2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
98 struct pipe_inode_info
;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack
{
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info
{
109 struct net_device
*physindev
;
110 struct net_device
*physoutdev
;
112 unsigned long data
[32 / sizeof(unsigned long)];
116 struct sk_buff_head
{
117 /* These two members must be first. */
118 struct sk_buff
*next
;
119 struct sk_buff
*prev
;
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
130 typedef struct skb_frag_struct skb_frag_t
;
132 struct skb_frag_struct
{
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
141 struct skb_shared_info
{
143 unsigned short nr_frags
;
144 unsigned short gso_size
;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs
;
147 unsigned short gso_type
;
149 struct sk_buff
*frag_list
;
150 skb_frag_t frags
[MAX_SKB_FRAGS
];
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
169 SKB_FCLONE_UNAVAILABLE
,
175 SKB_GSO_TCPV4
= 1 << 0,
176 SKB_GSO_UDP
= 1 << 1,
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY
= 1 << 2,
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN
= 1 << 3,
184 SKB_GSO_TCPV6
= 1 << 4,
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t
;
194 typedef unsigned char *sk_buff_data_t
;
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @ndisc_nodetype: router type (from link layer)
246 * @do_not_encrypt: set to prevent encryption of this frame
247 * @dma_cookie: a cookie to one of several possible DMA operations
248 * done by skb DMA functions
249 * @secmark: security marking
250 * @vlan_tci: vlan tag control information
254 /* These two members must be first. */
255 struct sk_buff
*next
;
256 struct sk_buff
*prev
;
260 struct net_device
*dev
;
263 struct dst_entry
*dst
;
264 struct rtable
*rtable
;
269 * This is the control buffer. It is free to use for every
270 * layer. Please put your private variables there. If you
271 * want to keep them across layers you have to do a skb_clone()
272 * first. This is owned by whoever has the skb queued ATM.
300 void (*destructor
)(struct sk_buff
*skb
);
301 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
302 struct nf_conntrack
*nfct
;
303 struct sk_buff
*nfct_reasm
;
305 #ifdef CONFIG_BRIDGE_NETFILTER
306 struct nf_bridge_info
*nf_bridge
;
311 #ifdef CONFIG_NET_SCHED
312 __u16 tc_index
; /* traffic control index */
313 #ifdef CONFIG_NET_CLS_ACT
314 __u16 tc_verd
; /* traffic control verdict */
317 #ifdef CONFIG_IPV6_NDISC_NODETYPE
318 __u8 ndisc_nodetype
:2;
320 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
321 __u8 do_not_encrypt
:1;
323 /* 0/13/14 bit hole */
325 #ifdef CONFIG_NET_DMA
326 dma_cookie_t dma_cookie
;
328 #ifdef CONFIG_NETWORK_SECMARK
336 sk_buff_data_t transport_header
;
337 sk_buff_data_t network_header
;
338 sk_buff_data_t mac_header
;
339 /* These elements must be at the end, see alloc_skb() for details. */
344 unsigned int truesize
;
350 * Handling routines are only of interest to the kernel
352 #include <linux/slab.h>
354 #include <asm/system.h>
356 extern void kfree_skb(struct sk_buff
*skb
);
357 extern void __kfree_skb(struct sk_buff
*skb
);
358 extern struct sk_buff
*__alloc_skb(unsigned int size
,
359 gfp_t priority
, int fclone
, int node
);
360 static inline struct sk_buff
*alloc_skb(unsigned int size
,
363 return __alloc_skb(size
, priority
, 0, -1);
366 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
369 return __alloc_skb(size
, priority
, 1, -1);
372 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
373 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
375 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
377 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
379 extern int pskb_expand_head(struct sk_buff
*skb
,
380 int nhead
, int ntail
,
382 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
383 unsigned int headroom
);
384 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
385 int newheadroom
, int newtailroom
,
387 extern int skb_to_sgvec(struct sk_buff
*skb
,
388 struct scatterlist
*sg
, int offset
,
390 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
391 struct sk_buff
**trailer
);
392 extern int skb_pad(struct sk_buff
*skb
, int pad
);
393 #define dev_kfree_skb(a) kfree_skb(a)
394 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
396 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
398 extern void skb_truesize_bug(struct sk_buff
*skb
);
400 static inline void skb_truesize_check(struct sk_buff
*skb
)
402 int len
= sizeof(struct sk_buff
) + skb
->len
;
404 if (unlikely((int)skb
->truesize
< len
))
405 skb_truesize_bug(skb
);
408 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
409 int getfrag(void *from
, char *to
, int offset
,
410 int len
,int odd
, struct sk_buff
*skb
),
411 void *from
, int length
);
418 __u32 stepped_offset
;
419 struct sk_buff
*root_skb
;
420 struct sk_buff
*cur_skb
;
424 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
425 unsigned int from
, unsigned int to
,
426 struct skb_seq_state
*st
);
427 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
428 struct skb_seq_state
*st
);
429 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
431 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
432 unsigned int to
, struct ts_config
*config
,
433 struct ts_state
*state
);
435 #ifdef NET_SKBUFF_DATA_USES_OFFSET
436 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
438 return skb
->head
+ skb
->end
;
441 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
448 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
451 * skb_queue_empty - check if a queue is empty
454 * Returns true if the queue is empty, false otherwise.
456 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
458 return list
->next
== (struct sk_buff
*)list
;
462 * skb_get - reference buffer
463 * @skb: buffer to reference
465 * Makes another reference to a socket buffer and returns a pointer
468 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
470 atomic_inc(&skb
->users
);
475 * If users == 1, we are the only owner and are can avoid redundant
480 * skb_cloned - is the buffer a clone
481 * @skb: buffer to check
483 * Returns true if the buffer was generated with skb_clone() and is
484 * one of multiple shared copies of the buffer. Cloned buffers are
485 * shared data so must not be written to under normal circumstances.
487 static inline int skb_cloned(const struct sk_buff
*skb
)
489 return skb
->cloned
&&
490 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
494 * skb_header_cloned - is the header a clone
495 * @skb: buffer to check
497 * Returns true if modifying the header part of the buffer requires
498 * the data to be copied.
500 static inline int skb_header_cloned(const struct sk_buff
*skb
)
507 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
508 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
513 * skb_header_release - release reference to header
514 * @skb: buffer to operate on
516 * Drop a reference to the header part of the buffer. This is done
517 * by acquiring a payload reference. You must not read from the header
518 * part of skb->data after this.
520 static inline void skb_header_release(struct sk_buff
*skb
)
524 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
528 * skb_shared - is the buffer shared
529 * @skb: buffer to check
531 * Returns true if more than one person has a reference to this
534 static inline int skb_shared(const struct sk_buff
*skb
)
536 return atomic_read(&skb
->users
) != 1;
540 * skb_share_check - check if buffer is shared and if so clone it
541 * @skb: buffer to check
542 * @pri: priority for memory allocation
544 * If the buffer is shared the buffer is cloned and the old copy
545 * drops a reference. A new clone with a single reference is returned.
546 * If the buffer is not shared the original buffer is returned. When
547 * being called from interrupt status or with spinlocks held pri must
550 * NULL is returned on a memory allocation failure.
552 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
555 might_sleep_if(pri
& __GFP_WAIT
);
556 if (skb_shared(skb
)) {
557 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
565 * Copy shared buffers into a new sk_buff. We effectively do COW on
566 * packets to handle cases where we have a local reader and forward
567 * and a couple of other messy ones. The normal one is tcpdumping
568 * a packet thats being forwarded.
572 * skb_unshare - make a copy of a shared buffer
573 * @skb: buffer to check
574 * @pri: priority for memory allocation
576 * If the socket buffer is a clone then this function creates a new
577 * copy of the data, drops a reference count on the old copy and returns
578 * the new copy with the reference count at 1. If the buffer is not a clone
579 * the original buffer is returned. When called with a spinlock held or
580 * from interrupt state @pri must be %GFP_ATOMIC
582 * %NULL is returned on a memory allocation failure.
584 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
587 might_sleep_if(pri
& __GFP_WAIT
);
588 if (skb_cloned(skb
)) {
589 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
590 kfree_skb(skb
); /* Free our shared copy */
598 * @list_: list to peek at
600 * Peek an &sk_buff. Unlike most other operations you _MUST_
601 * be careful with this one. A peek leaves the buffer on the
602 * list and someone else may run off with it. You must hold
603 * the appropriate locks or have a private queue to do this.
605 * Returns %NULL for an empty list or a pointer to the head element.
606 * The reference count is not incremented and the reference is therefore
607 * volatile. Use with caution.
609 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
611 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
612 if (list
== (struct sk_buff
*)list_
)
619 * @list_: list to peek at
621 * Peek an &sk_buff. Unlike most other operations you _MUST_
622 * be careful with this one. A peek leaves the buffer on the
623 * list and someone else may run off with it. You must hold
624 * the appropriate locks or have a private queue to do this.
626 * Returns %NULL for an empty list or a pointer to the tail element.
627 * The reference count is not incremented and the reference is therefore
628 * volatile. Use with caution.
630 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
632 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
633 if (list
== (struct sk_buff
*)list_
)
639 * skb_queue_len - get queue length
640 * @list_: list to measure
642 * Return the length of an &sk_buff queue.
644 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
650 * This function creates a split out lock class for each invocation;
651 * this is needed for now since a whole lot of users of the skb-queue
652 * infrastructure in drivers have different locking usage (in hardirq)
653 * than the networking core (in softirq only). In the long run either the
654 * network layer or drivers should need annotation to consolidate the
655 * main types of usage into 3 classes.
657 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
659 spin_lock_init(&list
->lock
);
660 list
->prev
= list
->next
= (struct sk_buff
*)list
;
664 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
665 struct lock_class_key
*class)
667 skb_queue_head_init(list
);
668 lockdep_set_class(&list
->lock
, class);
672 * Insert an sk_buff on a list.
674 * The "__skb_xxxx()" functions are the non-atomic ones that
675 * can only be called with interrupts disabled.
677 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
678 static inline void __skb_insert(struct sk_buff
*newsk
,
679 struct sk_buff
*prev
, struct sk_buff
*next
,
680 struct sk_buff_head
*list
)
684 next
->prev
= prev
->next
= newsk
;
689 * __skb_queue_after - queue a buffer at the list head
691 * @prev: place after this buffer
692 * @newsk: buffer to queue
694 * Queue a buffer int the middle of a list. This function takes no locks
695 * and you must therefore hold required locks before calling it.
697 * A buffer cannot be placed on two lists at the same time.
699 static inline void __skb_queue_after(struct sk_buff_head
*list
,
700 struct sk_buff
*prev
,
701 struct sk_buff
*newsk
)
703 __skb_insert(newsk
, prev
, prev
->next
, list
);
706 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
707 struct sk_buff_head
*list
);
709 static inline void __skb_queue_before(struct sk_buff_head
*list
,
710 struct sk_buff
*next
,
711 struct sk_buff
*newsk
)
713 __skb_insert(newsk
, next
->prev
, next
, list
);
717 * __skb_queue_head - queue a buffer at the list head
719 * @newsk: buffer to queue
721 * Queue a buffer at the start of a list. This function takes no locks
722 * and you must therefore hold required locks before calling it.
724 * A buffer cannot be placed on two lists at the same time.
726 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
727 static inline void __skb_queue_head(struct sk_buff_head
*list
,
728 struct sk_buff
*newsk
)
730 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
734 * __skb_queue_tail - queue a buffer at the list tail
736 * @newsk: buffer to queue
738 * Queue a buffer at the end of a list. This function takes no locks
739 * and you must therefore hold required locks before calling it.
741 * A buffer cannot be placed on two lists at the same time.
743 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
744 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
745 struct sk_buff
*newsk
)
747 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
751 * remove sk_buff from list. _Must_ be called atomically, and with
754 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
755 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
757 struct sk_buff
*next
, *prev
;
762 skb
->next
= skb
->prev
= NULL
;
768 * __skb_dequeue - remove from the head of the queue
769 * @list: list to dequeue from
771 * Remove the head of the list. This function does not take any locks
772 * so must be used with appropriate locks held only. The head item is
773 * returned or %NULL if the list is empty.
775 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
776 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
778 struct sk_buff
*skb
= skb_peek(list
);
780 __skb_unlink(skb
, list
);
785 * __skb_dequeue_tail - remove from the tail of the queue
786 * @list: list to dequeue from
788 * Remove the tail of the list. This function does not take any locks
789 * so must be used with appropriate locks held only. The tail item is
790 * returned or %NULL if the list is empty.
792 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
793 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
795 struct sk_buff
*skb
= skb_peek_tail(list
);
797 __skb_unlink(skb
, list
);
802 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
804 return skb
->data_len
;
807 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
809 return skb
->len
- skb
->data_len
;
812 static inline int skb_pagelen(const struct sk_buff
*skb
)
816 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
817 len
+= skb_shinfo(skb
)->frags
[i
].size
;
818 return len
+ skb_headlen(skb
);
821 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
822 struct page
*page
, int off
, int size
)
824 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
827 frag
->page_offset
= off
;
829 skb_shinfo(skb
)->nr_frags
= i
+ 1;
832 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
833 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
834 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
836 #ifdef NET_SKBUFF_DATA_USES_OFFSET
837 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
839 return skb
->head
+ skb
->tail
;
842 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
844 skb
->tail
= skb
->data
- skb
->head
;
847 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
849 skb_reset_tail_pointer(skb
);
852 #else /* NET_SKBUFF_DATA_USES_OFFSET */
853 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
858 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
860 skb
->tail
= skb
->data
;
863 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
865 skb
->tail
= skb
->data
+ offset
;
868 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
871 * Add data to an sk_buff
873 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
874 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
876 unsigned char *tmp
= skb_tail_pointer(skb
);
877 SKB_LINEAR_ASSERT(skb
);
883 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
884 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
891 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
892 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
895 BUG_ON(skb
->len
< skb
->data_len
);
896 return skb
->data
+= len
;
899 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
901 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
903 if (len
> skb_headlen(skb
) &&
904 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
907 return skb
->data
+= len
;
910 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
912 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
915 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
917 if (likely(len
<= skb_headlen(skb
)))
919 if (unlikely(len
> skb
->len
))
921 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
925 * skb_headroom - bytes at buffer head
926 * @skb: buffer to check
928 * Return the number of bytes of free space at the head of an &sk_buff.
930 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
932 return skb
->data
- skb
->head
;
936 * skb_tailroom - bytes at buffer end
937 * @skb: buffer to check
939 * Return the number of bytes of free space at the tail of an sk_buff
941 static inline int skb_tailroom(const struct sk_buff
*skb
)
943 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
947 * skb_reserve - adjust headroom
948 * @skb: buffer to alter
949 * @len: bytes to move
951 * Increase the headroom of an empty &sk_buff by reducing the tail
952 * room. This is only allowed for an empty buffer.
954 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
960 #ifdef NET_SKBUFF_DATA_USES_OFFSET
961 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
963 return skb
->head
+ skb
->transport_header
;
966 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
968 skb
->transport_header
= skb
->data
- skb
->head
;
971 static inline void skb_set_transport_header(struct sk_buff
*skb
,
974 skb_reset_transport_header(skb
);
975 skb
->transport_header
+= offset
;
978 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
980 return skb
->head
+ skb
->network_header
;
983 static inline void skb_reset_network_header(struct sk_buff
*skb
)
985 skb
->network_header
= skb
->data
- skb
->head
;
988 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
990 skb_reset_network_header(skb
);
991 skb
->network_header
+= offset
;
994 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
996 return skb
->head
+ skb
->mac_header
;
999 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1001 return skb
->mac_header
!= ~0U;
1004 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1006 skb
->mac_header
= skb
->data
- skb
->head
;
1009 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1011 skb_reset_mac_header(skb
);
1012 skb
->mac_header
+= offset
;
1015 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1017 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1019 return skb
->transport_header
;
1022 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1024 skb
->transport_header
= skb
->data
;
1027 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1030 skb
->transport_header
= skb
->data
+ offset
;
1033 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1035 return skb
->network_header
;
1038 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1040 skb
->network_header
= skb
->data
;
1043 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1045 skb
->network_header
= skb
->data
+ offset
;
1048 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1050 return skb
->mac_header
;
1053 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1055 return skb
->mac_header
!= NULL
;
1058 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1060 skb
->mac_header
= skb
->data
;
1063 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1065 skb
->mac_header
= skb
->data
+ offset
;
1067 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1069 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1071 return skb_transport_header(skb
) - skb
->data
;
1074 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1076 return skb
->transport_header
- skb
->network_header
;
1079 static inline int skb_network_offset(const struct sk_buff
*skb
)
1081 return skb_network_header(skb
) - skb
->data
;
1085 * CPUs often take a performance hit when accessing unaligned memory
1086 * locations. The actual performance hit varies, it can be small if the
1087 * hardware handles it or large if we have to take an exception and fix it
1090 * Since an ethernet header is 14 bytes network drivers often end up with
1091 * the IP header at an unaligned offset. The IP header can be aligned by
1092 * shifting the start of the packet by 2 bytes. Drivers should do this
1095 * skb_reserve(NET_IP_ALIGN);
1097 * The downside to this alignment of the IP header is that the DMA is now
1098 * unaligned. On some architectures the cost of an unaligned DMA is high
1099 * and this cost outweighs the gains made by aligning the IP header.
1101 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1104 #ifndef NET_IP_ALIGN
1105 #define NET_IP_ALIGN 2
1109 * The networking layer reserves some headroom in skb data (via
1110 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1111 * the header has to grow. In the default case, if the header has to grow
1112 * 16 bytes or less we avoid the reallocation.
1114 * Unfortunately this headroom changes the DMA alignment of the resulting
1115 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1116 * on some architectures. An architecture can override this value,
1117 * perhaps setting it to a cacheline in size (since that will maintain
1118 * cacheline alignment of the DMA). It must be a power of 2.
1120 * Various parts of the networking layer expect at least 16 bytes of
1121 * headroom, you should not reduce this.
1124 #define NET_SKB_PAD 16
1127 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1129 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1131 if (unlikely(skb
->data_len
)) {
1136 skb_set_tail_pointer(skb
, len
);
1139 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1141 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1144 return ___pskb_trim(skb
, len
);
1145 __skb_trim(skb
, len
);
1149 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1151 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1155 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1156 * @skb: buffer to alter
1159 * This is identical to pskb_trim except that the caller knows that
1160 * the skb is not cloned so we should never get an error due to out-
1163 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1165 int err
= pskb_trim(skb
, len
);
1170 * skb_orphan - orphan a buffer
1171 * @skb: buffer to orphan
1173 * If a buffer currently has an owner then we call the owner's
1174 * destructor function and make the @skb unowned. The buffer continues
1175 * to exist but is no longer charged to its former owner.
1177 static inline void skb_orphan(struct sk_buff
*skb
)
1179 if (skb
->destructor
)
1180 skb
->destructor(skb
);
1181 skb
->destructor
= NULL
;
1186 * __skb_queue_purge - empty a list
1187 * @list: list to empty
1189 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1190 * the list and one reference dropped. This function does not take the
1191 * list lock and the caller must hold the relevant locks to use it.
1193 extern void skb_queue_purge(struct sk_buff_head
*list
);
1194 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1196 struct sk_buff
*skb
;
1197 while ((skb
= __skb_dequeue(list
)) != NULL
)
1202 * __dev_alloc_skb - allocate an skbuff for receiving
1203 * @length: length to allocate
1204 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1206 * Allocate a new &sk_buff and assign it a usage count of one. The
1207 * buffer has unspecified headroom built in. Users should allocate
1208 * the headroom they think they need without accounting for the
1209 * built in space. The built in space is used for optimisations.
1211 * %NULL is returned if there is no free memory.
1213 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1216 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1218 skb_reserve(skb
, NET_SKB_PAD
);
1222 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1224 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1225 unsigned int length
, gfp_t gfp_mask
);
1228 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1229 * @dev: network device to receive on
1230 * @length: length to allocate
1232 * Allocate a new &sk_buff and assign it a usage count of one. The
1233 * buffer has unspecified headroom built in. Users should allocate
1234 * the headroom they think they need without accounting for the
1235 * built in space. The built in space is used for optimisations.
1237 * %NULL is returned if there is no free memory. Although this function
1238 * allocates memory it can be called from an interrupt.
1240 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1241 unsigned int length
)
1243 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1247 * skb_clone_writable - is the header of a clone writable
1248 * @skb: buffer to check
1249 * @len: length up to which to write
1251 * Returns true if modifying the header part of the cloned buffer
1252 * does not requires the data to be copied.
1254 static inline int skb_clone_writable(struct sk_buff
*skb
, unsigned int len
)
1256 return !skb_header_cloned(skb
) &&
1257 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1260 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1265 if (headroom
< NET_SKB_PAD
)
1266 headroom
= NET_SKB_PAD
;
1267 if (headroom
> skb_headroom(skb
))
1268 delta
= headroom
- skb_headroom(skb
);
1270 if (delta
|| cloned
)
1271 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1277 * skb_cow - copy header of skb when it is required
1278 * @skb: buffer to cow
1279 * @headroom: needed headroom
1281 * If the skb passed lacks sufficient headroom or its data part
1282 * is shared, data is reallocated. If reallocation fails, an error
1283 * is returned and original skb is not changed.
1285 * The result is skb with writable area skb->head...skb->tail
1286 * and at least @headroom of space at head.
1288 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1290 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1294 * skb_cow_head - skb_cow but only making the head writable
1295 * @skb: buffer to cow
1296 * @headroom: needed headroom
1298 * This function is identical to skb_cow except that we replace the
1299 * skb_cloned check by skb_header_cloned. It should be used when
1300 * you only need to push on some header and do not need to modify
1303 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1305 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1309 * skb_padto - pad an skbuff up to a minimal size
1310 * @skb: buffer to pad
1311 * @len: minimal length
1313 * Pads up a buffer to ensure the trailing bytes exist and are
1314 * blanked. If the buffer already contains sufficient data it
1315 * is untouched. Otherwise it is extended. Returns zero on
1316 * success. The skb is freed on error.
1319 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1321 unsigned int size
= skb
->len
;
1322 if (likely(size
>= len
))
1324 return skb_pad(skb
, len
- size
);
1327 static inline int skb_add_data(struct sk_buff
*skb
,
1328 char __user
*from
, int copy
)
1330 const int off
= skb
->len
;
1332 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1334 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1337 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1340 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1343 __skb_trim(skb
, off
);
1347 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1348 struct page
*page
, int off
)
1351 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1353 return page
== frag
->page
&&
1354 off
== frag
->page_offset
+ frag
->size
;
1359 static inline int __skb_linearize(struct sk_buff
*skb
)
1361 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1365 * skb_linearize - convert paged skb to linear one
1366 * @skb: buffer to linarize
1368 * If there is no free memory -ENOMEM is returned, otherwise zero
1369 * is returned and the old skb data released.
1371 static inline int skb_linearize(struct sk_buff
*skb
)
1373 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1377 * skb_linearize_cow - make sure skb is linear and writable
1378 * @skb: buffer to process
1380 * If there is no free memory -ENOMEM is returned, otherwise zero
1381 * is returned and the old skb data released.
1383 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1385 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1386 __skb_linearize(skb
) : 0;
1390 * skb_postpull_rcsum - update checksum for received skb after pull
1391 * @skb: buffer to update
1392 * @start: start of data before pull
1393 * @len: length of data pulled
1395 * After doing a pull on a received packet, you need to call this to
1396 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1397 * CHECKSUM_NONE so that it can be recomputed from scratch.
1400 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1401 const void *start
, unsigned int len
)
1403 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1404 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1407 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1410 * pskb_trim_rcsum - trim received skb and update checksum
1411 * @skb: buffer to trim
1414 * This is exactly the same as pskb_trim except that it ensures the
1415 * checksum of received packets are still valid after the operation.
1418 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1420 if (likely(len
>= skb
->len
))
1422 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1423 skb
->ip_summed
= CHECKSUM_NONE
;
1424 return __pskb_trim(skb
, len
);
1427 #define skb_queue_walk(queue, skb) \
1428 for (skb = (queue)->next; \
1429 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1432 #define skb_queue_walk_safe(queue, skb, tmp) \
1433 for (skb = (queue)->next, tmp = skb->next; \
1434 skb != (struct sk_buff *)(queue); \
1435 skb = tmp, tmp = skb->next)
1437 #define skb_queue_reverse_walk(queue, skb) \
1438 for (skb = (queue)->prev; \
1439 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1443 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1444 int *peeked
, int *err
);
1445 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1446 int noblock
, int *err
);
1447 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1448 struct poll_table_struct
*wait
);
1449 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1450 int offset
, struct iovec
*to
,
1452 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1455 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1456 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1457 unsigned int flags
);
1458 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1459 int len
, __wsum csum
);
1460 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1462 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
1463 const void *from
, int len
);
1464 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1465 int offset
, u8
*to
, int len
,
1467 extern int skb_splice_bits(struct sk_buff
*skb
,
1468 unsigned int offset
,
1469 struct pipe_inode_info
*pipe
,
1471 unsigned int flags
);
1472 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1473 extern void skb_split(struct sk_buff
*skb
,
1474 struct sk_buff
*skb1
, const u32 len
);
1476 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
);
1478 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1479 int len
, void *buffer
)
1481 int hlen
= skb_headlen(skb
);
1483 if (hlen
- offset
>= len
)
1484 return skb
->data
+ offset
;
1486 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1492 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
1494 const unsigned int len
)
1496 memcpy(to
, skb
->data
, len
);
1499 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
1500 const int offset
, void *to
,
1501 const unsigned int len
)
1503 memcpy(to
, skb
->data
+ offset
, len
);
1506 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
1508 const unsigned int len
)
1510 memcpy(skb
->data
, from
, len
);
1513 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
1516 const unsigned int len
)
1518 memcpy(skb
->data
+ offset
, from
, len
);
1521 extern void skb_init(void);
1524 * skb_get_timestamp - get timestamp from a skb
1525 * @skb: skb to get stamp from
1526 * @stamp: pointer to struct timeval to store stamp in
1528 * Timestamps are stored in the skb as offsets to a base timestamp.
1529 * This function converts the offset back to a struct timeval and stores
1532 static inline void skb_get_timestamp(const struct sk_buff
*skb
, struct timeval
*stamp
)
1534 *stamp
= ktime_to_timeval(skb
->tstamp
);
1537 static inline void __net_timestamp(struct sk_buff
*skb
)
1539 skb
->tstamp
= ktime_get_real();
1542 static inline ktime_t
net_timedelta(ktime_t t
)
1544 return ktime_sub(ktime_get_real(), t
);
1547 static inline ktime_t
net_invalid_timestamp(void)
1549 return ktime_set(0, 0);
1552 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
1553 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
1555 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
1557 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
1561 * skb_checksum_complete - Calculate checksum of an entire packet
1562 * @skb: packet to process
1564 * This function calculates the checksum over the entire packet plus
1565 * the value of skb->csum. The latter can be used to supply the
1566 * checksum of a pseudo header as used by TCP/UDP. It returns the
1569 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1570 * this function can be used to verify that checksum on received
1571 * packets. In that case the function should return zero if the
1572 * checksum is correct. In particular, this function will return zero
1573 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1574 * hardware has already verified the correctness of the checksum.
1576 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
1578 return skb_csum_unnecessary(skb
) ?
1579 0 : __skb_checksum_complete(skb
);
1582 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1583 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
1584 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1586 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1587 nf_conntrack_destroy(nfct
);
1589 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1592 atomic_inc(&nfct
->use
);
1594 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1597 atomic_inc(&skb
->users
);
1599 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1605 #ifdef CONFIG_BRIDGE_NETFILTER
1606 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1608 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1611 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1614 atomic_inc(&nf_bridge
->use
);
1616 #endif /* CONFIG_BRIDGE_NETFILTER */
1617 static inline void nf_reset(struct sk_buff
*skb
)
1619 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1620 nf_conntrack_put(skb
->nfct
);
1622 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1623 skb
->nfct_reasm
= NULL
;
1625 #ifdef CONFIG_BRIDGE_NETFILTER
1626 nf_bridge_put(skb
->nf_bridge
);
1627 skb
->nf_bridge
= NULL
;
1631 /* Note: This doesn't put any conntrack and bridge info in dst. */
1632 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1634 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1635 dst
->nfct
= src
->nfct
;
1636 nf_conntrack_get(src
->nfct
);
1637 dst
->nfctinfo
= src
->nfctinfo
;
1638 dst
->nfct_reasm
= src
->nfct_reasm
;
1639 nf_conntrack_get_reasm(src
->nfct_reasm
);
1641 #ifdef CONFIG_BRIDGE_NETFILTER
1642 dst
->nf_bridge
= src
->nf_bridge
;
1643 nf_bridge_get(src
->nf_bridge
);
1647 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1649 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1650 nf_conntrack_put(dst
->nfct
);
1651 nf_conntrack_put_reasm(dst
->nfct_reasm
);
1653 #ifdef CONFIG_BRIDGE_NETFILTER
1654 nf_bridge_put(dst
->nf_bridge
);
1656 __nf_copy(dst
, src
);
1659 #ifdef CONFIG_NETWORK_SECMARK
1660 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1662 to
->secmark
= from
->secmark
;
1665 static inline void skb_init_secmark(struct sk_buff
*skb
)
1670 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1673 static inline void skb_init_secmark(struct sk_buff
*skb
)
1677 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
1679 skb
->queue_mapping
= queue_mapping
;
1682 static inline u16
skb_get_queue_mapping(struct sk_buff
*skb
)
1684 return skb
->queue_mapping
;
1687 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
1689 to
->queue_mapping
= from
->queue_mapping
;
1692 static inline int skb_is_gso(const struct sk_buff
*skb
)
1694 return skb_shinfo(skb
)->gso_size
;
1697 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
1699 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
1702 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
1704 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
1706 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1707 * wanted then gso_type will be set. */
1708 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1709 if (shinfo
->gso_size
!= 0 && unlikely(shinfo
->gso_type
== 0)) {
1710 __skb_warn_lro_forwarding(skb
);
1716 static inline void skb_forward_csum(struct sk_buff
*skb
)
1718 /* Unfortunately we don't support this one. Any brave souls? */
1719 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1720 skb
->ip_summed
= CHECKSUM_NONE
;
1723 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
1724 #endif /* __KERNEL__ */
1725 #endif /* _LINUX_SKBUFF_H */