1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
52 #include <asm/uaccess.h>
54 #include <trace/events/vmscan.h>
56 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
57 #define MEM_CGROUP_RECLAIM_RETRIES 5
58 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
60 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
61 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
62 int do_swap_account __read_mostly
;
63 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
65 #define do_swap_account (0)
69 * Per memcg event counter is incremented at every pagein/pageout. This counter
70 * is used for trigger some periodic events. This is straightforward and better
71 * than using jiffies etc. to handle periodic memcg event.
73 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
76 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index
{
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
89 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
90 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
91 MEM_CGROUP_EVENTS
, /* incremented at every pagein/pageout */
93 MEM_CGROUP_STAT_NSTATS
,
96 struct mem_cgroup_stat_cpu
{
97 s64 count
[MEM_CGROUP_STAT_NSTATS
];
101 * per-zone information in memory controller.
103 struct mem_cgroup_per_zone
{
105 * spin_lock to protect the per cgroup LRU
107 struct list_head lists
[NR_LRU_LISTS
];
108 unsigned long count
[NR_LRU_LISTS
];
110 struct zone_reclaim_stat reclaim_stat
;
111 struct rb_node tree_node
; /* RB tree node */
112 unsigned long long usage_in_excess
;/* Set to the value by which */
113 /* the soft limit is exceeded*/
115 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
116 /* use container_of */
118 /* Macro for accessing counter */
119 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
121 struct mem_cgroup_per_node
{
122 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
125 struct mem_cgroup_lru_info
{
126 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
130 * Cgroups above their limits are maintained in a RB-Tree, independent of
131 * their hierarchy representation
134 struct mem_cgroup_tree_per_zone
{
135 struct rb_root rb_root
;
139 struct mem_cgroup_tree_per_node
{
140 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
143 struct mem_cgroup_tree
{
144 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
147 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
149 struct mem_cgroup_threshold
{
150 struct eventfd_ctx
*eventfd
;
155 struct mem_cgroup_threshold_ary
{
156 /* An array index points to threshold just below usage. */
157 int current_threshold
;
158 /* Size of entries[] */
160 /* Array of thresholds */
161 struct mem_cgroup_threshold entries
[0];
164 struct mem_cgroup_thresholds
{
165 /* Primary thresholds array */
166 struct mem_cgroup_threshold_ary
*primary
;
168 * Spare threshold array.
169 * This is needed to make mem_cgroup_unregister_event() "never fail".
170 * It must be able to store at least primary->size - 1 entries.
172 struct mem_cgroup_threshold_ary
*spare
;
176 struct mem_cgroup_eventfd_list
{
177 struct list_head list
;
178 struct eventfd_ctx
*eventfd
;
181 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
182 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
185 * The memory controller data structure. The memory controller controls both
186 * page cache and RSS per cgroup. We would eventually like to provide
187 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
188 * to help the administrator determine what knobs to tune.
190 * TODO: Add a water mark for the memory controller. Reclaim will begin when
191 * we hit the water mark. May be even add a low water mark, such that
192 * no reclaim occurs from a cgroup at it's low water mark, this is
193 * a feature that will be implemented much later in the future.
196 struct cgroup_subsys_state css
;
198 * the counter to account for memory usage
200 struct res_counter res
;
202 * the counter to account for mem+swap usage.
204 struct res_counter memsw
;
206 * Per cgroup active and inactive list, similar to the
207 * per zone LRU lists.
209 struct mem_cgroup_lru_info info
;
212 protect against reclaim related member.
214 spinlock_t reclaim_param_lock
;
217 * While reclaiming in a hierarchy, we cache the last child we
220 int last_scanned_child
;
222 * Should the accounting and control be hierarchical, per subtree?
228 unsigned int swappiness
;
229 /* OOM-Killer disable */
230 int oom_kill_disable
;
232 /* set when res.limit == memsw.limit */
233 bool memsw_is_minimum
;
235 /* protect arrays of thresholds */
236 struct mutex thresholds_lock
;
238 /* thresholds for memory usage. RCU-protected */
239 struct mem_cgroup_thresholds thresholds
;
241 /* thresholds for mem+swap usage. RCU-protected */
242 struct mem_cgroup_thresholds memsw_thresholds
;
244 /* For oom notifier event fd */
245 struct list_head oom_notify
;
248 * Should we move charges of a task when a task is moved into this
249 * mem_cgroup ? And what type of charges should we move ?
251 unsigned long move_charge_at_immigrate
;
255 struct mem_cgroup_stat_cpu
*stat
;
258 /* Stuffs for move charges at task migration. */
260 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
261 * left-shifted bitmap of these types.
264 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
265 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
269 /* "mc" and its members are protected by cgroup_mutex */
270 static struct move_charge_struct
{
271 struct mem_cgroup
*from
;
272 struct mem_cgroup
*to
;
273 unsigned long precharge
;
274 unsigned long moved_charge
;
275 unsigned long moved_swap
;
276 struct task_struct
*moving_task
; /* a task moving charges */
277 wait_queue_head_t waitq
; /* a waitq for other context */
279 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
282 static bool move_anon(void)
284 return test_bit(MOVE_CHARGE_TYPE_ANON
,
285 &mc
.to
->move_charge_at_immigrate
);
288 static bool move_file(void)
290 return test_bit(MOVE_CHARGE_TYPE_FILE
,
291 &mc
.to
->move_charge_at_immigrate
);
295 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
296 * limit reclaim to prevent infinite loops, if they ever occur.
298 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
299 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
302 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
303 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
304 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
305 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
306 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
307 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
311 /* only for here (for easy reading.) */
312 #define PCGF_CACHE (1UL << PCG_CACHE)
313 #define PCGF_USED (1UL << PCG_USED)
314 #define PCGF_LOCK (1UL << PCG_LOCK)
315 /* Not used, but added here for completeness */
316 #define PCGF_ACCT (1UL << PCG_ACCT)
318 /* for encoding cft->private value on file */
321 #define _OOM_TYPE (2)
322 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
323 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
324 #define MEMFILE_ATTR(val) ((val) & 0xffff)
325 /* Used for OOM nofiier */
326 #define OOM_CONTROL (0)
329 * Reclaim flags for mem_cgroup_hierarchical_reclaim
331 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
332 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
333 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
334 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
335 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
336 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
338 static void mem_cgroup_get(struct mem_cgroup
*mem
);
339 static void mem_cgroup_put(struct mem_cgroup
*mem
);
340 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
341 static void drain_all_stock_async(void);
343 static struct mem_cgroup_per_zone
*
344 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
346 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
349 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
354 static struct mem_cgroup_per_zone
*
355 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
357 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
358 int nid
= page_cgroup_nid(pc
);
359 int zid
= page_cgroup_zid(pc
);
364 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
367 static struct mem_cgroup_tree_per_zone
*
368 soft_limit_tree_node_zone(int nid
, int zid
)
370 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
373 static struct mem_cgroup_tree_per_zone
*
374 soft_limit_tree_from_page(struct page
*page
)
376 int nid
= page_to_nid(page
);
377 int zid
= page_zonenum(page
);
379 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
383 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
384 struct mem_cgroup_per_zone
*mz
,
385 struct mem_cgroup_tree_per_zone
*mctz
,
386 unsigned long long new_usage_in_excess
)
388 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
389 struct rb_node
*parent
= NULL
;
390 struct mem_cgroup_per_zone
*mz_node
;
395 mz
->usage_in_excess
= new_usage_in_excess
;
396 if (!mz
->usage_in_excess
)
400 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
402 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
405 * We can't avoid mem cgroups that are over their soft
406 * limit by the same amount
408 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
411 rb_link_node(&mz
->tree_node
, parent
, p
);
412 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
417 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
418 struct mem_cgroup_per_zone
*mz
,
419 struct mem_cgroup_tree_per_zone
*mctz
)
423 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
428 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
429 struct mem_cgroup_per_zone
*mz
,
430 struct mem_cgroup_tree_per_zone
*mctz
)
432 spin_lock(&mctz
->lock
);
433 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
434 spin_unlock(&mctz
->lock
);
438 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
440 unsigned long long excess
;
441 struct mem_cgroup_per_zone
*mz
;
442 struct mem_cgroup_tree_per_zone
*mctz
;
443 int nid
= page_to_nid(page
);
444 int zid
= page_zonenum(page
);
445 mctz
= soft_limit_tree_from_page(page
);
448 * Necessary to update all ancestors when hierarchy is used.
449 * because their event counter is not touched.
451 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
452 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
453 excess
= res_counter_soft_limit_excess(&mem
->res
);
455 * We have to update the tree if mz is on RB-tree or
456 * mem is over its softlimit.
458 if (excess
|| mz
->on_tree
) {
459 spin_lock(&mctz
->lock
);
460 /* if on-tree, remove it */
462 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
464 * Insert again. mz->usage_in_excess will be updated.
465 * If excess is 0, no tree ops.
467 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
468 spin_unlock(&mctz
->lock
);
473 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
476 struct mem_cgroup_per_zone
*mz
;
477 struct mem_cgroup_tree_per_zone
*mctz
;
479 for_each_node_state(node
, N_POSSIBLE
) {
480 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
481 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
482 mctz
= soft_limit_tree_node_zone(node
, zone
);
483 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
488 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
490 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
493 static struct mem_cgroup_per_zone
*
494 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
496 struct rb_node
*rightmost
= NULL
;
497 struct mem_cgroup_per_zone
*mz
;
501 rightmost
= rb_last(&mctz
->rb_root
);
503 goto done
; /* Nothing to reclaim from */
505 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
507 * Remove the node now but someone else can add it back,
508 * we will to add it back at the end of reclaim to its correct
509 * position in the tree.
511 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
512 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
513 !css_tryget(&mz
->mem
->css
))
519 static struct mem_cgroup_per_zone
*
520 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
522 struct mem_cgroup_per_zone
*mz
;
524 spin_lock(&mctz
->lock
);
525 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
526 spin_unlock(&mctz
->lock
);
530 static s64
mem_cgroup_read_stat(struct mem_cgroup
*mem
,
531 enum mem_cgroup_stat_index idx
)
536 for_each_possible_cpu(cpu
)
537 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
541 static s64
mem_cgroup_local_usage(struct mem_cgroup
*mem
)
545 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
546 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
550 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
553 int val
= (charge
) ? 1 : -1;
554 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
557 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
558 struct page_cgroup
*pc
,
561 int val
= (charge
) ? 1 : -1;
565 if (PageCgroupCache(pc
))
566 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], val
);
568 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], val
);
571 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGIN_COUNT
]);
573 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGOUT_COUNT
]);
574 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
579 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
583 struct mem_cgroup_per_zone
*mz
;
586 for_each_online_node(nid
)
587 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
588 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
589 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
594 static bool __memcg_event_check(struct mem_cgroup
*mem
, int event_mask_shift
)
598 val
= this_cpu_read(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
600 return !(val
& ((1 << event_mask_shift
) - 1));
604 * Check events in order.
607 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
609 /* threshold event is triggered in finer grain than soft limit */
610 if (unlikely(__memcg_event_check(mem
, THRESHOLDS_EVENTS_THRESH
))) {
611 mem_cgroup_threshold(mem
);
612 if (unlikely(__memcg_event_check(mem
, SOFTLIMIT_EVENTS_THRESH
)))
613 mem_cgroup_update_tree(mem
, page
);
617 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
619 return container_of(cgroup_subsys_state(cont
,
620 mem_cgroup_subsys_id
), struct mem_cgroup
,
624 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
627 * mm_update_next_owner() may clear mm->owner to NULL
628 * if it races with swapoff, page migration, etc.
629 * So this can be called with p == NULL.
634 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
635 struct mem_cgroup
, css
);
638 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
640 struct mem_cgroup
*mem
= NULL
;
645 * Because we have no locks, mm->owner's may be being moved to other
646 * cgroup. We use css_tryget() here even if this looks
647 * pessimistic (rather than adding locks here).
651 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
654 } while (!css_tryget(&mem
->css
));
660 * Call callback function against all cgroup under hierarchy tree.
662 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
663 int (*func
)(struct mem_cgroup
*, void *))
665 int found
, ret
, nextid
;
666 struct cgroup_subsys_state
*css
;
667 struct mem_cgroup
*mem
;
669 if (!root
->use_hierarchy
)
670 return (*func
)(root
, data
);
678 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
680 if (css
&& css_tryget(css
))
681 mem
= container_of(css
, struct mem_cgroup
, css
);
685 ret
= (*func
)(mem
, data
);
689 } while (!ret
&& css
);
694 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
696 return (mem
== root_mem_cgroup
);
700 * Following LRU functions are allowed to be used without PCG_LOCK.
701 * Operations are called by routine of global LRU independently from memcg.
702 * What we have to take care of here is validness of pc->mem_cgroup.
704 * Changes to pc->mem_cgroup happens when
707 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
708 * It is added to LRU before charge.
709 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
710 * When moving account, the page is not on LRU. It's isolated.
713 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
715 struct page_cgroup
*pc
;
716 struct mem_cgroup_per_zone
*mz
;
718 if (mem_cgroup_disabled())
720 pc
= lookup_page_cgroup(page
);
721 /* can happen while we handle swapcache. */
722 if (!TestClearPageCgroupAcctLRU(pc
))
724 VM_BUG_ON(!pc
->mem_cgroup
);
726 * We don't check PCG_USED bit. It's cleared when the "page" is finally
727 * removed from global LRU.
729 mz
= page_cgroup_zoneinfo(pc
);
730 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
731 if (mem_cgroup_is_root(pc
->mem_cgroup
))
733 VM_BUG_ON(list_empty(&pc
->lru
));
734 list_del_init(&pc
->lru
);
738 void mem_cgroup_del_lru(struct page
*page
)
740 mem_cgroup_del_lru_list(page
, page_lru(page
));
743 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
745 struct mem_cgroup_per_zone
*mz
;
746 struct page_cgroup
*pc
;
748 if (mem_cgroup_disabled())
751 pc
= lookup_page_cgroup(page
);
753 * Used bit is set without atomic ops but after smp_wmb().
754 * For making pc->mem_cgroup visible, insert smp_rmb() here.
757 /* unused or root page is not rotated. */
758 if (!PageCgroupUsed(pc
) || mem_cgroup_is_root(pc
->mem_cgroup
))
760 mz
= page_cgroup_zoneinfo(pc
);
761 list_move(&pc
->lru
, &mz
->lists
[lru
]);
764 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
766 struct page_cgroup
*pc
;
767 struct mem_cgroup_per_zone
*mz
;
769 if (mem_cgroup_disabled())
771 pc
= lookup_page_cgroup(page
);
772 VM_BUG_ON(PageCgroupAcctLRU(pc
));
774 * Used bit is set without atomic ops but after smp_wmb().
775 * For making pc->mem_cgroup visible, insert smp_rmb() here.
778 if (!PageCgroupUsed(pc
))
781 mz
= page_cgroup_zoneinfo(pc
);
782 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
783 SetPageCgroupAcctLRU(pc
);
784 if (mem_cgroup_is_root(pc
->mem_cgroup
))
786 list_add(&pc
->lru
, &mz
->lists
[lru
]);
790 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
791 * lru because the page may.be reused after it's fully uncharged (because of
792 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
793 * it again. This function is only used to charge SwapCache. It's done under
794 * lock_page and expected that zone->lru_lock is never held.
796 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
799 struct zone
*zone
= page_zone(page
);
800 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
802 spin_lock_irqsave(&zone
->lru_lock
, flags
);
804 * Forget old LRU when this page_cgroup is *not* used. This Used bit
805 * is guarded by lock_page() because the page is SwapCache.
807 if (!PageCgroupUsed(pc
))
808 mem_cgroup_del_lru_list(page
, page_lru(page
));
809 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
812 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
815 struct zone
*zone
= page_zone(page
);
816 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
818 spin_lock_irqsave(&zone
->lru_lock
, flags
);
819 /* link when the page is linked to LRU but page_cgroup isn't */
820 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
821 mem_cgroup_add_lru_list(page
, page_lru(page
));
822 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
826 void mem_cgroup_move_lists(struct page
*page
,
827 enum lru_list from
, enum lru_list to
)
829 if (mem_cgroup_disabled())
831 mem_cgroup_del_lru_list(page
, from
);
832 mem_cgroup_add_lru_list(page
, to
);
835 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
838 struct mem_cgroup
*curr
= NULL
;
842 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
848 * We should check use_hierarchy of "mem" not "curr". Because checking
849 * use_hierarchy of "curr" here make this function true if hierarchy is
850 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
851 * hierarchy(even if use_hierarchy is disabled in "mem").
853 if (mem
->use_hierarchy
)
854 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
861 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
863 unsigned long active
;
864 unsigned long inactive
;
866 unsigned long inactive_ratio
;
868 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
869 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
871 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
873 inactive_ratio
= int_sqrt(10 * gb
);
878 present_pages
[0] = inactive
;
879 present_pages
[1] = active
;
882 return inactive_ratio
;
885 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
887 unsigned long active
;
888 unsigned long inactive
;
889 unsigned long present_pages
[2];
890 unsigned long inactive_ratio
;
892 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
894 inactive
= present_pages
[0];
895 active
= present_pages
[1];
897 if (inactive
* inactive_ratio
< active
)
903 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
905 unsigned long active
;
906 unsigned long inactive
;
908 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
909 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
911 return (active
> inactive
);
914 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
918 int nid
= zone
->zone_pgdat
->node_id
;
919 int zid
= zone_idx(zone
);
920 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
922 return MEM_CGROUP_ZSTAT(mz
, lru
);
925 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
928 int nid
= zone
->zone_pgdat
->node_id
;
929 int zid
= zone_idx(zone
);
930 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
932 return &mz
->reclaim_stat
;
935 struct zone_reclaim_stat
*
936 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
938 struct page_cgroup
*pc
;
939 struct mem_cgroup_per_zone
*mz
;
941 if (mem_cgroup_disabled())
944 pc
= lookup_page_cgroup(page
);
946 * Used bit is set without atomic ops but after smp_wmb().
947 * For making pc->mem_cgroup visible, insert smp_rmb() here.
950 if (!PageCgroupUsed(pc
))
953 mz
= page_cgroup_zoneinfo(pc
);
957 return &mz
->reclaim_stat
;
960 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
961 struct list_head
*dst
,
962 unsigned long *scanned
, int order
,
963 int mode
, struct zone
*z
,
964 struct mem_cgroup
*mem_cont
,
965 int active
, int file
)
967 unsigned long nr_taken
= 0;
971 struct list_head
*src
;
972 struct page_cgroup
*pc
, *tmp
;
973 int nid
= z
->zone_pgdat
->node_id
;
974 int zid
= zone_idx(z
);
975 struct mem_cgroup_per_zone
*mz
;
976 int lru
= LRU_FILE
* file
+ active
;
980 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
981 src
= &mz
->lists
[lru
];
984 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
985 if (scan
>= nr_to_scan
)
989 if (unlikely(!PageCgroupUsed(pc
)))
991 if (unlikely(!PageLRU(page
)))
995 ret
= __isolate_lru_page(page
, mode
, file
);
998 list_move(&page
->lru
, dst
);
999 mem_cgroup_del_lru(page
);
1003 /* we don't affect global LRU but rotate in our LRU */
1004 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1013 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1019 #define mem_cgroup_from_res_counter(counter, member) \
1020 container_of(counter, struct mem_cgroup, member)
1022 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
1024 if (do_swap_account
) {
1025 if (res_counter_check_under_limit(&mem
->res
) &&
1026 res_counter_check_under_limit(&mem
->memsw
))
1029 if (res_counter_check_under_limit(&mem
->res
))
1034 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1036 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1037 unsigned int swappiness
;
1040 if (cgrp
->parent
== NULL
)
1041 return vm_swappiness
;
1043 spin_lock(&memcg
->reclaim_param_lock
);
1044 swappiness
= memcg
->swappiness
;
1045 spin_unlock(&memcg
->reclaim_param_lock
);
1050 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
1058 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1059 * @memcg: The memory cgroup that went over limit
1060 * @p: Task that is going to be killed
1062 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1065 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1067 struct cgroup
*task_cgrp
;
1068 struct cgroup
*mem_cgrp
;
1070 * Need a buffer in BSS, can't rely on allocations. The code relies
1071 * on the assumption that OOM is serialized for memory controller.
1072 * If this assumption is broken, revisit this code.
1074 static char memcg_name
[PATH_MAX
];
1083 mem_cgrp
= memcg
->css
.cgroup
;
1084 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1086 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1089 * Unfortunately, we are unable to convert to a useful name
1090 * But we'll still print out the usage information
1097 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1100 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1108 * Continues from above, so we don't need an KERN_ level
1110 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1113 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1114 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1115 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1116 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1117 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1119 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1120 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1121 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1125 * This function returns the number of memcg under hierarchy tree. Returns
1126 * 1(self count) if no children.
1128 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1131 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
1136 * Return the memory (and swap, if configured) limit for a memcg.
1138 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1143 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
) +
1145 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1147 * If memsw is finite and limits the amount of swap space available
1148 * to this memcg, return that limit.
1150 return min(limit
, memsw
);
1154 * Visit the first child (need not be the first child as per the ordering
1155 * of the cgroup list, since we track last_scanned_child) of @mem and use
1156 * that to reclaim free pages from.
1158 static struct mem_cgroup
*
1159 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1161 struct mem_cgroup
*ret
= NULL
;
1162 struct cgroup_subsys_state
*css
;
1165 if (!root_mem
->use_hierarchy
) {
1166 css_get(&root_mem
->css
);
1172 nextid
= root_mem
->last_scanned_child
+ 1;
1173 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1175 if (css
&& css_tryget(css
))
1176 ret
= container_of(css
, struct mem_cgroup
, css
);
1179 /* Updates scanning parameter */
1180 spin_lock(&root_mem
->reclaim_param_lock
);
1182 /* this means start scan from ID:1 */
1183 root_mem
->last_scanned_child
= 0;
1185 root_mem
->last_scanned_child
= found
;
1186 spin_unlock(&root_mem
->reclaim_param_lock
);
1193 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1194 * we reclaimed from, so that we don't end up penalizing one child extensively
1195 * based on its position in the children list.
1197 * root_mem is the original ancestor that we've been reclaim from.
1199 * We give up and return to the caller when we visit root_mem twice.
1200 * (other groups can be removed while we're walking....)
1202 * If shrink==true, for avoiding to free too much, this returns immedieately.
1204 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1207 unsigned long reclaim_options
)
1209 struct mem_cgroup
*victim
;
1212 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1213 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1214 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1215 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1217 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1218 if (root_mem
->memsw_is_minimum
)
1222 victim
= mem_cgroup_select_victim(root_mem
);
1223 if (victim
== root_mem
) {
1226 drain_all_stock_async();
1229 * If we have not been able to reclaim
1230 * anything, it might because there are
1231 * no reclaimable pages under this hierarchy
1233 if (!check_soft
|| !total
) {
1234 css_put(&victim
->css
);
1238 * We want to do more targetted reclaim.
1239 * excess >> 2 is not to excessive so as to
1240 * reclaim too much, nor too less that we keep
1241 * coming back to reclaim from this cgroup
1243 if (total
>= (excess
>> 2) ||
1244 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1245 css_put(&victim
->css
);
1250 if (!mem_cgroup_local_usage(victim
)) {
1251 /* this cgroup's local usage == 0 */
1252 css_put(&victim
->css
);
1255 /* we use swappiness of local cgroup */
1257 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1258 noswap
, get_swappiness(victim
), zone
,
1259 zone
->zone_pgdat
->node_id
);
1261 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1262 noswap
, get_swappiness(victim
));
1263 css_put(&victim
->css
);
1265 * At shrinking usage, we can't check we should stop here or
1266 * reclaim more. It's depends on callers. last_scanned_child
1267 * will work enough for keeping fairness under tree.
1273 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1275 } else if (mem_cgroup_check_under_limit(root_mem
))
1281 static int mem_cgroup_oom_lock_cb(struct mem_cgroup
*mem
, void *data
)
1283 int *val
= (int *)data
;
1286 * Logically, we can stop scanning immediately when we find
1287 * a memcg is already locked. But condidering unlock ops and
1288 * creation/removal of memcg, scan-all is simple operation.
1290 x
= atomic_inc_return(&mem
->oom_lock
);
1291 *val
= max(x
, *val
);
1295 * Check OOM-Killer is already running under our hierarchy.
1296 * If someone is running, return false.
1298 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1302 mem_cgroup_walk_tree(mem
, &lock_count
, mem_cgroup_oom_lock_cb
);
1304 if (lock_count
== 1)
1309 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup
*mem
, void *data
)
1312 * When a new child is created while the hierarchy is under oom,
1313 * mem_cgroup_oom_lock() may not be called. We have to use
1314 * atomic_add_unless() here.
1316 atomic_add_unless(&mem
->oom_lock
, -1, 0);
1320 static void mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1322 mem_cgroup_walk_tree(mem
, NULL
, mem_cgroup_oom_unlock_cb
);
1325 static DEFINE_MUTEX(memcg_oom_mutex
);
1326 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1328 struct oom_wait_info
{
1329 struct mem_cgroup
*mem
;
1333 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1334 unsigned mode
, int sync
, void *arg
)
1336 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1337 struct oom_wait_info
*oom_wait_info
;
1339 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1341 if (oom_wait_info
->mem
== wake_mem
)
1343 /* if no hierarchy, no match */
1344 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1347 * Both of oom_wait_info->mem and wake_mem are stable under us.
1348 * Then we can use css_is_ancestor without taking care of RCU.
1350 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1351 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1355 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1358 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1360 /* for filtering, pass "mem" as argument. */
1361 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1364 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1366 if (atomic_read(&mem
->oom_lock
))
1367 memcg_wakeup_oom(mem
);
1371 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1373 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1375 struct oom_wait_info owait
;
1376 bool locked
, need_to_kill
;
1379 owait
.wait
.flags
= 0;
1380 owait
.wait
.func
= memcg_oom_wake_function
;
1381 owait
.wait
.private = current
;
1382 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1383 need_to_kill
= true;
1384 /* At first, try to OOM lock hierarchy under mem.*/
1385 mutex_lock(&memcg_oom_mutex
);
1386 locked
= mem_cgroup_oom_lock(mem
);
1388 * Even if signal_pending(), we can't quit charge() loop without
1389 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1390 * under OOM is always welcomed, use TASK_KILLABLE here.
1392 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1393 if (!locked
|| mem
->oom_kill_disable
)
1394 need_to_kill
= false;
1396 mem_cgroup_oom_notify(mem
);
1397 mutex_unlock(&memcg_oom_mutex
);
1400 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1401 mem_cgroup_out_of_memory(mem
, mask
);
1404 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1406 mutex_lock(&memcg_oom_mutex
);
1407 mem_cgroup_oom_unlock(mem
);
1408 memcg_wakeup_oom(mem
);
1409 mutex_unlock(&memcg_oom_mutex
);
1411 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1413 /* Give chance to dying process */
1414 schedule_timeout(1);
1419 * Currently used to update mapped file statistics, but the routine can be
1420 * generalized to update other statistics as well.
1422 void mem_cgroup_update_file_mapped(struct page
*page
, int val
)
1424 struct mem_cgroup
*mem
;
1425 struct page_cgroup
*pc
;
1427 pc
= lookup_page_cgroup(page
);
1431 lock_page_cgroup(pc
);
1432 mem
= pc
->mem_cgroup
;
1433 if (!mem
|| !PageCgroupUsed(pc
))
1437 * Preemption is already disabled. We can use __this_cpu_xxx
1440 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1441 SetPageCgroupFileMapped(pc
);
1443 __this_cpu_dec(mem
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1444 ClearPageCgroupFileMapped(pc
);
1448 unlock_page_cgroup(pc
);
1452 * size of first charge trial. "32" comes from vmscan.c's magic value.
1453 * TODO: maybe necessary to use big numbers in big irons.
1455 #define CHARGE_SIZE (32 * PAGE_SIZE)
1456 struct memcg_stock_pcp
{
1457 struct mem_cgroup
*cached
; /* this never be root cgroup */
1459 struct work_struct work
;
1461 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1462 static atomic_t memcg_drain_count
;
1465 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1466 * from local stock and true is returned. If the stock is 0 or charges from a
1467 * cgroup which is not current target, returns false. This stock will be
1470 static bool consume_stock(struct mem_cgroup
*mem
)
1472 struct memcg_stock_pcp
*stock
;
1475 stock
= &get_cpu_var(memcg_stock
);
1476 if (mem
== stock
->cached
&& stock
->charge
)
1477 stock
->charge
-= PAGE_SIZE
;
1478 else /* need to call res_counter_charge */
1480 put_cpu_var(memcg_stock
);
1485 * Returns stocks cached in percpu to res_counter and reset cached information.
1487 static void drain_stock(struct memcg_stock_pcp
*stock
)
1489 struct mem_cgroup
*old
= stock
->cached
;
1491 if (stock
->charge
) {
1492 res_counter_uncharge(&old
->res
, stock
->charge
);
1493 if (do_swap_account
)
1494 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1496 stock
->cached
= NULL
;
1501 * This must be called under preempt disabled or must be called by
1502 * a thread which is pinned to local cpu.
1504 static void drain_local_stock(struct work_struct
*dummy
)
1506 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1511 * Cache charges(val) which is from res_counter, to local per_cpu area.
1512 * This will be consumed by consume_stock() function, later.
1514 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1516 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1518 if (stock
->cached
!= mem
) { /* reset if necessary */
1520 stock
->cached
= mem
;
1522 stock
->charge
+= val
;
1523 put_cpu_var(memcg_stock
);
1527 * Tries to drain stocked charges in other cpus. This function is asynchronous
1528 * and just put a work per cpu for draining localy on each cpu. Caller can
1529 * expects some charges will be back to res_counter later but cannot wait for
1532 static void drain_all_stock_async(void)
1535 /* This function is for scheduling "drain" in asynchronous way.
1536 * The result of "drain" is not directly handled by callers. Then,
1537 * if someone is calling drain, we don't have to call drain more.
1538 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1539 * there is a race. We just do loose check here.
1541 if (atomic_read(&memcg_drain_count
))
1543 /* Notify other cpus that system-wide "drain" is running */
1544 atomic_inc(&memcg_drain_count
);
1546 for_each_online_cpu(cpu
) {
1547 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1548 schedule_work_on(cpu
, &stock
->work
);
1551 atomic_dec(&memcg_drain_count
);
1552 /* We don't wait for flush_work */
1555 /* This is a synchronous drain interface. */
1556 static void drain_all_stock_sync(void)
1558 /* called when force_empty is called */
1559 atomic_inc(&memcg_drain_count
);
1560 schedule_on_each_cpu(drain_local_stock
);
1561 atomic_dec(&memcg_drain_count
);
1564 static int __cpuinit
memcg_stock_cpu_callback(struct notifier_block
*nb
,
1565 unsigned long action
,
1568 int cpu
= (unsigned long)hcpu
;
1569 struct memcg_stock_pcp
*stock
;
1571 if (action
!= CPU_DEAD
)
1573 stock
= &per_cpu(memcg_stock
, cpu
);
1579 * Unlike exported interface, "oom" parameter is added. if oom==true,
1580 * oom-killer can be invoked.
1582 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1583 gfp_t gfp_mask
, struct mem_cgroup
**memcg
, bool oom
)
1585 struct mem_cgroup
*mem
, *mem_over_limit
;
1586 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1587 struct res_counter
*fail_res
;
1588 int csize
= CHARGE_SIZE
;
1591 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1592 * in system level. So, allow to go ahead dying process in addition to
1595 if (unlikely(test_thread_flag(TIF_MEMDIE
)
1596 || fatal_signal_pending(current
)))
1600 * We always charge the cgroup the mm_struct belongs to.
1601 * The mm_struct's mem_cgroup changes on task migration if the
1602 * thread group leader migrates. It's possible that mm is not
1603 * set, if so charge the init_mm (happens for pagecache usage).
1607 mem
= try_get_mem_cgroup_from_mm(mm
);
1615 VM_BUG_ON(css_is_removed(&mem
->css
));
1616 if (mem_cgroup_is_root(mem
))
1621 unsigned long flags
= 0;
1623 if (consume_stock(mem
))
1626 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1628 if (!do_swap_account
)
1630 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1633 /* mem+swap counter fails */
1634 res_counter_uncharge(&mem
->res
, csize
);
1635 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1636 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1639 /* mem counter fails */
1640 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1643 /* reduce request size and retry */
1644 if (csize
> PAGE_SIZE
) {
1648 if (!(gfp_mask
& __GFP_WAIT
))
1651 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1657 * try_to_free_mem_cgroup_pages() might not give us a full
1658 * picture of reclaim. Some pages are reclaimed and might be
1659 * moved to swap cache or just unmapped from the cgroup.
1660 * Check the limit again to see if the reclaim reduced the
1661 * current usage of the cgroup before giving up
1664 if (mem_cgroup_check_under_limit(mem_over_limit
))
1667 /* try to avoid oom while someone is moving charge */
1668 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1669 struct mem_cgroup
*from
, *to
;
1670 bool do_continue
= false;
1672 * There is a small race that "from" or "to" can be
1673 * freed by rmdir, so we use css_tryget().
1677 if (from
&& css_tryget(&from
->css
)) {
1678 if (mem_over_limit
->use_hierarchy
)
1679 do_continue
= css_is_ancestor(
1681 &mem_over_limit
->css
);
1683 do_continue
= (from
== mem_over_limit
);
1684 css_put(&from
->css
);
1686 if (!do_continue
&& to
&& css_tryget(&to
->css
)) {
1687 if (mem_over_limit
->use_hierarchy
)
1688 do_continue
= css_is_ancestor(
1690 &mem_over_limit
->css
);
1692 do_continue
= (to
== mem_over_limit
);
1697 prepare_to_wait(&mc
.waitq
, &wait
,
1698 TASK_INTERRUPTIBLE
);
1699 /* moving charge context might have finished. */
1702 finish_wait(&mc
.waitq
, &wait
);
1707 if (!nr_retries
--) {
1710 if (mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
)) {
1711 nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1714 /* When we reach here, current task is dying .*/
1719 if (csize
> PAGE_SIZE
)
1720 refill_stock(mem
, csize
- PAGE_SIZE
);
1732 * Somemtimes we have to undo a charge we got by try_charge().
1733 * This function is for that and do uncharge, put css's refcnt.
1734 * gotten by try_charge().
1736 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
1737 unsigned long count
)
1739 if (!mem_cgroup_is_root(mem
)) {
1740 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
1741 if (do_swap_account
)
1742 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
* count
);
1743 VM_BUG_ON(test_bit(CSS_ROOT
, &mem
->css
.flags
));
1744 WARN_ON_ONCE(count
> INT_MAX
);
1745 __css_put(&mem
->css
, (int)count
);
1747 /* we don't need css_put for root */
1750 static void mem_cgroup_cancel_charge(struct mem_cgroup
*mem
)
1752 __mem_cgroup_cancel_charge(mem
, 1);
1756 * A helper function to get mem_cgroup from ID. must be called under
1757 * rcu_read_lock(). The caller must check css_is_removed() or some if
1758 * it's concern. (dropping refcnt from swap can be called against removed
1761 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1763 struct cgroup_subsys_state
*css
;
1765 /* ID 0 is unused ID */
1768 css
= css_lookup(&mem_cgroup_subsys
, id
);
1771 return container_of(css
, struct mem_cgroup
, css
);
1774 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
1776 struct mem_cgroup
*mem
= NULL
;
1777 struct page_cgroup
*pc
;
1781 VM_BUG_ON(!PageLocked(page
));
1783 pc
= lookup_page_cgroup(page
);
1784 lock_page_cgroup(pc
);
1785 if (PageCgroupUsed(pc
)) {
1786 mem
= pc
->mem_cgroup
;
1787 if (mem
&& !css_tryget(&mem
->css
))
1789 } else if (PageSwapCache(page
)) {
1790 ent
.val
= page_private(page
);
1791 id
= lookup_swap_cgroup(ent
);
1793 mem
= mem_cgroup_lookup(id
);
1794 if (mem
&& !css_tryget(&mem
->css
))
1798 unlock_page_cgroup(pc
);
1803 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1804 * USED state. If already USED, uncharge and return.
1807 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1808 struct page_cgroup
*pc
,
1809 enum charge_type ctype
)
1811 /* try_charge() can return NULL to *memcg, taking care of it. */
1815 lock_page_cgroup(pc
);
1816 if (unlikely(PageCgroupUsed(pc
))) {
1817 unlock_page_cgroup(pc
);
1818 mem_cgroup_cancel_charge(mem
);
1822 pc
->mem_cgroup
= mem
;
1824 * We access a page_cgroup asynchronously without lock_page_cgroup().
1825 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1826 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1827 * before USED bit, we need memory barrier here.
1828 * See mem_cgroup_add_lru_list(), etc.
1832 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
1833 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
1834 SetPageCgroupCache(pc
);
1835 SetPageCgroupUsed(pc
);
1837 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1838 ClearPageCgroupCache(pc
);
1839 SetPageCgroupUsed(pc
);
1845 mem_cgroup_charge_statistics(mem
, pc
, true);
1847 unlock_page_cgroup(pc
);
1849 * "charge_statistics" updated event counter. Then, check it.
1850 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1851 * if they exceeds softlimit.
1853 memcg_check_events(mem
, pc
->page
);
1857 * __mem_cgroup_move_account - move account of the page
1858 * @pc: page_cgroup of the page.
1859 * @from: mem_cgroup which the page is moved from.
1860 * @to: mem_cgroup which the page is moved to. @from != @to.
1861 * @uncharge: whether we should call uncharge and css_put against @from.
1863 * The caller must confirm following.
1864 * - page is not on LRU (isolate_page() is useful.)
1865 * - the pc is locked, used, and ->mem_cgroup points to @from.
1867 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1868 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1869 * true, this function does "uncharge" from old cgroup, but it doesn't if
1870 * @uncharge is false, so a caller should do "uncharge".
1873 static void __mem_cgroup_move_account(struct page_cgroup
*pc
,
1874 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
1876 VM_BUG_ON(from
== to
);
1877 VM_BUG_ON(PageLRU(pc
->page
));
1878 VM_BUG_ON(!PageCgroupLocked(pc
));
1879 VM_BUG_ON(!PageCgroupUsed(pc
));
1880 VM_BUG_ON(pc
->mem_cgroup
!= from
);
1882 if (PageCgroupFileMapped(pc
)) {
1883 /* Update mapped_file data for mem_cgroup */
1885 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1886 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
1889 mem_cgroup_charge_statistics(from
, pc
, false);
1891 /* This is not "cancel", but cancel_charge does all we need. */
1892 mem_cgroup_cancel_charge(from
);
1894 /* caller should have done css_get */
1895 pc
->mem_cgroup
= to
;
1896 mem_cgroup_charge_statistics(to
, pc
, true);
1898 * We charges against "to" which may not have any tasks. Then, "to"
1899 * can be under rmdir(). But in current implementation, caller of
1900 * this function is just force_empty() and move charge, so it's
1901 * garanteed that "to" is never removed. So, we don't check rmdir
1907 * check whether the @pc is valid for moving account and call
1908 * __mem_cgroup_move_account()
1910 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1911 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
1914 lock_page_cgroup(pc
);
1915 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== from
) {
1916 __mem_cgroup_move_account(pc
, from
, to
, uncharge
);
1919 unlock_page_cgroup(pc
);
1923 memcg_check_events(to
, pc
->page
);
1924 memcg_check_events(from
, pc
->page
);
1929 * move charges to its parent.
1932 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1933 struct mem_cgroup
*child
,
1936 struct page
*page
= pc
->page
;
1937 struct cgroup
*cg
= child
->css
.cgroup
;
1938 struct cgroup
*pcg
= cg
->parent
;
1939 struct mem_cgroup
*parent
;
1947 if (!get_page_unless_zero(page
))
1949 if (isolate_lru_page(page
))
1952 parent
= mem_cgroup_from_cont(pcg
);
1953 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1957 ret
= mem_cgroup_move_account(pc
, child
, parent
, true);
1959 mem_cgroup_cancel_charge(parent
);
1961 putback_lru_page(page
);
1969 * Charge the memory controller for page usage.
1971 * 0 if the charge was successful
1972 * < 0 if the cgroup is over its limit
1974 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1975 gfp_t gfp_mask
, enum charge_type ctype
,
1976 struct mem_cgroup
*memcg
)
1978 struct mem_cgroup
*mem
;
1979 struct page_cgroup
*pc
;
1982 pc
= lookup_page_cgroup(page
);
1983 /* can happen at boot */
1989 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1993 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1997 int mem_cgroup_newpage_charge(struct page
*page
,
1998 struct mm_struct
*mm
, gfp_t gfp_mask
)
2000 if (mem_cgroup_disabled())
2002 if (PageCompound(page
))
2005 * If already mapped, we don't have to account.
2006 * If page cache, page->mapping has address_space.
2007 * But page->mapping may have out-of-use anon_vma pointer,
2008 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2011 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2015 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2016 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
2020 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2021 enum charge_type ctype
);
2023 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2026 struct mem_cgroup
*mem
= NULL
;
2029 if (mem_cgroup_disabled())
2031 if (PageCompound(page
))
2034 * Corner case handling. This is called from add_to_page_cache()
2035 * in usual. But some FS (shmem) precharges this page before calling it
2036 * and call add_to_page_cache() with GFP_NOWAIT.
2038 * For GFP_NOWAIT case, the page may be pre-charged before calling
2039 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2040 * charge twice. (It works but has to pay a bit larger cost.)
2041 * And when the page is SwapCache, it should take swap information
2042 * into account. This is under lock_page() now.
2044 if (!(gfp_mask
& __GFP_WAIT
)) {
2045 struct page_cgroup
*pc
;
2048 pc
= lookup_page_cgroup(page
);
2051 lock_page_cgroup(pc
);
2052 if (PageCgroupUsed(pc
)) {
2053 unlock_page_cgroup(pc
);
2056 unlock_page_cgroup(pc
);
2059 if (unlikely(!mm
&& !mem
))
2062 if (page_is_file_cache(page
))
2063 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2064 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
2067 if (PageSwapCache(page
)) {
2068 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2070 __mem_cgroup_commit_charge_swapin(page
, mem
,
2071 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2073 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2074 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
2080 * While swap-in, try_charge -> commit or cancel, the page is locked.
2081 * And when try_charge() successfully returns, one refcnt to memcg without
2082 * struct page_cgroup is acquired. This refcnt will be consumed by
2083 * "commit()" or removed by "cancel()"
2085 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2087 gfp_t mask
, struct mem_cgroup
**ptr
)
2089 struct mem_cgroup
*mem
;
2092 if (mem_cgroup_disabled())
2095 if (!do_swap_account
)
2098 * A racing thread's fault, or swapoff, may have already updated
2099 * the pte, and even removed page from swap cache: in those cases
2100 * do_swap_page()'s pte_same() test will fail; but there's also a
2101 * KSM case which does need to charge the page.
2103 if (!PageSwapCache(page
))
2105 mem
= try_get_mem_cgroup_from_page(page
);
2109 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
2110 /* drop extra refcnt from tryget */
2116 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
2120 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2121 enum charge_type ctype
)
2123 struct page_cgroup
*pc
;
2125 if (mem_cgroup_disabled())
2129 cgroup_exclude_rmdir(&ptr
->css
);
2130 pc
= lookup_page_cgroup(page
);
2131 mem_cgroup_lru_del_before_commit_swapcache(page
);
2132 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
2133 mem_cgroup_lru_add_after_commit_swapcache(page
);
2135 * Now swap is on-memory. This means this page may be
2136 * counted both as mem and swap....double count.
2137 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2138 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2139 * may call delete_from_swap_cache() before reach here.
2141 if (do_swap_account
&& PageSwapCache(page
)) {
2142 swp_entry_t ent
= {.val
= page_private(page
)};
2144 struct mem_cgroup
*memcg
;
2146 id
= swap_cgroup_record(ent
, 0);
2148 memcg
= mem_cgroup_lookup(id
);
2151 * This recorded memcg can be obsolete one. So, avoid
2152 * calling css_tryget
2154 if (!mem_cgroup_is_root(memcg
))
2155 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2156 mem_cgroup_swap_statistics(memcg
, false);
2157 mem_cgroup_put(memcg
);
2162 * At swapin, we may charge account against cgroup which has no tasks.
2163 * So, rmdir()->pre_destroy() can be called while we do this charge.
2164 * In that case, we need to call pre_destroy() again. check it here.
2166 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2169 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2171 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2172 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2175 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2177 if (mem_cgroup_disabled())
2181 mem_cgroup_cancel_charge(mem
);
2185 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
)
2187 struct memcg_batch_info
*batch
= NULL
;
2188 bool uncharge_memsw
= true;
2189 /* If swapout, usage of swap doesn't decrease */
2190 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2191 uncharge_memsw
= false;
2193 batch
= ¤t
->memcg_batch
;
2195 * In usual, we do css_get() when we remember memcg pointer.
2196 * But in this case, we keep res->usage until end of a series of
2197 * uncharges. Then, it's ok to ignore memcg's refcnt.
2202 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2203 * In those cases, all pages freed continously can be expected to be in
2204 * the same cgroup and we have chance to coalesce uncharges.
2205 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2206 * because we want to do uncharge as soon as possible.
2209 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2210 goto direct_uncharge
;
2213 * In typical case, batch->memcg == mem. This means we can
2214 * merge a series of uncharges to an uncharge of res_counter.
2215 * If not, we uncharge res_counter ony by one.
2217 if (batch
->memcg
!= mem
)
2218 goto direct_uncharge
;
2219 /* remember freed charge and uncharge it later */
2220 batch
->bytes
+= PAGE_SIZE
;
2222 batch
->memsw_bytes
+= PAGE_SIZE
;
2225 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
2227 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
2228 if (unlikely(batch
->memcg
!= mem
))
2229 memcg_oom_recover(mem
);
2234 * uncharge if !page_mapped(page)
2236 static struct mem_cgroup
*
2237 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2239 struct page_cgroup
*pc
;
2240 struct mem_cgroup
*mem
= NULL
;
2241 struct mem_cgroup_per_zone
*mz
;
2243 if (mem_cgroup_disabled())
2246 if (PageSwapCache(page
))
2250 * Check if our page_cgroup is valid
2252 pc
= lookup_page_cgroup(page
);
2253 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2256 lock_page_cgroup(pc
);
2258 mem
= pc
->mem_cgroup
;
2260 if (!PageCgroupUsed(pc
))
2264 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2265 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2266 /* See mem_cgroup_prepare_migration() */
2267 if (page_mapped(page
) || PageCgroupMigration(pc
))
2270 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2271 if (!PageAnon(page
)) { /* Shared memory */
2272 if (page
->mapping
&& !page_is_file_cache(page
))
2274 } else if (page_mapped(page
)) /* Anon */
2281 if (!mem_cgroup_is_root(mem
))
2282 __do_uncharge(mem
, ctype
);
2283 if (ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2284 mem_cgroup_swap_statistics(mem
, true);
2285 mem_cgroup_charge_statistics(mem
, pc
, false);
2287 ClearPageCgroupUsed(pc
);
2289 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2290 * freed from LRU. This is safe because uncharged page is expected not
2291 * to be reused (freed soon). Exception is SwapCache, it's handled by
2292 * special functions.
2295 mz
= page_cgroup_zoneinfo(pc
);
2296 unlock_page_cgroup(pc
);
2298 memcg_check_events(mem
, page
);
2299 /* at swapout, this memcg will be accessed to record to swap */
2300 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2306 unlock_page_cgroup(pc
);
2310 void mem_cgroup_uncharge_page(struct page
*page
)
2313 if (page_mapped(page
))
2315 if (page
->mapping
&& !PageAnon(page
))
2317 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2320 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2322 VM_BUG_ON(page_mapped(page
));
2323 VM_BUG_ON(page
->mapping
);
2324 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2328 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2329 * In that cases, pages are freed continuously and we can expect pages
2330 * are in the same memcg. All these calls itself limits the number of
2331 * pages freed at once, then uncharge_start/end() is called properly.
2332 * This may be called prural(2) times in a context,
2335 void mem_cgroup_uncharge_start(void)
2337 current
->memcg_batch
.do_batch
++;
2338 /* We can do nest. */
2339 if (current
->memcg_batch
.do_batch
== 1) {
2340 current
->memcg_batch
.memcg
= NULL
;
2341 current
->memcg_batch
.bytes
= 0;
2342 current
->memcg_batch
.memsw_bytes
= 0;
2346 void mem_cgroup_uncharge_end(void)
2348 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2350 if (!batch
->do_batch
)
2354 if (batch
->do_batch
) /* If stacked, do nothing. */
2360 * This "batch->memcg" is valid without any css_get/put etc...
2361 * bacause we hide charges behind us.
2364 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2365 if (batch
->memsw_bytes
)
2366 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2367 memcg_oom_recover(batch
->memcg
);
2368 /* forget this pointer (for sanity check) */
2369 batch
->memcg
= NULL
;
2374 * called after __delete_from_swap_cache() and drop "page" account.
2375 * memcg information is recorded to swap_cgroup of "ent"
2378 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2380 struct mem_cgroup
*memcg
;
2381 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2383 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2384 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2386 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2388 /* record memcg information */
2389 if (do_swap_account
&& swapout
&& memcg
) {
2390 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2391 mem_cgroup_get(memcg
);
2393 if (swapout
&& memcg
)
2394 css_put(&memcg
->css
);
2398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2400 * called from swap_entry_free(). remove record in swap_cgroup and
2401 * uncharge "memsw" account.
2403 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2405 struct mem_cgroup
*memcg
;
2408 if (!do_swap_account
)
2411 id
= swap_cgroup_record(ent
, 0);
2413 memcg
= mem_cgroup_lookup(id
);
2416 * We uncharge this because swap is freed.
2417 * This memcg can be obsolete one. We avoid calling css_tryget
2419 if (!mem_cgroup_is_root(memcg
))
2420 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2421 mem_cgroup_swap_statistics(memcg
, false);
2422 mem_cgroup_put(memcg
);
2428 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2429 * @entry: swap entry to be moved
2430 * @from: mem_cgroup which the entry is moved from
2431 * @to: mem_cgroup which the entry is moved to
2432 * @need_fixup: whether we should fixup res_counters and refcounts.
2434 * It succeeds only when the swap_cgroup's record for this entry is the same
2435 * as the mem_cgroup's id of @from.
2437 * Returns 0 on success, -EINVAL on failure.
2439 * The caller must have charged to @to, IOW, called res_counter_charge() about
2440 * both res and memsw, and called css_get().
2442 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2443 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2445 unsigned short old_id
, new_id
;
2447 old_id
= css_id(&from
->css
);
2448 new_id
= css_id(&to
->css
);
2450 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2451 mem_cgroup_swap_statistics(from
, false);
2452 mem_cgroup_swap_statistics(to
, true);
2454 * This function is only called from task migration context now.
2455 * It postpones res_counter and refcount handling till the end
2456 * of task migration(mem_cgroup_clear_mc()) for performance
2457 * improvement. But we cannot postpone mem_cgroup_get(to)
2458 * because if the process that has been moved to @to does
2459 * swap-in, the refcount of @to might be decreased to 0.
2463 if (!mem_cgroup_is_root(from
))
2464 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
2465 mem_cgroup_put(from
);
2467 * we charged both to->res and to->memsw, so we should
2470 if (!mem_cgroup_is_root(to
))
2471 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
2479 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2480 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2487 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2490 int mem_cgroup_prepare_migration(struct page
*page
,
2491 struct page
*newpage
, struct mem_cgroup
**ptr
)
2493 struct page_cgroup
*pc
;
2494 struct mem_cgroup
*mem
= NULL
;
2495 enum charge_type ctype
;
2498 if (mem_cgroup_disabled())
2501 pc
= lookup_page_cgroup(page
);
2502 lock_page_cgroup(pc
);
2503 if (PageCgroupUsed(pc
)) {
2504 mem
= pc
->mem_cgroup
;
2507 * At migrating an anonymous page, its mapcount goes down
2508 * to 0 and uncharge() will be called. But, even if it's fully
2509 * unmapped, migration may fail and this page has to be
2510 * charged again. We set MIGRATION flag here and delay uncharge
2511 * until end_migration() is called
2513 * Corner Case Thinking
2515 * When the old page was mapped as Anon and it's unmap-and-freed
2516 * while migration was ongoing.
2517 * If unmap finds the old page, uncharge() of it will be delayed
2518 * until end_migration(). If unmap finds a new page, it's
2519 * uncharged when it make mapcount to be 1->0. If unmap code
2520 * finds swap_migration_entry, the new page will not be mapped
2521 * and end_migration() will find it(mapcount==0).
2524 * When the old page was mapped but migraion fails, the kernel
2525 * remaps it. A charge for it is kept by MIGRATION flag even
2526 * if mapcount goes down to 0. We can do remap successfully
2527 * without charging it again.
2530 * The "old" page is under lock_page() until the end of
2531 * migration, so, the old page itself will not be swapped-out.
2532 * If the new page is swapped out before end_migraton, our
2533 * hook to usual swap-out path will catch the event.
2536 SetPageCgroupMigration(pc
);
2538 unlock_page_cgroup(pc
);
2540 * If the page is not charged at this point,
2547 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, ptr
, false);
2548 css_put(&mem
->css
);/* drop extra refcnt */
2549 if (ret
|| *ptr
== NULL
) {
2550 if (PageAnon(page
)) {
2551 lock_page_cgroup(pc
);
2552 ClearPageCgroupMigration(pc
);
2553 unlock_page_cgroup(pc
);
2555 * The old page may be fully unmapped while we kept it.
2557 mem_cgroup_uncharge_page(page
);
2562 * We charge new page before it's used/mapped. So, even if unlock_page()
2563 * is called before end_migration, we can catch all events on this new
2564 * page. In the case new page is migrated but not remapped, new page's
2565 * mapcount will be finally 0 and we call uncharge in end_migration().
2567 pc
= lookup_page_cgroup(newpage
);
2569 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2570 else if (page_is_file_cache(page
))
2571 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2573 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2574 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2578 /* remove redundant charge if migration failed*/
2579 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
2580 struct page
*oldpage
, struct page
*newpage
)
2582 struct page
*used
, *unused
;
2583 struct page_cgroup
*pc
;
2587 /* blocks rmdir() */
2588 cgroup_exclude_rmdir(&mem
->css
);
2589 /* at migration success, oldpage->mapping is NULL. */
2590 if (oldpage
->mapping
) {
2598 * We disallowed uncharge of pages under migration because mapcount
2599 * of the page goes down to zero, temporarly.
2600 * Clear the flag and check the page should be charged.
2602 pc
= lookup_page_cgroup(oldpage
);
2603 lock_page_cgroup(pc
);
2604 ClearPageCgroupMigration(pc
);
2605 unlock_page_cgroup(pc
);
2607 if (unused
!= oldpage
)
2608 pc
= lookup_page_cgroup(unused
);
2609 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
2611 pc
= lookup_page_cgroup(used
);
2613 * If a page is a file cache, radix-tree replacement is very atomic
2614 * and we can skip this check. When it was an Anon page, its mapcount
2615 * goes down to 0. But because we added MIGRATION flage, it's not
2616 * uncharged yet. There are several case but page->mapcount check
2617 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2618 * check. (see prepare_charge() also)
2621 mem_cgroup_uncharge_page(used
);
2623 * At migration, we may charge account against cgroup which has no
2625 * So, rmdir()->pre_destroy() can be called while we do this charge.
2626 * In that case, we need to call pre_destroy() again. check it here.
2628 cgroup_release_and_wakeup_rmdir(&mem
->css
);
2632 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2633 * Calling hierarchical_reclaim is not enough because we should update
2634 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2635 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2636 * not from the memcg which this page would be charged to.
2637 * try_charge_swapin does all of these works properly.
2639 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
2640 struct mm_struct
*mm
,
2643 struct mem_cgroup
*mem
= NULL
;
2646 if (mem_cgroup_disabled())
2649 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2651 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
2656 static DEFINE_MUTEX(set_limit_mutex
);
2658 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2659 unsigned long long val
)
2662 u64 memswlimit
, memlimit
;
2664 int children
= mem_cgroup_count_children(memcg
);
2665 u64 curusage
, oldusage
;
2669 * For keeping hierarchical_reclaim simple, how long we should retry
2670 * is depends on callers. We set our retry-count to be function
2671 * of # of children which we should visit in this loop.
2673 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
2675 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2678 while (retry_count
) {
2679 if (signal_pending(current
)) {
2684 * Rather than hide all in some function, I do this in
2685 * open coded manner. You see what this really does.
2686 * We have to guarantee mem->res.limit < mem->memsw.limit.
2688 mutex_lock(&set_limit_mutex
);
2689 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2690 if (memswlimit
< val
) {
2692 mutex_unlock(&set_limit_mutex
);
2696 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2700 ret
= res_counter_set_limit(&memcg
->res
, val
);
2702 if (memswlimit
== val
)
2703 memcg
->memsw_is_minimum
= true;
2705 memcg
->memsw_is_minimum
= false;
2707 mutex_unlock(&set_limit_mutex
);
2712 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2713 MEM_CGROUP_RECLAIM_SHRINK
);
2714 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2715 /* Usage is reduced ? */
2716 if (curusage
>= oldusage
)
2719 oldusage
= curusage
;
2721 if (!ret
&& enlarge
)
2722 memcg_oom_recover(memcg
);
2727 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2728 unsigned long long val
)
2731 u64 memlimit
, memswlimit
, oldusage
, curusage
;
2732 int children
= mem_cgroup_count_children(memcg
);
2736 /* see mem_cgroup_resize_res_limit */
2737 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
2738 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2739 while (retry_count
) {
2740 if (signal_pending(current
)) {
2745 * Rather than hide all in some function, I do this in
2746 * open coded manner. You see what this really does.
2747 * We have to guarantee mem->res.limit < mem->memsw.limit.
2749 mutex_lock(&set_limit_mutex
);
2750 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2751 if (memlimit
> val
) {
2753 mutex_unlock(&set_limit_mutex
);
2756 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2757 if (memswlimit
< val
)
2759 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
2761 if (memlimit
== val
)
2762 memcg
->memsw_is_minimum
= true;
2764 memcg
->memsw_is_minimum
= false;
2766 mutex_unlock(&set_limit_mutex
);
2771 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2772 MEM_CGROUP_RECLAIM_NOSWAP
|
2773 MEM_CGROUP_RECLAIM_SHRINK
);
2774 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2775 /* Usage is reduced ? */
2776 if (curusage
>= oldusage
)
2779 oldusage
= curusage
;
2781 if (!ret
&& enlarge
)
2782 memcg_oom_recover(memcg
);
2786 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2787 gfp_t gfp_mask
, int nid
,
2790 unsigned long nr_reclaimed
= 0;
2791 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2792 unsigned long reclaimed
;
2794 struct mem_cgroup_tree_per_zone
*mctz
;
2795 unsigned long long excess
;
2800 mctz
= soft_limit_tree_node_zone(nid
, zid
);
2802 * This loop can run a while, specially if mem_cgroup's continuously
2803 * keep exceeding their soft limit and putting the system under
2810 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2814 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
2816 MEM_CGROUP_RECLAIM_SOFT
);
2817 nr_reclaimed
+= reclaimed
;
2818 spin_lock(&mctz
->lock
);
2821 * If we failed to reclaim anything from this memory cgroup
2822 * it is time to move on to the next cgroup
2828 * Loop until we find yet another one.
2830 * By the time we get the soft_limit lock
2831 * again, someone might have aded the
2832 * group back on the RB tree. Iterate to
2833 * make sure we get a different mem.
2834 * mem_cgroup_largest_soft_limit_node returns
2835 * NULL if no other cgroup is present on
2839 __mem_cgroup_largest_soft_limit_node(mctz
);
2840 if (next_mz
== mz
) {
2841 css_put(&next_mz
->mem
->css
);
2843 } else /* next_mz == NULL or other memcg */
2847 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
2848 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
2850 * One school of thought says that we should not add
2851 * back the node to the tree if reclaim returns 0.
2852 * But our reclaim could return 0, simply because due
2853 * to priority we are exposing a smaller subset of
2854 * memory to reclaim from. Consider this as a longer
2857 /* If excess == 0, no tree ops */
2858 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
2859 spin_unlock(&mctz
->lock
);
2860 css_put(&mz
->mem
->css
);
2863 * Could not reclaim anything and there are no more
2864 * mem cgroups to try or we seem to be looping without
2865 * reclaiming anything.
2867 if (!nr_reclaimed
&&
2869 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2871 } while (!nr_reclaimed
);
2873 css_put(&next_mz
->mem
->css
);
2874 return nr_reclaimed
;
2878 * This routine traverse page_cgroup in given list and drop them all.
2879 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2881 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
2882 int node
, int zid
, enum lru_list lru
)
2885 struct mem_cgroup_per_zone
*mz
;
2886 struct page_cgroup
*pc
, *busy
;
2887 unsigned long flags
, loop
;
2888 struct list_head
*list
;
2891 zone
= &NODE_DATA(node
)->node_zones
[zid
];
2892 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
2893 list
= &mz
->lists
[lru
];
2895 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
2896 /* give some margin against EBUSY etc...*/
2901 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2902 if (list_empty(list
)) {
2903 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2906 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
2908 list_move(&pc
->lru
, list
);
2910 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2913 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2915 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
2919 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
2920 /* found lock contention or "pc" is obsolete. */
2927 if (!ret
&& !list_empty(list
))
2933 * make mem_cgroup's charge to be 0 if there is no task.
2934 * This enables deleting this mem_cgroup.
2936 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
2939 int node
, zid
, shrink
;
2940 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2941 struct cgroup
*cgrp
= mem
->css
.cgroup
;
2946 /* should free all ? */
2952 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
2955 if (signal_pending(current
))
2957 /* This is for making all *used* pages to be on LRU. */
2958 lru_add_drain_all();
2959 drain_all_stock_sync();
2961 for_each_node_state(node
, N_HIGH_MEMORY
) {
2962 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
2965 ret
= mem_cgroup_force_empty_list(mem
,
2974 memcg_oom_recover(mem
);
2975 /* it seems parent cgroup doesn't have enough mem */
2979 /* "ret" should also be checked to ensure all lists are empty. */
2980 } while (mem
->res
.usage
> 0 || ret
);
2986 /* returns EBUSY if there is a task or if we come here twice. */
2987 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
2991 /* we call try-to-free pages for make this cgroup empty */
2992 lru_add_drain_all();
2993 /* try to free all pages in this cgroup */
2995 while (nr_retries
&& mem
->res
.usage
> 0) {
2998 if (signal_pending(current
)) {
3002 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3003 false, get_swappiness(mem
));
3006 /* maybe some writeback is necessary */
3007 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3012 /* try move_account...there may be some *locked* pages. */
3016 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3018 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3022 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3024 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3027 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3031 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3032 struct cgroup
*parent
= cont
->parent
;
3033 struct mem_cgroup
*parent_mem
= NULL
;
3036 parent_mem
= mem_cgroup_from_cont(parent
);
3040 * If parent's use_hierarchy is set, we can't make any modifications
3041 * in the child subtrees. If it is unset, then the change can
3042 * occur, provided the current cgroup has no children.
3044 * For the root cgroup, parent_mem is NULL, we allow value to be
3045 * set if there are no children.
3047 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3048 (val
== 1 || val
== 0)) {
3049 if (list_empty(&cont
->children
))
3050 mem
->use_hierarchy
= val
;
3060 struct mem_cgroup_idx_data
{
3062 enum mem_cgroup_stat_index idx
;
3066 mem_cgroup_get_idx_stat(struct mem_cgroup
*mem
, void *data
)
3068 struct mem_cgroup_idx_data
*d
= data
;
3069 d
->val
+= mem_cgroup_read_stat(mem
, d
->idx
);
3074 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
3075 enum mem_cgroup_stat_index idx
, s64
*val
)
3077 struct mem_cgroup_idx_data d
;
3080 mem_cgroup_walk_tree(mem
, &d
, mem_cgroup_get_idx_stat
);
3084 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3088 if (!mem_cgroup_is_root(mem
)) {
3090 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3092 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3095 mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_CACHE
, &idx_val
);
3097 mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_RSS
, &idx_val
);
3101 mem_cgroup_get_recursive_idx_stat(mem
,
3102 MEM_CGROUP_STAT_SWAPOUT
, &idx_val
);
3106 return val
<< PAGE_SHIFT
;
3109 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3111 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3115 type
= MEMFILE_TYPE(cft
->private);
3116 name
= MEMFILE_ATTR(cft
->private);
3119 if (name
== RES_USAGE
)
3120 val
= mem_cgroup_usage(mem
, false);
3122 val
= res_counter_read_u64(&mem
->res
, name
);
3125 if (name
== RES_USAGE
)
3126 val
= mem_cgroup_usage(mem
, true);
3128 val
= res_counter_read_u64(&mem
->memsw
, name
);
3137 * The user of this function is...
3140 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3143 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3145 unsigned long long val
;
3148 type
= MEMFILE_TYPE(cft
->private);
3149 name
= MEMFILE_ATTR(cft
->private);
3152 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3156 /* This function does all necessary parse...reuse it */
3157 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3161 ret
= mem_cgroup_resize_limit(memcg
, val
);
3163 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3165 case RES_SOFT_LIMIT
:
3166 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3170 * For memsw, soft limits are hard to implement in terms
3171 * of semantics, for now, we support soft limits for
3172 * control without swap
3175 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3180 ret
= -EINVAL
; /* should be BUG() ? */
3186 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3187 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3189 struct cgroup
*cgroup
;
3190 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3192 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3193 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3194 cgroup
= memcg
->css
.cgroup
;
3195 if (!memcg
->use_hierarchy
)
3198 while (cgroup
->parent
) {
3199 cgroup
= cgroup
->parent
;
3200 memcg
= mem_cgroup_from_cont(cgroup
);
3201 if (!memcg
->use_hierarchy
)
3203 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3204 min_limit
= min(min_limit
, tmp
);
3205 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3206 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3209 *mem_limit
= min_limit
;
3210 *memsw_limit
= min_memsw_limit
;
3214 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3216 struct mem_cgroup
*mem
;
3219 mem
= mem_cgroup_from_cont(cont
);
3220 type
= MEMFILE_TYPE(event
);
3221 name
= MEMFILE_ATTR(event
);
3225 res_counter_reset_max(&mem
->res
);
3227 res_counter_reset_max(&mem
->memsw
);
3231 res_counter_reset_failcnt(&mem
->res
);
3233 res_counter_reset_failcnt(&mem
->memsw
);
3240 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3243 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3247 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3248 struct cftype
*cft
, u64 val
)
3250 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3252 if (val
>= (1 << NR_MOVE_TYPE
))
3255 * We check this value several times in both in can_attach() and
3256 * attach(), so we need cgroup lock to prevent this value from being
3260 mem
->move_charge_at_immigrate
= val
;
3266 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3267 struct cftype
*cft
, u64 val
)
3274 /* For read statistics */
3290 struct mcs_total_stat
{
3291 s64 stat
[NR_MCS_STAT
];
3297 } memcg_stat_strings
[NR_MCS_STAT
] = {
3298 {"cache", "total_cache"},
3299 {"rss", "total_rss"},
3300 {"mapped_file", "total_mapped_file"},
3301 {"pgpgin", "total_pgpgin"},
3302 {"pgpgout", "total_pgpgout"},
3303 {"swap", "total_swap"},
3304 {"inactive_anon", "total_inactive_anon"},
3305 {"active_anon", "total_active_anon"},
3306 {"inactive_file", "total_inactive_file"},
3307 {"active_file", "total_active_file"},
3308 {"unevictable", "total_unevictable"}
3312 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
3314 struct mcs_total_stat
*s
= data
;
3318 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3319 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3320 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
3321 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
3322 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
3323 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
3324 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
3325 s
->stat
[MCS_PGPGIN
] += val
;
3326 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
3327 s
->stat
[MCS_PGPGOUT
] += val
;
3328 if (do_swap_account
) {
3329 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3330 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
3334 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
3335 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
3336 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
3337 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
3338 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
3339 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
3340 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
3341 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
3342 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
3343 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
3348 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3350 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
3353 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
3354 struct cgroup_map_cb
*cb
)
3356 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
3357 struct mcs_total_stat mystat
;
3360 memset(&mystat
, 0, sizeof(mystat
));
3361 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
3363 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3364 if (i
== MCS_SWAP
&& !do_swap_account
)
3366 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
3369 /* Hierarchical information */
3371 unsigned long long limit
, memsw_limit
;
3372 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
3373 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
3374 if (do_swap_account
)
3375 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
3378 memset(&mystat
, 0, sizeof(mystat
));
3379 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
3380 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3381 if (i
== MCS_SWAP
&& !do_swap_account
)
3383 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3386 #ifdef CONFIG_DEBUG_VM
3387 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3391 struct mem_cgroup_per_zone
*mz
;
3392 unsigned long recent_rotated
[2] = {0, 0};
3393 unsigned long recent_scanned
[2] = {0, 0};
3395 for_each_online_node(nid
)
3396 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3397 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3399 recent_rotated
[0] +=
3400 mz
->reclaim_stat
.recent_rotated
[0];
3401 recent_rotated
[1] +=
3402 mz
->reclaim_stat
.recent_rotated
[1];
3403 recent_scanned
[0] +=
3404 mz
->reclaim_stat
.recent_scanned
[0];
3405 recent_scanned
[1] +=
3406 mz
->reclaim_stat
.recent_scanned
[1];
3408 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3409 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3410 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3411 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3418 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3420 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3422 return get_swappiness(memcg
);
3425 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3428 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3429 struct mem_cgroup
*parent
;
3434 if (cgrp
->parent
== NULL
)
3437 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3441 /* If under hierarchy, only empty-root can set this value */
3442 if ((parent
->use_hierarchy
) ||
3443 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3448 spin_lock(&memcg
->reclaim_param_lock
);
3449 memcg
->swappiness
= val
;
3450 spin_unlock(&memcg
->reclaim_param_lock
);
3457 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3459 struct mem_cgroup_threshold_ary
*t
;
3465 t
= rcu_dereference(memcg
->thresholds
.primary
);
3467 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3472 usage
= mem_cgroup_usage(memcg
, swap
);
3475 * current_threshold points to threshold just below usage.
3476 * If it's not true, a threshold was crossed after last
3477 * call of __mem_cgroup_threshold().
3479 i
= t
->current_threshold
;
3482 * Iterate backward over array of thresholds starting from
3483 * current_threshold and check if a threshold is crossed.
3484 * If none of thresholds below usage is crossed, we read
3485 * only one element of the array here.
3487 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3488 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3490 /* i = current_threshold + 1 */
3494 * Iterate forward over array of thresholds starting from
3495 * current_threshold+1 and check if a threshold is crossed.
3496 * If none of thresholds above usage is crossed, we read
3497 * only one element of the array here.
3499 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3500 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3502 /* Update current_threshold */
3503 t
->current_threshold
= i
- 1;
3508 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3510 __mem_cgroup_threshold(memcg
, false);
3511 if (do_swap_account
)
3512 __mem_cgroup_threshold(memcg
, true);
3515 static int compare_thresholds(const void *a
, const void *b
)
3517 const struct mem_cgroup_threshold
*_a
= a
;
3518 const struct mem_cgroup_threshold
*_b
= b
;
3520 return _a
->threshold
- _b
->threshold
;
3523 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
, void *data
)
3525 struct mem_cgroup_eventfd_list
*ev
;
3527 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
3528 eventfd_signal(ev
->eventfd
, 1);
3532 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
3534 mem_cgroup_walk_tree(mem
, NULL
, mem_cgroup_oom_notify_cb
);
3537 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
3538 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3540 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3541 struct mem_cgroup_thresholds
*thresholds
;
3542 struct mem_cgroup_threshold_ary
*new;
3543 int type
= MEMFILE_TYPE(cft
->private);
3544 u64 threshold
, usage
;
3547 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
3551 mutex_lock(&memcg
->thresholds_lock
);
3554 thresholds
= &memcg
->thresholds
;
3555 else if (type
== _MEMSWAP
)
3556 thresholds
= &memcg
->memsw_thresholds
;
3560 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3562 /* Check if a threshold crossed before adding a new one */
3563 if (thresholds
->primary
)
3564 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3566 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3568 /* Allocate memory for new array of thresholds */
3569 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3577 /* Copy thresholds (if any) to new array */
3578 if (thresholds
->primary
) {
3579 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3580 sizeof(struct mem_cgroup_threshold
));
3583 /* Add new threshold */
3584 new->entries
[size
- 1].eventfd
= eventfd
;
3585 new->entries
[size
- 1].threshold
= threshold
;
3587 /* Sort thresholds. Registering of new threshold isn't time-critical */
3588 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3589 compare_thresholds
, NULL
);
3591 /* Find current threshold */
3592 new->current_threshold
= -1;
3593 for (i
= 0; i
< size
; i
++) {
3594 if (new->entries
[i
].threshold
< usage
) {
3596 * new->current_threshold will not be used until
3597 * rcu_assign_pointer(), so it's safe to increment
3600 ++new->current_threshold
;
3604 /* Free old spare buffer and save old primary buffer as spare */
3605 kfree(thresholds
->spare
);
3606 thresholds
->spare
= thresholds
->primary
;
3608 rcu_assign_pointer(thresholds
->primary
, new);
3610 /* To be sure that nobody uses thresholds */
3614 mutex_unlock(&memcg
->thresholds_lock
);
3619 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
3620 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3622 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3623 struct mem_cgroup_thresholds
*thresholds
;
3624 struct mem_cgroup_threshold_ary
*new;
3625 int type
= MEMFILE_TYPE(cft
->private);
3629 mutex_lock(&memcg
->thresholds_lock
);
3631 thresholds
= &memcg
->thresholds
;
3632 else if (type
== _MEMSWAP
)
3633 thresholds
= &memcg
->memsw_thresholds
;
3638 * Something went wrong if we trying to unregister a threshold
3639 * if we don't have thresholds
3641 BUG_ON(!thresholds
);
3643 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3645 /* Check if a threshold crossed before removing */
3646 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3648 /* Calculate new number of threshold */
3650 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3651 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3655 new = thresholds
->spare
;
3657 /* Set thresholds array to NULL if we don't have thresholds */
3666 /* Copy thresholds and find current threshold */
3667 new->current_threshold
= -1;
3668 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3669 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3672 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3673 if (new->entries
[j
].threshold
< usage
) {
3675 * new->current_threshold will not be used
3676 * until rcu_assign_pointer(), so it's safe to increment
3679 ++new->current_threshold
;
3685 /* Swap primary and spare array */
3686 thresholds
->spare
= thresholds
->primary
;
3687 rcu_assign_pointer(thresholds
->primary
, new);
3689 /* To be sure that nobody uses thresholds */
3692 mutex_unlock(&memcg
->thresholds_lock
);
3695 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
3696 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3698 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3699 struct mem_cgroup_eventfd_list
*event
;
3700 int type
= MEMFILE_TYPE(cft
->private);
3702 BUG_ON(type
!= _OOM_TYPE
);
3703 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3707 mutex_lock(&memcg_oom_mutex
);
3709 event
->eventfd
= eventfd
;
3710 list_add(&event
->list
, &memcg
->oom_notify
);
3712 /* already in OOM ? */
3713 if (atomic_read(&memcg
->oom_lock
))
3714 eventfd_signal(eventfd
, 1);
3715 mutex_unlock(&memcg_oom_mutex
);
3720 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
3721 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3723 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3724 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3725 int type
= MEMFILE_TYPE(cft
->private);
3727 BUG_ON(type
!= _OOM_TYPE
);
3729 mutex_lock(&memcg_oom_mutex
);
3731 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
3732 if (ev
->eventfd
== eventfd
) {
3733 list_del(&ev
->list
);
3738 mutex_unlock(&memcg_oom_mutex
);
3741 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
3742 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
3744 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3746 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
3748 if (atomic_read(&mem
->oom_lock
))
3749 cb
->fill(cb
, "under_oom", 1);
3751 cb
->fill(cb
, "under_oom", 0);
3757 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
3758 struct cftype
*cft
, u64 val
)
3760 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3761 struct mem_cgroup
*parent
;
3763 /* cannot set to root cgroup and only 0 and 1 are allowed */
3764 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
3767 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3770 /* oom-kill-disable is a flag for subhierarchy. */
3771 if ((parent
->use_hierarchy
) ||
3772 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3776 mem
->oom_kill_disable
= val
;
3778 memcg_oom_recover(mem
);
3783 static struct cftype mem_cgroup_files
[] = {
3785 .name
= "usage_in_bytes",
3786 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3787 .read_u64
= mem_cgroup_read
,
3788 .register_event
= mem_cgroup_usage_register_event
,
3789 .unregister_event
= mem_cgroup_usage_unregister_event
,
3792 .name
= "max_usage_in_bytes",
3793 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3794 .trigger
= mem_cgroup_reset
,
3795 .read_u64
= mem_cgroup_read
,
3798 .name
= "limit_in_bytes",
3799 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3800 .write_string
= mem_cgroup_write
,
3801 .read_u64
= mem_cgroup_read
,
3804 .name
= "soft_limit_in_bytes",
3805 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3806 .write_string
= mem_cgroup_write
,
3807 .read_u64
= mem_cgroup_read
,
3811 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3812 .trigger
= mem_cgroup_reset
,
3813 .read_u64
= mem_cgroup_read
,
3817 .read_map
= mem_control_stat_show
,
3820 .name
= "force_empty",
3821 .trigger
= mem_cgroup_force_empty_write
,
3824 .name
= "use_hierarchy",
3825 .write_u64
= mem_cgroup_hierarchy_write
,
3826 .read_u64
= mem_cgroup_hierarchy_read
,
3829 .name
= "swappiness",
3830 .read_u64
= mem_cgroup_swappiness_read
,
3831 .write_u64
= mem_cgroup_swappiness_write
,
3834 .name
= "move_charge_at_immigrate",
3835 .read_u64
= mem_cgroup_move_charge_read
,
3836 .write_u64
= mem_cgroup_move_charge_write
,
3839 .name
= "oom_control",
3840 .read_map
= mem_cgroup_oom_control_read
,
3841 .write_u64
= mem_cgroup_oom_control_write
,
3842 .register_event
= mem_cgroup_oom_register_event
,
3843 .unregister_event
= mem_cgroup_oom_unregister_event
,
3844 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3848 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3849 static struct cftype memsw_cgroup_files
[] = {
3851 .name
= "memsw.usage_in_bytes",
3852 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
3853 .read_u64
= mem_cgroup_read
,
3854 .register_event
= mem_cgroup_usage_register_event
,
3855 .unregister_event
= mem_cgroup_usage_unregister_event
,
3858 .name
= "memsw.max_usage_in_bytes",
3859 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
3860 .trigger
= mem_cgroup_reset
,
3861 .read_u64
= mem_cgroup_read
,
3864 .name
= "memsw.limit_in_bytes",
3865 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
3866 .write_string
= mem_cgroup_write
,
3867 .read_u64
= mem_cgroup_read
,
3870 .name
= "memsw.failcnt",
3871 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
3872 .trigger
= mem_cgroup_reset
,
3873 .read_u64
= mem_cgroup_read
,
3877 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3879 if (!do_swap_account
)
3881 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
3882 ARRAY_SIZE(memsw_cgroup_files
));
3885 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3891 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3893 struct mem_cgroup_per_node
*pn
;
3894 struct mem_cgroup_per_zone
*mz
;
3896 int zone
, tmp
= node
;
3898 * This routine is called against possible nodes.
3899 * But it's BUG to call kmalloc() against offline node.
3901 * TODO: this routine can waste much memory for nodes which will
3902 * never be onlined. It's better to use memory hotplug callback
3905 if (!node_state(node
, N_NORMAL_MEMORY
))
3907 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
3911 mem
->info
.nodeinfo
[node
] = pn
;
3912 memset(pn
, 0, sizeof(*pn
));
3914 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3915 mz
= &pn
->zoneinfo
[zone
];
3917 INIT_LIST_HEAD(&mz
->lists
[l
]);
3918 mz
->usage_in_excess
= 0;
3919 mz
->on_tree
= false;
3925 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3927 kfree(mem
->info
.nodeinfo
[node
]);
3930 static struct mem_cgroup
*mem_cgroup_alloc(void)
3932 struct mem_cgroup
*mem
;
3933 int size
= sizeof(struct mem_cgroup
);
3935 /* Can be very big if MAX_NUMNODES is very big */
3936 if (size
< PAGE_SIZE
)
3937 mem
= kmalloc(size
, GFP_KERNEL
);
3939 mem
= vmalloc(size
);
3944 memset(mem
, 0, size
);
3945 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
3947 if (size
< PAGE_SIZE
)
3957 * At destroying mem_cgroup, references from swap_cgroup can remain.
3958 * (scanning all at force_empty is too costly...)
3960 * Instead of clearing all references at force_empty, we remember
3961 * the number of reference from swap_cgroup and free mem_cgroup when
3962 * it goes down to 0.
3964 * Removal of cgroup itself succeeds regardless of refs from swap.
3967 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
3971 mem_cgroup_remove_from_trees(mem
);
3972 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
3974 for_each_node_state(node
, N_POSSIBLE
)
3975 free_mem_cgroup_per_zone_info(mem
, node
);
3977 free_percpu(mem
->stat
);
3978 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
3984 static void mem_cgroup_get(struct mem_cgroup
*mem
)
3986 atomic_inc(&mem
->refcnt
);
3989 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
3991 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
3992 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
3993 __mem_cgroup_free(mem
);
3995 mem_cgroup_put(parent
);
3999 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4001 __mem_cgroup_put(mem
, 1);
4005 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4007 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4009 if (!mem
->res
.parent
)
4011 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4014 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4015 static void __init
enable_swap_cgroup(void)
4017 if (!mem_cgroup_disabled() && really_do_swap_account
)
4018 do_swap_account
= 1;
4021 static void __init
enable_swap_cgroup(void)
4026 static int mem_cgroup_soft_limit_tree_init(void)
4028 struct mem_cgroup_tree_per_node
*rtpn
;
4029 struct mem_cgroup_tree_per_zone
*rtpz
;
4030 int tmp
, node
, zone
;
4032 for_each_node_state(node
, N_POSSIBLE
) {
4034 if (!node_state(node
, N_NORMAL_MEMORY
))
4036 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4040 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4042 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4043 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4044 rtpz
->rb_root
= RB_ROOT
;
4045 spin_lock_init(&rtpz
->lock
);
4051 static struct cgroup_subsys_state
* __ref
4052 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4054 struct mem_cgroup
*mem
, *parent
;
4055 long error
= -ENOMEM
;
4058 mem
= mem_cgroup_alloc();
4060 return ERR_PTR(error
);
4062 for_each_node_state(node
, N_POSSIBLE
)
4063 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4067 if (cont
->parent
== NULL
) {
4069 enable_swap_cgroup();
4071 root_mem_cgroup
= mem
;
4072 if (mem_cgroup_soft_limit_tree_init())
4074 for_each_possible_cpu(cpu
) {
4075 struct memcg_stock_pcp
*stock
=
4076 &per_cpu(memcg_stock
, cpu
);
4077 INIT_WORK(&stock
->work
, drain_local_stock
);
4079 hotcpu_notifier(memcg_stock_cpu_callback
, 0);
4081 parent
= mem_cgroup_from_cont(cont
->parent
);
4082 mem
->use_hierarchy
= parent
->use_hierarchy
;
4083 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4086 if (parent
&& parent
->use_hierarchy
) {
4087 res_counter_init(&mem
->res
, &parent
->res
);
4088 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4090 * We increment refcnt of the parent to ensure that we can
4091 * safely access it on res_counter_charge/uncharge.
4092 * This refcnt will be decremented when freeing this
4093 * mem_cgroup(see mem_cgroup_put).
4095 mem_cgroup_get(parent
);
4097 res_counter_init(&mem
->res
, NULL
);
4098 res_counter_init(&mem
->memsw
, NULL
);
4100 mem
->last_scanned_child
= 0;
4101 spin_lock_init(&mem
->reclaim_param_lock
);
4102 INIT_LIST_HEAD(&mem
->oom_notify
);
4105 mem
->swappiness
= get_swappiness(parent
);
4106 atomic_set(&mem
->refcnt
, 1);
4107 mem
->move_charge_at_immigrate
= 0;
4108 mutex_init(&mem
->thresholds_lock
);
4111 __mem_cgroup_free(mem
);
4112 root_mem_cgroup
= NULL
;
4113 return ERR_PTR(error
);
4116 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4117 struct cgroup
*cont
)
4119 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4121 return mem_cgroup_force_empty(mem
, false);
4124 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4125 struct cgroup
*cont
)
4127 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4129 mem_cgroup_put(mem
);
4132 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4133 struct cgroup
*cont
)
4137 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4138 ARRAY_SIZE(mem_cgroup_files
));
4141 ret
= register_memsw_files(cont
, ss
);
4146 /* Handlers for move charge at task migration. */
4147 #define PRECHARGE_COUNT_AT_ONCE 256
4148 static int mem_cgroup_do_precharge(unsigned long count
)
4151 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4152 struct mem_cgroup
*mem
= mc
.to
;
4154 if (mem_cgroup_is_root(mem
)) {
4155 mc
.precharge
+= count
;
4156 /* we don't need css_get for root */
4159 /* try to charge at once */
4161 struct res_counter
*dummy
;
4163 * "mem" cannot be under rmdir() because we've already checked
4164 * by cgroup_lock_live_cgroup() that it is not removed and we
4165 * are still under the same cgroup_mutex. So we can postpone
4168 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4170 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4171 PAGE_SIZE
* count
, &dummy
)) {
4172 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
4175 mc
.precharge
+= count
;
4176 VM_BUG_ON(test_bit(CSS_ROOT
, &mem
->css
.flags
));
4177 WARN_ON_ONCE(count
> INT_MAX
);
4178 __css_get(&mem
->css
, (int)count
);
4182 /* fall back to one by one charge */
4184 if (signal_pending(current
)) {
4188 if (!batch_count
--) {
4189 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4192 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
4194 /* mem_cgroup_clear_mc() will do uncharge later */
4202 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4203 * @vma: the vma the pte to be checked belongs
4204 * @addr: the address corresponding to the pte to be checked
4205 * @ptent: the pte to be checked
4206 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4209 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4210 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4211 * move charge. if @target is not NULL, the page is stored in target->page
4212 * with extra refcnt got(Callers should handle it).
4213 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4214 * target for charge migration. if @target is not NULL, the entry is stored
4217 * Called with pte lock held.
4224 enum mc_target_type
{
4225 MC_TARGET_NONE
, /* not used */
4230 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4231 unsigned long addr
, pte_t ptent
)
4233 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4235 if (!page
|| !page_mapped(page
))
4237 if (PageAnon(page
)) {
4238 /* we don't move shared anon */
4239 if (!move_anon() || page_mapcount(page
) > 2)
4241 } else if (!move_file())
4242 /* we ignore mapcount for file pages */
4244 if (!get_page_unless_zero(page
))
4250 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4251 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4254 struct page
*page
= NULL
;
4255 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4257 if (!move_anon() || non_swap_entry(ent
))
4259 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
4260 if (usage_count
> 1) { /* we don't move shared anon */
4265 if (do_swap_account
)
4266 entry
->val
= ent
.val
;
4271 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4272 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4274 struct page
*page
= NULL
;
4275 struct inode
*inode
;
4276 struct address_space
*mapping
;
4279 if (!vma
->vm_file
) /* anonymous vma */
4284 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
4285 mapping
= vma
->vm_file
->f_mapping
;
4286 if (pte_none(ptent
))
4287 pgoff
= linear_page_index(vma
, addr
);
4288 else /* pte_file(ptent) is true */
4289 pgoff
= pte_to_pgoff(ptent
);
4291 /* page is moved even if it's not RSS of this task(page-faulted). */
4292 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
4293 page
= find_get_page(mapping
, pgoff
);
4294 } else { /* shmem/tmpfs file. we should take account of swap too. */
4296 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
4297 if (do_swap_account
)
4298 entry
->val
= ent
.val
;
4304 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
4305 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4307 struct page
*page
= NULL
;
4308 struct page_cgroup
*pc
;
4310 swp_entry_t ent
= { .val
= 0 };
4312 if (pte_present(ptent
))
4313 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4314 else if (is_swap_pte(ptent
))
4315 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4316 else if (pte_none(ptent
) || pte_file(ptent
))
4317 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4319 if (!page
&& !ent
.val
)
4322 pc
= lookup_page_cgroup(page
);
4324 * Do only loose check w/o page_cgroup lock.
4325 * mem_cgroup_move_account() checks the pc is valid or not under
4328 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
4329 ret
= MC_TARGET_PAGE
;
4331 target
->page
= page
;
4333 if (!ret
|| !target
)
4336 /* There is a swap entry and a page doesn't exist or isn't charged */
4337 if (ent
.val
&& !ret
&&
4338 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
4339 ret
= MC_TARGET_SWAP
;
4346 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4347 unsigned long addr
, unsigned long end
,
4348 struct mm_walk
*walk
)
4350 struct vm_area_struct
*vma
= walk
->private;
4354 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4355 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4356 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
4357 mc
.precharge
++; /* increment precharge temporarily */
4358 pte_unmap_unlock(pte
- 1, ptl
);
4364 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4366 unsigned long precharge
;
4367 struct vm_area_struct
*vma
;
4369 down_read(&mm
->mmap_sem
);
4370 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4371 struct mm_walk mem_cgroup_count_precharge_walk
= {
4372 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4376 if (is_vm_hugetlb_page(vma
))
4378 walk_page_range(vma
->vm_start
, vma
->vm_end
,
4379 &mem_cgroup_count_precharge_walk
);
4381 up_read(&mm
->mmap_sem
);
4383 precharge
= mc
.precharge
;
4389 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4391 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm
));
4394 static void mem_cgroup_clear_mc(void)
4396 /* we must uncharge all the leftover precharges from mc.to */
4398 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
4400 memcg_oom_recover(mc
.to
);
4403 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4404 * we must uncharge here.
4406 if (mc
.moved_charge
) {
4407 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
4408 mc
.moved_charge
= 0;
4409 memcg_oom_recover(mc
.from
);
4411 /* we must fixup refcnts and charges */
4412 if (mc
.moved_swap
) {
4413 WARN_ON_ONCE(mc
.moved_swap
> INT_MAX
);
4414 /* uncharge swap account from the old cgroup */
4415 if (!mem_cgroup_is_root(mc
.from
))
4416 res_counter_uncharge(&mc
.from
->memsw
,
4417 PAGE_SIZE
* mc
.moved_swap
);
4418 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
4420 if (!mem_cgroup_is_root(mc
.to
)) {
4422 * we charged both to->res and to->memsw, so we should
4425 res_counter_uncharge(&mc
.to
->res
,
4426 PAGE_SIZE
* mc
.moved_swap
);
4427 VM_BUG_ON(test_bit(CSS_ROOT
, &mc
.to
->css
.flags
));
4428 __css_put(&mc
.to
->css
, mc
.moved_swap
);
4430 /* we've already done mem_cgroup_get(mc.to) */
4436 mc
.moving_task
= NULL
;
4437 wake_up_all(&mc
.waitq
);
4440 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4441 struct cgroup
*cgroup
,
4442 struct task_struct
*p
,
4446 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
4448 if (mem
->move_charge_at_immigrate
) {
4449 struct mm_struct
*mm
;
4450 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
4452 VM_BUG_ON(from
== mem
);
4454 mm
= get_task_mm(p
);
4457 /* We move charges only when we move a owner of the mm */
4458 if (mm
->owner
== p
) {
4461 VM_BUG_ON(mc
.precharge
);
4462 VM_BUG_ON(mc
.moved_charge
);
4463 VM_BUG_ON(mc
.moved_swap
);
4464 VM_BUG_ON(mc
.moving_task
);
4468 mc
.moved_charge
= 0;
4470 mc
.moving_task
= current
;
4472 ret
= mem_cgroup_precharge_mc(mm
);
4474 mem_cgroup_clear_mc();
4481 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4482 struct cgroup
*cgroup
,
4483 struct task_struct
*p
,
4486 mem_cgroup_clear_mc();
4489 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4490 unsigned long addr
, unsigned long end
,
4491 struct mm_walk
*walk
)
4494 struct vm_area_struct
*vma
= walk
->private;
4499 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4500 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4501 pte_t ptent
= *(pte
++);
4502 union mc_target target
;
4505 struct page_cgroup
*pc
;
4511 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
4513 case MC_TARGET_PAGE
:
4515 if (isolate_lru_page(page
))
4517 pc
= lookup_page_cgroup(page
);
4518 if (!mem_cgroup_move_account(pc
,
4519 mc
.from
, mc
.to
, false)) {
4521 /* we uncharge from mc.from later. */
4524 putback_lru_page(page
);
4525 put
: /* is_target_pte_for_mc() gets the page */
4528 case MC_TARGET_SWAP
:
4530 if (!mem_cgroup_move_swap_account(ent
,
4531 mc
.from
, mc
.to
, false)) {
4533 /* we fixup refcnts and charges later. */
4541 pte_unmap_unlock(pte
- 1, ptl
);
4546 * We have consumed all precharges we got in can_attach().
4547 * We try charge one by one, but don't do any additional
4548 * charges to mc.to if we have failed in charge once in attach()
4551 ret
= mem_cgroup_do_precharge(1);
4559 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4561 struct vm_area_struct
*vma
;
4563 lru_add_drain_all();
4564 down_read(&mm
->mmap_sem
);
4565 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4567 struct mm_walk mem_cgroup_move_charge_walk
= {
4568 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4572 if (is_vm_hugetlb_page(vma
))
4574 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
4575 &mem_cgroup_move_charge_walk
);
4578 * means we have consumed all precharges and failed in
4579 * doing additional charge. Just abandon here.
4583 up_read(&mm
->mmap_sem
);
4586 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4587 struct cgroup
*cont
,
4588 struct cgroup
*old_cont
,
4589 struct task_struct
*p
,
4592 struct mm_struct
*mm
;
4595 /* no need to move charge */
4598 mm
= get_task_mm(p
);
4600 mem_cgroup_move_charge(mm
);
4603 mem_cgroup_clear_mc();
4605 #else /* !CONFIG_MMU */
4606 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4607 struct cgroup
*cgroup
,
4608 struct task_struct
*p
,
4613 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4614 struct cgroup
*cgroup
,
4615 struct task_struct
*p
,
4619 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4620 struct cgroup
*cont
,
4621 struct cgroup
*old_cont
,
4622 struct task_struct
*p
,
4628 struct cgroup_subsys mem_cgroup_subsys
= {
4630 .subsys_id
= mem_cgroup_subsys_id
,
4631 .create
= mem_cgroup_create
,
4632 .pre_destroy
= mem_cgroup_pre_destroy
,
4633 .destroy
= mem_cgroup_destroy
,
4634 .populate
= mem_cgroup_populate
,
4635 .can_attach
= mem_cgroup_can_attach
,
4636 .cancel_attach
= mem_cgroup_cancel_attach
,
4637 .attach
= mem_cgroup_move_task
,
4642 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4644 static int __init
disable_swap_account(char *s
)
4646 really_do_swap_account
= 0;
4649 __setup("noswapaccount", disable_swap_account
);