1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
39 #include "extent_map.h"
47 #include "buffer_head_io.h"
49 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
50 struct buffer_head
*bh_result
, int create
)
54 struct ocfs2_dinode
*fe
= NULL
;
55 struct buffer_head
*bh
= NULL
;
56 struct buffer_head
*buffer_cache_bh
= NULL
;
57 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
61 (unsigned long long)iblock
, bh_result
, create
);
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
65 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
66 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock
);
71 status
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
72 OCFS2_I(inode
)->ip_blkno
,
73 &bh
, OCFS2_BH_CACHED
, inode
);
78 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
80 if (!OCFS2_IS_VALID_DINODE(fe
)) {
81 mlog(ML_ERROR
, "Invalid dinode #%llu: signature = %.*s\n",
82 (unsigned long long)le64_to_cpu(fe
->i_blkno
), 7,
87 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
88 le32_to_cpu(fe
->i_clusters
))) {
89 mlog(ML_ERROR
, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock
);
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
97 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
99 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
100 if (!buffer_cache_bh
) {
101 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh
)
110 && ocfs2_inode_is_new(inode
)) {
111 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
113 mlog(ML_ERROR
, "couldn't kmap!\n");
116 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
117 buffer_cache_bh
->b_data
,
119 kunmap_atomic(kaddr
, KM_USER0
);
120 set_buffer_uptodate(bh_result
);
122 brelse(buffer_cache_bh
);
125 map_bh(bh_result
, inode
->i_sb
,
126 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
138 static int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
139 struct buffer_head
*bh_result
, int create
)
142 unsigned int ext_flags
;
143 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
144 u64 p_blkno
, count
, past_eof
;
145 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
147 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
148 (unsigned long long)iblock
, bh_result
, create
);
150 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
151 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
152 inode
, inode
->i_ino
);
154 if (S_ISLNK(inode
->i_mode
)) {
155 /* this always does I/O for some reason. */
156 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
160 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
163 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
164 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
165 (unsigned long long)p_blkno
);
169 if (max_blocks
< count
)
173 * ocfs2 never allocates in this function - the only time we
174 * need to use BH_New is when we're extending i_size on a file
175 * system which doesn't support holes, in which case BH_New
176 * allows block_prepare_write() to zero.
178 * If we see this on a sparse file system, then a truncate has
179 * raced us and removed the cluster. In this case, we clear
180 * the buffers dirty and uptodate bits and let the buffer code
181 * ignore it as a hole.
183 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
184 clear_buffer_dirty(bh_result
);
185 clear_buffer_uptodate(bh_result
);
189 /* Treat the unwritten extent as a hole for zeroing purposes. */
190 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
191 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
193 bh_result
->b_size
= count
<< inode
->i_blkbits
;
195 if (!ocfs2_sparse_alloc(osb
)) {
199 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
200 (unsigned long long)iblock
,
201 (unsigned long long)p_blkno
,
202 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
203 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
207 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
208 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
209 (unsigned long long)past_eof
);
211 if (create
&& (iblock
>= past_eof
))
212 set_buffer_new(bh_result
);
223 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
224 struct buffer_head
*di_bh
)
228 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
230 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
231 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag",
232 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
236 size
= i_size_read(inode
);
238 if (size
> PAGE_CACHE_SIZE
||
239 size
> ocfs2_max_inline_data(inode
->i_sb
)) {
240 ocfs2_error(inode
->i_sb
,
241 "Inode %llu has with inline data has bad size: %Lu",
242 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
243 (unsigned long long)size
);
247 kaddr
= kmap_atomic(page
, KM_USER0
);
249 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
250 /* Clear the remaining part of the page */
251 memset(kaddr
+ size
, 0, PAGE_CACHE_SIZE
- size
);
252 flush_dcache_page(page
);
253 kunmap_atomic(kaddr
, KM_USER0
);
255 SetPageUptodate(page
);
260 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
263 struct buffer_head
*di_bh
= NULL
;
264 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
266 BUG_ON(!PageLocked(page
));
267 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
269 ret
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &di_bh
,
270 OCFS2_BH_CACHED
, inode
);
276 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
284 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
286 struct inode
*inode
= page
->mapping
->host
;
287 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
288 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
291 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
293 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
295 if (ret
== AOP_TRUNCATED_PAGE
)
301 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
302 ret
= AOP_TRUNCATED_PAGE
;
303 goto out_inode_unlock
;
307 * i_size might have just been updated as we grabed the meta lock. We
308 * might now be discovering a truncate that hit on another node.
309 * block_read_full_page->get_block freaks out if it is asked to read
310 * beyond the end of a file, so we check here. Callers
311 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
312 * and notice that the page they just read isn't needed.
314 * XXX sys_readahead() seems to get that wrong?
316 if (start
>= i_size_read(inode
)) {
317 zero_user(page
, 0, PAGE_SIZE
);
318 SetPageUptodate(page
);
323 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
324 ret
= ocfs2_readpage_inline(inode
, page
);
326 ret
= block_read_full_page(page
, ocfs2_get_block
);
330 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
332 ocfs2_inode_unlock(inode
, 0);
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
349 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
350 struct list_head
*pages
, unsigned nr_pages
)
353 struct inode
*inode
= mapping
->host
;
354 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
362 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
366 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
367 ocfs2_inode_unlock(inode
, 0);
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
375 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
382 last
= list_entry(pages
->prev
, struct page
, lru
);
383 start
= (loff_t
)last
->index
<< PAGE_CACHE_SHIFT
;
384 if (start
>= i_size_read(inode
))
387 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
390 up_read(&oi
->ip_alloc_sem
);
391 ocfs2_inode_unlock(inode
, 0);
396 /* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
407 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
411 mlog_entry("(0x%p)\n", page
);
413 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
421 * This is called from ocfs2_write_zero_page() which has handled it's
422 * own cluster locking and has ensured allocation exists for those
423 * blocks to be written.
425 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
426 unsigned from
, unsigned to
)
430 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
435 /* Taken from ext3. We don't necessarily need the full blown
436 * functionality yet, but IMHO it's better to cut and paste the whole
437 * thing so we can avoid introducing our own bugs (and easily pick up
438 * their fixes when they happen) --Mark */
439 int walk_page_buffers( handle_t
*handle
,
440 struct buffer_head
*head
,
444 int (*fn
)( handle_t
*handle
,
445 struct buffer_head
*bh
))
447 struct buffer_head
*bh
;
448 unsigned block_start
, block_end
;
449 unsigned blocksize
= head
->b_size
;
451 struct buffer_head
*next
;
453 for ( bh
= head
, block_start
= 0;
454 ret
== 0 && (bh
!= head
|| !block_start
);
455 block_start
= block_end
, bh
= next
)
457 next
= bh
->b_this_page
;
458 block_end
= block_start
+ blocksize
;
459 if (block_end
<= from
|| block_start
>= to
) {
460 if (partial
&& !buffer_uptodate(bh
))
464 err
= (*fn
)(handle
, bh
);
471 handle_t
*ocfs2_start_walk_page_trans(struct inode
*inode
,
476 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
480 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
481 if (IS_ERR(handle
)) {
487 if (ocfs2_should_order_data(inode
)) {
488 ret
= walk_page_buffers(handle
,
491 ocfs2_journal_dirty_data
);
498 ocfs2_commit_trans(osb
, handle
);
499 handle
= ERR_PTR(ret
);
504 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
509 struct inode
*inode
= mapping
->host
;
511 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
513 /* We don't need to lock journal system files, since they aren't
514 * accessed concurrently from multiple nodes.
516 if (!INODE_JOURNAL(inode
)) {
517 err
= ocfs2_inode_lock(inode
, NULL
, 0);
523 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
526 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
527 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
530 if (!INODE_JOURNAL(inode
)) {
531 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
532 ocfs2_inode_unlock(inode
, 0);
536 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
537 (unsigned long long)block
);
543 status
= err
? 0 : p_blkno
;
545 mlog_exit((int)status
);
551 * TODO: Make this into a generic get_blocks function.
553 * From do_direct_io in direct-io.c:
554 * "So what we do is to permit the ->get_blocks function to populate
555 * bh.b_size with the size of IO which is permitted at this offset and
558 * This function is called directly from get_more_blocks in direct-io.c.
560 * called like this: dio->get_blocks(dio->inode, fs_startblk,
561 * fs_count, map_bh, dio->rw == WRITE);
563 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
564 struct buffer_head
*bh_result
, int create
)
567 u64 p_blkno
, inode_blocks
, contig_blocks
;
568 unsigned int ext_flags
;
569 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
570 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
572 /* This function won't even be called if the request isn't all
573 * nicely aligned and of the right size, so there's no need
574 * for us to check any of that. */
576 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
579 * Any write past EOF is not allowed because we'd be extending.
581 if (create
&& (iblock
+ max_blocks
) > inode_blocks
) {
586 /* This figures out the size of the next contiguous block, and
587 * our logical offset */
588 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
589 &contig_blocks
, &ext_flags
);
591 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
592 (unsigned long long)iblock
);
597 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)) && !p_blkno
) {
598 ocfs2_error(inode
->i_sb
,
599 "Inode %llu has a hole at block %llu\n",
600 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
601 (unsigned long long)iblock
);
607 * get_more_blocks() expects us to describe a hole by clearing
608 * the mapped bit on bh_result().
610 * Consider an unwritten extent as a hole.
612 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
613 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
616 * ocfs2_prepare_inode_for_write() should have caught
617 * the case where we'd be filling a hole and triggered
618 * a buffered write instead.
626 clear_buffer_mapped(bh_result
);
629 /* make sure we don't map more than max_blocks blocks here as
630 that's all the kernel will handle at this point. */
631 if (max_blocks
< contig_blocks
)
632 contig_blocks
= max_blocks
;
633 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
639 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
640 * particularly interested in the aio/dio case. Like the core uses
641 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
642 * truncation on another.
644 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
649 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
652 /* this io's submitter should not have unlocked this before we could */
653 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
655 ocfs2_iocb_clear_rw_locked(iocb
);
657 level
= ocfs2_iocb_rw_locked_level(iocb
);
659 up_read(&inode
->i_alloc_sem
);
660 ocfs2_rw_unlock(inode
, level
);
664 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
665 * from ext3. PageChecked() bits have been removed as OCFS2 does not
666 * do journalled data.
668 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
670 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
672 journal_invalidatepage(journal
, page
, offset
);
675 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
677 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
679 if (!page_has_buffers(page
))
681 return journal_try_to_free_buffers(journal
, page
, wait
);
684 static ssize_t
ocfs2_direct_IO(int rw
,
686 const struct iovec
*iov
,
688 unsigned long nr_segs
)
690 struct file
*file
= iocb
->ki_filp
;
691 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
697 * Fallback to buffered I/O if we see an inode without
700 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
703 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
704 inode
->i_sb
->s_bdev
, iov
, offset
,
706 ocfs2_direct_IO_get_blocks
,
713 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
718 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
720 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
723 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
725 cluster_start
= cpos
% cpp
;
726 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
728 cluster_end
= cluster_start
+ osb
->s_clustersize
;
731 BUG_ON(cluster_start
> PAGE_SIZE
);
732 BUG_ON(cluster_end
> PAGE_SIZE
);
735 *start
= cluster_start
;
741 * 'from' and 'to' are the region in the page to avoid zeroing.
743 * If pagesize > clustersize, this function will avoid zeroing outside
744 * of the cluster boundary.
746 * from == to == 0 is code for "zero the entire cluster region"
748 static void ocfs2_clear_page_regions(struct page
*page
,
749 struct ocfs2_super
*osb
, u32 cpos
,
750 unsigned from
, unsigned to
)
753 unsigned int cluster_start
, cluster_end
;
755 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
757 kaddr
= kmap_atomic(page
, KM_USER0
);
760 if (from
> cluster_start
)
761 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
762 if (to
< cluster_end
)
763 memset(kaddr
+ to
, 0, cluster_end
- to
);
765 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
768 kunmap_atomic(kaddr
, KM_USER0
);
772 * Nonsparse file systems fully allocate before we get to the write
773 * code. This prevents ocfs2_write() from tagging the write as an
774 * allocating one, which means ocfs2_map_page_blocks() might try to
775 * read-in the blocks at the tail of our file. Avoid reading them by
776 * testing i_size against each block offset.
778 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
779 unsigned int block_start
)
781 u64 offset
= page_offset(page
) + block_start
;
783 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
786 if (i_size_read(inode
) > offset
)
793 * Some of this taken from block_prepare_write(). We already have our
794 * mapping by now though, and the entire write will be allocating or
795 * it won't, so not much need to use BH_New.
797 * This will also skip zeroing, which is handled externally.
799 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
800 struct inode
*inode
, unsigned int from
,
801 unsigned int to
, int new)
804 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
805 unsigned int block_end
, block_start
;
806 unsigned int bsize
= 1 << inode
->i_blkbits
;
808 if (!page_has_buffers(page
))
809 create_empty_buffers(page
, bsize
, 0);
811 head
= page_buffers(page
);
812 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
813 bh
= bh
->b_this_page
, block_start
+= bsize
) {
814 block_end
= block_start
+ bsize
;
816 clear_buffer_new(bh
);
819 * Ignore blocks outside of our i/o range -
820 * they may belong to unallocated clusters.
822 if (block_start
>= to
|| block_end
<= from
) {
823 if (PageUptodate(page
))
824 set_buffer_uptodate(bh
);
829 * For an allocating write with cluster size >= page
830 * size, we always write the entire page.
835 if (!buffer_mapped(bh
)) {
836 map_bh(bh
, inode
->i_sb
, *p_blkno
);
837 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
840 if (PageUptodate(page
)) {
841 if (!buffer_uptodate(bh
))
842 set_buffer_uptodate(bh
);
843 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
845 ocfs2_should_read_blk(inode
, page
, block_start
) &&
846 (block_start
< from
|| block_end
> to
)) {
847 ll_rw_block(READ
, 1, &bh
);
851 *p_blkno
= *p_blkno
+ 1;
855 * If we issued read requests - let them complete.
857 while(wait_bh
> wait
) {
858 wait_on_buffer(*--wait_bh
);
859 if (!buffer_uptodate(*wait_bh
))
863 if (ret
== 0 || !new)
867 * If we get -EIO above, zero out any newly allocated blocks
868 * to avoid exposing stale data.
873 block_end
= block_start
+ bsize
;
874 if (block_end
<= from
)
876 if (block_start
>= to
)
879 zero_user(page
, block_start
, bh
->b_size
);
880 set_buffer_uptodate(bh
);
881 mark_buffer_dirty(bh
);
884 block_start
= block_end
;
885 bh
= bh
->b_this_page
;
886 } while (bh
!= head
);
891 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
892 #define OCFS2_MAX_CTXT_PAGES 1
894 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
897 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
900 * Describe the state of a single cluster to be written to.
902 struct ocfs2_write_cluster_desc
{
906 * Give this a unique field because c_phys eventually gets
910 unsigned c_unwritten
;
913 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc
*d
)
915 return d
->c_new
|| d
->c_unwritten
;
918 struct ocfs2_write_ctxt
{
919 /* Logical cluster position / len of write */
923 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
926 * This is true if page_size > cluster_size.
928 * It triggers a set of special cases during write which might
929 * have to deal with allocating writes to partial pages.
931 unsigned int w_large_pages
;
934 * Pages involved in this write.
936 * w_target_page is the page being written to by the user.
938 * w_pages is an array of pages which always contains
939 * w_target_page, and in the case of an allocating write with
940 * page_size < cluster size, it will contain zero'd and mapped
941 * pages adjacent to w_target_page which need to be written
942 * out in so that future reads from that region will get
945 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
946 unsigned int w_num_pages
;
947 struct page
*w_target_page
;
950 * ocfs2_write_end() uses this to know what the real range to
951 * write in the target should be.
953 unsigned int w_target_from
;
954 unsigned int w_target_to
;
957 * We could use journal_current_handle() but this is cleaner,
962 struct buffer_head
*w_di_bh
;
964 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
967 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
971 for(i
= 0; i
< num_pages
; i
++) {
973 unlock_page(pages
[i
]);
974 mark_page_accessed(pages
[i
]);
975 page_cache_release(pages
[i
]);
980 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
982 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
988 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
989 struct ocfs2_super
*osb
, loff_t pos
,
990 unsigned len
, struct buffer_head
*di_bh
)
993 struct ocfs2_write_ctxt
*wc
;
995 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
999 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
1000 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
1001 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
1003 wc
->w_di_bh
= di_bh
;
1005 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
1006 wc
->w_large_pages
= 1;
1008 wc
->w_large_pages
= 0;
1010 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
1018 * If a page has any new buffers, zero them out here, and mark them uptodate
1019 * and dirty so they'll be written out (in order to prevent uninitialised
1020 * block data from leaking). And clear the new bit.
1022 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1024 unsigned int block_start
, block_end
;
1025 struct buffer_head
*head
, *bh
;
1027 BUG_ON(!PageLocked(page
));
1028 if (!page_has_buffers(page
))
1031 bh
= head
= page_buffers(page
);
1034 block_end
= block_start
+ bh
->b_size
;
1036 if (buffer_new(bh
)) {
1037 if (block_end
> from
&& block_start
< to
) {
1038 if (!PageUptodate(page
)) {
1039 unsigned start
, end
;
1041 start
= max(from
, block_start
);
1042 end
= min(to
, block_end
);
1044 zero_user_segment(page
, start
, end
);
1045 set_buffer_uptodate(bh
);
1048 clear_buffer_new(bh
);
1049 mark_buffer_dirty(bh
);
1053 block_start
= block_end
;
1054 bh
= bh
->b_this_page
;
1055 } while (bh
!= head
);
1059 * Only called when we have a failure during allocating write to write
1060 * zero's to the newly allocated region.
1062 static void ocfs2_write_failure(struct inode
*inode
,
1063 struct ocfs2_write_ctxt
*wc
,
1064 loff_t user_pos
, unsigned user_len
)
1067 unsigned from
= user_pos
& (PAGE_CACHE_SIZE
- 1),
1068 to
= user_pos
+ user_len
;
1069 struct page
*tmppage
;
1071 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
1073 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1074 tmppage
= wc
->w_pages
[i
];
1076 if (page_has_buffers(tmppage
)) {
1077 if (ocfs2_should_order_data(inode
))
1078 walk_page_buffers(wc
->w_handle
,
1079 page_buffers(tmppage
),
1081 ocfs2_journal_dirty_data
);
1083 block_commit_write(tmppage
, from
, to
);
1088 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
1089 struct ocfs2_write_ctxt
*wc
,
1090 struct page
*page
, u32 cpos
,
1091 loff_t user_pos
, unsigned user_len
,
1095 unsigned int map_from
= 0, map_to
= 0;
1096 unsigned int cluster_start
, cluster_end
;
1097 unsigned int user_data_from
= 0, user_data_to
= 0;
1099 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
1100 &cluster_start
, &cluster_end
);
1102 if (page
== wc
->w_target_page
) {
1103 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
1104 map_to
= map_from
+ user_len
;
1107 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1108 cluster_start
, cluster_end
,
1111 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1112 map_from
, map_to
, new);
1118 user_data_from
= map_from
;
1119 user_data_to
= map_to
;
1121 map_from
= cluster_start
;
1122 map_to
= cluster_end
;
1126 * If we haven't allocated the new page yet, we
1127 * shouldn't be writing it out without copying user
1128 * data. This is likely a math error from the caller.
1132 map_from
= cluster_start
;
1133 map_to
= cluster_end
;
1135 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1136 cluster_start
, cluster_end
, new);
1144 * Parts of newly allocated pages need to be zero'd.
1146 * Above, we have also rewritten 'to' and 'from' - as far as
1147 * the rest of the function is concerned, the entire cluster
1148 * range inside of a page needs to be written.
1150 * We can skip this if the page is up to date - it's already
1151 * been zero'd from being read in as a hole.
1153 if (new && !PageUptodate(page
))
1154 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1155 cpos
, user_data_from
, user_data_to
);
1157 flush_dcache_page(page
);
1164 * This function will only grab one clusters worth of pages.
1166 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1167 struct ocfs2_write_ctxt
*wc
,
1168 u32 cpos
, loff_t user_pos
, int new,
1169 struct page
*mmap_page
)
1172 unsigned long start
, target_index
, index
;
1173 struct inode
*inode
= mapping
->host
;
1175 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1178 * Figure out how many pages we'll be manipulating here. For
1179 * non allocating write, we just change the one
1180 * page. Otherwise, we'll need a whole clusters worth.
1183 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1184 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1186 wc
->w_num_pages
= 1;
1187 start
= target_index
;
1190 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1193 if (index
== target_index
&& mmap_page
) {
1195 * ocfs2_pagemkwrite() is a little different
1196 * and wants us to directly use the page
1199 lock_page(mmap_page
);
1201 if (mmap_page
->mapping
!= mapping
) {
1202 unlock_page(mmap_page
);
1204 * Sanity check - the locking in
1205 * ocfs2_pagemkwrite() should ensure
1206 * that this code doesn't trigger.
1213 page_cache_get(mmap_page
);
1214 wc
->w_pages
[i
] = mmap_page
;
1216 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1218 if (!wc
->w_pages
[i
]) {
1225 if (index
== target_index
)
1226 wc
->w_target_page
= wc
->w_pages
[i
];
1233 * Prepare a single cluster for write one cluster into the file.
1235 static int ocfs2_write_cluster(struct address_space
*mapping
,
1236 u32 phys
, unsigned int unwritten
,
1237 struct ocfs2_alloc_context
*data_ac
,
1238 struct ocfs2_alloc_context
*meta_ac
,
1239 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1240 loff_t user_pos
, unsigned user_len
)
1242 int ret
, i
, new, should_zero
= 0;
1243 u64 v_blkno
, p_blkno
;
1244 struct inode
*inode
= mapping
->host
;
1246 new = phys
== 0 ? 1 : 0;
1247 if (new || unwritten
)
1254 * This is safe to call with the page locks - it won't take
1255 * any additional semaphores or cluster locks.
1258 ret
= ocfs2_do_extend_allocation(OCFS2_SB(inode
->i_sb
), inode
,
1259 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1260 wc
->w_handle
, data_ac
,
1263 * This shouldn't happen because we must have already
1264 * calculated the correct meta data allocation required. The
1265 * internal tree allocation code should know how to increase
1266 * transaction credits itself.
1268 * If need be, we could handle -EAGAIN for a
1269 * RESTART_TRANS here.
1271 mlog_bug_on_msg(ret
== -EAGAIN
,
1272 "Inode %llu: EAGAIN return during allocation.\n",
1273 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1278 } else if (unwritten
) {
1279 ret
= ocfs2_mark_extent_written(inode
, wc
->w_di_bh
,
1280 wc
->w_handle
, cpos
, 1, phys
,
1281 meta_ac
, &wc
->w_dealloc
);
1289 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1291 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1294 * The only reason this should fail is due to an inability to
1295 * find the extent added.
1297 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1300 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1301 "at logical block %llu",
1302 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1303 (unsigned long long)v_blkno
);
1307 BUG_ON(p_blkno
== 0);
1309 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1312 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1313 wc
->w_pages
[i
], cpos
,
1324 * We only have cleanup to do in case of allocating write.
1327 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1334 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1335 struct ocfs2_alloc_context
*data_ac
,
1336 struct ocfs2_alloc_context
*meta_ac
,
1337 struct ocfs2_write_ctxt
*wc
,
1338 loff_t pos
, unsigned len
)
1342 unsigned int local_len
= len
;
1343 struct ocfs2_write_cluster_desc
*desc
;
1344 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1346 for (i
= 0; i
< wc
->w_clen
; i
++) {
1347 desc
= &wc
->w_desc
[i
];
1350 * We have to make sure that the total write passed in
1351 * doesn't extend past a single cluster.
1354 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1355 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1356 local_len
= osb
->s_clustersize
- cluster_off
;
1358 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1359 desc
->c_unwritten
, data_ac
, meta_ac
,
1360 wc
, desc
->c_cpos
, pos
, local_len
);
1376 * ocfs2_write_end() wants to know which parts of the target page it
1377 * should complete the write on. It's easiest to compute them ahead of
1378 * time when a more complete view of the write is available.
1380 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1381 struct ocfs2_write_ctxt
*wc
,
1382 loff_t pos
, unsigned len
, int alloc
)
1384 struct ocfs2_write_cluster_desc
*desc
;
1386 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1387 wc
->w_target_to
= wc
->w_target_from
+ len
;
1393 * Allocating write - we may have different boundaries based
1394 * on page size and cluster size.
1396 * NOTE: We can no longer compute one value from the other as
1397 * the actual write length and user provided length may be
1401 if (wc
->w_large_pages
) {
1403 * We only care about the 1st and last cluster within
1404 * our range and whether they should be zero'd or not. Either
1405 * value may be extended out to the start/end of a
1406 * newly allocated cluster.
1408 desc
= &wc
->w_desc
[0];
1409 if (ocfs2_should_zero_cluster(desc
))
1410 ocfs2_figure_cluster_boundaries(osb
,
1415 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1416 if (ocfs2_should_zero_cluster(desc
))
1417 ocfs2_figure_cluster_boundaries(osb
,
1422 wc
->w_target_from
= 0;
1423 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1428 * Populate each single-cluster write descriptor in the write context
1429 * with information about the i/o to be done.
1431 * Returns the number of clusters that will have to be allocated, as
1432 * well as a worst case estimate of the number of extent records that
1433 * would have to be created during a write to an unwritten region.
1435 static int ocfs2_populate_write_desc(struct inode
*inode
,
1436 struct ocfs2_write_ctxt
*wc
,
1437 unsigned int *clusters_to_alloc
,
1438 unsigned int *extents_to_split
)
1441 struct ocfs2_write_cluster_desc
*desc
;
1442 unsigned int num_clusters
= 0;
1443 unsigned int ext_flags
= 0;
1447 *clusters_to_alloc
= 0;
1448 *extents_to_split
= 0;
1450 for (i
= 0; i
< wc
->w_clen
; i
++) {
1451 desc
= &wc
->w_desc
[i
];
1452 desc
->c_cpos
= wc
->w_cpos
+ i
;
1454 if (num_clusters
== 0) {
1456 * Need to look up the next extent record.
1458 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1459 &num_clusters
, &ext_flags
);
1466 * Assume worst case - that we're writing in
1467 * the middle of the extent.
1469 * We can assume that the write proceeds from
1470 * left to right, in which case the extent
1471 * insert code is smart enough to coalesce the
1472 * next splits into the previous records created.
1474 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1475 *extents_to_split
= *extents_to_split
+ 2;
1478 * Only increment phys if it doesn't describe
1484 desc
->c_phys
= phys
;
1487 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1489 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1490 desc
->c_unwritten
= 1;
1500 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1501 struct inode
*inode
,
1502 struct ocfs2_write_ctxt
*wc
)
1505 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1508 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1510 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1517 * If we don't set w_num_pages then this page won't get unlocked
1518 * and freed on cleanup of the write context.
1520 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1521 wc
->w_num_pages
= 1;
1523 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1524 if (IS_ERR(handle
)) {
1525 ret
= PTR_ERR(handle
);
1530 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1531 OCFS2_JOURNAL_ACCESS_WRITE
);
1533 ocfs2_commit_trans(osb
, handle
);
1539 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1540 ocfs2_set_inode_data_inline(inode
, di
);
1542 if (!PageUptodate(page
)) {
1543 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1545 ocfs2_commit_trans(osb
, handle
);
1551 wc
->w_handle
= handle
;
1556 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1558 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1560 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1565 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1566 struct inode
*inode
, loff_t pos
,
1567 unsigned len
, struct page
*mmap_page
,
1568 struct ocfs2_write_ctxt
*wc
)
1570 int ret
, written
= 0;
1571 loff_t end
= pos
+ len
;
1572 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1574 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1575 (unsigned long long)oi
->ip_blkno
, len
, (unsigned long long)pos
,
1576 oi
->ip_dyn_features
);
1579 * Handle inodes which already have inline data 1st.
1581 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1582 if (mmap_page
== NULL
&&
1583 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1584 goto do_inline_write
;
1587 * The write won't fit - we have to give this inode an
1588 * inline extent list now.
1590 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1597 * Check whether the inode can accept inline data.
1599 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1603 * Check whether the write can fit.
1605 if (mmap_page
|| end
> ocfs2_max_inline_data(inode
->i_sb
))
1609 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1616 * This signals to the caller that the data can be written
1621 return written
? written
: ret
;
1625 * This function only does anything for file systems which can't
1626 * handle sparse files.
1628 * What we want to do here is fill in any hole between the current end
1629 * of allocation and the end of our write. That way the rest of the
1630 * write path can treat it as an non-allocating write, which has no
1631 * special case code for sparse/nonsparse files.
1633 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
, loff_t pos
,
1635 struct ocfs2_write_ctxt
*wc
)
1638 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1639 loff_t newsize
= pos
+ len
;
1641 if (ocfs2_sparse_alloc(osb
))
1644 if (newsize
<= i_size_read(inode
))
1647 ret
= ocfs2_extend_no_holes(inode
, newsize
, newsize
- len
);
1654 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1655 loff_t pos
, unsigned len
, unsigned flags
,
1656 struct page
**pagep
, void **fsdata
,
1657 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1659 int ret
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1660 unsigned int clusters_to_alloc
, extents_to_split
;
1661 struct ocfs2_write_ctxt
*wc
;
1662 struct inode
*inode
= mapping
->host
;
1663 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1664 struct ocfs2_dinode
*di
;
1665 struct ocfs2_alloc_context
*data_ac
= NULL
;
1666 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1669 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1675 if (ocfs2_supports_inline_data(osb
)) {
1676 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1688 ret
= ocfs2_expand_nonsparse_inode(inode
, pos
, len
, wc
);
1694 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1701 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1704 * We set w_target_from, w_target_to here so that
1705 * ocfs2_write_end() knows which range in the target page to
1706 * write out. An allocation requires that we write the entire
1709 if (clusters_to_alloc
|| extents_to_split
) {
1711 * XXX: We are stretching the limits of
1712 * ocfs2_lock_allocators(). It greatly over-estimates
1713 * the work to be done.
1715 ret
= ocfs2_lock_allocators(inode
, di
, clusters_to_alloc
,
1716 extents_to_split
, &data_ac
, &meta_ac
);
1722 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, di
,
1727 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
,
1728 clusters_to_alloc
+ extents_to_split
);
1730 handle
= ocfs2_start_trans(osb
, credits
);
1731 if (IS_ERR(handle
)) {
1732 ret
= PTR_ERR(handle
);
1737 wc
->w_handle
= handle
;
1740 * We don't want this to fail in ocfs2_write_end(), so do it
1743 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1744 OCFS2_JOURNAL_ACCESS_WRITE
);
1751 * Fill our page array first. That way we've grabbed enough so
1752 * that we can zero and flush if we error after adding the
1755 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
,
1756 clusters_to_alloc
+ extents_to_split
,
1763 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1771 ocfs2_free_alloc_context(data_ac
);
1773 ocfs2_free_alloc_context(meta_ac
);
1776 *pagep
= wc
->w_target_page
;
1780 ocfs2_commit_trans(osb
, handle
);
1783 ocfs2_free_write_ctxt(wc
);
1786 ocfs2_free_alloc_context(data_ac
);
1788 ocfs2_free_alloc_context(meta_ac
);
1792 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1793 loff_t pos
, unsigned len
, unsigned flags
,
1794 struct page
**pagep
, void **fsdata
)
1797 struct buffer_head
*di_bh
= NULL
;
1798 struct inode
*inode
= mapping
->host
;
1800 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1807 * Take alloc sem here to prevent concurrent lookups. That way
1808 * the mapping, zeroing and tree manipulation within
1809 * ocfs2_write() will be safe against ->readpage(). This
1810 * should also serve to lock out allocation from a shared
1813 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1815 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, flags
, pagep
,
1816 fsdata
, di_bh
, NULL
);
1827 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1830 ocfs2_inode_unlock(inode
, 1);
1835 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1836 unsigned len
, unsigned *copied
,
1837 struct ocfs2_dinode
*di
,
1838 struct ocfs2_write_ctxt
*wc
)
1842 if (unlikely(*copied
< len
)) {
1843 if (!PageUptodate(wc
->w_target_page
)) {
1849 kaddr
= kmap_atomic(wc
->w_target_page
, KM_USER0
);
1850 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1851 kunmap_atomic(kaddr
, KM_USER0
);
1853 mlog(0, "Data written to inode at offset %llu. "
1854 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1855 (unsigned long long)pos
, *copied
,
1856 le16_to_cpu(di
->id2
.i_data
.id_count
),
1857 le16_to_cpu(di
->i_dyn_features
));
1860 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1861 loff_t pos
, unsigned len
, unsigned copied
,
1862 struct page
*page
, void *fsdata
)
1865 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1866 struct inode
*inode
= mapping
->host
;
1867 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1868 struct ocfs2_write_ctxt
*wc
= fsdata
;
1869 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1870 handle_t
*handle
= wc
->w_handle
;
1871 struct page
*tmppage
;
1873 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1874 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1875 goto out_write_size
;
1878 if (unlikely(copied
< len
)) {
1879 if (!PageUptodate(wc
->w_target_page
))
1882 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1885 flush_dcache_page(wc
->w_target_page
);
1887 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1888 tmppage
= wc
->w_pages
[i
];
1890 if (tmppage
== wc
->w_target_page
) {
1891 from
= wc
->w_target_from
;
1892 to
= wc
->w_target_to
;
1894 BUG_ON(from
> PAGE_CACHE_SIZE
||
1895 to
> PAGE_CACHE_SIZE
||
1899 * Pages adjacent to the target (if any) imply
1900 * a hole-filling write in which case we want
1901 * to flush their entire range.
1904 to
= PAGE_CACHE_SIZE
;
1907 if (page_has_buffers(tmppage
)) {
1908 if (ocfs2_should_order_data(inode
))
1909 walk_page_buffers(wc
->w_handle
,
1910 page_buffers(tmppage
),
1912 ocfs2_journal_dirty_data
);
1913 block_commit_write(tmppage
, from
, to
);
1919 if (pos
> inode
->i_size
) {
1920 i_size_write(inode
, pos
);
1921 mark_inode_dirty(inode
);
1923 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
1924 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1925 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1926 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1927 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1928 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
1930 ocfs2_commit_trans(osb
, handle
);
1932 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
1934 ocfs2_free_write_ctxt(wc
);
1939 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
1940 loff_t pos
, unsigned len
, unsigned copied
,
1941 struct page
*page
, void *fsdata
)
1944 struct inode
*inode
= mapping
->host
;
1946 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
1948 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1949 ocfs2_inode_unlock(inode
, 1);
1954 const struct address_space_operations ocfs2_aops
= {
1955 .readpage
= ocfs2_readpage
,
1956 .readpages
= ocfs2_readpages
,
1957 .writepage
= ocfs2_writepage
,
1958 .write_begin
= ocfs2_write_begin
,
1959 .write_end
= ocfs2_write_end
,
1961 .sync_page
= block_sync_page
,
1962 .direct_IO
= ocfs2_direct_IO
,
1963 .invalidatepage
= ocfs2_invalidatepage
,
1964 .releasepage
= ocfs2_releasepage
,
1965 .migratepage
= buffer_migrate_page
,