2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
109 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
110 unsigned long nr_segs
, loff_t pos
);
111 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
112 unsigned long nr_segs
, loff_t pos
);
113 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
115 static int sock_close(struct inode
*inode
, struct file
*file
);
116 static unsigned int sock_poll(struct file
*file
,
117 struct poll_table_struct
*wait
);
118 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
120 static long compat_sock_ioctl(struct file
*file
,
121 unsigned int cmd
, unsigned long arg
);
123 static int sock_fasync(int fd
, struct file
*filp
, int on
);
124 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
125 int offset
, size_t size
, loff_t
*ppos
, int more
);
126 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
127 struct pipe_inode_info
*pipe
, size_t len
,
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops
= {
136 .owner
= THIS_MODULE
,
138 .aio_read
= sock_aio_read
,
139 .aio_write
= sock_aio_write
,
141 .unlocked_ioctl
= sock_ioctl
,
143 .compat_ioctl
= compat_sock_ioctl
,
146 .open
= sock_no_open
, /* special open code to disallow open via /proc */
147 .release
= sock_close
,
148 .fasync
= sock_fasync
,
149 .sendpage
= sock_sendpage
,
150 .splice_write
= generic_splice_sendpage
,
151 .splice_read
= sock_splice_read
,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock
);
159 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use
);
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
186 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
190 if (copy_from_user(kaddr
, uaddr
, ulen
))
192 return audit_sockaddr(ulen
, kaddr
);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr
*kaddr
, int klen
,
213 void __user
*uaddr
, int __user
*ulen
)
218 err
= get_user(len
, ulen
);
223 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
226 if (audit_sockaddr(klen
, kaddr
))
228 if (copy_to_user(uaddr
, kaddr
, len
))
232 * "fromlen shall refer to the value before truncation.."
235 return __put_user(klen
, ulen
);
238 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
240 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
242 struct socket_alloc
*ei
;
243 struct socket_wq
*wq
;
245 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
248 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
250 kmem_cache_free(sock_inode_cachep
, ei
);
253 init_waitqueue_head(&wq
->wait
);
254 wq
->fasync_list
= NULL
;
255 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
257 ei
->socket
.state
= SS_UNCONNECTED
;
258 ei
->socket
.flags
= 0;
259 ei
->socket
.ops
= NULL
;
260 ei
->socket
.sk
= NULL
;
261 ei
->socket
.file
= NULL
;
263 return &ei
->vfs_inode
;
266 static void sock_destroy_inode(struct inode
*inode
)
268 struct socket_alloc
*ei
;
269 struct socket_wq
*wq
;
271 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
272 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
274 kmem_cache_free(sock_inode_cachep
, ei
);
277 static void init_once(void *foo
)
279 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
281 inode_init_once(&ei
->vfs_inode
);
284 static int init_inodecache(void)
286 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc
),
289 (SLAB_HWCACHE_ALIGN
|
290 SLAB_RECLAIM_ACCOUNT
|
293 if (sock_inode_cachep
== NULL
)
298 static const struct super_operations sockfs_ops
= {
299 .alloc_inode
= sock_alloc_inode
,
300 .destroy_inode
= sock_destroy_inode
,
301 .statfs
= simple_statfs
,
305 * sockfs_dname() is called from d_path().
307 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
309 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
310 dentry
->d_inode
->i_ino
);
313 static const struct dentry_operations sockfs_dentry_operations
= {
314 .d_dname
= sockfs_dname
,
317 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
318 int flags
, const char *dev_name
, void *data
)
320 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
321 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
324 static struct vfsmount
*sock_mnt __read_mostly
;
326 static struct file_system_type sock_fs_type
= {
328 .mount
= sockfs_mount
,
329 .kill_sb
= kill_anon_super
,
333 * Obtains the first available file descriptor and sets it up for use.
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
349 static int sock_alloc_file(struct socket
*sock
, struct file
**f
, int flags
)
351 struct qstr name
= { .name
= "" };
356 fd
= get_unused_fd_flags(flags
);
357 if (unlikely(fd
< 0))
360 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
361 if (unlikely(!path
.dentry
)) {
365 path
.mnt
= mntget(sock_mnt
);
367 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
368 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
370 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
372 if (unlikely(!file
)) {
373 /* drop dentry, keep inode */
374 ihold(path
.dentry
->d_inode
);
381 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
383 file
->private_data
= sock
;
389 int sock_map_fd(struct socket
*sock
, int flags
)
391 struct file
*newfile
;
392 int fd
= sock_alloc_file(sock
, &newfile
, flags
);
395 fd_install(fd
, newfile
);
399 EXPORT_SYMBOL(sock_map_fd
);
401 static struct socket
*sock_from_file(struct file
*file
, int *err
)
403 if (file
->f_op
== &socket_file_ops
)
404 return file
->private_data
; /* set in sock_map_fd */
411 * sockfd_lookup - Go from a file number to its socket slot
413 * @err: pointer to an error code return
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
420 * On a success the socket object pointer is returned.
423 struct socket
*sockfd_lookup(int fd
, int *err
)
434 sock
= sock_from_file(file
, err
);
439 EXPORT_SYMBOL(sockfd_lookup
);
441 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
447 file
= fget_light(fd
, fput_needed
);
449 sock
= sock_from_file(file
, err
);
452 fput_light(file
, *fput_needed
);
458 * sock_alloc - allocate a socket
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
465 static struct socket
*sock_alloc(void)
470 inode
= new_inode(sock_mnt
->mnt_sb
);
474 sock
= SOCKET_I(inode
);
476 kmemcheck_annotate_bitfield(sock
, type
);
477 inode
->i_ino
= get_next_ino();
478 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
479 inode
->i_uid
= current_fsuid();
480 inode
->i_gid
= current_fsgid();
482 percpu_add(sockets_in_use
, 1);
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
492 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
497 const struct file_operations bad_sock_fops
= {
498 .owner
= THIS_MODULE
,
499 .open
= sock_no_open
,
500 .llseek
= noop_llseek
,
504 * sock_release - close a socket
505 * @sock: socket to close
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
512 void sock_release(struct socket
*sock
)
515 struct module
*owner
= sock
->ops
->owner
;
517 sock
->ops
->release(sock
);
522 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
523 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
525 percpu_sub(sockets_in_use
, 1);
527 iput(SOCK_INODE(sock
));
532 EXPORT_SYMBOL(sock_release
);
534 int sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
537 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
538 *tx_flags
|= SKBTX_HW_TSTAMP
;
539 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
540 *tx_flags
|= SKBTX_SW_TSTAMP
;
543 EXPORT_SYMBOL(sock_tx_timestamp
);
545 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
546 struct msghdr
*msg
, size_t size
)
548 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
551 sock_update_classid(sock
->sk
);
558 err
= security_socket_sendmsg(sock
, msg
, size
);
562 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
565 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
568 struct sock_iocb siocb
;
571 init_sync_kiocb(&iocb
, NULL
);
572 iocb
.private = &siocb
;
573 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
574 if (-EIOCBQUEUED
== ret
)
575 ret
= wait_on_sync_kiocb(&iocb
);
578 EXPORT_SYMBOL(sock_sendmsg
);
580 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
581 struct kvec
*vec
, size_t num
, size_t size
)
583 mm_segment_t oldfs
= get_fs();
588 * the following is safe, since for compiler definitions of kvec and
589 * iovec are identical, yielding the same in-core layout and alignment
591 msg
->msg_iov
= (struct iovec
*)vec
;
592 msg
->msg_iovlen
= num
;
593 result
= sock_sendmsg(sock
, msg
, size
);
597 EXPORT_SYMBOL(kernel_sendmsg
);
599 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
602 *ts
= ktime_to_timespec(kt
);
610 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
612 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
615 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
616 struct timespec ts
[3];
618 struct skb_shared_hwtstamps
*shhwtstamps
=
621 /* Race occurred between timestamp enabling and packet
622 receiving. Fill in the current time for now. */
623 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
624 __net_timestamp(skb
);
626 if (need_software_tstamp
) {
627 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
629 skb_get_timestamp(skb
, &tv
);
630 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
633 skb_get_timestampns(skb
, &ts
[0]);
634 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
635 sizeof(ts
[0]), &ts
[0]);
640 memset(ts
, 0, sizeof(ts
));
641 if (skb
->tstamp
.tv64
&&
642 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
643 skb_get_timestampns(skb
, ts
+ 0);
647 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
648 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
650 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
651 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
655 put_cmsg(msg
, SOL_SOCKET
,
656 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
658 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
660 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
663 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
664 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
665 sizeof(__u32
), &skb
->dropcount
);
668 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
671 sock_recv_timestamp(msg
, sk
, skb
);
672 sock_recv_drops(msg
, sk
, skb
);
674 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
676 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
677 struct msghdr
*msg
, size_t size
, int flags
)
679 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
681 sock_update_classid(sock
->sk
);
689 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
692 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
693 struct msghdr
*msg
, size_t size
, int flags
)
695 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
697 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
700 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
701 size_t size
, int flags
)
704 struct sock_iocb siocb
;
707 init_sync_kiocb(&iocb
, NULL
);
708 iocb
.private = &siocb
;
709 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
710 if (-EIOCBQUEUED
== ret
)
711 ret
= wait_on_sync_kiocb(&iocb
);
714 EXPORT_SYMBOL(sock_recvmsg
);
716 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
717 size_t size
, int flags
)
720 struct sock_iocb siocb
;
723 init_sync_kiocb(&iocb
, NULL
);
724 iocb
.private = &siocb
;
725 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
726 if (-EIOCBQUEUED
== ret
)
727 ret
= wait_on_sync_kiocb(&iocb
);
732 * kernel_recvmsg - Receive a message from a socket (kernel space)
733 * @sock: The socket to receive the message from
734 * @msg: Received message
735 * @vec: Input s/g array for message data
736 * @num: Size of input s/g array
737 * @size: Number of bytes to read
738 * @flags: Message flags (MSG_DONTWAIT, etc...)
740 * On return the msg structure contains the scatter/gather array passed in the
741 * vec argument. The array is modified so that it consists of the unfilled
742 * portion of the original array.
744 * The returned value is the total number of bytes received, or an error.
746 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
747 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
749 mm_segment_t oldfs
= get_fs();
754 * the following is safe, since for compiler definitions of kvec and
755 * iovec are identical, yielding the same in-core layout and alignment
757 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
758 result
= sock_recvmsg(sock
, msg
, size
, flags
);
762 EXPORT_SYMBOL(kernel_recvmsg
);
764 static void sock_aio_dtor(struct kiocb
*iocb
)
766 kfree(iocb
->private);
769 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
770 int offset
, size_t size
, loff_t
*ppos
, int more
)
775 sock
= file
->private_data
;
777 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
781 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
784 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
785 struct pipe_inode_info
*pipe
, size_t len
,
788 struct socket
*sock
= file
->private_data
;
790 if (unlikely(!sock
->ops
->splice_read
))
793 sock_update_classid(sock
->sk
);
795 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
798 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
799 struct sock_iocb
*siocb
)
801 if (!is_sync_kiocb(iocb
)) {
802 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
805 iocb
->ki_dtor
= sock_aio_dtor
;
809 iocb
->private = siocb
;
813 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
814 struct file
*file
, const struct iovec
*iov
,
815 unsigned long nr_segs
)
817 struct socket
*sock
= file
->private_data
;
821 for (i
= 0; i
< nr_segs
; i
++)
822 size
+= iov
[i
].iov_len
;
824 msg
->msg_name
= NULL
;
825 msg
->msg_namelen
= 0;
826 msg
->msg_control
= NULL
;
827 msg
->msg_controllen
= 0;
828 msg
->msg_iov
= (struct iovec
*)iov
;
829 msg
->msg_iovlen
= nr_segs
;
830 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
832 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
835 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
836 unsigned long nr_segs
, loff_t pos
)
838 struct sock_iocb siocb
, *x
;
843 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
847 x
= alloc_sock_iocb(iocb
, &siocb
);
850 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
853 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
854 struct file
*file
, const struct iovec
*iov
,
855 unsigned long nr_segs
)
857 struct socket
*sock
= file
->private_data
;
861 for (i
= 0; i
< nr_segs
; i
++)
862 size
+= iov
[i
].iov_len
;
864 msg
->msg_name
= NULL
;
865 msg
->msg_namelen
= 0;
866 msg
->msg_control
= NULL
;
867 msg
->msg_controllen
= 0;
868 msg
->msg_iov
= (struct iovec
*)iov
;
869 msg
->msg_iovlen
= nr_segs
;
870 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
871 if (sock
->type
== SOCK_SEQPACKET
)
872 msg
->msg_flags
|= MSG_EOR
;
874 return __sock_sendmsg(iocb
, sock
, msg
, size
);
877 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
878 unsigned long nr_segs
, loff_t pos
)
880 struct sock_iocb siocb
, *x
;
885 x
= alloc_sock_iocb(iocb
, &siocb
);
889 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
893 * Atomic setting of ioctl hooks to avoid race
894 * with module unload.
897 static DEFINE_MUTEX(br_ioctl_mutex
);
898 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
900 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
902 mutex_lock(&br_ioctl_mutex
);
903 br_ioctl_hook
= hook
;
904 mutex_unlock(&br_ioctl_mutex
);
906 EXPORT_SYMBOL(brioctl_set
);
908 static DEFINE_MUTEX(vlan_ioctl_mutex
);
909 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
911 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
913 mutex_lock(&vlan_ioctl_mutex
);
914 vlan_ioctl_hook
= hook
;
915 mutex_unlock(&vlan_ioctl_mutex
);
917 EXPORT_SYMBOL(vlan_ioctl_set
);
919 static DEFINE_MUTEX(dlci_ioctl_mutex
);
920 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
922 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
924 mutex_lock(&dlci_ioctl_mutex
);
925 dlci_ioctl_hook
= hook
;
926 mutex_unlock(&dlci_ioctl_mutex
);
928 EXPORT_SYMBOL(dlci_ioctl_set
);
930 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
931 unsigned int cmd
, unsigned long arg
)
934 void __user
*argp
= (void __user
*)arg
;
936 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
939 * If this ioctl is unknown try to hand it down
942 if (err
== -ENOIOCTLCMD
)
943 err
= dev_ioctl(net
, cmd
, argp
);
949 * With an ioctl, arg may well be a user mode pointer, but we don't know
950 * what to do with it - that's up to the protocol still.
953 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
957 void __user
*argp
= (void __user
*)arg
;
961 sock
= file
->private_data
;
964 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
965 err
= dev_ioctl(net
, cmd
, argp
);
967 #ifdef CONFIG_WEXT_CORE
968 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
969 err
= dev_ioctl(net
, cmd
, argp
);
976 if (get_user(pid
, (int __user
*)argp
))
978 err
= f_setown(sock
->file
, pid
, 1);
982 err
= put_user(f_getown(sock
->file
),
991 request_module("bridge");
993 mutex_lock(&br_ioctl_mutex
);
995 err
= br_ioctl_hook(net
, cmd
, argp
);
996 mutex_unlock(&br_ioctl_mutex
);
1001 if (!vlan_ioctl_hook
)
1002 request_module("8021q");
1004 mutex_lock(&vlan_ioctl_mutex
);
1005 if (vlan_ioctl_hook
)
1006 err
= vlan_ioctl_hook(net
, argp
);
1007 mutex_unlock(&vlan_ioctl_mutex
);
1012 if (!dlci_ioctl_hook
)
1013 request_module("dlci");
1015 mutex_lock(&dlci_ioctl_mutex
);
1016 if (dlci_ioctl_hook
)
1017 err
= dlci_ioctl_hook(cmd
, argp
);
1018 mutex_unlock(&dlci_ioctl_mutex
);
1021 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1027 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1030 struct socket
*sock
= NULL
;
1032 err
= security_socket_create(family
, type
, protocol
, 1);
1036 sock
= sock_alloc();
1043 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1055 EXPORT_SYMBOL(sock_create_lite
);
1057 /* No kernel lock held - perfect */
1058 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1060 struct socket
*sock
;
1063 * We can't return errors to poll, so it's either yes or no.
1065 sock
= file
->private_data
;
1066 return sock
->ops
->poll(file
, sock
, wait
);
1069 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1071 struct socket
*sock
= file
->private_data
;
1073 return sock
->ops
->mmap(file
, sock
, vma
);
1076 static int sock_close(struct inode
*inode
, struct file
*filp
)
1079 * It was possible the inode is NULL we were
1080 * closing an unfinished socket.
1084 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1087 sock_release(SOCKET_I(inode
));
1092 * Update the socket async list
1094 * Fasync_list locking strategy.
1096 * 1. fasync_list is modified only under process context socket lock
1097 * i.e. under semaphore.
1098 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1099 * or under socket lock
1102 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1104 struct socket
*sock
= filp
->private_data
;
1105 struct sock
*sk
= sock
->sk
;
1106 struct socket_wq
*wq
;
1112 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1113 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1115 if (!wq
->fasync_list
)
1116 sock_reset_flag(sk
, SOCK_FASYNC
);
1118 sock_set_flag(sk
, SOCK_FASYNC
);
1124 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1126 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1128 struct socket_wq
*wq
;
1133 wq
= rcu_dereference(sock
->wq
);
1134 if (!wq
|| !wq
->fasync_list
) {
1139 case SOCK_WAKE_WAITD
:
1140 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1143 case SOCK_WAKE_SPACE
:
1144 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1149 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1152 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1157 EXPORT_SYMBOL(sock_wake_async
);
1159 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1160 struct socket
**res
, int kern
)
1163 struct socket
*sock
;
1164 const struct net_proto_family
*pf
;
1167 * Check protocol is in range
1169 if (family
< 0 || family
>= NPROTO
)
1170 return -EAFNOSUPPORT
;
1171 if (type
< 0 || type
>= SOCK_MAX
)
1176 This uglymoron is moved from INET layer to here to avoid
1177 deadlock in module load.
1179 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1183 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1189 err
= security_socket_create(family
, type
, protocol
, kern
);
1194 * Allocate the socket and allow the family to set things up. if
1195 * the protocol is 0, the family is instructed to select an appropriate
1198 sock
= sock_alloc();
1200 if (net_ratelimit())
1201 printk(KERN_WARNING
"socket: no more sockets\n");
1202 return -ENFILE
; /* Not exactly a match, but its the
1203 closest posix thing */
1208 #ifdef CONFIG_MODULES
1209 /* Attempt to load a protocol module if the find failed.
1211 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1212 * requested real, full-featured networking support upon configuration.
1213 * Otherwise module support will break!
1215 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1216 request_module("net-pf-%d", family
);
1220 pf
= rcu_dereference(net_families
[family
]);
1221 err
= -EAFNOSUPPORT
;
1226 * We will call the ->create function, that possibly is in a loadable
1227 * module, so we have to bump that loadable module refcnt first.
1229 if (!try_module_get(pf
->owner
))
1232 /* Now protected by module ref count */
1235 err
= pf
->create(net
, sock
, protocol
, kern
);
1237 goto out_module_put
;
1240 * Now to bump the refcnt of the [loadable] module that owns this
1241 * socket at sock_release time we decrement its refcnt.
1243 if (!try_module_get(sock
->ops
->owner
))
1244 goto out_module_busy
;
1247 * Now that we're done with the ->create function, the [loadable]
1248 * module can have its refcnt decremented
1250 module_put(pf
->owner
);
1251 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1253 goto out_sock_release
;
1259 err
= -EAFNOSUPPORT
;
1262 module_put(pf
->owner
);
1269 goto out_sock_release
;
1271 EXPORT_SYMBOL(__sock_create
);
1273 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1275 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1277 EXPORT_SYMBOL(sock_create
);
1279 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1281 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1283 EXPORT_SYMBOL(sock_create_kern
);
1285 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1288 struct socket
*sock
;
1291 /* Check the SOCK_* constants for consistency. */
1292 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1293 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1294 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1295 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1297 flags
= type
& ~SOCK_TYPE_MASK
;
1298 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1300 type
&= SOCK_TYPE_MASK
;
1302 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1303 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1305 retval
= sock_create(family
, type
, protocol
, &sock
);
1309 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1314 /* It may be already another descriptor 8) Not kernel problem. */
1323 * Create a pair of connected sockets.
1326 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1327 int __user
*, usockvec
)
1329 struct socket
*sock1
, *sock2
;
1331 struct file
*newfile1
, *newfile2
;
1334 flags
= type
& ~SOCK_TYPE_MASK
;
1335 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1337 type
&= SOCK_TYPE_MASK
;
1339 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1340 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1343 * Obtain the first socket and check if the underlying protocol
1344 * supports the socketpair call.
1347 err
= sock_create(family
, type
, protocol
, &sock1
);
1351 err
= sock_create(family
, type
, protocol
, &sock2
);
1355 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1357 goto out_release_both
;
1359 fd1
= sock_alloc_file(sock1
, &newfile1
, flags
);
1360 if (unlikely(fd1
< 0)) {
1362 goto out_release_both
;
1365 fd2
= sock_alloc_file(sock2
, &newfile2
, flags
);
1366 if (unlikely(fd2
< 0)) {
1370 sock_release(sock2
);
1374 audit_fd_pair(fd1
, fd2
);
1375 fd_install(fd1
, newfile1
);
1376 fd_install(fd2
, newfile2
);
1377 /* fd1 and fd2 may be already another descriptors.
1378 * Not kernel problem.
1381 err
= put_user(fd1
, &usockvec
[0]);
1383 err
= put_user(fd2
, &usockvec
[1]);
1392 sock_release(sock2
);
1394 sock_release(sock1
);
1400 * Bind a name to a socket. Nothing much to do here since it's
1401 * the protocol's responsibility to handle the local address.
1403 * We move the socket address to kernel space before we call
1404 * the protocol layer (having also checked the address is ok).
1407 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1409 struct socket
*sock
;
1410 struct sockaddr_storage address
;
1411 int err
, fput_needed
;
1413 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1415 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1417 err
= security_socket_bind(sock
,
1418 (struct sockaddr
*)&address
,
1421 err
= sock
->ops
->bind(sock
,
1425 fput_light(sock
->file
, fput_needed
);
1431 * Perform a listen. Basically, we allow the protocol to do anything
1432 * necessary for a listen, and if that works, we mark the socket as
1433 * ready for listening.
1436 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1438 struct socket
*sock
;
1439 int err
, fput_needed
;
1442 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1444 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1445 if ((unsigned)backlog
> somaxconn
)
1446 backlog
= somaxconn
;
1448 err
= security_socket_listen(sock
, backlog
);
1450 err
= sock
->ops
->listen(sock
, backlog
);
1452 fput_light(sock
->file
, fput_needed
);
1458 * For accept, we attempt to create a new socket, set up the link
1459 * with the client, wake up the client, then return the new
1460 * connected fd. We collect the address of the connector in kernel
1461 * space and move it to user at the very end. This is unclean because
1462 * we open the socket then return an error.
1464 * 1003.1g adds the ability to recvmsg() to query connection pending
1465 * status to recvmsg. We need to add that support in a way thats
1466 * clean when we restucture accept also.
1469 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1470 int __user
*, upeer_addrlen
, int, flags
)
1472 struct socket
*sock
, *newsock
;
1473 struct file
*newfile
;
1474 int err
, len
, newfd
, fput_needed
;
1475 struct sockaddr_storage address
;
1477 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1480 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1481 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1483 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1488 newsock
= sock_alloc();
1492 newsock
->type
= sock
->type
;
1493 newsock
->ops
= sock
->ops
;
1496 * We don't need try_module_get here, as the listening socket (sock)
1497 * has the protocol module (sock->ops->owner) held.
1499 __module_get(newsock
->ops
->owner
);
1501 newfd
= sock_alloc_file(newsock
, &newfile
, flags
);
1502 if (unlikely(newfd
< 0)) {
1504 sock_release(newsock
);
1508 err
= security_socket_accept(sock
, newsock
);
1512 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1516 if (upeer_sockaddr
) {
1517 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1519 err
= -ECONNABORTED
;
1522 err
= move_addr_to_user((struct sockaddr
*)&address
,
1523 len
, upeer_sockaddr
, upeer_addrlen
);
1528 /* File flags are not inherited via accept() unlike another OSes. */
1530 fd_install(newfd
, newfile
);
1534 fput_light(sock
->file
, fput_needed
);
1539 put_unused_fd(newfd
);
1543 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1544 int __user
*, upeer_addrlen
)
1546 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1550 * Attempt to connect to a socket with the server address. The address
1551 * is in user space so we verify it is OK and move it to kernel space.
1553 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1556 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1557 * other SEQPACKET protocols that take time to connect() as it doesn't
1558 * include the -EINPROGRESS status for such sockets.
1561 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1564 struct socket
*sock
;
1565 struct sockaddr_storage address
;
1566 int err
, fput_needed
;
1568 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1571 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1576 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1580 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1581 sock
->file
->f_flags
);
1583 fput_light(sock
->file
, fput_needed
);
1589 * Get the local address ('name') of a socket object. Move the obtained
1590 * name to user space.
1593 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1594 int __user
*, usockaddr_len
)
1596 struct socket
*sock
;
1597 struct sockaddr_storage address
;
1598 int len
, err
, fput_needed
;
1600 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1604 err
= security_socket_getsockname(sock
);
1608 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1611 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1614 fput_light(sock
->file
, fput_needed
);
1620 * Get the remote address ('name') of a socket object. Move the obtained
1621 * name to user space.
1624 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1625 int __user
*, usockaddr_len
)
1627 struct socket
*sock
;
1628 struct sockaddr_storage address
;
1629 int len
, err
, fput_needed
;
1631 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1633 err
= security_socket_getpeername(sock
);
1635 fput_light(sock
->file
, fput_needed
);
1640 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1643 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1645 fput_light(sock
->file
, fput_needed
);
1651 * Send a datagram to a given address. We move the address into kernel
1652 * space and check the user space data area is readable before invoking
1656 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1657 unsigned, flags
, struct sockaddr __user
*, addr
,
1660 struct socket
*sock
;
1661 struct sockaddr_storage address
;
1669 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1673 iov
.iov_base
= buff
;
1675 msg
.msg_name
= NULL
;
1678 msg
.msg_control
= NULL
;
1679 msg
.msg_controllen
= 0;
1680 msg
.msg_namelen
= 0;
1682 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1685 msg
.msg_name
= (struct sockaddr
*)&address
;
1686 msg
.msg_namelen
= addr_len
;
1688 if (sock
->file
->f_flags
& O_NONBLOCK
)
1689 flags
|= MSG_DONTWAIT
;
1690 msg
.msg_flags
= flags
;
1691 err
= sock_sendmsg(sock
, &msg
, len
);
1694 fput_light(sock
->file
, fput_needed
);
1700 * Send a datagram down a socket.
1703 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1706 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1710 * Receive a frame from the socket and optionally record the address of the
1711 * sender. We verify the buffers are writable and if needed move the
1712 * sender address from kernel to user space.
1715 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1716 unsigned, flags
, struct sockaddr __user
*, addr
,
1717 int __user
*, addr_len
)
1719 struct socket
*sock
;
1722 struct sockaddr_storage address
;
1728 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1732 msg
.msg_control
= NULL
;
1733 msg
.msg_controllen
= 0;
1737 iov
.iov_base
= ubuf
;
1738 msg
.msg_name
= (struct sockaddr
*)&address
;
1739 msg
.msg_namelen
= sizeof(address
);
1740 if (sock
->file
->f_flags
& O_NONBLOCK
)
1741 flags
|= MSG_DONTWAIT
;
1742 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1744 if (err
>= 0 && addr
!= NULL
) {
1745 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1746 msg
.msg_namelen
, addr
, addr_len
);
1751 fput_light(sock
->file
, fput_needed
);
1757 * Receive a datagram from a socket.
1760 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1763 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1767 * Set a socket option. Because we don't know the option lengths we have
1768 * to pass the user mode parameter for the protocols to sort out.
1771 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1772 char __user
*, optval
, int, optlen
)
1774 int err
, fput_needed
;
1775 struct socket
*sock
;
1780 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1782 err
= security_socket_setsockopt(sock
, level
, optname
);
1786 if (level
== SOL_SOCKET
)
1788 sock_setsockopt(sock
, level
, optname
, optval
,
1792 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1795 fput_light(sock
->file
, fput_needed
);
1801 * Get a socket option. Because we don't know the option lengths we have
1802 * to pass a user mode parameter for the protocols to sort out.
1805 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1806 char __user
*, optval
, int __user
*, optlen
)
1808 int err
, fput_needed
;
1809 struct socket
*sock
;
1811 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1813 err
= security_socket_getsockopt(sock
, level
, optname
);
1817 if (level
== SOL_SOCKET
)
1819 sock_getsockopt(sock
, level
, optname
, optval
,
1823 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1826 fput_light(sock
->file
, fput_needed
);
1832 * Shutdown a socket.
1835 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1837 int err
, fput_needed
;
1838 struct socket
*sock
;
1840 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1842 err
= security_socket_shutdown(sock
, how
);
1844 err
= sock
->ops
->shutdown(sock
, how
);
1845 fput_light(sock
->file
, fput_needed
);
1850 /* A couple of helpful macros for getting the address of the 32/64 bit
1851 * fields which are the same type (int / unsigned) on our platforms.
1853 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1854 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1855 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1858 * BSD sendmsg interface
1861 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned, flags
)
1863 struct compat_msghdr __user
*msg_compat
=
1864 (struct compat_msghdr __user
*)msg
;
1865 struct socket
*sock
;
1866 struct sockaddr_storage address
;
1867 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1868 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1869 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1870 /* 20 is size of ipv6_pktinfo */
1871 unsigned char *ctl_buf
= ctl
;
1872 struct msghdr msg_sys
;
1873 int err
, ctl_len
, iov_size
, total_len
;
1877 if (MSG_CMSG_COMPAT
& flags
) {
1878 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1880 } else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1883 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1887 /* do not move before msg_sys is valid */
1889 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1892 /* Check whether to allocate the iovec area */
1894 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1895 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1896 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1901 /* This will also move the address data into kernel space */
1902 if (MSG_CMSG_COMPAT
& flags
) {
1903 err
= verify_compat_iovec(&msg_sys
, iov
,
1904 (struct sockaddr
*)&address
,
1907 err
= verify_iovec(&msg_sys
, iov
,
1908 (struct sockaddr
*)&address
,
1916 if (msg_sys
.msg_controllen
> INT_MAX
)
1918 ctl_len
= msg_sys
.msg_controllen
;
1919 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1921 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1925 ctl_buf
= msg_sys
.msg_control
;
1926 ctl_len
= msg_sys
.msg_controllen
;
1927 } else if (ctl_len
) {
1928 if (ctl_len
> sizeof(ctl
)) {
1929 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1930 if (ctl_buf
== NULL
)
1935 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1936 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1937 * checking falls down on this.
1939 if (copy_from_user(ctl_buf
,
1940 (void __user __force
*)msg_sys
.msg_control
,
1943 msg_sys
.msg_control
= ctl_buf
;
1945 msg_sys
.msg_flags
= flags
;
1947 if (sock
->file
->f_flags
& O_NONBLOCK
)
1948 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1949 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1953 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1955 if (iov
!= iovstack
)
1956 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1958 fput_light(sock
->file
, fput_needed
);
1963 static int __sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1964 struct msghdr
*msg_sys
, unsigned flags
, int nosec
)
1966 struct compat_msghdr __user
*msg_compat
=
1967 (struct compat_msghdr __user
*)msg
;
1968 struct iovec iovstack
[UIO_FASTIOV
];
1969 struct iovec
*iov
= iovstack
;
1970 unsigned long cmsg_ptr
;
1971 int err
, iov_size
, total_len
, len
;
1973 /* kernel mode address */
1974 struct sockaddr_storage addr
;
1976 /* user mode address pointers */
1977 struct sockaddr __user
*uaddr
;
1978 int __user
*uaddr_len
;
1980 if (MSG_CMSG_COMPAT
& flags
) {
1981 if (get_compat_msghdr(msg_sys
, msg_compat
))
1983 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
1987 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
1990 /* Check whether to allocate the iovec area */
1992 iov_size
= msg_sys
->msg_iovlen
* sizeof(struct iovec
);
1993 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
1994 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
2000 * Save the user-mode address (verify_iovec will change the
2001 * kernel msghdr to use the kernel address space)
2004 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2005 uaddr_len
= COMPAT_NAMELEN(msg
);
2006 if (MSG_CMSG_COMPAT
& flags
) {
2007 err
= verify_compat_iovec(msg_sys
, iov
,
2008 (struct sockaddr
*)&addr
,
2011 err
= verify_iovec(msg_sys
, iov
,
2012 (struct sockaddr
*)&addr
,
2018 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2019 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2021 if (sock
->file
->f_flags
& O_NONBLOCK
)
2022 flags
|= MSG_DONTWAIT
;
2023 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2029 if (uaddr
!= NULL
) {
2030 err
= move_addr_to_user((struct sockaddr
*)&addr
,
2031 msg_sys
->msg_namelen
, uaddr
,
2036 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2040 if (MSG_CMSG_COMPAT
& flags
)
2041 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2042 &msg_compat
->msg_controllen
);
2044 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2045 &msg
->msg_controllen
);
2051 if (iov
!= iovstack
)
2052 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2058 * BSD recvmsg interface
2061 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2062 unsigned int, flags
)
2064 int fput_needed
, err
;
2065 struct msghdr msg_sys
;
2066 struct socket
*sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2071 err
= __sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2073 fput_light(sock
->file
, fput_needed
);
2079 * Linux recvmmsg interface
2082 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2083 unsigned int flags
, struct timespec
*timeout
)
2085 int fput_needed
, err
, datagrams
;
2086 struct socket
*sock
;
2087 struct mmsghdr __user
*entry
;
2088 struct compat_mmsghdr __user
*compat_entry
;
2089 struct msghdr msg_sys
;
2090 struct timespec end_time
;
2093 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2099 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2103 err
= sock_error(sock
->sk
);
2108 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2110 while (datagrams
< vlen
) {
2112 * No need to ask LSM for more than the first datagram.
2114 if (MSG_CMSG_COMPAT
& flags
) {
2115 err
= __sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2116 &msg_sys
, flags
, datagrams
);
2119 err
= __put_user(err
, &compat_entry
->msg_len
);
2122 err
= __sys_recvmsg(sock
, (struct msghdr __user
*)entry
,
2123 &msg_sys
, flags
, datagrams
);
2126 err
= put_user(err
, &entry
->msg_len
);
2134 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2135 if (flags
& MSG_WAITFORONE
)
2136 flags
|= MSG_DONTWAIT
;
2139 ktime_get_ts(timeout
);
2140 *timeout
= timespec_sub(end_time
, *timeout
);
2141 if (timeout
->tv_sec
< 0) {
2142 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2146 /* Timeout, return less than vlen datagrams */
2147 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2151 /* Out of band data, return right away */
2152 if (msg_sys
.msg_flags
& MSG_OOB
)
2157 fput_light(sock
->file
, fput_needed
);
2162 if (datagrams
!= 0) {
2164 * We may return less entries than requested (vlen) if the
2165 * sock is non block and there aren't enough datagrams...
2167 if (err
!= -EAGAIN
) {
2169 * ... or if recvmsg returns an error after we
2170 * received some datagrams, where we record the
2171 * error to return on the next call or if the
2172 * app asks about it using getsockopt(SO_ERROR).
2174 sock
->sk
->sk_err
= -err
;
2183 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2184 unsigned int, vlen
, unsigned int, flags
,
2185 struct timespec __user
*, timeout
)
2188 struct timespec timeout_sys
;
2191 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2193 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2196 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2198 if (datagrams
> 0 &&
2199 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2200 datagrams
= -EFAULT
;
2205 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2206 /* Argument list sizes for sys_socketcall */
2207 #define AL(x) ((x) * sizeof(unsigned long))
2208 static const unsigned char nargs
[20] = {
2209 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2210 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2211 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2218 * System call vectors.
2220 * Argument checking cleaned up. Saved 20% in size.
2221 * This function doesn't need to set the kernel lock because
2222 * it is set by the callees.
2225 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2228 unsigned long a0
, a1
;
2232 if (call
< 1 || call
> SYS_RECVMMSG
)
2236 if (len
> sizeof(a
))
2239 /* copy_from_user should be SMP safe. */
2240 if (copy_from_user(a
, args
, len
))
2243 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2250 err
= sys_socket(a0
, a1
, a
[2]);
2253 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2256 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2259 err
= sys_listen(a0
, a1
);
2262 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2263 (int __user
*)a
[2], 0);
2265 case SYS_GETSOCKNAME
:
2267 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2268 (int __user
*)a
[2]);
2270 case SYS_GETPEERNAME
:
2272 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2273 (int __user
*)a
[2]);
2275 case SYS_SOCKETPAIR
:
2276 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2279 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2282 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2283 (struct sockaddr __user
*)a
[4], a
[5]);
2286 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2289 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2290 (struct sockaddr __user
*)a
[4],
2291 (int __user
*)a
[5]);
2294 err
= sys_shutdown(a0
, a1
);
2296 case SYS_SETSOCKOPT
:
2297 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2299 case SYS_GETSOCKOPT
:
2301 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2302 (int __user
*)a
[4]);
2305 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2308 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2311 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2312 (struct timespec __user
*)a
[4]);
2315 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2316 (int __user
*)a
[2], a
[3]);
2325 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2328 * sock_register - add a socket protocol handler
2329 * @ops: description of protocol
2331 * This function is called by a protocol handler that wants to
2332 * advertise its address family, and have it linked into the
2333 * socket interface. The value ops->family coresponds to the
2334 * socket system call protocol family.
2336 int sock_register(const struct net_proto_family
*ops
)
2340 if (ops
->family
>= NPROTO
) {
2341 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2346 spin_lock(&net_family_lock
);
2347 if (rcu_dereference_protected(net_families
[ops
->family
],
2348 lockdep_is_held(&net_family_lock
)))
2351 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2354 spin_unlock(&net_family_lock
);
2356 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2359 EXPORT_SYMBOL(sock_register
);
2362 * sock_unregister - remove a protocol handler
2363 * @family: protocol family to remove
2365 * This function is called by a protocol handler that wants to
2366 * remove its address family, and have it unlinked from the
2367 * new socket creation.
2369 * If protocol handler is a module, then it can use module reference
2370 * counts to protect against new references. If protocol handler is not
2371 * a module then it needs to provide its own protection in
2372 * the ops->create routine.
2374 void sock_unregister(int family
)
2376 BUG_ON(family
< 0 || family
>= NPROTO
);
2378 spin_lock(&net_family_lock
);
2379 rcu_assign_pointer(net_families
[family
], NULL
);
2380 spin_unlock(&net_family_lock
);
2384 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2386 EXPORT_SYMBOL(sock_unregister
);
2388 static int __init
sock_init(void)
2393 * Initialize sock SLAB cache.
2399 * Initialize skbuff SLAB cache
2404 * Initialize the protocols module.
2409 err
= register_filesystem(&sock_fs_type
);
2412 sock_mnt
= kern_mount(&sock_fs_type
);
2413 if (IS_ERR(sock_mnt
)) {
2414 err
= PTR_ERR(sock_mnt
);
2418 /* The real protocol initialization is performed in later initcalls.
2421 #ifdef CONFIG_NETFILTER
2425 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2426 skb_timestamping_init();
2433 unregister_filesystem(&sock_fs_type
);
2438 core_initcall(sock_init
); /* early initcall */
2440 #ifdef CONFIG_PROC_FS
2441 void socket_seq_show(struct seq_file
*seq
)
2446 for_each_possible_cpu(cpu
)
2447 counter
+= per_cpu(sockets_in_use
, cpu
);
2449 /* It can be negative, by the way. 8) */
2453 seq_printf(seq
, "sockets: used %d\n", counter
);
2455 #endif /* CONFIG_PROC_FS */
2457 #ifdef CONFIG_COMPAT
2458 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2459 unsigned int cmd
, struct compat_timeval __user
*up
)
2461 mm_segment_t old_fs
= get_fs();
2466 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2469 err
= put_user(ktv
.tv_sec
, &up
->tv_sec
);
2470 err
|= __put_user(ktv
.tv_usec
, &up
->tv_usec
);
2475 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2476 unsigned int cmd
, struct compat_timespec __user
*up
)
2478 mm_segment_t old_fs
= get_fs();
2479 struct timespec kts
;
2483 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2486 err
= put_user(kts
.tv_sec
, &up
->tv_sec
);
2487 err
|= __put_user(kts
.tv_nsec
, &up
->tv_nsec
);
2492 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2494 struct ifreq __user
*uifr
;
2497 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2498 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2501 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2505 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2511 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2513 struct compat_ifconf ifc32
;
2515 struct ifconf __user
*uifc
;
2516 struct compat_ifreq __user
*ifr32
;
2517 struct ifreq __user
*ifr
;
2521 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2524 if (ifc32
.ifcbuf
== 0) {
2528 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2530 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2531 sizeof(struct ifreq
);
2532 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2534 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2535 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2536 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2537 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2543 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2546 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2550 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2554 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2556 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2557 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2558 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2564 if (ifc32
.ifcbuf
== 0) {
2565 /* Translate from 64-bit structure multiple to
2569 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2574 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2580 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2582 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2583 bool convert_in
= false, convert_out
= false;
2584 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2585 struct ethtool_rxnfc __user
*rxnfc
;
2586 struct ifreq __user
*ifr
;
2587 u32 rule_cnt
= 0, actual_rule_cnt
;
2592 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2595 compat_rxnfc
= compat_ptr(data
);
2597 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2600 /* Most ethtool structures are defined without padding.
2601 * Unfortunately struct ethtool_rxnfc is an exception.
2606 case ETHTOOL_GRXCLSRLALL
:
2607 /* Buffer size is variable */
2608 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2610 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2612 buf_size
+= rule_cnt
* sizeof(u32
);
2614 case ETHTOOL_GRXRINGS
:
2615 case ETHTOOL_GRXCLSRLCNT
:
2616 case ETHTOOL_GRXCLSRULE
:
2619 case ETHTOOL_SRXCLSRLDEL
:
2620 case ETHTOOL_SRXCLSRLINS
:
2621 buf_size
+= sizeof(struct ethtool_rxnfc
);
2626 ifr
= compat_alloc_user_space(buf_size
);
2627 rxnfc
= (void *)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2629 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2632 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2633 &ifr
->ifr_ifru
.ifru_data
))
2637 /* We expect there to be holes between fs.m_ext and
2638 * fs.ring_cookie and at the end of fs, but nowhere else.
2640 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2641 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2642 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2643 sizeof(rxnfc
->fs
.m_ext
));
2645 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2646 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2647 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2648 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2650 if (copy_in_user(rxnfc
, compat_rxnfc
,
2651 (void *)(&rxnfc
->fs
.m_ext
+ 1) -
2653 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2654 &compat_rxnfc
->fs
.ring_cookie
,
2655 (void *)(&rxnfc
->fs
.location
+ 1) -
2656 (void *)&rxnfc
->fs
.ring_cookie
) ||
2657 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2658 sizeof(rxnfc
->rule_cnt
)))
2662 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2667 if (copy_in_user(compat_rxnfc
, rxnfc
,
2668 (const void *)(&rxnfc
->fs
.m_ext
+ 1) -
2669 (const void *)rxnfc
) ||
2670 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2671 &rxnfc
->fs
.ring_cookie
,
2672 (const void *)(&rxnfc
->fs
.location
+ 1) -
2673 (const void *)&rxnfc
->fs
.ring_cookie
) ||
2674 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2675 sizeof(rxnfc
->rule_cnt
)))
2678 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2679 /* As an optimisation, we only copy the actual
2680 * number of rules that the underlying
2681 * function returned. Since Mallory might
2682 * change the rule count in user memory, we
2683 * check that it is less than the rule count
2684 * originally given (as the user buffer size),
2685 * which has been range-checked.
2687 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2689 if (actual_rule_cnt
< rule_cnt
)
2690 rule_cnt
= actual_rule_cnt
;
2691 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2692 &rxnfc
->rule_locs
[0],
2693 rule_cnt
* sizeof(u32
)))
2701 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2704 compat_uptr_t uptr32
;
2705 struct ifreq __user
*uifr
;
2707 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2708 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2711 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2714 uptr
= compat_ptr(uptr32
);
2716 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2719 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2722 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2723 struct compat_ifreq __user
*ifr32
)
2726 struct ifreq __user
*uifr
;
2727 mm_segment_t old_fs
;
2733 case SIOCBONDENSLAVE
:
2734 case SIOCBONDRELEASE
:
2735 case SIOCBONDSETHWADDR
:
2736 case SIOCBONDCHANGEACTIVE
:
2737 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2742 err
= dev_ioctl(net
, cmd
,
2743 (struct ifreq __user __force
*) &kifr
);
2747 case SIOCBONDSLAVEINFOQUERY
:
2748 case SIOCBONDINFOQUERY
:
2749 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2750 if (copy_in_user(&uifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2753 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2756 datap
= compat_ptr(data
);
2757 if (put_user(datap
, &uifr
->ifr_ifru
.ifru_data
))
2760 return dev_ioctl(net
, cmd
, uifr
);
2766 static int siocdevprivate_ioctl(struct net
*net
, unsigned int cmd
,
2767 struct compat_ifreq __user
*u_ifreq32
)
2769 struct ifreq __user
*u_ifreq64
;
2770 char tmp_buf
[IFNAMSIZ
];
2771 void __user
*data64
;
2774 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2777 if (__get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2779 data64
= compat_ptr(data32
);
2781 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2783 /* Don't check these user accesses, just let that get trapped
2784 * in the ioctl handler instead.
2786 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2789 if (__put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2792 return dev_ioctl(net
, cmd
, u_ifreq64
);
2795 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2796 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2798 struct ifreq __user
*uifr
;
2801 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2802 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2805 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2816 case SIOCGIFBRDADDR
:
2817 case SIOCGIFDSTADDR
:
2818 case SIOCGIFNETMASK
:
2823 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2831 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2832 struct compat_ifreq __user
*uifr32
)
2835 struct compat_ifmap __user
*uifmap32
;
2836 mm_segment_t old_fs
;
2839 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2840 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2841 err
|= __get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2842 err
|= __get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2843 err
|= __get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2844 err
|= __get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2845 err
|= __get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2846 err
|= __get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2852 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2855 if (cmd
== SIOCGIFMAP
&& !err
) {
2856 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2857 err
|= __put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2858 err
|= __put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2859 err
|= __put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2860 err
|= __put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2861 err
|= __put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2862 err
|= __put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2869 static int compat_siocshwtstamp(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2872 compat_uptr_t uptr32
;
2873 struct ifreq __user
*uifr
;
2875 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2876 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2879 if (get_user(uptr32
, &uifr32
->ifr_data
))
2882 uptr
= compat_ptr(uptr32
);
2884 if (put_user(uptr
, &uifr
->ifr_data
))
2887 return dev_ioctl(net
, SIOCSHWTSTAMP
, uifr
);
2892 struct sockaddr rt_dst
; /* target address */
2893 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2894 struct sockaddr rt_genmask
; /* target network mask (IP) */
2895 unsigned short rt_flags
;
2898 unsigned char rt_tos
;
2899 unsigned char rt_class
;
2901 short rt_metric
; /* +1 for binary compatibility! */
2902 /* char * */ u32 rt_dev
; /* forcing the device at add */
2903 u32 rt_mtu
; /* per route MTU/Window */
2904 u32 rt_window
; /* Window clamping */
2905 unsigned short rt_irtt
; /* Initial RTT */
2908 struct in6_rtmsg32
{
2909 struct in6_addr rtmsg_dst
;
2910 struct in6_addr rtmsg_src
;
2911 struct in6_addr rtmsg_gateway
;
2921 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
2922 unsigned int cmd
, void __user
*argp
)
2926 struct in6_rtmsg r6
;
2930 mm_segment_t old_fs
= get_fs();
2932 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
2933 struct in6_rtmsg32 __user
*ur6
= argp
;
2934 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
2935 3 * sizeof(struct in6_addr
));
2936 ret
|= __get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
2937 ret
|= __get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
2938 ret
|= __get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
2939 ret
|= __get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
2940 ret
|= __get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
2941 ret
|= __get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
2942 ret
|= __get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
2946 struct rtentry32 __user
*ur4
= argp
;
2947 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
2948 3 * sizeof(struct sockaddr
));
2949 ret
|= __get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
2950 ret
|= __get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
2951 ret
|= __get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
2952 ret
|= __get_user(r4
.rt_window
, &(ur4
->rt_window
));
2953 ret
|= __get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
2954 ret
|= __get_user(rtdev
, &(ur4
->rt_dev
));
2956 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
2957 r4
.rt_dev
= (char __user __force
*)devname
;
2971 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
2978 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2979 * for some operations; this forces use of the newer bridge-utils that
2980 * use compatible ioctls
2982 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
2986 if (get_user(tmp
, argp
))
2988 if (tmp
== BRCTL_GET_VERSION
)
2989 return BRCTL_VERSION
+ 1;
2993 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
2994 unsigned int cmd
, unsigned long arg
)
2996 void __user
*argp
= compat_ptr(arg
);
2997 struct sock
*sk
= sock
->sk
;
2998 struct net
*net
= sock_net(sk
);
3000 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3001 return siocdevprivate_ioctl(net
, cmd
, argp
);
3006 return old_bridge_ioctl(argp
);
3008 return dev_ifname32(net
, argp
);
3010 return dev_ifconf(net
, argp
);
3012 return ethtool_ioctl(net
, argp
);
3014 return compat_siocwandev(net
, argp
);
3017 return compat_sioc_ifmap(net
, cmd
, argp
);
3018 case SIOCBONDENSLAVE
:
3019 case SIOCBONDRELEASE
:
3020 case SIOCBONDSETHWADDR
:
3021 case SIOCBONDSLAVEINFOQUERY
:
3022 case SIOCBONDINFOQUERY
:
3023 case SIOCBONDCHANGEACTIVE
:
3024 return bond_ioctl(net
, cmd
, argp
);
3027 return routing_ioctl(net
, sock
, cmd
, argp
);
3029 return do_siocgstamp(net
, sock
, cmd
, argp
);
3031 return do_siocgstampns(net
, sock
, cmd
, argp
);
3033 return compat_siocshwtstamp(net
, argp
);
3045 return sock_ioctl(file
, cmd
, arg
);
3062 case SIOCSIFHWBROADCAST
:
3064 case SIOCGIFBRDADDR
:
3065 case SIOCSIFBRDADDR
:
3066 case SIOCGIFDSTADDR
:
3067 case SIOCSIFDSTADDR
:
3068 case SIOCGIFNETMASK
:
3069 case SIOCSIFNETMASK
:
3080 return dev_ifsioc(net
, sock
, cmd
, argp
);
3086 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3089 /* Prevent warning from compat_sys_ioctl, these always
3090 * result in -EINVAL in the native case anyway. */
3103 return -ENOIOCTLCMD
;
3106 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
3109 struct socket
*sock
= file
->private_data
;
3110 int ret
= -ENOIOCTLCMD
;
3117 if (sock
->ops
->compat_ioctl
)
3118 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3120 if (ret
== -ENOIOCTLCMD
&&
3121 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3122 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3124 if (ret
== -ENOIOCTLCMD
)
3125 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3131 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3133 return sock
->ops
->bind(sock
, addr
, addrlen
);
3135 EXPORT_SYMBOL(kernel_bind
);
3137 int kernel_listen(struct socket
*sock
, int backlog
)
3139 return sock
->ops
->listen(sock
, backlog
);
3141 EXPORT_SYMBOL(kernel_listen
);
3143 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3145 struct sock
*sk
= sock
->sk
;
3148 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3153 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3155 sock_release(*newsock
);
3160 (*newsock
)->ops
= sock
->ops
;
3161 __module_get((*newsock
)->ops
->owner
);
3166 EXPORT_SYMBOL(kernel_accept
);
3168 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3171 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3173 EXPORT_SYMBOL(kernel_connect
);
3175 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3178 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3180 EXPORT_SYMBOL(kernel_getsockname
);
3182 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3185 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3187 EXPORT_SYMBOL(kernel_getpeername
);
3189 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3190 char *optval
, int *optlen
)
3192 mm_segment_t oldfs
= get_fs();
3193 char __user
*uoptval
;
3194 int __user
*uoptlen
;
3197 uoptval
= (char __user __force
*) optval
;
3198 uoptlen
= (int __user __force
*) optlen
;
3201 if (level
== SOL_SOCKET
)
3202 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3204 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3209 EXPORT_SYMBOL(kernel_getsockopt
);
3211 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3212 char *optval
, unsigned int optlen
)
3214 mm_segment_t oldfs
= get_fs();
3215 char __user
*uoptval
;
3218 uoptval
= (char __user __force
*) optval
;
3221 if (level
== SOL_SOCKET
)
3222 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3224 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3229 EXPORT_SYMBOL(kernel_setsockopt
);
3231 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3232 size_t size
, int flags
)
3234 sock_update_classid(sock
->sk
);
3236 if (sock
->ops
->sendpage
)
3237 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3239 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3241 EXPORT_SYMBOL(kernel_sendpage
);
3243 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3245 mm_segment_t oldfs
= get_fs();
3249 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3254 EXPORT_SYMBOL(kernel_sock_ioctl
);
3256 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3258 return sock
->ops
->shutdown(sock
, how
);
3260 EXPORT_SYMBOL(kernel_sock_shutdown
);