->cfg_poll
& ENABLE_FCP_RING_POLLING
) {
2643 * If there is a thread waiting for command completion
2644 * wake up the thread.
2646 spin_lock_irqsave(shost
->host_lock
, flags
);
2647 lpfc_cmd
->pCmd
= NULL
;
2648 if (lpfc_cmd
->waitq
)
2649 wake_up(lpfc_cmd
->waitq
);
2650 spin_unlock_irqrestore(shost
->host_lock
, flags
);
2651 lpfc_release_scsi_buf(phba
, lpfc_cmd
);
2656 lpfc_rampup_queue_depth(vport
, queue_depth
);
2659 * Check for queue full. If the lun is reporting queue full, then
2660 * back off the lun queue depth to prevent target overloads.
2662 if (result
== SAM_STAT_TASK_SET_FULL
&& pnode
&&
2663 NLP_CHK_NODE_ACT(pnode
)) {
2664 shost_for_each_device(tmp_sdev
, shost
) {
2665 if (tmp_sdev
->id
!= scsi_id
)
2667 depth
= scsi_track_queue_full(tmp_sdev
,
2668 tmp_sdev
->queue_depth
-1);
2671 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
,
2672 "0711 detected queue full - lun queue "
2673 "depth adjusted to %d.\n", depth
);
2674 lpfc_send_sdev_queuedepth_change_event(phba
, vport
,
2682 * If there is a thread waiting for command completion
2683 * wake up the thread.
2685 spin_lock_irqsave(shost
->host_lock
, flags
);
2686 lpfc_cmd
->pCmd
= NULL
;
2687 if (lpfc_cmd
->waitq
)
2688 wake_up(lpfc_cmd
->waitq
);
2689 spin_unlock_irqrestore(shost
->host_lock
, flags
);
2691 lpfc_release_scsi_buf(phba
, lpfc_cmd
);
2695 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
2696 * @data: A pointer to the immediate command data portion of the IOCB.
2697 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
2699 * The routine copies the entire FCP command from @fcp_cmnd to @data while
2700 * byte swapping the data to big endian format for transmission on the wire.
2703 lpfc_fcpcmd_to_iocb(uint8_t *data
, struct fcp_cmnd
*fcp_cmnd
)
2706 for (i
= 0, j
= 0; i
< sizeof(struct fcp_cmnd
);
2707 i
+= sizeof(uint32_t), j
++) {
2708 ((uint32_t *)data
)[j
] = cpu_to_be32(((uint32_t *)fcp_cmnd
)[j
]);
2713 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
2714 * @vport: The virtual port for which this call is being executed.
2715 * @lpfc_cmd: The scsi command which needs to send.
2716 * @pnode: Pointer to lpfc_nodelist.
2718 * This routine initializes fcp_cmnd and iocb data structure from scsi command
2719 * to transfer for device with SLI3 interface spec.
2722 lpfc_scsi_prep_cmnd(struct lpfc_vport
*vport
, struct lpfc_scsi_buf
*lpfc_cmd
,
2723 struct lpfc_nodelist
*pnode
)
2725 struct lpfc_hba
*phba
= vport
->phba
;
2726 struct scsi_cmnd
*scsi_cmnd
= lpfc_cmd
->pCmd
;
2727 struct fcp_cmnd
*fcp_cmnd
= lpfc_cmd
->fcp_cmnd
;
2728 IOCB_t
*iocb_cmd
= &lpfc_cmd
->cur_iocbq
.iocb
;
2729 struct lpfc_iocbq
*piocbq
= &(lpfc_cmd
->cur_iocbq
);
2730 int datadir
= scsi_cmnd
->sc_data_direction
;
2733 if (!pnode
|| !NLP_CHK_NODE_ACT(pnode
))
2736 lpfc_cmd
->fcp_rsp
->rspSnsLen
= 0;
2737 /* clear task management bits */
2738 lpfc_cmd
->fcp_cmnd
->fcpCntl2
= 0;
2740 int_to_scsilun(lpfc_cmd
->pCmd
->device
->lun
,
2741 &lpfc_cmd
->fcp_cmnd
->fcp_lun
);
2743 memcpy(&fcp_cmnd
->fcpCdb
[0], scsi_cmnd
->cmnd
, 16);
2745 if (scsi_populate_tag_msg(scsi_cmnd
, tag
)) {
2747 case HEAD_OF_QUEUE_TAG
:
2748 fcp_cmnd
->fcpCntl1
= HEAD_OF_Q
;
2750 case ORDERED_QUEUE_TAG
:
2751 fcp_cmnd
->fcpCntl1
= ORDERED_Q
;
2754 fcp_cmnd
->fcpCntl1
= SIMPLE_Q
;
2758 fcp_cmnd
->fcpCntl1
= 0;
2761 * There are three possibilities here - use scatter-gather segment, use
2762 * the single mapping, or neither. Start the lpfc command prep by
2763 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2766 if (scsi_sg_count(scsi_cmnd
)) {
2767 if (datadir
== DMA_TO_DEVICE
) {
2768 iocb_cmd
->ulpCommand
= CMD_FCP_IWRITE64_CR
;
2769 if (phba
->sli_rev
< LPFC_SLI_REV4
) {
2770 iocb_cmd
->un
.fcpi
.fcpi_parm
= 0;
2771 iocb_cmd
->ulpPU
= 0;
2773 iocb_cmd
->ulpPU
= PARM_READ_CHECK
;
2774 fcp_cmnd
->fcpCntl3
= WRITE_DATA
;
2775 phba
->fc4OutputRequests
++;
2777 iocb_cmd
->ulpCommand
= CMD_FCP_IREAD64_CR
;
2778 iocb_cmd
->ulpPU
= PARM_READ_CHECK
;
2779 fcp_cmnd
->fcpCntl3
= READ_DATA
;
2780 phba
->fc4InputRequests
++;
2783 iocb_cmd
->ulpCommand
= CMD_FCP_ICMND64_CR
;
2784 iocb_cmd
->un
.fcpi
.fcpi_parm
= 0;
2785 iocb_cmd
->ulpPU
= 0;
2786 fcp_cmnd
->fcpCntl3
= 0;
2787 phba
->fc4ControlRequests
++;
2789 if (phba
->sli_rev
== 3 &&
2790 !(phba
->sli3_options
& LPFC_SLI3_BG_ENABLED
))
2791 lpfc_fcpcmd_to_iocb(iocb_cmd
->unsli3
.fcp_ext
.icd
, fcp_cmnd
);
2793 * Finish initializing those IOCB fields that are independent
2794 * of the scsi_cmnd request_buffer
2796 piocbq
->iocb
.ulpContext
= pnode
->nlp_rpi
;
2797 if (pnode
->nlp_fcp_info
& NLP_FCP_2_DEVICE
)
2798 piocbq
->iocb
.ulpFCP2Rcvy
= 1;
2800 piocbq
->iocb
.ulpFCP2Rcvy
= 0;
2802 piocbq
->iocb
.ulpClass
= (pnode
->nlp_fcp_info
& 0x0f);
2803 piocbq
->context1
= lpfc_cmd
;
2804 piocbq
->iocb_cmpl
= lpfc_scsi_cmd_iocb_cmpl
;
2805 piocbq
->iocb
.ulpTimeout
= lpfc_cmd
->timeout
;
2806 piocbq
->vport
= vport
;
2810 * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit
2811 * @vport: The virtual port for which this call is being executed.
2812 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2813 * @lun: Logical unit number.
2814 * @task_mgmt_cmd: SCSI task management command.
2816 * This routine creates FCP information unit corresponding to @task_mgmt_cmd
2817 * for device with SLI-3 interface spec.
2824 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport
*vport
,
2825 struct lpfc_scsi_buf
*lpfc_cmd
,
2827 uint8_t task_mgmt_cmd
)
2829 struct lpfc_iocbq
*piocbq
;
2831 struct fcp_cmnd
*fcp_cmnd
;
2832 struct lpfc_rport_data
*rdata
= lpfc_cmd
->rdata
;
2833 struct lpfc_nodelist
*ndlp
= rdata
->pnode
;
2835 if (!ndlp
|| !NLP_CHK_NODE_ACT(ndlp
) ||
2836 ndlp
->nlp_state
!= NLP_STE_MAPPED_NODE
)
2839 piocbq
= &(lpfc_cmd
->cur_iocbq
);
2840 piocbq
->vport
= vport
;
2842 piocb
= &piocbq
->iocb
;
2844 fcp_cmnd
= lpfc_cmd
->fcp_cmnd
;
2845 /* Clear out any old data in the FCP command area */
2846 memset(fcp_cmnd
, 0, sizeof(struct fcp_cmnd
));
2847 int_to_scsilun(lun
, &fcp_cmnd
->fcp_lun
);
2848 fcp_cmnd
->fcpCntl2
= task_mgmt_cmd
;
2849 if (vport
->phba
->sli_rev
== 3 &&
2850 !(vport
->phba
->sli3_options
& LPFC_SLI3_BG_ENABLED
))
2851 lpfc_fcpcmd_to_iocb(piocb
->unsli3
.fcp_ext
.icd
, fcp_cmnd
);
2852 piocb
->ulpCommand
= CMD_FCP_ICMND64_CR
;
2853 piocb
->ulpContext
= ndlp
->nlp_rpi
;
2854 if (ndlp
->nlp_fcp_info
& NLP_FCP_2_DEVICE
) {
2855 piocb
->ulpFCP2Rcvy
= 1;
2857 piocb
->ulpClass
= (ndlp
->nlp_fcp_info
& 0x0f);
2859 /* ulpTimeout is only one byte */
2860 if (lpfc_cmd
->timeout
> 0xff) {
2862 * Do not timeout the command at the firmware level.
2863 * The driver will provide the timeout mechanism.
2865 piocb
->ulpTimeout
= 0;
2867 piocb
->ulpTimeout
= lpfc_cmd
->timeout
;
2869 if (vport
->phba
->sli_rev
== LPFC_SLI_REV4
)
2870 lpfc_sli4_set_rsp_sgl_last(vport
->phba
, lpfc_cmd
);
2876 * lpfc_scsi_api_table_setup - Set up scsi api function jump table
2877 * @phba: The hba struct for which this call is being executed.
2878 * @dev_grp: The HBA PCI-Device group number.
2880 * This routine sets up the SCSI interface API function jump table in @phba
2882 * Returns: 0 - success, -ENODEV - failure.
2885 lpfc_scsi_api_table_setup(struct lpfc_hba
*phba
, uint8_t dev_grp
)
2888 phba
->lpfc_scsi_unprep_dma_buf
= lpfc_scsi_unprep_dma_buf
;
2889 phba
->lpfc_scsi_prep_cmnd
= lpfc_scsi_prep_cmnd
;
2892 case LPFC_PCI_DEV_LP
:
2893 phba
->lpfc_new_scsi_buf
= lpfc_new_scsi_buf_s3
;
2894 phba
->lpfc_scsi_prep_dma_buf
= lpfc_scsi_prep_dma_buf_s3
;
2895 phba
->lpfc_release_scsi_buf
= lpfc_release_scsi_buf_s3
;
2896 phba
->lpfc_get_scsi_buf
= lpfc_get_scsi_buf_s3
;
2898 case LPFC_PCI_DEV_OC
:
2899 phba
->lpfc_new_scsi_buf
= lpfc_new_scsi_buf_s4
;
2900 phba
->lpfc_scsi_prep_dma_buf
= lpfc_scsi_prep_dma_buf_s4
;
2901 phba
->lpfc_release_scsi_buf
= lpfc_release_scsi_buf_s4
;
2902 phba
->lpfc_get_scsi_buf
= lpfc_get_scsi_buf_s4
;
2905 lpfc_printf_log(phba
, KERN_ERR
, LOG_INIT
,
2906 "1418 Invalid HBA PCI-device group: 0x%x\n",
2911 phba
->lpfc_rampdown_queue_depth
= lpfc_rampdown_queue_depth
;
2912 phba
->lpfc_scsi_cmd_iocb_cmpl
= lpfc_scsi_cmd_iocb_cmpl
;
2917 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command
2918 * @phba: The Hba for which this call is being executed.
2919 * @cmdiocbq: Pointer to lpfc_iocbq data structure.
2920 * @rspiocbq: Pointer to lpfc_iocbq data structure.
2922 * This routine is IOCB completion routine for device reset and target reset
2923 * routine. This routine release scsi buffer associated with lpfc_cmd.
2926 lpfc_tskmgmt_def_cmpl(struct lpfc_hba
*phba
,
2927 struct lpfc_iocbq
*cmdiocbq
,
2928 struct lpfc_iocbq
*rspiocbq
)
2930 struct lpfc_scsi_buf
*lpfc_cmd
=
2931 (struct lpfc_scsi_buf
*) cmdiocbq
->context1
;
2933 lpfc_release_scsi_buf(phba
, lpfc_cmd
);
2938 * lpfc_info - Info entry point of scsi_host_template data structure
2939 * @host: The scsi host for which this call is being executed.
2941 * This routine provides module information about hba.
2944 * Pointer to char - Success.
2947 lpfc_info(struct Scsi_Host
*host
)
2949 struct lpfc_vport
*vport
= (struct lpfc_vport
*) host
->hostdata
;
2950 struct lpfc_hba
*phba
= vport
->phba
;
2952 static char lpfcinfobuf
[384];
2954 memset(lpfcinfobuf
,0,384);
2955 if (phba
&& phba
->pcidev
){
2956 strncpy(lpfcinfobuf
, phba
->ModelDesc
, 256);
2957 len
= strlen(lpfcinfobuf
);
2958 snprintf(lpfcinfobuf
+ len
,
2960 " on PCI bus %02x device %02x irq %d",
2961 phba
->pcidev
->bus
->number
,
2962 phba
->pcidev
->devfn
,
2964 len
= strlen(lpfcinfobuf
);
2965 if (phba
->Port
[0]) {
2966 snprintf(lpfcinfobuf
+ len
,
2971 len
= strlen(lpfcinfobuf
);
2972 if (phba
->sli4_hba
.link_state
.logical_speed
) {
2973 snprintf(lpfcinfobuf
+ len
,
2975 " Logical Link Speed: %d Mbps",
2976 phba
->sli4_hba
.link_state
.logical_speed
* 10);
2983 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba
2984 * @phba: The Hba for which this call is being executed.
2986 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo.
2987 * The default value of cfg_poll_tmo is 10 milliseconds.
2989 static __inline__
void lpfc_poll_rearm_timer(struct lpfc_hba
* phba
)
2991 unsigned long poll_tmo_expires
=
2992 (jiffies
+ msecs_to_jiffies(phba
->cfg_poll_tmo
));
2994 if (phba
->sli
.ring
[LPFC_FCP_RING
].txcmplq_cnt
)
2995 mod_timer(&phba
->fcp_poll_timer
,
3000 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
3001 * @phba: The Hba for which this call is being executed.
3003 * This routine starts the fcp_poll_timer of @phba.
3005 void lpfc_poll_start_timer(struct lpfc_hba
* phba
)
3007 lpfc_poll_rearm_timer(phba
);
3011 * lpfc_poll_timeout - Restart polling timer
3012 * @ptr: Map to lpfc_hba data structure pointer.
3014 * This routine restarts fcp_poll timer, when FCP ring polling is enable
3015 * and FCP Ring interrupt is disable.
3018 void lpfc_poll_timeout(unsigned long ptr
)
3020 struct lpfc_hba
*phba
= (struct lpfc_hba
*) ptr
;
3022 if (phba
->cfg_poll
& ENABLE_FCP_RING_POLLING
) {
3023 lpfc_sli_handle_fast_ring_event(phba
,
3024 &phba
->sli
.ring
[LPFC_FCP_RING
], HA_R0RE_REQ
);
3026 if (phba
->cfg_poll
& DISABLE_FCP_RING_INT
)
3027 lpfc_poll_rearm_timer(phba
);
3032 * lpfc_queuecommand - scsi_host_template queuecommand entry point
3033 * @cmnd: Pointer to scsi_cmnd data structure.
3034 * @done: Pointer to done routine.
3036 * Driver registers this routine to scsi midlayer to submit a @cmd to process.
3037 * This routine prepares an IOCB from scsi command and provides to firmware.
3038 * The @done callback is invoked after driver finished processing the command.
3042 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
3045 lpfc_queuecommand_lck(struct scsi_cmnd
*cmnd
, void (*done
) (struct scsi_cmnd
*))
3047 struct Scsi_Host
*shost
= cmnd
->device
->host
;
3048 struct lpfc_vport
*vport
= (struct lpfc_vport
*) shost
->hostdata
;
3049 struct lpfc_hba
*phba
= vport
->phba
;
3050 struct lpfc_rport_data
*rdata
= cmnd
->device
->hostdata
;
3051 struct lpfc_nodelist
*ndlp
;
3052 struct lpfc_scsi_buf
*lpfc_cmd
;
3053 struct fc_rport
*rport
= starget_to_rport(scsi_target(cmnd
->device
));
3056 err
= fc_remote_port_chkready(rport
);
3059 goto out_fail_command
;
3061 ndlp
= rdata
->pnode
;
3063 if (!(phba
->sli3_options
& LPFC_SLI3_BG_ENABLED
) &&
3064 scsi_get_prot_op(cmnd
) != SCSI_PROT_NORMAL
) {
3066 lpfc_printf_log(phba
, KERN_ERR
, LOG_BG
,
3067 "9058 BLKGRD: ERROR: rcvd protected cmd:%02x"
3068 " op:%02x str=%s without registering for"
3069 " BlockGuard - Rejecting command\n",
3070 cmnd
->cmnd
[0], scsi_get_prot_op(cmnd
),
3071 dif_op_str
[scsi_get_prot_op(cmnd
)]);
3072 goto out_fail_command
;
3076 * Catch race where our node has transitioned, but the
3077 * transport is still transitioning.
3079 if (!ndlp
|| !NLP_CHK_NODE_ACT(ndlp
)) {
3080 cmnd
->result
= ScsiResult(DID_IMM_RETRY
, 0);
3081 goto out_fail_command
;
3083 if (atomic_read(&ndlp
->cmd_pending
) >= ndlp
->cmd_qdepth
)
3086 lpfc_cmd
= lpfc_get_scsi_buf(phba
, ndlp
);
3087 if (lpfc_cmd
== NULL
) {
3088 lpfc_rampdown_queue_depth(phba
);
3090 lpfc_printf_vlog(vport
, KERN_INFO
, LOG_FCP
,
3091 "0707 driver's buffer pool is empty, "
3097 * Store the midlayer's command structure for the completion phase
3098 * and complete the command initialization.
3100 lpfc_cmd
->pCmd
= cmnd
;
3101 lpfc_cmd
->rdata
= rdata
;
3102 lpfc_cmd
->timeout
= 0;
3103 lpfc_cmd
->start_time
= jiffies
;
3104 cmnd
->host_scribble
= (unsigned char *)lpfc_cmd
;
3105 cmnd
->scsi_done
= done
;
3107 if (scsi_get_prot_op(cmnd
) != SCSI_PROT_NORMAL
) {
3108 if (vport
->phba
->cfg_enable_bg
) {
3109 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3110 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x "
3112 cmnd
->cmnd
[0], scsi_get_prot_op(cmnd
),
3113 dif_op_str
[scsi_get_prot_op(cmnd
)]);
3114 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3115 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x "
3116 "%02x %02x %02x %02x %02x\n",
3117 cmnd
->cmnd
[0], cmnd
->cmnd
[1], cmnd
->cmnd
[2],
3118 cmnd
->cmnd
[3], cmnd
->cmnd
[4], cmnd
->cmnd
[5],
3119 cmnd
->cmnd
[6], cmnd
->cmnd
[7], cmnd
->cmnd
[8],
3121 if (cmnd
->cmnd
[0] == READ_10
)
3122 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3123 "9035 BLKGRD: READ @ sector %llu, "
3125 (unsigned long long)scsi_get_lba(cmnd
),
3126 blk_rq_sectors(cmnd
->request
));
3127 else if (cmnd
->cmnd
[0] == WRITE_10
)
3128 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3129 "9036 BLKGRD: WRITE @ sector %llu, "
3130 "count %u cmd=%p\n",
3131 (unsigned long long)scsi_get_lba(cmnd
),
3132 blk_rq_sectors(cmnd
->request
),
3136 err
= lpfc_bg_scsi_prep_dma_buf(phba
, lpfc_cmd
);
3138 if (vport
->phba
->cfg_enable_bg
) {
3139 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3140 "9038 BLKGRD: rcvd unprotected cmd:"
3141 "%02x op:%02x str=%s\n",
3142 cmnd
->cmnd
[0], scsi_get_prot_op(cmnd
),
3143 dif_op_str
[scsi_get_prot_op(cmnd
)]);
3144 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3145 "9039 BLKGRD: CDB: %02x %02x %02x "
3146 "%02x %02x %02x %02x %02x %02x %02x\n",
3147 cmnd
->cmnd
[0], cmnd
->cmnd
[1],
3148 cmnd
->cmnd
[2], cmnd
->cmnd
[3],
3149 cmnd
->cmnd
[4], cmnd
->cmnd
[5],
3150 cmnd
->cmnd
[6], cmnd
->cmnd
[7],
3151 cmnd
->cmnd
[8], cmnd
->cmnd
[9]);
3152 if (cmnd
->cmnd
[0] == READ_10
)
3153 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3154 "9040 dbg: READ @ sector %llu, "
3156 (unsigned long long)scsi_get_lba(cmnd
),
3157 blk_rq_sectors(cmnd
->request
));
3158 else if (cmnd
->cmnd
[0] == WRITE_10
)
3159 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3160 "9041 dbg: WRITE @ sector %llu, "
3161 "count %u cmd=%p\n",
3162 (unsigned long long)scsi_get_lba(cmnd
),
3163 blk_rq_sectors(cmnd
->request
), cmnd
);
3165 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_BG
,
3166 "9042 dbg: parser not implemented\n");
3168 err
= lpfc_scsi_prep_dma_buf(phba
, lpfc_cmd
);
3172 goto out_host_busy_free_buf
;
3174 lpfc_scsi_prep_cmnd(vport
, lpfc_cmd
, ndlp
);
3176 atomic_inc(&ndlp
->cmd_pending
);
3177 err
= lpfc_sli_issue_iocb(phba
, LPFC_FCP_RING
,
3178 &lpfc_cmd
->cur_iocbq
, SLI_IOCB_RET_IOCB
);
3180 atomic_dec(&ndlp
->cmd_pending
);
3181 goto out_host_busy_free_buf
;
3183 if (phba
->cfg_poll
& ENABLE_FCP_RING_POLLING
) {
3184 spin_unlock(shost
->host_lock
);
3185 lpfc_sli_handle_fast_ring_event(phba
,
3186 &phba
->sli
.ring
[LPFC_FCP_RING
], HA_R0RE_REQ
);
3188 spin_lock(shost
->host_lock
);
3189 if (phba
->cfg_poll
& DISABLE_FCP_RING_INT
)
3190 lpfc_poll_rearm_timer(phba
);
3195 out_host_busy_free_buf
:
3196 lpfc_scsi_unprep_dma_buf(phba
, lpfc_cmd
);
3197 lpfc_release_scsi_buf(phba
, lpfc_cmd
);
3199 return SCSI_MLQUEUE_HOST_BUSY
;
3202 return SCSI_MLQUEUE_TARGET_BUSY
;
3209 static DEF_SCSI_QCMD(lpfc_queuecommand
)
3212 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
3213 * @cmnd: Pointer to scsi_cmnd data structure.
3215 * This routine aborts @cmnd pending in base driver.
3222 lpfc_abort_handler(struct scsi_cmnd
*cmnd
)
3224 struct Scsi_Host
*shost
= cmnd
->device
->host
;
3225 struct lpfc_vport
*vport
= (struct lpfc_vport
*) shost
->hostdata
;
3226 struct lpfc_hba
*phba
= vport
->phba
;
3227 struct lpfc_iocbq
*iocb
;
3228 struct lpfc_iocbq
*abtsiocb
;
3229 struct lpfc_scsi_buf
*lpfc_cmd
;
3232 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq
);
3234 ret
= fc_block_scsi_eh(cmnd
);
3237 lpfc_cmd
= (struct lpfc_scsi_buf
*)cmnd
->host_scribble
;
3239 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
,
3240 "2873 SCSI Layer I/O Abort Request IO CMPL Status "
3242 "LUN %d snum %#lx\n", ret
, cmnd
->device
->id
,
3243 cmnd
->device
->lun
, cmnd
->serial_number
);
3248 * If pCmd field of the corresponding lpfc_scsi_buf structure
3249 * points to a different SCSI command, then the driver has
3250 * already completed this command, but the midlayer did not
3251 * see the completion before the eh fired. Just return
3254 iocb
= &lpfc_cmd
->cur_iocbq
;
3255 if (lpfc_cmd
->pCmd
!= cmnd
)
3258 BUG_ON(iocb
->context1
!= lpfc_cmd
);
3260 abtsiocb
= lpfc_sli_get_iocbq(phba
);
3261 if (abtsiocb
== NULL
) {
3267 * The scsi command can not be in txq and it is in flight because the
3268 * pCmd is still pointig at the SCSI command we have to abort. There
3269 * is no need to search the txcmplq. Just send an abort to the FW.
3273 icmd
= &abtsiocb
->iocb
;
3274 icmd
->un
.acxri
.abortType
= ABORT_TYPE_ABTS
;
3275 icmd
->un
.acxri
.abortContextTag
= cmd
->ulpContext
;
3276 if (phba
->sli_rev
== LPFC_SLI_REV4
)
3277 icmd
->un
.acxri
.abortIoTag
= iocb
->sli4_xritag
;
3279 icmd
->un
.acxri
.abortIoTag
= cmd
->ulpIoTag
;
3282 icmd
->ulpClass
= cmd
->ulpClass
;
3284 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
3285 abtsiocb
->fcp_wqidx
= iocb
->fcp_wqidx
;
3286 abtsiocb
->iocb_flag
|= LPFC_USE_FCPWQIDX
;
3288 if (lpfc_is_link_up(phba
))
3289 icmd
->ulpCommand
= CMD_ABORT_XRI_CN
;
3291 icmd
->ulpCommand
= CMD_CLOSE_XRI_CN
;
3293 abtsiocb
->iocb_cmpl
= lpfc_sli_abort_fcp_cmpl
;
3294 abtsiocb
->vport
= vport
;
3295 if (lpfc_sli_issue_iocb(phba
, LPFC_FCP_RING
, abtsiocb
, 0) ==
3297 lpfc_sli_release_iocbq(phba
, abtsiocb
);
3302 if (phba
->cfg_poll
& DISABLE_FCP_RING_INT
)
3303 lpfc_sli_handle_fast_ring_event(phba
,
3304 &phba
->sli
.ring
[LPFC_FCP_RING
], HA_R0RE_REQ
);
3306 lpfc_cmd
->waitq
= &waitq
;
3307 /* Wait for abort to complete */
3308 wait_event_timeout(waitq
,
3309 (lpfc_cmd
->pCmd
!= cmnd
),
3310 (2*vport
->cfg_devloss_tmo
*HZ
));
3312 spin_lock_irq(shost
->host_lock
);
3313 lpfc_cmd
->waitq
= NULL
;
3314 spin_unlock_irq(shost
->host_lock
);
3316 if (lpfc_cmd
->pCmd
== cmnd
) {
3318 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3319 "0748 abort handler timed out waiting "
3320 "for abort to complete: ret %#x, ID %d, "
3321 "LUN %d, snum %#lx\n",
3322 ret
, cmnd
->device
->id
, cmnd
->device
->lun
,
3323 cmnd
->serial_number
);
3327 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
,
3328 "0749 SCSI Layer I/O Abort Request Status x%x ID %d "
3329 "LUN %d snum %#lx\n", ret
, cmnd
->device
->id
,
3330 cmnd
->device
->lun
, cmnd
->serial_number
);
3335 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd
)
3337 switch (task_mgmt_cmd
) {
3338 case FCP_ABORT_TASK_SET
:
3339 return "ABORT_TASK_SET";
3340 case FCP_CLEAR_TASK_SET
:
3341 return "FCP_CLEAR_TASK_SET";
3343 return "FCP_BUS_RESET";
3345 return "FCP_LUN_RESET";
3346 case FCP_TARGET_RESET
:
3347 return "FCP_TARGET_RESET";
3349 return "FCP_CLEAR_ACA";
3350 case FCP_TERMINATE_TASK
:
3351 return "FCP_TERMINATE_TASK";
3358 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
3359 * @vport: The virtual port for which this call is being executed.
3360 * @rdata: Pointer to remote port local data
3361 * @tgt_id: Target ID of remote device.
3362 * @lun_id: Lun number for the TMF
3363 * @task_mgmt_cmd: type of TMF to send
3365 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to
3373 lpfc_send_taskmgmt(struct lpfc_vport
*vport
, struct lpfc_rport_data
*rdata
,
3374 unsigned tgt_id
, unsigned int lun_id
,
3375 uint8_t task_mgmt_cmd
)
3377 struct lpfc_hba
*phba
= vport
->phba
;
3378 struct lpfc_scsi_buf
*lpfc_cmd
;
3379 struct lpfc_iocbq
*iocbq
;
3380 struct lpfc_iocbq
*iocbqrsp
;
3381 struct lpfc_nodelist
*pnode
= rdata
->pnode
;
3385 if (!pnode
|| !NLP_CHK_NODE_ACT(pnode
))
3388 lpfc_cmd
= lpfc_get_scsi_buf(phba
, rdata
->pnode
);
3389 if (lpfc_cmd
== NULL
)
3391 lpfc_cmd
->timeout
= 60;
3392 lpfc_cmd
->rdata
= rdata
;
3394 status
= lpfc_scsi_prep_task_mgmt_cmd(vport
, lpfc_cmd
, lun_id
,
3397 lpfc_release_scsi_buf(phba
, lpfc_cmd
);
3401 iocbq
= &lpfc_cmd
->cur_iocbq
;
3402 iocbqrsp
= lpfc_sli_get_iocbq(phba
);
3403 if (iocbqrsp
== NULL
) {
3404 lpfc_release_scsi_buf(phba
, lpfc_cmd
);
3408 lpfc_printf_vlog(vport
, KERN_INFO
, LOG_FCP
,
3409 "0702 Issue %s to TGT %d LUN %d "
3410 "rpi x%x nlp_flag x%x\n",
3411 lpfc_taskmgmt_name(task_mgmt_cmd
), tgt_id
, lun_id
,
3412 pnode
->nlp_rpi
, pnode
->nlp_flag
);
3414 status
= lpfc_sli_issue_iocb_wait(phba
, LPFC_FCP_RING
,
3415 iocbq
, iocbqrsp
, lpfc_cmd
->timeout
);
3416 if (status
!= IOCB_SUCCESS
) {
3417 if (status
== IOCB_TIMEDOUT
) {
3418 iocbq
->iocb_cmpl
= lpfc_tskmgmt_def_cmpl
;
3419 ret
= TIMEOUT_ERROR
;
3422 lpfc_cmd
->status
= IOSTAT_DRIVER_REJECT
;
3423 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3424 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n",
3425 lpfc_taskmgmt_name(task_mgmt_cmd
),
3426 tgt_id
, lun_id
, iocbqrsp
->iocb
.ulpStatus
,
3427 iocbqrsp
->iocb
.un
.ulpWord
[4]);
3428 } else if (status
== IOCB_BUSY
)
3433 lpfc_sli_release_iocbq(phba
, iocbqrsp
);
3435 if (ret
!= TIMEOUT_ERROR
)
3436 lpfc_release_scsi_buf(phba
, lpfc_cmd
);
3442 * lpfc_chk_tgt_mapped -
3443 * @vport: The virtual port to check on
3444 * @cmnd: Pointer to scsi_cmnd data structure.
3446 * This routine delays until the scsi target (aka rport) for the
3447 * command exists (is present and logged in) or we declare it non-existent.
3454 lpfc_chk_tgt_mapped(struct lpfc_vport
*vport
, struct scsi_cmnd
*cmnd
)
3456 struct lpfc_rport_data
*rdata
= cmnd
->device
->hostdata
;
3457 struct lpfc_nodelist
*pnode
;
3458 unsigned long later
;
3461 lpfc_printf_vlog(vport
, KERN_INFO
, LOG_FCP
,
3462 "0797 Tgt Map rport failure: rdata x%p\n", rdata
);
3465 pnode
= rdata
->pnode
;
3467 * If target is not in a MAPPED state, delay until
3468 * target is rediscovered or devloss timeout expires.
3470 later
= msecs_to_jiffies(2 * vport
->cfg_devloss_tmo
* 1000) + jiffies
;
3471 while (time_after(later
, jiffies
)) {
3472 if (!pnode
|| !NLP_CHK_NODE_ACT(pnode
))
3474 if (pnode
->nlp_state
== NLP_STE_MAPPED_NODE
)
3476 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
3477 rdata
= cmnd
->device
->hostdata
;
3480 pnode
= rdata
->pnode
;
3482 if (!pnode
|| !NLP_CHK_NODE_ACT(pnode
) ||
3483 (pnode
->nlp_state
!= NLP_STE_MAPPED_NODE
))
3489 * lpfc_reset_flush_io_context -
3490 * @vport: The virtual port (scsi_host) for the flush context
3491 * @tgt_id: If aborting by Target contect - specifies the target id
3492 * @lun_id: If aborting by Lun context - specifies the lun id
3493 * @context: specifies the context level to flush at.
3495 * After a reset condition via TMF, we need to flush orphaned i/o
3496 * contexts from the adapter. This routine aborts any contexts
3497 * outstanding, then waits for their completions. The wait is
3498 * bounded by devloss_tmo though.
3505 lpfc_reset_flush_io_context(struct lpfc_vport
*vport
, uint16_t tgt_id
,
3506 uint64_t lun_id
, lpfc_ctx_cmd context
)
3508 struct lpfc_hba
*phba
= vport
->phba
;
3509 unsigned long later
;
3512 cnt
= lpfc_sli_sum_iocb(vport
, tgt_id
, lun_id
, context
);
3514 lpfc_sli_abort_iocb(vport
, &phba
->sli
.ring
[phba
->sli
.fcp_ring
],
3515 tgt_id
, lun_id
, context
);
3516 later
= msecs_to_jiffies(2 * vport
->cfg_devloss_tmo
* 1000) + jiffies
;
3517 while (time_after(later
, jiffies
) && cnt
) {
3518 schedule_timeout_uninterruptible(msecs_to_jiffies(20));
3519 cnt
= lpfc_sli_sum_iocb(vport
, tgt_id
, lun_id
, context
);
3522 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3523 "0724 I/O flush failure for context %s : cnt x%x\n",
3524 ((context
== LPFC_CTX_LUN
) ? "LUN" :
3525 ((context
== LPFC_CTX_TGT
) ? "TGT" :
3526 ((context
== LPFC_CTX_HOST
) ? "HOST" : "Unknown"))),
3534 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
3535 * @cmnd: Pointer to scsi_cmnd data structure.
3537 * This routine does a device reset by sending a LUN_RESET task management
3545 lpfc_device_reset_handler(struct scsi_cmnd
*cmnd
)
3547 struct Scsi_Host
*shost
= cmnd
->device
->host
;
3548 struct lpfc_vport
*vport
= (struct lpfc_vport
*) shost
->hostdata
;
3549 struct lpfc_rport_data
*rdata
= cmnd
->device
->hostdata
;
3550 struct lpfc_nodelist
*pnode
;
3551 unsigned tgt_id
= cmnd
->device
->id
;
3552 unsigned int lun_id
= cmnd
->device
->lun
;
3553 struct lpfc_scsi_event_header scsi_event
;
3557 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3558 "0798 Device Reset rport failure: rdata x%p\n", rdata
);
3561 pnode
= rdata
->pnode
;
3562 status
= fc_block_scsi_eh(cmnd
);
3566 status
= lpfc_chk_tgt_mapped(vport
, cmnd
);
3567 if (status
== FAILED
) {
3568 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3569 "0721 Device Reset rport failure: rdata x%p\n", rdata
);
3573 scsi_event
.event_type
= FC_REG_SCSI_EVENT
;
3574 scsi_event
.subcategory
= LPFC_EVENT_LUNRESET
;
3575 scsi_event
.lun
= lun_id
;
3576 memcpy(scsi_event
.wwpn
, &pnode
->nlp_portname
, sizeof(struct lpfc_name
));
3577 memcpy(scsi_event
.wwnn
, &pnode
->nlp_nodename
, sizeof(struct lpfc_name
));
3579 fc_host_post_vendor_event(shost
, fc_get_event_number(),
3580 sizeof(scsi_event
), (char *)&scsi_event
, LPFC_NL_VENDOR_ID
);
3582 status
= lpfc_send_taskmgmt(vport
, rdata
, tgt_id
, lun_id
,
3585 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3586 "0713 SCSI layer issued Device Reset (%d, %d) "
3587 "return x%x\n", tgt_id
, lun_id
, status
);
3590 * We have to clean up i/o as : they may be orphaned by the TMF;
3591 * or if the TMF failed, they may be in an indeterminate state.
3593 * We will report success if all the i/o aborts successfully.
3595 status
= lpfc_reset_flush_io_context(vport
, tgt_id
, lun_id
,
3601 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
3602 * @cmnd: Pointer to scsi_cmnd data structure.
3604 * This routine does a target reset by sending a TARGET_RESET task management
3612 lpfc_target_reset_handler(struct scsi_cmnd
*cmnd
)
3614 struct Scsi_Host
*shost
= cmnd
->device
->host
;
3615 struct lpfc_vport
*vport
= (struct lpfc_vport
*) shost
->hostdata
;
3616 struct lpfc_rport_data
*rdata
= cmnd
->device
->hostdata
;
3617 struct lpfc_nodelist
*pnode
;
3618 unsigned tgt_id
= cmnd
->device
->id
;
3619 unsigned int lun_id
= cmnd
->device
->lun
;
3620 struct lpfc_scsi_event_header scsi_event
;
3624 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3625 "0799 Target Reset rport failure: rdata x%p\n", rdata
);
3628 pnode
= rdata
->pnode
;
3629 status
= fc_block_scsi_eh(cmnd
);
3633 status
= lpfc_chk_tgt_mapped(vport
, cmnd
);
3634 if (status
== FAILED
) {
3635 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3636 "0722 Target Reset rport failure: rdata x%p\n", rdata
);
3640 scsi_event
.event_type
= FC_REG_SCSI_EVENT
;
3641 scsi_event
.subcategory
= LPFC_EVENT_TGTRESET
;
3643 memcpy(scsi_event
.wwpn
, &pnode
->nlp_portname
, sizeof(struct lpfc_name
));
3644 memcpy(scsi_event
.wwnn
, &pnode
->nlp_nodename
, sizeof(struct lpfc_name
));
3646 fc_host_post_vendor_event(shost
, fc_get_event_number(),
3647 sizeof(scsi_event
), (char *)&scsi_event
, LPFC_NL_VENDOR_ID
);
3649 status
= lpfc_send_taskmgmt(vport
, rdata
, tgt_id
, lun_id
,
3652 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3653 "0723 SCSI layer issued Target Reset (%d, %d) "
3654 "return x%x\n", tgt_id
, lun_id
, status
);
3657 * We have to clean up i/o as : they may be orphaned by the TMF;
3658 * or if the TMF failed, they may be in an indeterminate state.
3660 * We will report success if all the i/o aborts successfully.
3662 status
= lpfc_reset_flush_io_context(vport
, tgt_id
, lun_id
,
3668 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point
3669 * @cmnd: Pointer to scsi_cmnd data structure.
3671 * This routine does target reset to all targets on @cmnd->device->host.
3672 * This emulates Parallel SCSI Bus Reset Semantics.
3679 lpfc_bus_reset_handler(struct scsi_cmnd
*cmnd
)
3681 struct Scsi_Host
*shost
= cmnd
->device
->host
;
3682 struct lpfc_vport
*vport
= (struct lpfc_vport
*) shost
->hostdata
;
3683 struct lpfc_nodelist
*ndlp
= NULL
;
3684 struct lpfc_scsi_event_header scsi_event
;
3686 int ret
= SUCCESS
, status
, i
;
3688 scsi_event
.event_type
= FC_REG_SCSI_EVENT
;
3689 scsi_event
.subcategory
= LPFC_EVENT_BUSRESET
;
3691 memcpy(scsi_event
.wwpn
, &vport
->fc_portname
, sizeof(struct lpfc_name
));
3692 memcpy(scsi_event
.wwnn
, &vport
->fc_nodename
, sizeof(struct lpfc_name
));
3694 fc_host_post_vendor_event(shost
, fc_get_event_number(),
3695 sizeof(scsi_event
), (char *)&scsi_event
, LPFC_NL_VENDOR_ID
);
3697 ret
= fc_block_scsi_eh(cmnd
);
3702 * Since the driver manages a single bus device, reset all
3703 * targets known to the driver. Should any target reset
3704 * fail, this routine returns failure to the midlayer.
3706 for (i
= 0; i
< LPFC_MAX_TARGET
; i
++) {
3707 /* Search for mapped node by target ID */
3709 spin_lock_irq(shost
->host_lock
);
3710 list_for_each_entry(ndlp
, &vport
->fc_nodes
, nlp_listp
) {
3711 if (!NLP_CHK_NODE_ACT(ndlp
))
3713 if (ndlp
->nlp_state
== NLP_STE_MAPPED_NODE
&&
3714 ndlp
->nlp_sid
== i
&&
3720 spin_unlock_irq(shost
->host_lock
);
3724 status
= lpfc_send_taskmgmt(vport
, ndlp
->rport
->dd_data
,
3725 i
, 0, FCP_TARGET_RESET
);
3727 if (status
!= SUCCESS
) {
3728 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3729 "0700 Bus Reset on target %d failed\n",
3735 * We have to clean up i/o as : they may be orphaned by the TMFs
3736 * above; or if any of the TMFs failed, they may be in an
3737 * indeterminate state.
3738 * We will report success if all the i/o aborts successfully.
3741 status
= lpfc_reset_flush_io_context(vport
, 0, 0, LPFC_CTX_HOST
);
3742 if (status
!= SUCCESS
)
3745 lpfc_printf_vlog(vport
, KERN_ERR
, LOG_FCP
,
3746 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret
);
3751 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point
3752 * @sdev: Pointer to scsi_device.
3754 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's
3755 * globally available list of scsi buffers. This routine also makes sure scsi
3756 * buffer is not allocated more than HBA limit conveyed to midlayer. This list
3757 * of scsi buffer exists for the lifetime of the driver.
3764 lpfc_slave_alloc(struct scsi_device
*sdev
)
3766 struct lpfc_vport
*vport
= (struct lpfc_vport
*) sdev
->host
->hostdata
;
3767 struct lpfc_hba
*phba
= vport
->phba
;
3768 struct fc_rport
*rport
= starget_to_rport(scsi_target(sdev
));
3770 uint32_t num_to_alloc
= 0;
3771 int num_allocated
= 0;
3774 if (!rport
|| fc_remote_port_chkready(rport
))
3777 sdev
->hostdata
= rport
->dd_data
;
3778 sdev_cnt
= atomic_inc_return(&phba
->sdev_cnt
);
3781 * Populate the cmds_per_lun count scsi_bufs into this host's globally
3782 * available list of scsi buffers. Don't allocate more than the
3783 * HBA limit conveyed to the midlayer via the host structure. The
3784 * formula accounts for the lun_queue_depth + error handlers + 1
3785 * extra. This list of scsi bufs exists for the lifetime of the driver.
3787 total
= phba
->total_scsi_bufs
;
3788 num_to_alloc
= vport
->cfg_lun_queue_depth
+ 2;
3790 /* If allocated buffers are enough do nothing */
3791 if ((sdev_cnt
* (vport
->cfg_lun_queue_depth
+ 2)) < total
)
3794 /* Allow some exchanges to be available always to complete discovery */
3795 if (total
>= phba
->cfg_hba_queue_depth
- LPFC_DISC_IOCB_BUFF_COUNT
) {
3796 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
,
3797 "0704 At limitation of %d preallocated "
3798 "command buffers\n", total
);
3800 /* Allow some exchanges to be available always to complete discovery */
3801 } else if (total
+ num_to_alloc
>
3802 phba
->cfg_hba_queue_depth
- LPFC_DISC_IOCB_BUFF_COUNT
) {
3803 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
,
3804 "0705 Allocation request of %d "
3805 "command buffers will exceed max of %d. "
3806 "Reducing allocation request to %d.\n",
3807 num_to_alloc
, phba
->cfg_hba_queue_depth
,
3808 (phba
->cfg_hba_queue_depth
- total
));
3809 num_to_alloc
= phba
->cfg_hba_queue_depth
- total
;
3811 num_allocated
= lpfc_new_scsi_buf(vport
, num_to_alloc
);
3812 if (num_to_alloc
!= num_allocated
) {
3813 lpfc_printf_vlog(vport
, KERN_WARNING
, LOG_FCP
,
3814 "0708 Allocation request of %d "
3815 "command buffers did not succeed. "
3816 "Allocated %d buffers.\n",
3817 num_to_alloc
, num_allocated
);
3819 if (num_allocated
> 0)
3820 phba
->total_scsi_bufs
+= num_allocated
;
3825 * lpfc_slave_configure - scsi_host_template slave_configure entry point
3826 * @sdev: Pointer to scsi_device.
3828 * This routine configures following items
3829 * - Tag command queuing support for @sdev if supported.
3830 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
3836 lpfc_slave_configure(struct scsi_device
*sdev
)
3838 struct lpfc_vport
*vport
= (struct lpfc_vport
*) sdev
->host
->hostdata
;
3839 struct lpfc_hba
*phba
= vport
->phba
;
3841 if (sdev
->tagged_supported
)
3842 scsi_activate_tcq(sdev
, vport
->cfg_lun_queue_depth
);
3844 scsi_deactivate_tcq(sdev
, vport
->cfg_lun_queue_depth
);
3846 if (phba
->cfg_poll
& ENABLE_FCP_RING_POLLING
) {
3847 lpfc_sli_handle_fast_ring_event(phba
,
3848 &phba
->sli
.ring
[LPFC_FCP_RING
], HA_R0RE_REQ
);
3849 if (phba
->cfg_poll
& DISABLE_FCP_RING_INT
)
3850 lpfc_poll_rearm_timer(phba
);
3857 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure
3858 * @sdev: Pointer to scsi_device.
3860 * This routine sets @sdev hostatdata filed to null.
3863 lpfc_slave_destroy(struct scsi_device
*sdev
)
3865 struct lpfc_vport
*vport
= (struct lpfc_vport
*) sdev
->host
->hostdata
;
3866 struct lpfc_hba
*phba
= vport
->phba
;
3867 atomic_dec(&phba
->sdev_cnt
);
3868 sdev
->hostdata
= NULL
;
3873 struct scsi_host_template lpfc_template
= {
3874 .module
= THIS_MODULE
,
3875 .name
= LPFC_DRIVER_NAME
,
3877 .queuecommand
= lpfc_queuecommand
,
3878 .eh_abort_handler
= lpfc_abort_handler
,
3879 .eh_device_reset_handler
= lpfc_device_reset_handler
,
3880 .eh_target_reset_handler
= lpfc_target_reset_handler
,
3881 .eh_bus_reset_handler
= lpfc_bus_reset_handler
,
3882 .slave_alloc
= lpfc_slave_alloc
,
3883 .slave_configure
= lpfc_slave_configure
,
3884 .slave_destroy
= lpfc_slave_destroy
,
3885 .scan_finished
= lpfc_scan_finished
,
3887 .sg_tablesize
= LPFC_DEFAULT_SG_SEG_CNT
,
3888 .cmd_per_lun
= LPFC_CMD_PER_LUN
,
3889 .use_clustering
= ENABLE_CLUSTERING
,
3890 .shost_attrs
= lpfc_hba_attrs
,
3891 .max_sectors
= 0xFFFF,
3892 .vendor_id
= LPFC_NL_VENDOR_ID
,
3893 .change_queue_depth
= lpfc_change_queue_depth
,
3896 struct scsi_host_template lpfc_vport_template
= {
3897 .module
= THIS_MODULE
,
3898 .name
= LPFC_DRIVER_NAME
,
3900 .queuecommand
= lpfc_queuecommand
,
3901 .eh_abort_handler
= lpfc_abort_handler
,
3902 .eh_device_reset_handler
= lpfc_device_reset_handler
,
3903 .eh_target_reset_handler
= lpfc_target_reset_handler
,
3904 .eh_bus_reset_handler
= lpfc_bus_reset_handler
,
3905 .slave_alloc
= lpfc_slave_alloc
,
3906 .slave_configure
= lpfc_slave_configure
,
3907 .slave_destroy
= lpfc_slave_destroy
,
3908 .scan_finished
= lpfc_scan_finished
,
3910 .sg_tablesize
= LPFC_DEFAULT_SG_SEG_CNT
,
3911 .cmd_per_lun
= LPFC_CMD_PER_LUN
,
3912 .use_clustering
= ENABLE_CLUSTERING
,
3913 .shost_attrs
= lpfc_vport_attrs
,
3914 .max_sectors
= 0xFFFF,
3915 .change_queue_depth
= lpfc_change_queue_depth
,