2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
21 #include "ext4_jbd2.h"
25 * balloc.c contains the blocks allocation and deallocation routines
29 * Calculate the block group number and offset, given a block number
31 void ext4_get_group_no_and_offset(struct super_block
*sb
, ext4_fsblk_t blocknr
,
32 ext4_group_t
*blockgrpp
, ext4_grpblk_t
*offsetp
)
34 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
37 blocknr
= blocknr
- le32_to_cpu(es
->s_first_data_block
);
38 offset
= do_div(blocknr
, EXT4_BLOCKS_PER_GROUP(sb
));
46 static int ext4_block_in_group(struct super_block
*sb
, ext4_fsblk_t block
,
47 ext4_group_t block_group
)
49 ext4_group_t actual_group
;
50 ext4_get_group_no_and_offset(sb
, block
, &actual_group
, NULL
);
51 if (actual_group
== block_group
)
56 static int ext4_group_used_meta_blocks(struct super_block
*sb
,
57 ext4_group_t block_group
)
60 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
61 /* block bitmap, inode bitmap, and inode table blocks */
62 int used_blocks
= sbi
->s_itb_per_group
+ 2;
64 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_FLEX_BG
)) {
65 struct ext4_group_desc
*gdp
;
66 struct buffer_head
*bh
;
68 gdp
= ext4_get_group_desc(sb
, block_group
, &bh
);
69 if (!ext4_block_in_group(sb
, ext4_block_bitmap(sb
, gdp
),
73 if (!ext4_block_in_group(sb
, ext4_inode_bitmap(sb
, gdp
),
77 tmp
= ext4_inode_table(sb
, gdp
);
78 for (; tmp
< ext4_inode_table(sb
, gdp
) +
79 sbi
->s_itb_per_group
; tmp
++) {
80 if (!ext4_block_in_group(sb
, tmp
, block_group
))
86 /* Initializes an uninitialized block bitmap if given, and returns the
87 * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block
*sb
, struct buffer_head
*bh
,
89 ext4_group_t block_group
, struct ext4_group_desc
*gdp
)
92 unsigned free_blocks
, group_blocks
;
93 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
96 J_ASSERT_BH(bh
, buffer_locked(bh
));
98 /* If checksum is bad mark all blocks used to prevent allocation
99 * essentially implementing a per-group read-only flag. */
100 if (!ext4_group_desc_csum_verify(sbi
, block_group
, gdp
)) {
101 ext4_error(sb
, __func__
,
102 "Checksum bad for group %lu\n", block_group
);
103 gdp
->bg_free_blocks_count
= 0;
104 gdp
->bg_free_inodes_count
= 0;
105 gdp
->bg_itable_unused
= 0;
106 memset(bh
->b_data
, 0xff, sb
->s_blocksize
);
109 memset(bh
->b_data
, 0, sb
->s_blocksize
);
112 /* Check for superblock and gdt backups in this group */
113 bit_max
= ext4_bg_has_super(sb
, block_group
);
115 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_META_BG
) ||
116 block_group
< le32_to_cpu(sbi
->s_es
->s_first_meta_bg
) *
117 sbi
->s_desc_per_block
) {
119 bit_max
+= ext4_bg_num_gdb(sb
, block_group
);
121 le16_to_cpu(sbi
->s_es
->s_reserved_gdt_blocks
);
123 } else { /* For META_BG_BLOCK_GROUPS */
124 bit_max
+= ext4_bg_num_gdb(sb
, block_group
);
127 if (block_group
== sbi
->s_groups_count
- 1) {
129 * Even though mke2fs always initialize first and last group
130 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
131 * to make sure we calculate the right free blocks
133 group_blocks
= ext4_blocks_count(sbi
->s_es
) -
134 le32_to_cpu(sbi
->s_es
->s_first_data_block
) -
135 (EXT4_BLOCKS_PER_GROUP(sb
) * (sbi
->s_groups_count
-1));
137 group_blocks
= EXT4_BLOCKS_PER_GROUP(sb
);
140 free_blocks
= group_blocks
- bit_max
;
143 ext4_fsblk_t start
, tmp
;
146 for (bit
= 0; bit
< bit_max
; bit
++)
147 ext4_set_bit(bit
, bh
->b_data
);
149 start
= ext4_group_first_block_no(sb
, block_group
);
151 if (EXT4_HAS_INCOMPAT_FEATURE(sb
,
152 EXT4_FEATURE_INCOMPAT_FLEX_BG
))
155 /* Set bits for block and inode bitmaps, and inode table */
156 tmp
= ext4_block_bitmap(sb
, gdp
);
157 if (!flex_bg
|| ext4_block_in_group(sb
, tmp
, block_group
))
158 ext4_set_bit(tmp
- start
, bh
->b_data
);
160 tmp
= ext4_inode_bitmap(sb
, gdp
);
161 if (!flex_bg
|| ext4_block_in_group(sb
, tmp
, block_group
))
162 ext4_set_bit(tmp
- start
, bh
->b_data
);
164 tmp
= ext4_inode_table(sb
, gdp
);
165 for (; tmp
< ext4_inode_table(sb
, gdp
) +
166 sbi
->s_itb_per_group
; tmp
++) {
168 ext4_block_in_group(sb
, tmp
, block_group
))
169 ext4_set_bit(tmp
- start
, bh
->b_data
);
172 * Also if the number of blocks within the group is
173 * less than the blocksize * 8 ( which is the size
174 * of bitmap ), set rest of the block bitmap to 1
176 mark_bitmap_end(group_blocks
, sb
->s_blocksize
* 8, bh
->b_data
);
178 return free_blocks
- ext4_group_used_meta_blocks(sb
, block_group
);
183 * The free blocks are managed by bitmaps. A file system contains several
184 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
185 * block for inodes, N blocks for the inode table and data blocks.
187 * The file system contains group descriptors which are located after the
188 * super block. Each descriptor contains the number of the bitmap block and
189 * the free blocks count in the block. The descriptors are loaded in memory
190 * when a file system is mounted (see ext4_fill_super).
194 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
197 * ext4_get_group_desc() -- load group descriptor from disk
199 * @block_group: given block group
200 * @bh: pointer to the buffer head to store the block
203 struct ext4_group_desc
* ext4_get_group_desc(struct super_block
* sb
,
204 ext4_group_t block_group
,
205 struct buffer_head
** bh
)
207 unsigned long group_desc
;
208 unsigned long offset
;
209 struct ext4_group_desc
* desc
;
210 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
212 if (block_group
>= sbi
->s_groups_count
) {
213 ext4_error (sb
, "ext4_get_group_desc",
214 "block_group >= groups_count - "
215 "block_group = %lu, groups_count = %lu",
216 block_group
, sbi
->s_groups_count
);
222 group_desc
= block_group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
223 offset
= block_group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
224 if (!sbi
->s_group_desc
[group_desc
]) {
225 ext4_error (sb
, "ext4_get_group_desc",
226 "Group descriptor not loaded - "
227 "block_group = %lu, group_desc = %lu, desc = %lu",
228 block_group
, group_desc
, offset
);
232 desc
= (struct ext4_group_desc
*)(
233 (__u8
*)sbi
->s_group_desc
[group_desc
]->b_data
+
234 offset
* EXT4_DESC_SIZE(sb
));
236 *bh
= sbi
->s_group_desc
[group_desc
];
240 static int ext4_valid_block_bitmap(struct super_block
*sb
,
241 struct ext4_group_desc
*desc
,
242 unsigned int block_group
,
243 struct buffer_head
*bh
)
245 ext4_grpblk_t offset
;
246 ext4_grpblk_t next_zero_bit
;
247 ext4_fsblk_t bitmap_blk
;
248 ext4_fsblk_t group_first_block
;
250 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_FLEX_BG
)) {
251 /* with FLEX_BG, the inode/block bitmaps and itable
252 * blocks may not be in the group at all
253 * so the bitmap validation will be skipped for those groups
254 * or it has to also read the block group where the bitmaps
255 * are located to verify they are set.
259 group_first_block
= ext4_group_first_block_no(sb
, block_group
);
261 /* check whether block bitmap block number is set */
262 bitmap_blk
= ext4_block_bitmap(sb
, desc
);
263 offset
= bitmap_blk
- group_first_block
;
264 if (!ext4_test_bit(offset
, bh
->b_data
))
265 /* bad block bitmap */
268 /* check whether the inode bitmap block number is set */
269 bitmap_blk
= ext4_inode_bitmap(sb
, desc
);
270 offset
= bitmap_blk
- group_first_block
;
271 if (!ext4_test_bit(offset
, bh
->b_data
))
272 /* bad block bitmap */
275 /* check whether the inode table block number is set */
276 bitmap_blk
= ext4_inode_table(sb
, desc
);
277 offset
= bitmap_blk
- group_first_block
;
278 next_zero_bit
= ext4_find_next_zero_bit(bh
->b_data
,
279 offset
+ EXT4_SB(sb
)->s_itb_per_group
,
281 if (next_zero_bit
>= offset
+ EXT4_SB(sb
)->s_itb_per_group
)
282 /* good bitmap for inode tables */
286 ext4_error(sb
, __func__
,
287 "Invalid block bitmap - "
288 "block_group = %d, block = %llu",
289 block_group
, bitmap_blk
);
293 * ext4_read_block_bitmap()
295 * @block_group: given block group
297 * Read the bitmap for a given block_group,and validate the
298 * bits for block/inode/inode tables are set in the bitmaps
300 * Return buffer_head on success or NULL in case of failure.
303 ext4_read_block_bitmap(struct super_block
*sb
, ext4_group_t block_group
)
305 struct ext4_group_desc
* desc
;
306 struct buffer_head
* bh
= NULL
;
307 ext4_fsblk_t bitmap_blk
;
309 desc
= ext4_get_group_desc(sb
, block_group
, NULL
);
312 bitmap_blk
= ext4_block_bitmap(sb
, desc
);
313 bh
= sb_getblk(sb
, bitmap_blk
);
315 ext4_error(sb
, __func__
,
316 "Cannot read block bitmap - "
317 "block_group = %lu, block_bitmap = %llu",
318 block_group
, bitmap_blk
);
321 if (bh_uptodate_or_lock(bh
))
324 spin_lock(sb_bgl_lock(EXT4_SB(sb
), block_group
));
325 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
326 ext4_init_block_bitmap(sb
, bh
, block_group
, desc
);
327 set_buffer_uptodate(bh
);
329 spin_unlock(sb_bgl_lock(EXT4_SB(sb
), block_group
));
332 spin_unlock(sb_bgl_lock(EXT4_SB(sb
), block_group
));
333 if (bh_submit_read(bh
) < 0) {
335 ext4_error(sb
, __func__
,
336 "Cannot read block bitmap - "
337 "block_group = %lu, block_bitmap = %llu",
338 block_group
, bitmap_blk
);
341 ext4_valid_block_bitmap(sb
, desc
, block_group
, bh
);
343 * file system mounted not to panic on error,
344 * continue with corrupt bitmap
349 * The reservation window structure operations
350 * --------------------------------------------
351 * Operations include:
352 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
354 * We use a red-black tree to represent per-filesystem reservation
360 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
361 * @rb_root: root of per-filesystem reservation rb tree
362 * @verbose: verbose mode
363 * @fn: function which wishes to dump the reservation map
365 * If verbose is turned on, it will print the whole block reservation
366 * windows(start, end). Otherwise, it will only print out the "bad" windows,
367 * those windows that overlap with their immediate neighbors.
370 static void __rsv_window_dump(struct rb_root
*root
, int verbose
,
374 struct ext4_reserve_window_node
*rsv
, *prev
;
382 printk("Block Allocation Reservation Windows Map (%s):\n", fn
);
384 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
386 printk("reservation window 0x%p "
387 "start: %llu, end: %llu\n",
388 rsv
, rsv
->rsv_start
, rsv
->rsv_end
);
389 if (rsv
->rsv_start
&& rsv
->rsv_start
>= rsv
->rsv_end
) {
390 printk("Bad reservation %p (start >= end)\n",
394 if (prev
&& prev
->rsv_end
>= rsv
->rsv_start
) {
395 printk("Bad reservation %p (prev->end >= start)\n",
401 printk("Restarting reservation walk in verbose mode\n");
409 printk("Window map complete.\n");
412 #define rsv_window_dump(root, verbose) \
413 __rsv_window_dump((root), (verbose), __func__)
415 #define rsv_window_dump(root, verbose) do {} while (0)
419 * goal_in_my_reservation()
420 * @rsv: inode's reservation window
421 * @grp_goal: given goal block relative to the allocation block group
422 * @group: the current allocation block group
423 * @sb: filesystem super block
425 * Test if the given goal block (group relative) is within the file's
426 * own block reservation window range.
428 * If the reservation window is outside the goal allocation group, return 0;
429 * grp_goal (given goal block) could be -1, which means no specific
430 * goal block. In this case, always return 1.
431 * If the goal block is within the reservation window, return 1;
432 * otherwise, return 0;
435 goal_in_my_reservation(struct ext4_reserve_window
*rsv
, ext4_grpblk_t grp_goal
,
436 ext4_group_t group
, struct super_block
*sb
)
438 ext4_fsblk_t group_first_block
, group_last_block
;
440 group_first_block
= ext4_group_first_block_no(sb
, group
);
441 group_last_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
443 if ((rsv
->_rsv_start
> group_last_block
) ||
444 (rsv
->_rsv_end
< group_first_block
))
446 if ((grp_goal
>= 0) && ((grp_goal
+ group_first_block
< rsv
->_rsv_start
)
447 || (grp_goal
+ group_first_block
> rsv
->_rsv_end
)))
453 * search_reserve_window()
454 * @rb_root: root of reservation tree
455 * @goal: target allocation block
457 * Find the reserved window which includes the goal, or the previous one
458 * if the goal is not in any window.
459 * Returns NULL if there are no windows or if all windows start after the goal.
461 static struct ext4_reserve_window_node
*
462 search_reserve_window(struct rb_root
*root
, ext4_fsblk_t goal
)
464 struct rb_node
*n
= root
->rb_node
;
465 struct ext4_reserve_window_node
*rsv
;
471 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
473 if (goal
< rsv
->rsv_start
)
475 else if (goal
> rsv
->rsv_end
)
481 * We've fallen off the end of the tree: the goal wasn't inside
482 * any particular node. OK, the previous node must be to one
483 * side of the interval containing the goal. If it's the RHS,
484 * we need to back up one.
486 if (rsv
->rsv_start
> goal
) {
487 n
= rb_prev(&rsv
->rsv_node
);
488 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
494 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
496 * @rsv: reservation window to add
498 * Must be called with rsv_lock hold.
500 void ext4_rsv_window_add(struct super_block
*sb
,
501 struct ext4_reserve_window_node
*rsv
)
503 struct rb_root
*root
= &EXT4_SB(sb
)->s_rsv_window_root
;
504 struct rb_node
*node
= &rsv
->rsv_node
;
505 ext4_fsblk_t start
= rsv
->rsv_start
;
507 struct rb_node
** p
= &root
->rb_node
;
508 struct rb_node
* parent
= NULL
;
509 struct ext4_reserve_window_node
*this;
514 this = rb_entry(parent
, struct ext4_reserve_window_node
, rsv_node
);
516 if (start
< this->rsv_start
)
518 else if (start
> this->rsv_end
)
521 rsv_window_dump(root
, 1);
526 rb_link_node(node
, parent
, p
);
527 rb_insert_color(node
, root
);
531 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
533 * @rsv: reservation window to remove
535 * Mark the block reservation window as not allocated, and unlink it
536 * from the filesystem reservation window rb tree. Must be called with
539 static void rsv_window_remove(struct super_block
*sb
,
540 struct ext4_reserve_window_node
*rsv
)
542 rsv
->rsv_start
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
543 rsv
->rsv_end
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
544 rsv
->rsv_alloc_hit
= 0;
545 rb_erase(&rsv
->rsv_node
, &EXT4_SB(sb
)->s_rsv_window_root
);
549 * rsv_is_empty() -- Check if the reservation window is allocated.
550 * @rsv: given reservation window to check
552 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
554 static inline int rsv_is_empty(struct ext4_reserve_window
*rsv
)
556 /* a valid reservation end block could not be 0 */
557 return rsv
->_rsv_end
== EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
561 * ext4_init_block_alloc_info()
562 * @inode: file inode structure
564 * Allocate and initialize the reservation window structure, and
565 * link the window to the ext4 inode structure at last
567 * The reservation window structure is only dynamically allocated
568 * and linked to ext4 inode the first time the open file
569 * needs a new block. So, before every ext4_new_block(s) call, for
570 * regular files, we should check whether the reservation window
571 * structure exists or not. In the latter case, this function is called.
572 * Fail to do so will result in block reservation being turned off for that
575 * This function is called from ext4_get_blocks_handle(), also called
576 * when setting the reservation window size through ioctl before the file
577 * is open for write (needs block allocation).
579 * Needs down_write(i_data_sem) protection prior to call this function.
581 void ext4_init_block_alloc_info(struct inode
*inode
)
583 struct ext4_inode_info
*ei
= EXT4_I(inode
);
584 struct ext4_block_alloc_info
*block_i
= ei
->i_block_alloc_info
;
585 struct super_block
*sb
= inode
->i_sb
;
587 block_i
= kmalloc(sizeof(*block_i
), GFP_NOFS
);
589 struct ext4_reserve_window_node
*rsv
= &block_i
->rsv_window_node
;
591 rsv
->rsv_start
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
592 rsv
->rsv_end
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
595 * if filesystem is mounted with NORESERVATION, the goal
596 * reservation window size is set to zero to indicate
597 * block reservation is off
599 if (!test_opt(sb
, RESERVATION
))
600 rsv
->rsv_goal_size
= 0;
602 rsv
->rsv_goal_size
= EXT4_DEFAULT_RESERVE_BLOCKS
;
603 rsv
->rsv_alloc_hit
= 0;
604 block_i
->last_alloc_logical_block
= 0;
605 block_i
->last_alloc_physical_block
= 0;
607 ei
->i_block_alloc_info
= block_i
;
611 * ext4_discard_reservation()
614 * Discard(free) block reservation window on last file close, or truncate
617 * It is being called in three cases:
618 * ext4_release_file(): last writer close the file
619 * ext4_clear_inode(): last iput(), when nobody link to this file.
620 * ext4_truncate(): when the block indirect map is about to change.
623 void ext4_discard_reservation(struct inode
*inode
)
625 struct ext4_inode_info
*ei
= EXT4_I(inode
);
626 struct ext4_block_alloc_info
*block_i
= ei
->i_block_alloc_info
;
627 struct ext4_reserve_window_node
*rsv
;
628 spinlock_t
*rsv_lock
= &EXT4_SB(inode
->i_sb
)->s_rsv_window_lock
;
630 ext4_mb_discard_inode_preallocations(inode
);
635 rsv
= &block_i
->rsv_window_node
;
636 if (!rsv_is_empty(&rsv
->rsv_window
)) {
638 if (!rsv_is_empty(&rsv
->rsv_window
))
639 rsv_window_remove(inode
->i_sb
, rsv
);
640 spin_unlock(rsv_lock
);
645 * ext4_free_blocks_sb() -- Free given blocks and update quota
646 * @handle: handle to this transaction
648 * @block: start physcial block to free
649 * @count: number of blocks to free
650 * @pdquot_freed_blocks: pointer to quota
652 void ext4_free_blocks_sb(handle_t
*handle
, struct super_block
*sb
,
653 ext4_fsblk_t block
, unsigned long count
,
654 unsigned long *pdquot_freed_blocks
)
656 struct buffer_head
*bitmap_bh
= NULL
;
657 struct buffer_head
*gd_bh
;
658 ext4_group_t block_group
;
661 unsigned long overflow
;
662 struct ext4_group_desc
* desc
;
663 struct ext4_super_block
* es
;
664 struct ext4_sb_info
*sbi
;
666 ext4_grpblk_t group_freed
;
668 *pdquot_freed_blocks
= 0;
671 if (block
< le32_to_cpu(es
->s_first_data_block
) ||
672 block
+ count
< block
||
673 block
+ count
> ext4_blocks_count(es
)) {
674 ext4_error (sb
, "ext4_free_blocks",
675 "Freeing blocks not in datazone - "
676 "block = %llu, count = %lu", block
, count
);
680 ext4_debug ("freeing block(s) %llu-%llu\n", block
, block
+ count
- 1);
684 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
686 * Check to see if we are freeing blocks across a group
689 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
690 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
694 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
697 desc
= ext4_get_group_desc (sb
, block_group
, &gd_bh
);
701 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
702 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
703 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
704 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
705 sbi
->s_itb_per_group
)) {
706 ext4_error (sb
, "ext4_free_blocks",
707 "Freeing blocks in system zones - "
708 "Block = %llu, count = %lu",
714 * We are about to start releasing blocks in the bitmap,
715 * so we need undo access.
717 /* @@@ check errors */
718 BUFFER_TRACE(bitmap_bh
, "getting undo access");
719 err
= ext4_journal_get_undo_access(handle
, bitmap_bh
);
724 * We are about to modify some metadata. Call the journal APIs
725 * to unshare ->b_data if a currently-committing transaction is
728 BUFFER_TRACE(gd_bh
, "get_write_access");
729 err
= ext4_journal_get_write_access(handle
, gd_bh
);
733 jbd_lock_bh_state(bitmap_bh
);
735 for (i
= 0, group_freed
= 0; i
< count
; i
++) {
737 * An HJ special. This is expensive...
739 #ifdef CONFIG_JBD2_DEBUG
740 jbd_unlock_bh_state(bitmap_bh
);
742 struct buffer_head
*debug_bh
;
743 debug_bh
= sb_find_get_block(sb
, block
+ i
);
745 BUFFER_TRACE(debug_bh
, "Deleted!");
746 if (!bh2jh(bitmap_bh
)->b_committed_data
)
747 BUFFER_TRACE(debug_bh
,
748 "No commited data in bitmap");
749 BUFFER_TRACE2(debug_bh
, bitmap_bh
, "bitmap");
753 jbd_lock_bh_state(bitmap_bh
);
755 if (need_resched()) {
756 jbd_unlock_bh_state(bitmap_bh
);
758 jbd_lock_bh_state(bitmap_bh
);
760 /* @@@ This prevents newly-allocated data from being
761 * freed and then reallocated within the same
764 * Ideally we would want to allow that to happen, but to
765 * do so requires making jbd2_journal_forget() capable of
766 * revoking the queued write of a data block, which
767 * implies blocking on the journal lock. *forget()
768 * cannot block due to truncate races.
770 * Eventually we can fix this by making jbd2_journal_forget()
771 * return a status indicating whether or not it was able
772 * to revoke the buffer. On successful revoke, it is
773 * safe not to set the allocation bit in the committed
774 * bitmap, because we know that there is no outstanding
775 * activity on the buffer any more and so it is safe to
778 BUFFER_TRACE(bitmap_bh
, "set in b_committed_data");
779 J_ASSERT_BH(bitmap_bh
,
780 bh2jh(bitmap_bh
)->b_committed_data
!= NULL
);
781 ext4_set_bit_atomic(sb_bgl_lock(sbi
, block_group
), bit
+ i
,
782 bh2jh(bitmap_bh
)->b_committed_data
);
785 * We clear the bit in the bitmap after setting the committed
786 * data bit, because this is the reverse order to that which
787 * the allocator uses.
789 BUFFER_TRACE(bitmap_bh
, "clear bit");
790 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi
, block_group
),
791 bit
+ i
, bitmap_bh
->b_data
)) {
792 jbd_unlock_bh_state(bitmap_bh
);
793 ext4_error(sb
, __func__
,
794 "bit already cleared for block %llu",
795 (ext4_fsblk_t
)(block
+ i
));
796 jbd_lock_bh_state(bitmap_bh
);
797 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
802 jbd_unlock_bh_state(bitmap_bh
);
804 spin_lock(sb_bgl_lock(sbi
, block_group
));
805 le16_add_cpu(&desc
->bg_free_blocks_count
, group_freed
);
806 desc
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, desc
);
807 spin_unlock(sb_bgl_lock(sbi
, block_group
));
808 percpu_counter_add(&sbi
->s_freeblocks_counter
, count
);
810 if (sbi
->s_log_groups_per_flex
) {
811 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
812 spin_lock(sb_bgl_lock(sbi
, flex_group
));
813 sbi
->s_flex_groups
[flex_group
].free_blocks
+= count
;
814 spin_unlock(sb_bgl_lock(sbi
, flex_group
));
817 /* We dirtied the bitmap block */
818 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
819 err
= ext4_journal_dirty_metadata(handle
, bitmap_bh
);
821 /* And the group descriptor block */
822 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
823 ret
= ext4_journal_dirty_metadata(handle
, gd_bh
);
825 *pdquot_freed_blocks
+= group_freed
;
827 if (overflow
&& !err
) {
835 ext4_std_error(sb
, err
);
840 * ext4_free_blocks() -- Free given blocks and update quota
841 * @handle: handle for this transaction
843 * @block: start physical block to free
844 * @count: number of blocks to count
845 * @metadata: Are these metadata blocks
847 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
848 ext4_fsblk_t block
, unsigned long count
,
851 struct super_block
* sb
;
852 unsigned long dquot_freed_blocks
;
854 /* this isn't the right place to decide whether block is metadata
855 * inode.c/extents.c knows better, but for safety ... */
856 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
) ||
857 ext4_should_journal_data(inode
))
862 if (!test_opt(sb
, MBALLOC
) || !EXT4_SB(sb
)->s_group_info
)
863 ext4_free_blocks_sb(handle
, sb
, block
, count
,
864 &dquot_freed_blocks
);
866 ext4_mb_free_blocks(handle
, inode
, block
, count
,
867 metadata
, &dquot_freed_blocks
);
868 if (dquot_freed_blocks
)
869 DQUOT_FREE_BLOCK(inode
, dquot_freed_blocks
);
874 * ext4_test_allocatable()
875 * @nr: given allocation block group
876 * @bh: bufferhead contains the bitmap of the given block group
878 * For ext4 allocations, we must not reuse any blocks which are
879 * allocated in the bitmap buffer's "last committed data" copy. This
880 * prevents deletes from freeing up the page for reuse until we have
881 * committed the delete transaction.
883 * If we didn't do this, then deleting something and reallocating it as
884 * data would allow the old block to be overwritten before the
885 * transaction committed (because we force data to disk before commit).
886 * This would lead to corruption if we crashed between overwriting the
887 * data and committing the delete.
889 * @@@ We may want to make this allocation behaviour conditional on
890 * data-writes at some point, and disable it for metadata allocations or
893 static int ext4_test_allocatable(ext4_grpblk_t nr
, struct buffer_head
*bh
)
896 struct journal_head
*jh
= bh2jh(bh
);
898 if (ext4_test_bit(nr
, bh
->b_data
))
901 jbd_lock_bh_state(bh
);
902 if (!jh
->b_committed_data
)
905 ret
= !ext4_test_bit(nr
, jh
->b_committed_data
);
906 jbd_unlock_bh_state(bh
);
911 * bitmap_search_next_usable_block()
912 * @start: the starting block (group relative) of the search
913 * @bh: bufferhead contains the block group bitmap
914 * @maxblocks: the ending block (group relative) of the reservation
916 * The bitmap search --- search forward alternately through the actual
917 * bitmap on disk and the last-committed copy in journal, until we find a
918 * bit free in both bitmaps.
921 bitmap_search_next_usable_block(ext4_grpblk_t start
, struct buffer_head
*bh
,
922 ext4_grpblk_t maxblocks
)
925 struct journal_head
*jh
= bh2jh(bh
);
927 while (start
< maxblocks
) {
928 next
= ext4_find_next_zero_bit(bh
->b_data
, maxblocks
, start
);
929 if (next
>= maxblocks
)
931 if (ext4_test_allocatable(next
, bh
))
933 jbd_lock_bh_state(bh
);
934 if (jh
->b_committed_data
)
935 start
= ext4_find_next_zero_bit(jh
->b_committed_data
,
937 jbd_unlock_bh_state(bh
);
943 * find_next_usable_block()
944 * @start: the starting block (group relative) to find next
945 * allocatable block in bitmap.
946 * @bh: bufferhead contains the block group bitmap
947 * @maxblocks: the ending block (group relative) for the search
949 * Find an allocatable block in a bitmap. We honor both the bitmap and
950 * its last-committed copy (if that exists), and perform the "most
951 * appropriate allocation" algorithm of looking for a free block near
952 * the initial goal; then for a free byte somewhere in the bitmap; then
953 * for any free bit in the bitmap.
956 find_next_usable_block(ext4_grpblk_t start
, struct buffer_head
*bh
,
957 ext4_grpblk_t maxblocks
)
959 ext4_grpblk_t here
, next
;
964 * The goal was occupied; search forward for a free
965 * block within the next XX blocks.
967 * end_goal is more or less random, but it has to be
968 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
969 * next 64-bit boundary is simple..
971 ext4_grpblk_t end_goal
= (start
+ 63) & ~63;
972 if (end_goal
> maxblocks
)
973 end_goal
= maxblocks
;
974 here
= ext4_find_next_zero_bit(bh
->b_data
, end_goal
, start
);
975 if (here
< end_goal
&& ext4_test_allocatable(here
, bh
))
977 ext4_debug("Bit not found near goal\n");
984 p
= ((char *)bh
->b_data
) + (here
>> 3);
985 r
= memscan(p
, 0, ((maxblocks
+ 7) >> 3) - (here
>> 3));
986 next
= (r
- ((char *)bh
->b_data
)) << 3;
988 if (next
< maxblocks
&& next
>= start
&& ext4_test_allocatable(next
, bh
))
992 * The bitmap search --- search forward alternately through the actual
993 * bitmap and the last-committed copy until we find a bit free in
996 here
= bitmap_search_next_usable_block(here
, bh
, maxblocks
);
1002 * @block: the free block (group relative) to allocate
1003 * @bh: the bufferhead containts the block group bitmap
1005 * We think we can allocate this block in this bitmap. Try to set the bit.
1006 * If that succeeds then check that nobody has allocated and then freed the
1007 * block since we saw that is was not marked in b_committed_data. If it _was_
1008 * allocated and freed then clear the bit in the bitmap again and return
1012 claim_block(spinlock_t
*lock
, ext4_grpblk_t block
, struct buffer_head
*bh
)
1014 struct journal_head
*jh
= bh2jh(bh
);
1017 if (ext4_set_bit_atomic(lock
, block
, bh
->b_data
))
1019 jbd_lock_bh_state(bh
);
1020 if (jh
->b_committed_data
&& ext4_test_bit(block
,jh
->b_committed_data
)) {
1021 ext4_clear_bit_atomic(lock
, block
, bh
->b_data
);
1026 jbd_unlock_bh_state(bh
);
1031 * ext4_try_to_allocate()
1033 * @handle: handle to this transaction
1034 * @group: given allocation block group
1035 * @bitmap_bh: bufferhead holds the block bitmap
1036 * @grp_goal: given target block within the group
1037 * @count: target number of blocks to allocate
1038 * @my_rsv: reservation window
1040 * Attempt to allocate blocks within a give range. Set the range of allocation
1041 * first, then find the first free bit(s) from the bitmap (within the range),
1042 * and at last, allocate the blocks by claiming the found free bit as allocated.
1044 * To set the range of this allocation:
1045 * if there is a reservation window, only try to allocate block(s) from the
1046 * file's own reservation window;
1047 * Otherwise, the allocation range starts from the give goal block, ends at
1048 * the block group's last block.
1050 * If we failed to allocate the desired block then we may end up crossing to a
1051 * new bitmap. In that case we must release write access to the old one via
1052 * ext4_journal_release_buffer(), else we'll run out of credits.
1054 static ext4_grpblk_t
1055 ext4_try_to_allocate(struct super_block
*sb
, handle_t
*handle
,
1056 ext4_group_t group
, struct buffer_head
*bitmap_bh
,
1057 ext4_grpblk_t grp_goal
, unsigned long *count
,
1058 struct ext4_reserve_window
*my_rsv
)
1060 ext4_fsblk_t group_first_block
;
1061 ext4_grpblk_t start
, end
;
1062 unsigned long num
= 0;
1064 /* we do allocation within the reservation window if we have a window */
1066 group_first_block
= ext4_group_first_block_no(sb
, group
);
1067 if (my_rsv
->_rsv_start
>= group_first_block
)
1068 start
= my_rsv
->_rsv_start
- group_first_block
;
1070 /* reservation window cross group boundary */
1072 end
= my_rsv
->_rsv_end
- group_first_block
+ 1;
1073 if (end
> EXT4_BLOCKS_PER_GROUP(sb
))
1074 /* reservation window crosses group boundary */
1075 end
= EXT4_BLOCKS_PER_GROUP(sb
);
1076 if ((start
<= grp_goal
) && (grp_goal
< end
))
1085 end
= EXT4_BLOCKS_PER_GROUP(sb
);
1088 BUG_ON(start
> EXT4_BLOCKS_PER_GROUP(sb
));
1091 if (grp_goal
< 0 || !ext4_test_allocatable(grp_goal
, bitmap_bh
)) {
1092 grp_goal
= find_next_usable_block(start
, bitmap_bh
, end
);
1098 for (i
= 0; i
< 7 && grp_goal
> start
&&
1099 ext4_test_allocatable(grp_goal
- 1,
1107 if (!claim_block(sb_bgl_lock(EXT4_SB(sb
), group
),
1108 grp_goal
, bitmap_bh
)) {
1110 * The block was allocated by another thread, or it was
1111 * allocated and then freed by another thread
1121 while (num
< *count
&& grp_goal
< end
1122 && ext4_test_allocatable(grp_goal
, bitmap_bh
)
1123 && claim_block(sb_bgl_lock(EXT4_SB(sb
), group
),
1124 grp_goal
, bitmap_bh
)) {
1129 return grp_goal
- num
;
1136 * find_next_reservable_window():
1137 * find a reservable space within the given range.
1138 * It does not allocate the reservation window for now:
1139 * alloc_new_reservation() will do the work later.
1141 * @search_head: the head of the searching list;
1142 * This is not necessarily the list head of the whole filesystem
1144 * We have both head and start_block to assist the search
1145 * for the reservable space. The list starts from head,
1146 * but we will shift to the place where start_block is,
1147 * then start from there, when looking for a reservable space.
1149 * @size: the target new reservation window size
1151 * @group_first_block: the first block we consider to start
1152 * the real search from
1155 * the maximum block number that our goal reservable space
1156 * could start from. This is normally the last block in this
1157 * group. The search will end when we found the start of next
1158 * possible reservable space is out of this boundary.
1159 * This could handle the cross boundary reservation window
1162 * basically we search from the given range, rather than the whole
1163 * reservation double linked list, (start_block, last_block)
1164 * to find a free region that is of my size and has not
1168 static int find_next_reservable_window(
1169 struct ext4_reserve_window_node
*search_head
,
1170 struct ext4_reserve_window_node
*my_rsv
,
1171 struct super_block
* sb
,
1172 ext4_fsblk_t start_block
,
1173 ext4_fsblk_t last_block
)
1175 struct rb_node
*next
;
1176 struct ext4_reserve_window_node
*rsv
, *prev
;
1178 int size
= my_rsv
->rsv_goal_size
;
1180 /* TODO: make the start of the reservation window byte-aligned */
1181 /* cur = *start_block & ~7;*/
1188 if (cur
<= rsv
->rsv_end
)
1189 cur
= rsv
->rsv_end
+ 1;
1192 * in the case we could not find a reservable space
1193 * that is what is expected, during the re-search, we could
1194 * remember what's the largest reservable space we could have
1195 * and return that one.
1197 * For now it will fail if we could not find the reservable
1198 * space with expected-size (or more)...
1200 if (cur
> last_block
)
1201 return -1; /* fail */
1204 next
= rb_next(&rsv
->rsv_node
);
1205 rsv
= rb_entry(next
,struct ext4_reserve_window_node
,rsv_node
);
1208 * Reached the last reservation, we can just append to the
1214 if (cur
+ size
<= rsv
->rsv_start
) {
1216 * Found a reserveable space big enough. We could
1217 * have a reservation across the group boundary here
1223 * we come here either :
1224 * when we reach the end of the whole list,
1225 * and there is empty reservable space after last entry in the list.
1226 * append it to the end of the list.
1228 * or we found one reservable space in the middle of the list,
1229 * return the reservation window that we could append to.
1233 if ((prev
!= my_rsv
) && (!rsv_is_empty(&my_rsv
->rsv_window
)))
1234 rsv_window_remove(sb
, my_rsv
);
1237 * Let's book the whole avaliable window for now. We will check the
1238 * disk bitmap later and then, if there are free blocks then we adjust
1239 * the window size if it's larger than requested.
1240 * Otherwise, we will remove this node from the tree next time
1241 * call find_next_reservable_window.
1243 my_rsv
->rsv_start
= cur
;
1244 my_rsv
->rsv_end
= cur
+ size
- 1;
1245 my_rsv
->rsv_alloc_hit
= 0;
1248 ext4_rsv_window_add(sb
, my_rsv
);
1254 * alloc_new_reservation()--allocate a new reservation window
1256 * To make a new reservation, we search part of the filesystem
1257 * reservation list (the list that inside the group). We try to
1258 * allocate a new reservation window near the allocation goal,
1259 * or the beginning of the group, if there is no goal.
1261 * We first find a reservable space after the goal, then from
1262 * there, we check the bitmap for the first free block after
1263 * it. If there is no free block until the end of group, then the
1264 * whole group is full, we failed. Otherwise, check if the free
1265 * block is inside the expected reservable space, if so, we
1267 * If the first free block is outside the reservable space, then
1268 * start from the first free block, we search for next available
1271 * on succeed, a new reservation will be found and inserted into the list
1272 * It contains at least one free block, and it does not overlap with other
1273 * reservation windows.
1275 * failed: we failed to find a reservation window in this group
1277 * @rsv: the reservation
1279 * @grp_goal: The goal (group-relative). It is where the search for a
1280 * free reservable space should start from.
1281 * if we have a grp_goal(grp_goal >0 ), then start from there,
1282 * no grp_goal(grp_goal = -1), we start from the first block
1285 * @sb: the super block
1286 * @group: the group we are trying to allocate in
1287 * @bitmap_bh: the block group block bitmap
1290 static int alloc_new_reservation(struct ext4_reserve_window_node
*my_rsv
,
1291 ext4_grpblk_t grp_goal
, struct super_block
*sb
,
1292 ext4_group_t group
, struct buffer_head
*bitmap_bh
)
1294 struct ext4_reserve_window_node
*search_head
;
1295 ext4_fsblk_t group_first_block
, group_end_block
, start_block
;
1296 ext4_grpblk_t first_free_block
;
1297 struct rb_root
*fs_rsv_root
= &EXT4_SB(sb
)->s_rsv_window_root
;
1300 spinlock_t
*rsv_lock
= &EXT4_SB(sb
)->s_rsv_window_lock
;
1302 group_first_block
= ext4_group_first_block_no(sb
, group
);
1303 group_end_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
1306 start_block
= group_first_block
;
1308 start_block
= grp_goal
+ group_first_block
;
1310 size
= my_rsv
->rsv_goal_size
;
1312 if (!rsv_is_empty(&my_rsv
->rsv_window
)) {
1314 * if the old reservation is cross group boundary
1315 * and if the goal is inside the old reservation window,
1316 * we will come here when we just failed to allocate from
1317 * the first part of the window. We still have another part
1318 * that belongs to the next group. In this case, there is no
1319 * point to discard our window and try to allocate a new one
1320 * in this group(which will fail). we should
1321 * keep the reservation window, just simply move on.
1323 * Maybe we could shift the start block of the reservation
1324 * window to the first block of next group.
1327 if ((my_rsv
->rsv_start
<= group_end_block
) &&
1328 (my_rsv
->rsv_end
> group_end_block
) &&
1329 (start_block
>= my_rsv
->rsv_start
))
1332 if ((my_rsv
->rsv_alloc_hit
>
1333 (my_rsv
->rsv_end
- my_rsv
->rsv_start
+ 1) / 2)) {
1335 * if the previously allocation hit ratio is
1336 * greater than 1/2, then we double the size of
1337 * the reservation window the next time,
1338 * otherwise we keep the same size window
1341 if (size
> EXT4_MAX_RESERVE_BLOCKS
)
1342 size
= EXT4_MAX_RESERVE_BLOCKS
;
1343 my_rsv
->rsv_goal_size
= size
;
1347 spin_lock(rsv_lock
);
1349 * shift the search start to the window near the goal block
1351 search_head
= search_reserve_window(fs_rsv_root
, start_block
);
1354 * find_next_reservable_window() simply finds a reservable window
1355 * inside the given range(start_block, group_end_block).
1357 * To make sure the reservation window has a free bit inside it, we
1358 * need to check the bitmap after we found a reservable window.
1361 ret
= find_next_reservable_window(search_head
, my_rsv
, sb
,
1362 start_block
, group_end_block
);
1365 if (!rsv_is_empty(&my_rsv
->rsv_window
))
1366 rsv_window_remove(sb
, my_rsv
);
1367 spin_unlock(rsv_lock
);
1372 * On success, find_next_reservable_window() returns the
1373 * reservation window where there is a reservable space after it.
1374 * Before we reserve this reservable space, we need
1375 * to make sure there is at least a free block inside this region.
1377 * searching the first free bit on the block bitmap and copy of
1378 * last committed bitmap alternatively, until we found a allocatable
1379 * block. Search start from the start block of the reservable space
1382 spin_unlock(rsv_lock
);
1383 first_free_block
= bitmap_search_next_usable_block(
1384 my_rsv
->rsv_start
- group_first_block
,
1385 bitmap_bh
, group_end_block
- group_first_block
+ 1);
1387 if (first_free_block
< 0) {
1389 * no free block left on the bitmap, no point
1390 * to reserve the space. return failed.
1392 spin_lock(rsv_lock
);
1393 if (!rsv_is_empty(&my_rsv
->rsv_window
))
1394 rsv_window_remove(sb
, my_rsv
);
1395 spin_unlock(rsv_lock
);
1396 return -1; /* failed */
1399 start_block
= first_free_block
+ group_first_block
;
1401 * check if the first free block is within the
1402 * free space we just reserved
1404 if (start_block
>= my_rsv
->rsv_start
&& start_block
<= my_rsv
->rsv_end
)
1405 return 0; /* success */
1407 * if the first free bit we found is out of the reservable space
1408 * continue search for next reservable space,
1409 * start from where the free block is,
1410 * we also shift the list head to where we stopped last time
1412 search_head
= my_rsv
;
1413 spin_lock(rsv_lock
);
1418 * try_to_extend_reservation()
1419 * @my_rsv: given reservation window
1421 * @size: the delta to extend
1423 * Attempt to expand the reservation window large enough to have
1424 * required number of free blocks
1426 * Since ext4_try_to_allocate() will always allocate blocks within
1427 * the reservation window range, if the window size is too small,
1428 * multiple blocks allocation has to stop at the end of the reservation
1429 * window. To make this more efficient, given the total number of
1430 * blocks needed and the current size of the window, we try to
1431 * expand the reservation window size if necessary on a best-effort
1432 * basis before ext4_new_blocks() tries to allocate blocks,
1434 static void try_to_extend_reservation(struct ext4_reserve_window_node
*my_rsv
,
1435 struct super_block
*sb
, int size
)
1437 struct ext4_reserve_window_node
*next_rsv
;
1438 struct rb_node
*next
;
1439 spinlock_t
*rsv_lock
= &EXT4_SB(sb
)->s_rsv_window_lock
;
1441 if (!spin_trylock(rsv_lock
))
1444 next
= rb_next(&my_rsv
->rsv_node
);
1447 my_rsv
->rsv_end
+= size
;
1449 next_rsv
= rb_entry(next
, struct ext4_reserve_window_node
, rsv_node
);
1451 if ((next_rsv
->rsv_start
- my_rsv
->rsv_end
- 1) >= size
)
1452 my_rsv
->rsv_end
+= size
;
1454 my_rsv
->rsv_end
= next_rsv
->rsv_start
- 1;
1456 spin_unlock(rsv_lock
);
1460 * ext4_try_to_allocate_with_rsv()
1462 * @handle: handle to this transaction
1463 * @group: given allocation block group
1464 * @bitmap_bh: bufferhead holds the block bitmap
1465 * @grp_goal: given target block within the group
1466 * @count: target number of blocks to allocate
1467 * @my_rsv: reservation window
1468 * @errp: pointer to store the error code
1470 * This is the main function used to allocate a new block and its reservation
1473 * Each time when a new block allocation is need, first try to allocate from
1474 * its own reservation. If it does not have a reservation window, instead of
1475 * looking for a free bit on bitmap first, then look up the reservation list to
1476 * see if it is inside somebody else's reservation window, we try to allocate a
1477 * reservation window for it starting from the goal first. Then do the block
1478 * allocation within the reservation window.
1480 * This will avoid keeping on searching the reservation list again and
1481 * again when somebody is looking for a free block (without
1482 * reservation), and there are lots of free blocks, but they are all
1485 * We use a red-black tree for the per-filesystem reservation list.
1488 static ext4_grpblk_t
1489 ext4_try_to_allocate_with_rsv(struct super_block
*sb
, handle_t
*handle
,
1490 ext4_group_t group
, struct buffer_head
*bitmap_bh
,
1491 ext4_grpblk_t grp_goal
,
1492 struct ext4_reserve_window_node
* my_rsv
,
1493 unsigned long *count
, int *errp
)
1495 ext4_fsblk_t group_first_block
, group_last_block
;
1496 ext4_grpblk_t ret
= 0;
1498 unsigned long num
= *count
;
1503 * Make sure we use undo access for the bitmap, because it is critical
1504 * that we do the frozen_data COW on bitmap buffers in all cases even
1505 * if the buffer is in BJ_Forget state in the committing transaction.
1507 BUFFER_TRACE(bitmap_bh
, "get undo access for new block");
1508 fatal
= ext4_journal_get_undo_access(handle
, bitmap_bh
);
1515 * we don't deal with reservation when
1516 * filesystem is mounted without reservation
1517 * or the file is not a regular file
1518 * or last attempt to allocate a block with reservation turned on failed
1520 if (my_rsv
== NULL
) {
1521 ret
= ext4_try_to_allocate(sb
, handle
, group
, bitmap_bh
,
1522 grp_goal
, count
, NULL
);
1526 * grp_goal is a group relative block number (if there is a goal)
1527 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1528 * first block is a filesystem wide block number
1529 * first block is the block number of the first block in this group
1531 group_first_block
= ext4_group_first_block_no(sb
, group
);
1532 group_last_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
1535 * Basically we will allocate a new block from inode's reservation
1538 * We need to allocate a new reservation window, if:
1539 * a) inode does not have a reservation window; or
1540 * b) last attempt to allocate a block from existing reservation
1542 * c) we come here with a goal and with a reservation window
1544 * We do not need to allocate a new reservation window if we come here
1545 * at the beginning with a goal and the goal is inside the window, or
1546 * we don't have a goal but already have a reservation window.
1547 * then we could go to allocate from the reservation window directly.
1550 if (rsv_is_empty(&my_rsv
->rsv_window
) || (ret
< 0) ||
1551 !goal_in_my_reservation(&my_rsv
->rsv_window
,
1552 grp_goal
, group
, sb
)) {
1553 if (my_rsv
->rsv_goal_size
< *count
)
1554 my_rsv
->rsv_goal_size
= *count
;
1555 ret
= alloc_new_reservation(my_rsv
, grp_goal
, sb
,
1560 if (!goal_in_my_reservation(&my_rsv
->rsv_window
,
1561 grp_goal
, group
, sb
))
1563 } else if (grp_goal
>= 0) {
1564 int curr
= my_rsv
->rsv_end
-
1565 (grp_goal
+ group_first_block
) + 1;
1568 try_to_extend_reservation(my_rsv
, sb
,
1572 if ((my_rsv
->rsv_start
> group_last_block
) ||
1573 (my_rsv
->rsv_end
< group_first_block
)) {
1574 rsv_window_dump(&EXT4_SB(sb
)->s_rsv_window_root
, 1);
1577 ret
= ext4_try_to_allocate(sb
, handle
, group
, bitmap_bh
,
1578 grp_goal
, &num
, &my_rsv
->rsv_window
);
1580 my_rsv
->rsv_alloc_hit
+= num
;
1582 break; /* succeed */
1588 BUFFER_TRACE(bitmap_bh
, "journal_dirty_metadata for "
1590 fatal
= ext4_journal_dirty_metadata(handle
, bitmap_bh
);
1598 BUFFER_TRACE(bitmap_bh
, "journal_release_buffer");
1599 ext4_journal_release_buffer(handle
, bitmap_bh
);
1604 * ext4_has_free_blocks()
1605 * @sbi: in-core super block structure.
1606 * @nblocks: number of neeed blocks
1608 * Check if filesystem has free blocks available for allocation.
1609 * Return the number of blocks avaible for allocation for this request
1610 * On success, return nblocks
1612 ext4_fsblk_t
ext4_has_free_blocks(struct ext4_sb_info
*sbi
,
1613 ext4_fsblk_t nblocks
)
1615 ext4_fsblk_t free_blocks
;
1616 ext4_fsblk_t root_blocks
= 0;
1618 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
1620 if (!capable(CAP_SYS_RESOURCE
) &&
1621 sbi
->s_resuid
!= current
->fsuid
&&
1622 (sbi
->s_resgid
== 0 || !in_group_p(sbi
->s_resgid
)))
1623 root_blocks
= ext4_r_blocks_count(sbi
->s_es
);
1625 if (free_blocks
- root_blocks
< FBC_BATCH
)
1627 percpu_counter_sum_and_set(&sbi
->s_freeblocks_counter
);
1629 if (free_blocks
- root_blocks
< nblocks
)
1630 return free_blocks
- root_blocks
;
1636 * ext4_should_retry_alloc()
1638 * @retries number of attemps has been made
1640 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1641 * it is profitable to retry the operation, this function will wait
1642 * for the current or commiting transaction to complete, and then
1645 * if the total number of retries exceed three times, return FALSE.
1647 int ext4_should_retry_alloc(struct super_block
*sb
, int *retries
)
1649 if (!ext4_has_free_blocks(EXT4_SB(sb
), 1) || (*retries
)++ > 3)
1652 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb
->s_id
);
1654 return jbd2_journal_force_commit_nested(EXT4_SB(sb
)->s_journal
);
1658 * ext4_old_new_blocks() -- core block bitmap based block allocation function
1660 * @handle: handle to this transaction
1661 * @inode: file inode
1662 * @goal: given target block(filesystem wide)
1663 * @count: target number of blocks to allocate
1666 * ext4_old_new_blocks uses a goal block to assist allocation and look up
1667 * the block bitmap directly to do block allocation. It tries to
1668 * allocate block(s) from the block group contains the goal block first. If
1669 * that fails, it will try to allocate block(s) from other block groups
1670 * without any specific goal block.
1672 * This function is called when -o nomballoc mount option is enabled
1675 ext4_fsblk_t
ext4_old_new_blocks(handle_t
*handle
, struct inode
*inode
,
1676 ext4_fsblk_t goal
, unsigned long *count
, int *errp
)
1678 struct buffer_head
*bitmap_bh
= NULL
;
1679 struct buffer_head
*gdp_bh
;
1680 ext4_group_t group_no
;
1681 ext4_group_t goal_group
;
1682 ext4_grpblk_t grp_target_blk
; /* blockgroup relative goal block */
1683 ext4_grpblk_t grp_alloc_blk
; /* blockgroup-relative allocated block*/
1684 ext4_fsblk_t ret_block
; /* filesyetem-wide allocated block */
1685 ext4_group_t bgi
; /* blockgroup iteration index */
1687 int performed_allocation
= 0;
1688 ext4_grpblk_t free_blocks
; /* number of free blocks in a group */
1689 struct super_block
*sb
;
1690 struct ext4_group_desc
*gdp
;
1691 struct ext4_super_block
*es
;
1692 struct ext4_sb_info
*sbi
;
1693 struct ext4_reserve_window_node
*my_rsv
= NULL
;
1694 struct ext4_block_alloc_info
*block_i
;
1695 unsigned short windowsz
= 0;
1696 ext4_group_t ngroups
;
1697 unsigned long num
= *count
;
1702 printk("ext4_new_block: nonexistent device");
1707 if (!EXT4_I(inode
)->i_delalloc_reserved_flag
) {
1709 * With delalloc we already reserved the blocks
1711 *count
= ext4_has_free_blocks(sbi
, *count
);
1715 return 0; /*return with ENOSPC error */
1720 * Check quota for allocation of this block.
1722 if (DQUOT_ALLOC_BLOCK(inode
, num
)) {
1728 es
= EXT4_SB(sb
)->s_es
;
1729 ext4_debug("goal=%llu.\n", goal
);
1731 * Allocate a block from reservation only when
1732 * filesystem is mounted with reservation(default,-o reservation), and
1733 * it's a regular file, and
1734 * the desired window size is greater than 0 (One could use ioctl
1735 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1736 * reservation on that particular file)
1738 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
1739 if (block_i
&& ((windowsz
= block_i
->rsv_window_node
.rsv_goal_size
) > 0))
1740 my_rsv
= &block_i
->rsv_window_node
;
1743 * First, test whether the goal block is free.
1745 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
1746 goal
>= ext4_blocks_count(es
))
1747 goal
= le32_to_cpu(es
->s_first_data_block
);
1748 ext4_get_group_no_and_offset(sb
, goal
, &group_no
, &grp_target_blk
);
1749 goal_group
= group_no
;
1751 gdp
= ext4_get_group_desc(sb
, group_no
, &gdp_bh
);
1755 free_blocks
= le16_to_cpu(gdp
->bg_free_blocks_count
);
1757 * if there is not enough free blocks to make a new resevation
1758 * turn off reservation for this allocation
1760 if (my_rsv
&& (free_blocks
< windowsz
)
1761 && (rsv_is_empty(&my_rsv
->rsv_window
)))
1764 if (free_blocks
> 0) {
1765 bitmap_bh
= ext4_read_block_bitmap(sb
, group_no
);
1768 grp_alloc_blk
= ext4_try_to_allocate_with_rsv(sb
, handle
,
1769 group_no
, bitmap_bh
, grp_target_blk
,
1770 my_rsv
, &num
, &fatal
);
1773 if (grp_alloc_blk
>= 0)
1777 ngroups
= EXT4_SB(sb
)->s_groups_count
;
1781 * Now search the rest of the groups. We assume that
1782 * group_no and gdp correctly point to the last group visited.
1784 for (bgi
= 0; bgi
< ngroups
; bgi
++) {
1786 if (group_no
>= ngroups
)
1788 gdp
= ext4_get_group_desc(sb
, group_no
, &gdp_bh
);
1791 free_blocks
= le16_to_cpu(gdp
->bg_free_blocks_count
);
1793 * skip this group if the number of
1794 * free blocks is less than half of the reservation
1797 if (free_blocks
<= (windowsz
/2))
1801 bitmap_bh
= ext4_read_block_bitmap(sb
, group_no
);
1805 * try to allocate block(s) from this group, without a goal(-1).
1807 grp_alloc_blk
= ext4_try_to_allocate_with_rsv(sb
, handle
,
1808 group_no
, bitmap_bh
, -1, my_rsv
,
1812 if (grp_alloc_blk
>= 0)
1816 * We may end up a bogus ealier ENOSPC error due to
1817 * filesystem is "full" of reservations, but
1818 * there maybe indeed free blocks avaliable on disk
1819 * In this case, we just forget about the reservations
1820 * just do block allocation as without reservations.
1825 group_no
= goal_group
;
1828 /* No space left on the device */
1834 ext4_debug("using block group %lu(%d)\n",
1835 group_no
, gdp
->bg_free_blocks_count
);
1837 BUFFER_TRACE(gdp_bh
, "get_write_access");
1838 fatal
= ext4_journal_get_write_access(handle
, gdp_bh
);
1842 ret_block
= grp_alloc_blk
+ ext4_group_first_block_no(sb
, group_no
);
1844 if (in_range(ext4_block_bitmap(sb
, gdp
), ret_block
, num
) ||
1845 in_range(ext4_inode_bitmap(sb
, gdp
), ret_block
, num
) ||
1846 in_range(ret_block
, ext4_inode_table(sb
, gdp
),
1847 EXT4_SB(sb
)->s_itb_per_group
) ||
1848 in_range(ret_block
+ num
- 1, ext4_inode_table(sb
, gdp
),
1849 EXT4_SB(sb
)->s_itb_per_group
)) {
1850 ext4_error(sb
, "ext4_new_block",
1851 "Allocating block in system zone - "
1852 "blocks from %llu, length %lu",
1855 * claim_block marked the blocks we allocated
1856 * as in use. So we may want to selectively
1857 * mark some of the blocks as free
1862 performed_allocation
= 1;
1864 #ifdef CONFIG_JBD2_DEBUG
1866 struct buffer_head
*debug_bh
;
1868 /* Record bitmap buffer state in the newly allocated block */
1869 debug_bh
= sb_find_get_block(sb
, ret_block
);
1871 BUFFER_TRACE(debug_bh
, "state when allocated");
1872 BUFFER_TRACE2(debug_bh
, bitmap_bh
, "bitmap state");
1876 jbd_lock_bh_state(bitmap_bh
);
1877 spin_lock(sb_bgl_lock(sbi
, group_no
));
1878 if (buffer_jbd(bitmap_bh
) && bh2jh(bitmap_bh
)->b_committed_data
) {
1881 for (i
= 0; i
< num
; i
++) {
1882 if (ext4_test_bit(grp_alloc_blk
+i
,
1883 bh2jh(bitmap_bh
)->b_committed_data
)) {
1884 printk("%s: block was unexpectedly set in "
1885 "b_committed_data\n", __func__
);
1889 ext4_debug("found bit %d\n", grp_alloc_blk
);
1890 spin_unlock(sb_bgl_lock(sbi
, group_no
));
1891 jbd_unlock_bh_state(bitmap_bh
);
1894 if (ret_block
+ num
- 1 >= ext4_blocks_count(es
)) {
1895 ext4_error(sb
, "ext4_new_block",
1896 "block(%llu) >= blocks count(%llu) - "
1897 "block_group = %lu, es == %p ", ret_block
,
1898 ext4_blocks_count(es
), group_no
, es
);
1903 * It is up to the caller to add the new buffer to a journal
1904 * list of some description. We don't know in advance whether
1905 * the caller wants to use it as metadata or data.
1907 spin_lock(sb_bgl_lock(sbi
, group_no
));
1908 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))
1909 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
1910 le16_add_cpu(&gdp
->bg_free_blocks_count
, -num
);
1911 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, group_no
, gdp
);
1912 spin_unlock(sb_bgl_lock(sbi
, group_no
));
1913 if (!EXT4_I(inode
)->i_delalloc_reserved_flag
)
1914 percpu_counter_sub(&sbi
->s_freeblocks_counter
, num
);
1916 if (sbi
->s_log_groups_per_flex
) {
1917 ext4_group_t flex_group
= ext4_flex_group(sbi
, group_no
);
1918 spin_lock(sb_bgl_lock(sbi
, flex_group
));
1919 sbi
->s_flex_groups
[flex_group
].free_blocks
-= num
;
1920 spin_unlock(sb_bgl_lock(sbi
, flex_group
));
1923 BUFFER_TRACE(gdp_bh
, "journal_dirty_metadata for group descriptor");
1924 err
= ext4_journal_dirty_metadata(handle
, gdp_bh
);
1934 DQUOT_FREE_BLOCK(inode
, *count
-num
);
1943 ext4_std_error(sb
, fatal
);
1946 * Undo the block allocation
1948 if (!performed_allocation
)
1949 DQUOT_FREE_BLOCK(inode
, *count
);
1954 #define EXT4_META_BLOCK 0x1
1956 static ext4_fsblk_t
do_blk_alloc(handle_t
*handle
, struct inode
*inode
,
1957 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
1958 unsigned long *count
, int *errp
, int flags
)
1960 struct ext4_allocation_request ar
;
1963 if (!test_opt(inode
->i_sb
, MBALLOC
)) {
1964 return ext4_old_new_blocks(handle
, inode
, goal
, count
, errp
);
1967 memset(&ar
, 0, sizeof(ar
));
1968 /* Fill with neighbour allocated blocks */
1973 ar
.logical
= iblock
;
1975 if (S_ISREG(inode
->i_mode
) && !(flags
& EXT4_META_BLOCK
))
1976 /* enable in-core preallocation for data block allocation */
1977 ar
.flags
= EXT4_MB_HINT_DATA
;
1979 /* disable in-core preallocation for non-regular files */
1982 ret
= ext4_mb_new_blocks(handle
, &ar
, errp
);
1988 * ext4_new_meta_blocks() -- allocate block for meta data (indexing) blocks
1990 * @handle: handle to this transaction
1991 * @inode: file inode
1992 * @goal: given target block(filesystem wide)
1993 * @count: total number of blocks need
1996 * Return 1st allocated block numberon success, *count stores total account
1997 * error stores in errp pointer
1999 ext4_fsblk_t
ext4_new_meta_blocks(handle_t
*handle
, struct inode
*inode
,
2000 ext4_fsblk_t goal
, unsigned long *count
, int *errp
)
2003 ret
= do_blk_alloc(handle
, inode
, 0, goal
,
2004 count
, errp
, EXT4_META_BLOCK
);
2006 * Account for the allocated meta blocks
2009 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
2010 EXT4_I(inode
)->i_allocated_meta_blocks
+= *count
;
2011 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
2017 * ext4_new_meta_block() -- allocate block for meta data (indexing) blocks
2019 * @handle: handle to this transaction
2020 * @inode: file inode
2021 * @goal: given target block(filesystem wide)
2024 * Return allocated block number on success
2026 ext4_fsblk_t
ext4_new_meta_block(handle_t
*handle
, struct inode
*inode
,
2027 ext4_fsblk_t goal
, int *errp
)
2029 unsigned long count
= 1;
2030 return ext4_new_meta_blocks(handle
, inode
, goal
, &count
, errp
);
2034 * ext4_new_blocks() -- allocate data blocks
2036 * @handle: handle to this transaction
2037 * @inode: file inode
2038 * @goal: given target block(filesystem wide)
2039 * @count: total number of blocks need
2042 * Return 1st allocated block numberon success, *count stores total account
2043 * error stores in errp pointer
2046 ext4_fsblk_t
ext4_new_blocks(handle_t
*handle
, struct inode
*inode
,
2047 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
2048 unsigned long *count
, int *errp
)
2050 return do_blk_alloc(handle
, inode
, iblock
, goal
, count
, errp
, 0);
2054 * ext4_count_free_blocks() -- count filesystem free blocks
2057 * Adds up the number of free blocks from each block group.
2059 ext4_fsblk_t
ext4_count_free_blocks(struct super_block
*sb
)
2061 ext4_fsblk_t desc_count
;
2062 struct ext4_group_desc
*gdp
;
2064 ext4_group_t ngroups
= EXT4_SB(sb
)->s_groups_count
;
2066 struct ext4_super_block
*es
;
2067 ext4_fsblk_t bitmap_count
;
2069 struct buffer_head
*bitmap_bh
= NULL
;
2071 es
= EXT4_SB(sb
)->s_es
;
2077 for (i
= 0; i
< ngroups
; i
++) {
2078 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
2081 desc_count
+= le16_to_cpu(gdp
->bg_free_blocks_count
);
2083 bitmap_bh
= ext4_read_block_bitmap(sb
, i
);
2084 if (bitmap_bh
== NULL
)
2087 x
= ext4_count_free(bitmap_bh
, sb
->s_blocksize
);
2088 printk(KERN_DEBUG
"group %lu: stored = %d, counted = %lu\n",
2089 i
, le16_to_cpu(gdp
->bg_free_blocks_count
), x
);
2093 printk("ext4_count_free_blocks: stored = %llu"
2094 ", computed = %llu, %llu\n",
2095 ext4_free_blocks_count(es
),
2096 desc_count
, bitmap_count
);
2097 return bitmap_count
;
2101 for (i
= 0; i
< ngroups
; i
++) {
2102 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
2105 desc_count
+= le16_to_cpu(gdp
->bg_free_blocks_count
);
2112 static inline int test_root(ext4_group_t a
, int b
)
2121 static int ext4_group_sparse(ext4_group_t group
)
2127 return (test_root(group
, 7) || test_root(group
, 5) ||
2128 test_root(group
, 3));
2132 * ext4_bg_has_super - number of blocks used by the superblock in group
2133 * @sb: superblock for filesystem
2134 * @group: group number to check
2136 * Return the number of blocks used by the superblock (primary or backup)
2137 * in this group. Currently this will be only 0 or 1.
2139 int ext4_bg_has_super(struct super_block
*sb
, ext4_group_t group
)
2141 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
2142 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER
) &&
2143 !ext4_group_sparse(group
))
2148 static unsigned long ext4_bg_num_gdb_meta(struct super_block
*sb
,
2151 unsigned long metagroup
= group
/ EXT4_DESC_PER_BLOCK(sb
);
2152 ext4_group_t first
= metagroup
* EXT4_DESC_PER_BLOCK(sb
);
2153 ext4_group_t last
= first
+ EXT4_DESC_PER_BLOCK(sb
) - 1;
2155 if (group
== first
|| group
== first
+ 1 || group
== last
)
2160 static unsigned long ext4_bg_num_gdb_nometa(struct super_block
*sb
,
2163 return ext4_bg_has_super(sb
, group
) ? EXT4_SB(sb
)->s_gdb_count
: 0;
2167 * ext4_bg_num_gdb - number of blocks used by the group table in group
2168 * @sb: superblock for filesystem
2169 * @group: group number to check
2171 * Return the number of blocks used by the group descriptor table
2172 * (primary or backup) in this group. In the future there may be a
2173 * different number of descriptor blocks in each group.
2175 unsigned long ext4_bg_num_gdb(struct super_block
*sb
, ext4_group_t group
)
2177 unsigned long first_meta_bg
=
2178 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_meta_bg
);
2179 unsigned long metagroup
= group
/ EXT4_DESC_PER_BLOCK(sb
);
2181 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
,EXT4_FEATURE_INCOMPAT_META_BG
) ||
2182 metagroup
< first_meta_bg
)
2183 return ext4_bg_num_gdb_nometa(sb
,group
);
2185 return ext4_bg_num_gdb_meta(sb
,group
);