Add linux-next specific files for 20110831
[linux-2.6/next.git] / kernel / signal.c
blob036e511789b1131f2509dd466f19b4ba42257174
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
41 * SLAB caches for signal bits.
44 static struct kmem_cache *sigqueue_cachep;
46 int print_fatal_signals __read_mostly;
48 static void __user *sig_handler(struct task_struct *t, int sig)
50 return t->sighand->action[sig - 1].sa.sa_handler;
53 static int sig_handler_ignored(void __user *handler, int sig)
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
63 void __user *handler;
65 handler = sig_handler(t, sig);
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
71 return sig_handler_ignored(handler, sig);
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
88 * Tracers may want to know about even ignored signals.
90 return !t->ptrace;
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 unsigned long ready;
100 long i;
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 return ready != 0;
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 static int recalc_sigpending_tsk(struct task_struct *t)
127 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
138 return 0;
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 void recalc_sigpending_and_wake(struct task_struct *t)
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
151 void recalc_sigpending(void)
153 if (!recalc_sigpending_tsk(current) && !freezing(current))
154 clear_thread_flag(TIF_SIGPENDING);
158 /* Given the mask, find the first available signal that should be serviced. */
160 #define SYNCHRONOUS_MASK \
161 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
162 sigmask(SIGTRAP) | sigmask(SIGFPE))
164 int next_signal(struct sigpending *pending, sigset_t *mask)
166 unsigned long i, *s, *m, x;
167 int sig = 0;
169 s = pending->signal.sig;
170 m = mask->sig;
173 * Handle the first word specially: it contains the
174 * synchronous signals that need to be dequeued first.
176 x = *s &~ *m;
177 if (x) {
178 if (x & SYNCHRONOUS_MASK)
179 x &= SYNCHRONOUS_MASK;
180 sig = ffz(~x) + 1;
181 return sig;
184 switch (_NSIG_WORDS) {
185 default:
186 for (i = 1; i < _NSIG_WORDS; ++i) {
187 x = *++s &~ *++m;
188 if (!x)
189 continue;
190 sig = ffz(~x) + i*_NSIG_BPW + 1;
191 break;
193 break;
195 case 2:
196 x = s[1] &~ m[1];
197 if (!x)
198 break;
199 sig = ffz(~x) + _NSIG_BPW + 1;
200 break;
202 case 1:
203 /* Nothing to do */
204 break;
207 return sig;
210 static inline void print_dropped_signal(int sig)
212 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
214 if (!print_fatal_signals)
215 return;
217 if (!__ratelimit(&ratelimit_state))
218 return;
220 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
221 current->comm, current->pid, sig);
225 * task_set_jobctl_pending - set jobctl pending bits
226 * @task: target task
227 * @mask: pending bits to set
229 * Clear @mask from @task->jobctl. @mask must be subset of
230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
231 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
232 * cleared. If @task is already being killed or exiting, this function
233 * becomes noop.
235 * CONTEXT:
236 * Must be called with @task->sighand->siglock held.
238 * RETURNS:
239 * %true if @mask is set, %false if made noop because @task was dying.
241 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
243 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
244 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
245 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
247 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
248 return false;
250 if (mask & JOBCTL_STOP_SIGMASK)
251 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
253 task->jobctl |= mask;
254 return true;
258 * task_clear_jobctl_trapping - clear jobctl trapping bit
259 * @task: target task
261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
262 * Clear it and wake up the ptracer. Note that we don't need any further
263 * locking. @task->siglock guarantees that @task->parent points to the
264 * ptracer.
266 * CONTEXT:
267 * Must be called with @task->sighand->siglock held.
269 void task_clear_jobctl_trapping(struct task_struct *task)
271 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
272 task->jobctl &= ~JOBCTL_TRAPPING;
273 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 * task_clear_jobctl_pending - clear jobctl pending bits
279 * @task: target task
280 * @mask: pending bits to clear
282 * Clear @mask from @task->jobctl. @mask must be subset of
283 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
284 * STOP bits are cleared together.
286 * If clearing of @mask leaves no stop or trap pending, this function calls
287 * task_clear_jobctl_trapping().
289 * CONTEXT:
290 * Must be called with @task->sighand->siglock held.
292 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
294 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
296 if (mask & JOBCTL_STOP_PENDING)
297 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
299 task->jobctl &= ~mask;
301 if (!(task->jobctl & JOBCTL_PENDING_MASK))
302 task_clear_jobctl_trapping(task);
306 * task_participate_group_stop - participate in a group stop
307 * @task: task participating in a group stop
309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
310 * Group stop states are cleared and the group stop count is consumed if
311 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
312 * stop, the appropriate %SIGNAL_* flags are set.
314 * CONTEXT:
315 * Must be called with @task->sighand->siglock held.
317 * RETURNS:
318 * %true if group stop completion should be notified to the parent, %false
319 * otherwise.
321 static bool task_participate_group_stop(struct task_struct *task)
323 struct signal_struct *sig = task->signal;
324 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
326 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
328 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
330 if (!consume)
331 return false;
333 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
334 sig->group_stop_count--;
337 * Tell the caller to notify completion iff we are entering into a
338 * fresh group stop. Read comment in do_signal_stop() for details.
340 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
341 sig->flags = SIGNAL_STOP_STOPPED;
342 return true;
344 return false;
348 * allocate a new signal queue record
349 * - this may be called without locks if and only if t == current, otherwise an
350 * appropriate lock must be held to stop the target task from exiting
352 static struct sigqueue *
353 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
355 struct sigqueue *q = NULL;
356 struct user_struct *user;
359 * Protect access to @t credentials. This can go away when all
360 * callers hold rcu read lock.
362 rcu_read_lock();
363 user = get_uid(__task_cred(t)->user);
364 atomic_inc(&user->sigpending);
365 rcu_read_unlock();
367 if (override_rlimit ||
368 atomic_read(&user->sigpending) <=
369 task_rlimit(t, RLIMIT_SIGPENDING)) {
370 q = kmem_cache_alloc(sigqueue_cachep, flags);
371 } else {
372 print_dropped_signal(sig);
375 if (unlikely(q == NULL)) {
376 atomic_dec(&user->sigpending);
377 free_uid(user);
378 } else {
379 INIT_LIST_HEAD(&q->list);
380 q->flags = 0;
381 q->user = user;
384 return q;
387 static void __sigqueue_free(struct sigqueue *q)
389 if (q->flags & SIGQUEUE_PREALLOC)
390 return;
391 atomic_dec(&q->user->sigpending);
392 free_uid(q->user);
393 kmem_cache_free(sigqueue_cachep, q);
396 void flush_sigqueue(struct sigpending *queue)
398 struct sigqueue *q;
400 sigemptyset(&queue->signal);
401 while (!list_empty(&queue->list)) {
402 q = list_entry(queue->list.next, struct sigqueue , list);
403 list_del_init(&q->list);
404 __sigqueue_free(q);
409 * Flush all pending signals for a task.
411 void __flush_signals(struct task_struct *t)
413 clear_tsk_thread_flag(t, TIF_SIGPENDING);
414 flush_sigqueue(&t->pending);
415 flush_sigqueue(&t->signal->shared_pending);
418 void flush_signals(struct task_struct *t)
420 unsigned long flags;
422 spin_lock_irqsave(&t->sighand->siglock, flags);
423 __flush_signals(t);
424 spin_unlock_irqrestore(&t->sighand->siglock, flags);
427 static void __flush_itimer_signals(struct sigpending *pending)
429 sigset_t signal, retain;
430 struct sigqueue *q, *n;
432 signal = pending->signal;
433 sigemptyset(&retain);
435 list_for_each_entry_safe(q, n, &pending->list, list) {
436 int sig = q->info.si_signo;
438 if (likely(q->info.si_code != SI_TIMER)) {
439 sigaddset(&retain, sig);
440 } else {
441 sigdelset(&signal, sig);
442 list_del_init(&q->list);
443 __sigqueue_free(q);
447 sigorsets(&pending->signal, &signal, &retain);
450 void flush_itimer_signals(void)
452 struct task_struct *tsk = current;
453 unsigned long flags;
455 spin_lock_irqsave(&tsk->sighand->siglock, flags);
456 __flush_itimer_signals(&tsk->pending);
457 __flush_itimer_signals(&tsk->signal->shared_pending);
458 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
461 void ignore_signals(struct task_struct *t)
463 int i;
465 for (i = 0; i < _NSIG; ++i)
466 t->sighand->action[i].sa.sa_handler = SIG_IGN;
468 flush_signals(t);
472 * Flush all handlers for a task.
475 void
476 flush_signal_handlers(struct task_struct *t, int force_default)
478 int i;
479 struct k_sigaction *ka = &t->sighand->action[0];
480 for (i = _NSIG ; i != 0 ; i--) {
481 if (force_default || ka->sa.sa_handler != SIG_IGN)
482 ka->sa.sa_handler = SIG_DFL;
483 ka->sa.sa_flags = 0;
484 sigemptyset(&ka->sa.sa_mask);
485 ka++;
489 int unhandled_signal(struct task_struct *tsk, int sig)
491 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
492 if (is_global_init(tsk))
493 return 1;
494 if (handler != SIG_IGN && handler != SIG_DFL)
495 return 0;
496 /* if ptraced, let the tracer determine */
497 return !tsk->ptrace;
501 * Notify the system that a driver wants to block all signals for this
502 * process, and wants to be notified if any signals at all were to be
503 * sent/acted upon. If the notifier routine returns non-zero, then the
504 * signal will be acted upon after all. If the notifier routine returns 0,
505 * then then signal will be blocked. Only one block per process is
506 * allowed. priv is a pointer to private data that the notifier routine
507 * can use to determine if the signal should be blocked or not.
509 void
510 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
512 unsigned long flags;
514 spin_lock_irqsave(&current->sighand->siglock, flags);
515 current->notifier_mask = mask;
516 current->notifier_data = priv;
517 current->notifier = notifier;
518 spin_unlock_irqrestore(&current->sighand->siglock, flags);
521 /* Notify the system that blocking has ended. */
523 void
524 unblock_all_signals(void)
526 unsigned long flags;
528 spin_lock_irqsave(&current->sighand->siglock, flags);
529 current->notifier = NULL;
530 current->notifier_data = NULL;
531 recalc_sigpending();
532 spin_unlock_irqrestore(&current->sighand->siglock, flags);
535 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
537 struct sigqueue *q, *first = NULL;
540 * Collect the siginfo appropriate to this signal. Check if
541 * there is another siginfo for the same signal.
543 list_for_each_entry(q, &list->list, list) {
544 if (q->info.si_signo == sig) {
545 if (first)
546 goto still_pending;
547 first = q;
551 sigdelset(&list->signal, sig);
553 if (first) {
554 still_pending:
555 list_del_init(&first->list);
556 copy_siginfo(info, &first->info);
557 __sigqueue_free(first);
558 } else {
560 * Ok, it wasn't in the queue. This must be
561 * a fast-pathed signal or we must have been
562 * out of queue space. So zero out the info.
564 info->si_signo = sig;
565 info->si_errno = 0;
566 info->si_code = SI_USER;
567 info->si_pid = 0;
568 info->si_uid = 0;
572 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
573 siginfo_t *info)
575 int sig = next_signal(pending, mask);
577 if (sig) {
578 if (current->notifier) {
579 if (sigismember(current->notifier_mask, sig)) {
580 if (!(current->notifier)(current->notifier_data)) {
581 clear_thread_flag(TIF_SIGPENDING);
582 return 0;
587 collect_signal(sig, pending, info);
590 return sig;
594 * Dequeue a signal and return the element to the caller, which is
595 * expected to free it.
597 * All callers have to hold the siglock.
599 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
601 int signr;
603 /* We only dequeue private signals from ourselves, we don't let
604 * signalfd steal them
606 signr = __dequeue_signal(&tsk->pending, mask, info);
607 if (!signr) {
608 signr = __dequeue_signal(&tsk->signal->shared_pending,
609 mask, info);
611 * itimer signal ?
613 * itimers are process shared and we restart periodic
614 * itimers in the signal delivery path to prevent DoS
615 * attacks in the high resolution timer case. This is
616 * compliant with the old way of self-restarting
617 * itimers, as the SIGALRM is a legacy signal and only
618 * queued once. Changing the restart behaviour to
619 * restart the timer in the signal dequeue path is
620 * reducing the timer noise on heavy loaded !highres
621 * systems too.
623 if (unlikely(signr == SIGALRM)) {
624 struct hrtimer *tmr = &tsk->signal->real_timer;
626 if (!hrtimer_is_queued(tmr) &&
627 tsk->signal->it_real_incr.tv64 != 0) {
628 hrtimer_forward(tmr, tmr->base->get_time(),
629 tsk->signal->it_real_incr);
630 hrtimer_restart(tmr);
635 recalc_sigpending();
636 if (!signr)
637 return 0;
639 if (unlikely(sig_kernel_stop(signr))) {
641 * Set a marker that we have dequeued a stop signal. Our
642 * caller might release the siglock and then the pending
643 * stop signal it is about to process is no longer in the
644 * pending bitmasks, but must still be cleared by a SIGCONT
645 * (and overruled by a SIGKILL). So those cases clear this
646 * shared flag after we've set it. Note that this flag may
647 * remain set after the signal we return is ignored or
648 * handled. That doesn't matter because its only purpose
649 * is to alert stop-signal processing code when another
650 * processor has come along and cleared the flag.
652 current->jobctl |= JOBCTL_STOP_DEQUEUED;
654 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
656 * Release the siglock to ensure proper locking order
657 * of timer locks outside of siglocks. Note, we leave
658 * irqs disabled here, since the posix-timers code is
659 * about to disable them again anyway.
661 spin_unlock(&tsk->sighand->siglock);
662 do_schedule_next_timer(info);
663 spin_lock(&tsk->sighand->siglock);
665 return signr;
669 * Tell a process that it has a new active signal..
671 * NOTE! we rely on the previous spin_lock to
672 * lock interrupts for us! We can only be called with
673 * "siglock" held, and the local interrupt must
674 * have been disabled when that got acquired!
676 * No need to set need_resched since signal event passing
677 * goes through ->blocked
679 void signal_wake_up(struct task_struct *t, int resume)
681 unsigned int mask;
683 set_tsk_thread_flag(t, TIF_SIGPENDING);
686 * For SIGKILL, we want to wake it up in the stopped/traced/killable
687 * case. We don't check t->state here because there is a race with it
688 * executing another processor and just now entering stopped state.
689 * By using wake_up_state, we ensure the process will wake up and
690 * handle its death signal.
692 mask = TASK_INTERRUPTIBLE;
693 if (resume)
694 mask |= TASK_WAKEKILL;
695 if (!wake_up_state(t, mask))
696 kick_process(t);
700 * Remove signals in mask from the pending set and queue.
701 * Returns 1 if any signals were found.
703 * All callers must be holding the siglock.
705 * This version takes a sigset mask and looks at all signals,
706 * not just those in the first mask word.
708 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
710 struct sigqueue *q, *n;
711 sigset_t m;
713 sigandsets(&m, mask, &s->signal);
714 if (sigisemptyset(&m))
715 return 0;
717 sigandnsets(&s->signal, &s->signal, mask);
718 list_for_each_entry_safe(q, n, &s->list, list) {
719 if (sigismember(mask, q->info.si_signo)) {
720 list_del_init(&q->list);
721 __sigqueue_free(q);
724 return 1;
727 * Remove signals in mask from the pending set and queue.
728 * Returns 1 if any signals were found.
730 * All callers must be holding the siglock.
732 static int rm_from_queue(unsigned long mask, struct sigpending *s)
734 struct sigqueue *q, *n;
736 if (!sigtestsetmask(&s->signal, mask))
737 return 0;
739 sigdelsetmask(&s->signal, mask);
740 list_for_each_entry_safe(q, n, &s->list, list) {
741 if (q->info.si_signo < SIGRTMIN &&
742 (mask & sigmask(q->info.si_signo))) {
743 list_del_init(&q->list);
744 __sigqueue_free(q);
747 return 1;
750 static inline int is_si_special(const struct siginfo *info)
752 return info <= SEND_SIG_FORCED;
755 static inline bool si_fromuser(const struct siginfo *info)
757 return info == SEND_SIG_NOINFO ||
758 (!is_si_special(info) && SI_FROMUSER(info));
762 * called with RCU read lock from check_kill_permission()
764 static int kill_ok_by_cred(struct task_struct *t)
766 const struct cred *cred = current_cred();
767 const struct cred *tcred = __task_cred(t);
769 if (cred->user->user_ns == tcred->user->user_ns &&
770 (cred->euid == tcred->suid ||
771 cred->euid == tcred->uid ||
772 cred->uid == tcred->suid ||
773 cred->uid == tcred->uid))
774 return 1;
776 if (ns_capable(tcred->user->user_ns, CAP_KILL))
777 return 1;
779 return 0;
783 * Bad permissions for sending the signal
784 * - the caller must hold the RCU read lock
786 static int check_kill_permission(int sig, struct siginfo *info,
787 struct task_struct *t)
789 struct pid *sid;
790 int error;
792 if (!valid_signal(sig))
793 return -EINVAL;
795 if (!si_fromuser(info))
796 return 0;
798 error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 if (error)
800 return error;
802 if (!same_thread_group(current, t) &&
803 !kill_ok_by_cred(t)) {
804 switch (sig) {
805 case SIGCONT:
806 sid = task_session(t);
808 * We don't return the error if sid == NULL. The
809 * task was unhashed, the caller must notice this.
811 if (!sid || sid == task_session(current))
812 break;
813 default:
814 return -EPERM;
818 return security_task_kill(t, info, sig, 0);
822 * ptrace_trap_notify - schedule trap to notify ptracer
823 * @t: tracee wanting to notify tracer
825 * This function schedules sticky ptrace trap which is cleared on the next
826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
827 * ptracer.
829 * If @t is running, STOP trap will be taken. If trapped for STOP and
830 * ptracer is listening for events, tracee is woken up so that it can
831 * re-trap for the new event. If trapped otherwise, STOP trap will be
832 * eventually taken without returning to userland after the existing traps
833 * are finished by PTRACE_CONT.
835 * CONTEXT:
836 * Must be called with @task->sighand->siglock held.
838 static void ptrace_trap_notify(struct task_struct *t)
840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 assert_spin_locked(&t->sighand->siglock);
843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
848 * Handle magic process-wide effects of stop/continue signals. Unlike
849 * the signal actions, these happen immediately at signal-generation
850 * time regardless of blocking, ignoring, or handling. This does the
851 * actual continuing for SIGCONT, but not the actual stopping for stop
852 * signals. The process stop is done as a signal action for SIG_DFL.
854 * Returns true if the signal should be actually delivered, otherwise
855 * it should be dropped.
857 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
859 struct signal_struct *signal = p->signal;
860 struct task_struct *t;
862 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
864 * The process is in the middle of dying, nothing to do.
866 } else if (sig_kernel_stop(sig)) {
868 * This is a stop signal. Remove SIGCONT from all queues.
870 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
871 t = p;
872 do {
873 rm_from_queue(sigmask(SIGCONT), &t->pending);
874 } while_each_thread(p, t);
875 } else if (sig == SIGCONT) {
876 unsigned int why;
878 * Remove all stop signals from all queues, wake all threads.
880 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
881 t = p;
882 do {
883 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
884 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
885 if (likely(!(t->ptrace & PT_SEIZED)))
886 wake_up_state(t, __TASK_STOPPED);
887 else
888 ptrace_trap_notify(t);
889 } while_each_thread(p, t);
892 * Notify the parent with CLD_CONTINUED if we were stopped.
894 * If we were in the middle of a group stop, we pretend it
895 * was already finished, and then continued. Since SIGCHLD
896 * doesn't queue we report only CLD_STOPPED, as if the next
897 * CLD_CONTINUED was dropped.
899 why = 0;
900 if (signal->flags & SIGNAL_STOP_STOPPED)
901 why |= SIGNAL_CLD_CONTINUED;
902 else if (signal->group_stop_count)
903 why |= SIGNAL_CLD_STOPPED;
905 if (why) {
907 * The first thread which returns from do_signal_stop()
908 * will take ->siglock, notice SIGNAL_CLD_MASK, and
909 * notify its parent. See get_signal_to_deliver().
911 signal->flags = why | SIGNAL_STOP_CONTINUED;
912 signal->group_stop_count = 0;
913 signal->group_exit_code = 0;
917 return !sig_ignored(p, sig, from_ancestor_ns);
921 * Test if P wants to take SIG. After we've checked all threads with this,
922 * it's equivalent to finding no threads not blocking SIG. Any threads not
923 * blocking SIG were ruled out because they are not running and already
924 * have pending signals. Such threads will dequeue from the shared queue
925 * as soon as they're available, so putting the signal on the shared queue
926 * will be equivalent to sending it to one such thread.
928 static inline int wants_signal(int sig, struct task_struct *p)
930 if (sigismember(&p->blocked, sig))
931 return 0;
932 if (p->flags & PF_EXITING)
933 return 0;
934 if (sig == SIGKILL)
935 return 1;
936 if (task_is_stopped_or_traced(p))
937 return 0;
938 return task_curr(p) || !signal_pending(p);
941 static void complete_signal(int sig, struct task_struct *p, int group)
943 struct signal_struct *signal = p->signal;
944 struct task_struct *t;
947 * Now find a thread we can wake up to take the signal off the queue.
949 * If the main thread wants the signal, it gets first crack.
950 * Probably the least surprising to the average bear.
952 if (wants_signal(sig, p))
953 t = p;
954 else if (!group || thread_group_empty(p))
956 * There is just one thread and it does not need to be woken.
957 * It will dequeue unblocked signals before it runs again.
959 return;
960 else {
962 * Otherwise try to find a suitable thread.
964 t = signal->curr_target;
965 while (!wants_signal(sig, t)) {
966 t = next_thread(t);
967 if (t == signal->curr_target)
969 * No thread needs to be woken.
970 * Any eligible threads will see
971 * the signal in the queue soon.
973 return;
975 signal->curr_target = t;
979 * Found a killable thread. If the signal will be fatal,
980 * then start taking the whole group down immediately.
982 if (sig_fatal(p, sig) &&
983 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
984 !sigismember(&t->real_blocked, sig) &&
985 (sig == SIGKILL || !t->ptrace)) {
987 * This signal will be fatal to the whole group.
989 if (!sig_kernel_coredump(sig)) {
991 * Start a group exit and wake everybody up.
992 * This way we don't have other threads
993 * running and doing things after a slower
994 * thread has the fatal signal pending.
996 signal->flags = SIGNAL_GROUP_EXIT;
997 signal->group_exit_code = sig;
998 signal->group_stop_count = 0;
999 t = p;
1000 do {
1001 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002 sigaddset(&t->pending.signal, SIGKILL);
1003 signal_wake_up(t, 1);
1004 } while_each_thread(p, t);
1005 return;
1010 * The signal is already in the shared-pending queue.
1011 * Tell the chosen thread to wake up and dequeue it.
1013 signal_wake_up(t, sig == SIGKILL);
1014 return;
1017 static inline int legacy_queue(struct sigpending *signals, int sig)
1019 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1022 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023 int group, int from_ancestor_ns)
1025 struct sigpending *pending;
1026 struct sigqueue *q;
1027 int override_rlimit;
1029 trace_signal_generate(sig, info, t);
1031 assert_spin_locked(&t->sighand->siglock);
1033 if (!prepare_signal(sig, t, from_ancestor_ns))
1034 return 0;
1036 pending = group ? &t->signal->shared_pending : &t->pending;
1038 * Short-circuit ignored signals and support queuing
1039 * exactly one non-rt signal, so that we can get more
1040 * detailed information about the cause of the signal.
1042 if (legacy_queue(pending, sig))
1043 return 0;
1045 * fast-pathed signals for kernel-internal things like SIGSTOP
1046 * or SIGKILL.
1048 if (info == SEND_SIG_FORCED)
1049 goto out_set;
1052 * Real-time signals must be queued if sent by sigqueue, or
1053 * some other real-time mechanism. It is implementation
1054 * defined whether kill() does so. We attempt to do so, on
1055 * the principle of least surprise, but since kill is not
1056 * allowed to fail with EAGAIN when low on memory we just
1057 * make sure at least one signal gets delivered and don't
1058 * pass on the info struct.
1060 if (sig < SIGRTMIN)
1061 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062 else
1063 override_rlimit = 0;
1065 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066 override_rlimit);
1067 if (q) {
1068 list_add_tail(&q->list, &pending->list);
1069 switch ((unsigned long) info) {
1070 case (unsigned long) SEND_SIG_NOINFO:
1071 q->info.si_signo = sig;
1072 q->info.si_errno = 0;
1073 q->info.si_code = SI_USER;
1074 q->info.si_pid = task_tgid_nr_ns(current,
1075 task_active_pid_ns(t));
1076 q->info.si_uid = current_uid();
1077 break;
1078 case (unsigned long) SEND_SIG_PRIV:
1079 q->info.si_signo = sig;
1080 q->info.si_errno = 0;
1081 q->info.si_code = SI_KERNEL;
1082 q->info.si_pid = 0;
1083 q->info.si_uid = 0;
1084 break;
1085 default:
1086 copy_siginfo(&q->info, info);
1087 if (from_ancestor_ns)
1088 q->info.si_pid = 0;
1089 break;
1091 } else if (!is_si_special(info)) {
1092 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1094 * Queue overflow, abort. We may abort if the
1095 * signal was rt and sent by user using something
1096 * other than kill().
1098 trace_signal_overflow_fail(sig, group, info);
1099 return -EAGAIN;
1100 } else {
1102 * This is a silent loss of information. We still
1103 * send the signal, but the *info bits are lost.
1105 trace_signal_lose_info(sig, group, info);
1109 out_set:
1110 signalfd_notify(t, sig);
1111 sigaddset(&pending->signal, sig);
1112 complete_signal(sig, t, group);
1113 return 0;
1116 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117 int group)
1119 int from_ancestor_ns = 0;
1121 #ifdef CONFIG_PID_NS
1122 from_ancestor_ns = si_fromuser(info) &&
1123 !task_pid_nr_ns(current, task_active_pid_ns(t));
1124 #endif
1126 return __send_signal(sig, info, t, group, from_ancestor_ns);
1129 static void print_fatal_signal(struct pt_regs *regs, int signr)
1131 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132 current->comm, task_pid_nr(current), signr);
1134 #if defined(__i386__) && !defined(__arch_um__)
1135 printk("code at %08lx: ", regs->ip);
1137 int i;
1138 for (i = 0; i < 16; i++) {
1139 unsigned char insn;
1141 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142 break;
1143 printk("%02x ", insn);
1146 #endif
1147 printk("\n");
1148 preempt_disable();
1149 show_regs(regs);
1150 preempt_enable();
1153 static int __init setup_print_fatal_signals(char *str)
1155 get_option (&str, &print_fatal_signals);
1157 return 1;
1160 __setup("print-fatal-signals=", setup_print_fatal_signals);
1163 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1165 return send_signal(sig, info, p, 1);
1168 static int
1169 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1171 return send_signal(sig, info, t, 0);
1174 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175 bool group)
1177 unsigned long flags;
1178 int ret = -ESRCH;
1180 if (lock_task_sighand(p, &flags)) {
1181 ret = send_signal(sig, info, p, group);
1182 unlock_task_sighand(p, &flags);
1185 return ret;
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1200 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202 unsigned long int flags;
1203 int ret, blocked, ignored;
1204 struct k_sigaction *action;
1206 spin_lock_irqsave(&t->sighand->siglock, flags);
1207 action = &t->sighand->action[sig-1];
1208 ignored = action->sa.sa_handler == SIG_IGN;
1209 blocked = sigismember(&t->blocked, sig);
1210 if (blocked || ignored) {
1211 action->sa.sa_handler = SIG_DFL;
1212 if (blocked) {
1213 sigdelset(&t->blocked, sig);
1214 recalc_sigpending_and_wake(t);
1217 if (action->sa.sa_handler == SIG_DFL)
1218 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219 ret = specific_send_sig_info(sig, info, t);
1220 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1222 return ret;
1226 * Nuke all other threads in the group.
1228 int zap_other_threads(struct task_struct *p)
1230 struct task_struct *t = p;
1231 int count = 0;
1233 p->signal->group_stop_count = 0;
1235 while_each_thread(p, t) {
1236 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237 count++;
1239 /* Don't bother with already dead threads */
1240 if (t->exit_state)
1241 continue;
1242 sigaddset(&t->pending.signal, SIGKILL);
1243 signal_wake_up(t, 1);
1246 return count;
1249 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250 unsigned long *flags)
1252 struct sighand_struct *sighand;
1254 for (;;) {
1255 local_irq_save(*flags);
1256 rcu_read_lock();
1257 sighand = rcu_dereference(tsk->sighand);
1258 if (unlikely(sighand == NULL)) {
1259 rcu_read_unlock();
1260 local_irq_restore(*flags);
1261 break;
1264 spin_lock(&sighand->siglock);
1265 if (likely(sighand == tsk->sighand)) {
1266 rcu_read_unlock();
1267 break;
1269 spin_unlock(&sighand->siglock);
1270 rcu_read_unlock();
1271 local_irq_restore(*flags);
1274 return sighand;
1278 * send signal info to all the members of a group
1280 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1282 int ret;
1284 rcu_read_lock();
1285 ret = check_kill_permission(sig, info, p);
1286 rcu_read_unlock();
1288 if (!ret && sig)
1289 ret = do_send_sig_info(sig, info, p, true);
1291 return ret;
1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296 * control characters do (^C, ^Z etc)
1297 * - the caller must hold at least a readlock on tasklist_lock
1299 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1301 struct task_struct *p = NULL;
1302 int retval, success;
1304 success = 0;
1305 retval = -ESRCH;
1306 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307 int err = group_send_sig_info(sig, info, p);
1308 success |= !err;
1309 retval = err;
1310 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311 return success ? 0 : retval;
1314 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1316 int error = -ESRCH;
1317 struct task_struct *p;
1319 rcu_read_lock();
1320 retry:
1321 p = pid_task(pid, PIDTYPE_PID);
1322 if (p) {
1323 error = group_send_sig_info(sig, info, p);
1324 if (unlikely(error == -ESRCH))
1326 * The task was unhashed in between, try again.
1327 * If it is dead, pid_task() will return NULL,
1328 * if we race with de_thread() it will find the
1329 * new leader.
1331 goto retry;
1333 rcu_read_unlock();
1335 return error;
1338 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1340 int error;
1341 rcu_read_lock();
1342 error = kill_pid_info(sig, info, find_vpid(pid));
1343 rcu_read_unlock();
1344 return error;
1347 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1348 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1349 uid_t uid, uid_t euid, u32 secid)
1351 int ret = -EINVAL;
1352 struct task_struct *p;
1353 const struct cred *pcred;
1354 unsigned long flags;
1356 if (!valid_signal(sig))
1357 return ret;
1359 rcu_read_lock();
1360 p = pid_task(pid, PIDTYPE_PID);
1361 if (!p) {
1362 ret = -ESRCH;
1363 goto out_unlock;
1365 pcred = __task_cred(p);
1366 if (si_fromuser(info) &&
1367 euid != pcred->suid && euid != pcred->uid &&
1368 uid != pcred->suid && uid != pcred->uid) {
1369 ret = -EPERM;
1370 goto out_unlock;
1372 ret = security_task_kill(p, info, sig, secid);
1373 if (ret)
1374 goto out_unlock;
1376 if (sig) {
1377 if (lock_task_sighand(p, &flags)) {
1378 ret = __send_signal(sig, info, p, 1, 0);
1379 unlock_task_sighand(p, &flags);
1380 } else
1381 ret = -ESRCH;
1383 out_unlock:
1384 rcu_read_unlock();
1385 return ret;
1387 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1390 * kill_something_info() interprets pid in interesting ways just like kill(2).
1392 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1393 * is probably wrong. Should make it like BSD or SYSV.
1396 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1398 int ret;
1400 if (pid > 0) {
1401 rcu_read_lock();
1402 ret = kill_pid_info(sig, info, find_vpid(pid));
1403 rcu_read_unlock();
1404 return ret;
1407 read_lock(&tasklist_lock);
1408 if (pid != -1) {
1409 ret = __kill_pgrp_info(sig, info,
1410 pid ? find_vpid(-pid) : task_pgrp(current));
1411 } else {
1412 int retval = 0, count = 0;
1413 struct task_struct * p;
1415 for_each_process(p) {
1416 if (task_pid_vnr(p) > 1 &&
1417 !same_thread_group(p, current)) {
1418 int err = group_send_sig_info(sig, info, p);
1419 ++count;
1420 if (err != -EPERM)
1421 retval = err;
1424 ret = count ? retval : -ESRCH;
1426 read_unlock(&tasklist_lock);
1428 return ret;
1432 * These are for backward compatibility with the rest of the kernel source.
1435 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1438 * Make sure legacy kernel users don't send in bad values
1439 * (normal paths check this in check_kill_permission).
1441 if (!valid_signal(sig))
1442 return -EINVAL;
1444 return do_send_sig_info(sig, info, p, false);
1447 #define __si_special(priv) \
1448 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1451 send_sig(int sig, struct task_struct *p, int priv)
1453 return send_sig_info(sig, __si_special(priv), p);
1456 void
1457 force_sig(int sig, struct task_struct *p)
1459 force_sig_info(sig, SEND_SIG_PRIV, p);
1463 * When things go south during signal handling, we
1464 * will force a SIGSEGV. And if the signal that caused
1465 * the problem was already a SIGSEGV, we'll want to
1466 * make sure we don't even try to deliver the signal..
1469 force_sigsegv(int sig, struct task_struct *p)
1471 if (sig == SIGSEGV) {
1472 unsigned long flags;
1473 spin_lock_irqsave(&p->sighand->siglock, flags);
1474 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1475 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1477 force_sig(SIGSEGV, p);
1478 return 0;
1481 int kill_pgrp(struct pid *pid, int sig, int priv)
1483 int ret;
1485 read_lock(&tasklist_lock);
1486 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1487 read_unlock(&tasklist_lock);
1489 return ret;
1491 EXPORT_SYMBOL(kill_pgrp);
1493 int kill_pid(struct pid *pid, int sig, int priv)
1495 return kill_pid_info(sig, __si_special(priv), pid);
1497 EXPORT_SYMBOL(kill_pid);
1500 * These functions support sending signals using preallocated sigqueue
1501 * structures. This is needed "because realtime applications cannot
1502 * afford to lose notifications of asynchronous events, like timer
1503 * expirations or I/O completions". In the case of POSIX Timers
1504 * we allocate the sigqueue structure from the timer_create. If this
1505 * allocation fails we are able to report the failure to the application
1506 * with an EAGAIN error.
1508 struct sigqueue *sigqueue_alloc(void)
1510 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1512 if (q)
1513 q->flags |= SIGQUEUE_PREALLOC;
1515 return q;
1518 void sigqueue_free(struct sigqueue *q)
1520 unsigned long flags;
1521 spinlock_t *lock = &current->sighand->siglock;
1523 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1525 * We must hold ->siglock while testing q->list
1526 * to serialize with collect_signal() or with
1527 * __exit_signal()->flush_sigqueue().
1529 spin_lock_irqsave(lock, flags);
1530 q->flags &= ~SIGQUEUE_PREALLOC;
1532 * If it is queued it will be freed when dequeued,
1533 * like the "regular" sigqueue.
1535 if (!list_empty(&q->list))
1536 q = NULL;
1537 spin_unlock_irqrestore(lock, flags);
1539 if (q)
1540 __sigqueue_free(q);
1543 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1545 int sig = q->info.si_signo;
1546 struct sigpending *pending;
1547 unsigned long flags;
1548 int ret;
1550 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1552 ret = -1;
1553 if (!likely(lock_task_sighand(t, &flags)))
1554 goto ret;
1556 ret = 1; /* the signal is ignored */
1557 if (!prepare_signal(sig, t, 0))
1558 goto out;
1560 ret = 0;
1561 if (unlikely(!list_empty(&q->list))) {
1563 * If an SI_TIMER entry is already queue just increment
1564 * the overrun count.
1566 BUG_ON(q->info.si_code != SI_TIMER);
1567 q->info.si_overrun++;
1568 goto out;
1570 q->info.si_overrun = 0;
1572 signalfd_notify(t, sig);
1573 pending = group ? &t->signal->shared_pending : &t->pending;
1574 list_add_tail(&q->list, &pending->list);
1575 sigaddset(&pending->signal, sig);
1576 complete_signal(sig, t, group);
1577 out:
1578 unlock_task_sighand(t, &flags);
1579 ret:
1580 return ret;
1584 * Let a parent know about the death of a child.
1585 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1587 * Returns true if our parent ignored us and so we've switched to
1588 * self-reaping.
1590 bool do_notify_parent(struct task_struct *tsk, int sig)
1592 struct siginfo info;
1593 unsigned long flags;
1594 struct sighand_struct *psig;
1595 bool autoreap = false;
1597 BUG_ON(sig == -1);
1599 /* do_notify_parent_cldstop should have been called instead. */
1600 BUG_ON(task_is_stopped_or_traced(tsk));
1602 BUG_ON(!tsk->ptrace &&
1603 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1605 info.si_signo = sig;
1606 info.si_errno = 0;
1608 * we are under tasklist_lock here so our parent is tied to
1609 * us and cannot exit and release its namespace.
1611 * the only it can is to switch its nsproxy with sys_unshare,
1612 * bu uncharing pid namespaces is not allowed, so we'll always
1613 * see relevant namespace
1615 * write_lock() currently calls preempt_disable() which is the
1616 * same as rcu_read_lock(), but according to Oleg, this is not
1617 * correct to rely on this
1619 rcu_read_lock();
1620 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1621 info.si_uid = __task_cred(tsk)->uid;
1622 rcu_read_unlock();
1624 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1625 tsk->signal->utime));
1626 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1627 tsk->signal->stime));
1629 info.si_status = tsk->exit_code & 0x7f;
1630 if (tsk->exit_code & 0x80)
1631 info.si_code = CLD_DUMPED;
1632 else if (tsk->exit_code & 0x7f)
1633 info.si_code = CLD_KILLED;
1634 else {
1635 info.si_code = CLD_EXITED;
1636 info.si_status = tsk->exit_code >> 8;
1639 psig = tsk->parent->sighand;
1640 spin_lock_irqsave(&psig->siglock, flags);
1641 if (!tsk->ptrace && sig == SIGCHLD &&
1642 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1643 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1645 * We are exiting and our parent doesn't care. POSIX.1
1646 * defines special semantics for setting SIGCHLD to SIG_IGN
1647 * or setting the SA_NOCLDWAIT flag: we should be reaped
1648 * automatically and not left for our parent's wait4 call.
1649 * Rather than having the parent do it as a magic kind of
1650 * signal handler, we just set this to tell do_exit that we
1651 * can be cleaned up without becoming a zombie. Note that
1652 * we still call __wake_up_parent in this case, because a
1653 * blocked sys_wait4 might now return -ECHILD.
1655 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1656 * is implementation-defined: we do (if you don't want
1657 * it, just use SIG_IGN instead).
1659 autoreap = true;
1660 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1661 sig = 0;
1663 if (valid_signal(sig) && sig)
1664 __group_send_sig_info(sig, &info, tsk->parent);
1665 __wake_up_parent(tsk, tsk->parent);
1666 spin_unlock_irqrestore(&psig->siglock, flags);
1668 return autoreap;
1672 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1673 * @tsk: task reporting the state change
1674 * @for_ptracer: the notification is for ptracer
1675 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1677 * Notify @tsk's parent that the stopped/continued state has changed. If
1678 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1679 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1681 * CONTEXT:
1682 * Must be called with tasklist_lock at least read locked.
1684 static void do_notify_parent_cldstop(struct task_struct *tsk,
1685 bool for_ptracer, int why)
1687 struct siginfo info;
1688 unsigned long flags;
1689 struct task_struct *parent;
1690 struct sighand_struct *sighand;
1692 if (for_ptracer) {
1693 parent = tsk->parent;
1694 } else {
1695 tsk = tsk->group_leader;
1696 parent = tsk->real_parent;
1699 info.si_signo = SIGCHLD;
1700 info.si_errno = 0;
1702 * see comment in do_notify_parent() about the following 4 lines
1704 rcu_read_lock();
1705 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1706 info.si_uid = __task_cred(tsk)->uid;
1707 rcu_read_unlock();
1709 info.si_utime = cputime_to_clock_t(tsk->utime);
1710 info.si_stime = cputime_to_clock_t(tsk->stime);
1712 info.si_code = why;
1713 switch (why) {
1714 case CLD_CONTINUED:
1715 info.si_status = SIGCONT;
1716 break;
1717 case CLD_STOPPED:
1718 info.si_status = tsk->signal->group_exit_code & 0x7f;
1719 break;
1720 case CLD_TRAPPED:
1721 info.si_status = tsk->exit_code & 0x7f;
1722 break;
1723 default:
1724 BUG();
1727 sighand = parent->sighand;
1728 spin_lock_irqsave(&sighand->siglock, flags);
1729 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731 __group_send_sig_info(SIGCHLD, &info, parent);
1733 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1735 __wake_up_parent(tsk, parent);
1736 spin_unlock_irqrestore(&sighand->siglock, flags);
1739 static inline int may_ptrace_stop(void)
1741 if (!likely(current->ptrace))
1742 return 0;
1744 * Are we in the middle of do_coredump?
1745 * If so and our tracer is also part of the coredump stopping
1746 * is a deadlock situation, and pointless because our tracer
1747 * is dead so don't allow us to stop.
1748 * If SIGKILL was already sent before the caller unlocked
1749 * ->siglock we must see ->core_state != NULL. Otherwise it
1750 * is safe to enter schedule().
1752 if (unlikely(current->mm->core_state) &&
1753 unlikely(current->mm == current->parent->mm))
1754 return 0;
1756 return 1;
1760 * Return non-zero if there is a SIGKILL that should be waking us up.
1761 * Called with the siglock held.
1763 static int sigkill_pending(struct task_struct *tsk)
1765 return sigismember(&tsk->pending.signal, SIGKILL) ||
1766 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770 * This must be called with current->sighand->siglock held.
1772 * This should be the path for all ptrace stops.
1773 * We always set current->last_siginfo while stopped here.
1774 * That makes it a way to test a stopped process for
1775 * being ptrace-stopped vs being job-control-stopped.
1777 * If we actually decide not to stop at all because the tracer
1778 * is gone, we keep current->exit_code unless clear_code.
1780 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1781 __releases(&current->sighand->siglock)
1782 __acquires(&current->sighand->siglock)
1784 bool gstop_done = false;
1786 if (arch_ptrace_stop_needed(exit_code, info)) {
1788 * The arch code has something special to do before a
1789 * ptrace stop. This is allowed to block, e.g. for faults
1790 * on user stack pages. We can't keep the siglock while
1791 * calling arch_ptrace_stop, so we must release it now.
1792 * To preserve proper semantics, we must do this before
1793 * any signal bookkeeping like checking group_stop_count.
1794 * Meanwhile, a SIGKILL could come in before we retake the
1795 * siglock. That must prevent us from sleeping in TASK_TRACED.
1796 * So after regaining the lock, we must check for SIGKILL.
1798 spin_unlock_irq(&current->sighand->siglock);
1799 arch_ptrace_stop(exit_code, info);
1800 spin_lock_irq(&current->sighand->siglock);
1801 if (sigkill_pending(current))
1802 return;
1806 * We're committing to trapping. TRACED should be visible before
1807 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1808 * Also, transition to TRACED and updates to ->jobctl should be
1809 * atomic with respect to siglock and should be done after the arch
1810 * hook as siglock is released and regrabbed across it.
1812 set_current_state(TASK_TRACED);
1814 current->last_siginfo = info;
1815 current->exit_code = exit_code;
1818 * If @why is CLD_STOPPED, we're trapping to participate in a group
1819 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1820 * across siglock relocks since INTERRUPT was scheduled, PENDING
1821 * could be clear now. We act as if SIGCONT is received after
1822 * TASK_TRACED is entered - ignore it.
1824 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1825 gstop_done = task_participate_group_stop(current);
1827 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1828 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1829 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1830 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1832 /* entering a trap, clear TRAPPING */
1833 task_clear_jobctl_trapping(current);
1835 spin_unlock_irq(&current->sighand->siglock);
1836 read_lock(&tasklist_lock);
1837 if (may_ptrace_stop()) {
1839 * Notify parents of the stop.
1841 * While ptraced, there are two parents - the ptracer and
1842 * the real_parent of the group_leader. The ptracer should
1843 * know about every stop while the real parent is only
1844 * interested in the completion of group stop. The states
1845 * for the two don't interact with each other. Notify
1846 * separately unless they're gonna be duplicates.
1848 do_notify_parent_cldstop(current, true, why);
1849 if (gstop_done && ptrace_reparented(current))
1850 do_notify_parent_cldstop(current, false, why);
1853 * Don't want to allow preemption here, because
1854 * sys_ptrace() needs this task to be inactive.
1856 * XXX: implement read_unlock_no_resched().
1858 preempt_disable();
1859 read_unlock(&tasklist_lock);
1860 preempt_enable_no_resched();
1861 schedule();
1862 } else {
1864 * By the time we got the lock, our tracer went away.
1865 * Don't drop the lock yet, another tracer may come.
1867 * If @gstop_done, the ptracer went away between group stop
1868 * completion and here. During detach, it would have set
1869 * JOBCTL_STOP_PENDING on us and we'll re-enter
1870 * TASK_STOPPED in do_signal_stop() on return, so notifying
1871 * the real parent of the group stop completion is enough.
1873 if (gstop_done)
1874 do_notify_parent_cldstop(current, false, why);
1876 __set_current_state(TASK_RUNNING);
1877 if (clear_code)
1878 current->exit_code = 0;
1879 read_unlock(&tasklist_lock);
1883 * While in TASK_TRACED, we were considered "frozen enough".
1884 * Now that we woke up, it's crucial if we're supposed to be
1885 * frozen that we freeze now before running anything substantial.
1887 try_to_freeze();
1890 * We are back. Now reacquire the siglock before touching
1891 * last_siginfo, so that we are sure to have synchronized with
1892 * any signal-sending on another CPU that wants to examine it.
1894 spin_lock_irq(&current->sighand->siglock);
1895 current->last_siginfo = NULL;
1897 /* LISTENING can be set only during STOP traps, clear it */
1898 current->jobctl &= ~JOBCTL_LISTENING;
1901 * Queued signals ignored us while we were stopped for tracing.
1902 * So check for any that we should take before resuming user mode.
1903 * This sets TIF_SIGPENDING, but never clears it.
1905 recalc_sigpending_tsk(current);
1908 static void ptrace_do_notify(int signr, int exit_code, int why)
1910 siginfo_t info;
1912 memset(&info, 0, sizeof info);
1913 info.si_signo = signr;
1914 info.si_code = exit_code;
1915 info.si_pid = task_pid_vnr(current);
1916 info.si_uid = current_uid();
1918 /* Let the debugger run. */
1919 ptrace_stop(exit_code, why, 1, &info);
1922 void ptrace_notify(int exit_code)
1924 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1926 spin_lock_irq(&current->sighand->siglock);
1927 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928 spin_unlock_irq(&current->sighand->siglock);
1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933 * @signr: signr causing group stop if initiating
1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936 * and participate in it. If already set, participate in the existing
1937 * group stop. If participated in a group stop (and thus slept), %true is
1938 * returned with siglock released.
1940 * If ptraced, this function doesn't handle stop itself. Instead,
1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942 * untouched. The caller must ensure that INTERRUPT trap handling takes
1943 * places afterwards.
1945 * CONTEXT:
1946 * Must be called with @current->sighand->siglock held, which is released
1947 * on %true return.
1949 * RETURNS:
1950 * %false if group stop is already cancelled or ptrace trap is scheduled.
1951 * %true if participated in group stop.
1953 static bool do_signal_stop(int signr)
1954 __releases(&current->sighand->siglock)
1956 struct signal_struct *sig = current->signal;
1958 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960 struct task_struct *t;
1962 /* signr will be recorded in task->jobctl for retries */
1963 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1965 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966 unlikely(signal_group_exit(sig)))
1967 return false;
1969 * There is no group stop already in progress. We must
1970 * initiate one now.
1972 * While ptraced, a task may be resumed while group stop is
1973 * still in effect and then receive a stop signal and
1974 * initiate another group stop. This deviates from the
1975 * usual behavior as two consecutive stop signals can't
1976 * cause two group stops when !ptraced. That is why we
1977 * also check !task_is_stopped(t) below.
1979 * The condition can be distinguished by testing whether
1980 * SIGNAL_STOP_STOPPED is already set. Don't generate
1981 * group_exit_code in such case.
1983 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984 * an intervening stop signal is required to cause two
1985 * continued events regardless of ptrace.
1987 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988 sig->group_exit_code = signr;
1989 else
1990 WARN_ON_ONCE(!current->ptrace);
1992 sig->group_stop_count = 0;
1994 if (task_set_jobctl_pending(current, signr | gstop))
1995 sig->group_stop_count++;
1997 for (t = next_thread(current); t != current;
1998 t = next_thread(t)) {
2000 * Setting state to TASK_STOPPED for a group
2001 * stop is always done with the siglock held,
2002 * so this check has no races.
2004 if (!task_is_stopped(t) &&
2005 task_set_jobctl_pending(t, signr | gstop)) {
2006 sig->group_stop_count++;
2007 if (likely(!(t->ptrace & PT_SEIZED)))
2008 signal_wake_up(t, 0);
2009 else
2010 ptrace_trap_notify(t);
2015 if (likely(!current->ptrace)) {
2016 int notify = 0;
2019 * If there are no other threads in the group, or if there
2020 * is a group stop in progress and we are the last to stop,
2021 * report to the parent.
2023 if (task_participate_group_stop(current))
2024 notify = CLD_STOPPED;
2026 __set_current_state(TASK_STOPPED);
2027 spin_unlock_irq(&current->sighand->siglock);
2030 * Notify the parent of the group stop completion. Because
2031 * we're not holding either the siglock or tasklist_lock
2032 * here, ptracer may attach inbetween; however, this is for
2033 * group stop and should always be delivered to the real
2034 * parent of the group leader. The new ptracer will get
2035 * its notification when this task transitions into
2036 * TASK_TRACED.
2038 if (notify) {
2039 read_lock(&tasklist_lock);
2040 do_notify_parent_cldstop(current, false, notify);
2041 read_unlock(&tasklist_lock);
2044 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2045 schedule();
2046 return true;
2047 } else {
2049 * While ptraced, group stop is handled by STOP trap.
2050 * Schedule it and let the caller deal with it.
2052 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2053 return false;
2058 * do_jobctl_trap - take care of ptrace jobctl traps
2060 * When PT_SEIZED, it's used for both group stop and explicit
2061 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2062 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2063 * the stop signal; otherwise, %SIGTRAP.
2065 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2066 * number as exit_code and no siginfo.
2068 * CONTEXT:
2069 * Must be called with @current->sighand->siglock held, which may be
2070 * released and re-acquired before returning with intervening sleep.
2072 static void do_jobctl_trap(void)
2074 struct signal_struct *signal = current->signal;
2075 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2077 if (current->ptrace & PT_SEIZED) {
2078 if (!signal->group_stop_count &&
2079 !(signal->flags & SIGNAL_STOP_STOPPED))
2080 signr = SIGTRAP;
2081 WARN_ON_ONCE(!signr);
2082 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2083 CLD_STOPPED);
2084 } else {
2085 WARN_ON_ONCE(!signr);
2086 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2087 current->exit_code = 0;
2091 static int ptrace_signal(int signr, siginfo_t *info,
2092 struct pt_regs *regs, void *cookie)
2094 ptrace_signal_deliver(regs, cookie);
2096 * We do not check sig_kernel_stop(signr) but set this marker
2097 * unconditionally because we do not know whether debugger will
2098 * change signr. This flag has no meaning unless we are going
2099 * to stop after return from ptrace_stop(). In this case it will
2100 * be checked in do_signal_stop(), we should only stop if it was
2101 * not cleared by SIGCONT while we were sleeping. See also the
2102 * comment in dequeue_signal().
2104 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2107 /* We're back. Did the debugger cancel the sig? */
2108 signr = current->exit_code;
2109 if (signr == 0)
2110 return signr;
2112 current->exit_code = 0;
2115 * Update the siginfo structure if the signal has
2116 * changed. If the debugger wanted something
2117 * specific in the siginfo structure then it should
2118 * have updated *info via PTRACE_SETSIGINFO.
2120 if (signr != info->si_signo) {
2121 info->si_signo = signr;
2122 info->si_errno = 0;
2123 info->si_code = SI_USER;
2124 info->si_pid = task_pid_vnr(current->parent);
2125 info->si_uid = task_uid(current->parent);
2128 /* If the (new) signal is now blocked, requeue it. */
2129 if (sigismember(&current->blocked, signr)) {
2130 specific_send_sig_info(signr, info, current);
2131 signr = 0;
2134 return signr;
2137 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2138 struct pt_regs *regs, void *cookie)
2140 struct sighand_struct *sighand = current->sighand;
2141 struct signal_struct *signal = current->signal;
2142 int signr;
2144 relock:
2146 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2147 * While in TASK_STOPPED, we were considered "frozen enough".
2148 * Now that we woke up, it's crucial if we're supposed to be
2149 * frozen that we freeze now before running anything substantial.
2151 try_to_freeze();
2153 spin_lock_irq(&sighand->siglock);
2155 * Every stopped thread goes here after wakeup. Check to see if
2156 * we should notify the parent, prepare_signal(SIGCONT) encodes
2157 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2159 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2160 int why;
2162 if (signal->flags & SIGNAL_CLD_CONTINUED)
2163 why = CLD_CONTINUED;
2164 else
2165 why = CLD_STOPPED;
2167 signal->flags &= ~SIGNAL_CLD_MASK;
2169 spin_unlock_irq(&sighand->siglock);
2172 * Notify the parent that we're continuing. This event is
2173 * always per-process and doesn't make whole lot of sense
2174 * for ptracers, who shouldn't consume the state via
2175 * wait(2) either, but, for backward compatibility, notify
2176 * the ptracer of the group leader too unless it's gonna be
2177 * a duplicate.
2179 read_lock(&tasklist_lock);
2180 do_notify_parent_cldstop(current, false, why);
2182 if (ptrace_reparented(current->group_leader))
2183 do_notify_parent_cldstop(current->group_leader,
2184 true, why);
2185 read_unlock(&tasklist_lock);
2187 goto relock;
2190 for (;;) {
2191 struct k_sigaction *ka;
2193 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194 do_signal_stop(0))
2195 goto relock;
2197 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198 do_jobctl_trap();
2199 spin_unlock_irq(&sighand->siglock);
2200 goto relock;
2203 signr = dequeue_signal(current, &current->blocked, info);
2205 if (!signr)
2206 break; /* will return 0 */
2208 if (unlikely(current->ptrace) && signr != SIGKILL) {
2209 signr = ptrace_signal(signr, info,
2210 regs, cookie);
2211 if (!signr)
2212 continue;
2215 ka = &sighand->action[signr-1];
2217 /* Trace actually delivered signals. */
2218 trace_signal_deliver(signr, info, ka);
2220 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2221 continue;
2222 if (ka->sa.sa_handler != SIG_DFL) {
2223 /* Run the handler. */
2224 *return_ka = *ka;
2226 if (ka->sa.sa_flags & SA_ONESHOT)
2227 ka->sa.sa_handler = SIG_DFL;
2229 break; /* will return non-zero "signr" value */
2233 * Now we are doing the default action for this signal.
2235 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236 continue;
2239 * Global init gets no signals it doesn't want.
2240 * Container-init gets no signals it doesn't want from same
2241 * container.
2243 * Note that if global/container-init sees a sig_kernel_only()
2244 * signal here, the signal must have been generated internally
2245 * or must have come from an ancestor namespace. In either
2246 * case, the signal cannot be dropped.
2248 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249 !sig_kernel_only(signr))
2250 continue;
2252 if (sig_kernel_stop(signr)) {
2254 * The default action is to stop all threads in
2255 * the thread group. The job control signals
2256 * do nothing in an orphaned pgrp, but SIGSTOP
2257 * always works. Note that siglock needs to be
2258 * dropped during the call to is_orphaned_pgrp()
2259 * because of lock ordering with tasklist_lock.
2260 * This allows an intervening SIGCONT to be posted.
2261 * We need to check for that and bail out if necessary.
2263 if (signr != SIGSTOP) {
2264 spin_unlock_irq(&sighand->siglock);
2266 /* signals can be posted during this window */
2268 if (is_current_pgrp_orphaned())
2269 goto relock;
2271 spin_lock_irq(&sighand->siglock);
2274 if (likely(do_signal_stop(info->si_signo))) {
2275 /* It released the siglock. */
2276 goto relock;
2280 * We didn't actually stop, due to a race
2281 * with SIGCONT or something like that.
2283 continue;
2286 spin_unlock_irq(&sighand->siglock);
2289 * Anything else is fatal, maybe with a core dump.
2291 current->flags |= PF_SIGNALED;
2293 if (sig_kernel_coredump(signr)) {
2294 if (print_fatal_signals)
2295 print_fatal_signal(regs, info->si_signo);
2297 * If it was able to dump core, this kills all
2298 * other threads in the group and synchronizes with
2299 * their demise. If we lost the race with another
2300 * thread getting here, it set group_exit_code
2301 * first and our do_group_exit call below will use
2302 * that value and ignore the one we pass it.
2304 do_coredump(info->si_signo, info->si_signo, regs);
2308 * Death signals, no core dump.
2310 do_group_exit(info->si_signo);
2311 /* NOTREACHED */
2313 spin_unlock_irq(&sighand->siglock);
2314 return signr;
2318 * block_sigmask - add @ka's signal mask to current->blocked
2319 * @ka: action for @signr
2320 * @signr: signal that has been successfully delivered
2322 * This function should be called when a signal has succesfully been
2323 * delivered. It adds the mask of signals for @ka to current->blocked
2324 * so that they are blocked during the execution of the signal
2325 * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2326 * set in @ka->sa.sa_flags.
2328 void block_sigmask(struct k_sigaction *ka, int signr)
2330 sigset_t blocked;
2332 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2333 if (!(ka->sa.sa_flags & SA_NODEFER))
2334 sigaddset(&blocked, signr);
2335 set_current_blocked(&blocked);
2339 * It could be that complete_signal() picked us to notify about the
2340 * group-wide signal. Other threads should be notified now to take
2341 * the shared signals in @which since we will not.
2343 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2345 sigset_t retarget;
2346 struct task_struct *t;
2348 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2349 if (sigisemptyset(&retarget))
2350 return;
2352 t = tsk;
2353 while_each_thread(tsk, t) {
2354 if (t->flags & PF_EXITING)
2355 continue;
2357 if (!has_pending_signals(&retarget, &t->blocked))
2358 continue;
2359 /* Remove the signals this thread can handle. */
2360 sigandsets(&retarget, &retarget, &t->blocked);
2362 if (!signal_pending(t))
2363 signal_wake_up(t, 0);
2365 if (sigisemptyset(&retarget))
2366 break;
2370 void exit_signals(struct task_struct *tsk)
2372 int group_stop = 0;
2373 sigset_t unblocked;
2375 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2376 tsk->flags |= PF_EXITING;
2377 return;
2380 spin_lock_irq(&tsk->sighand->siglock);
2382 * From now this task is not visible for group-wide signals,
2383 * see wants_signal(), do_signal_stop().
2385 tsk->flags |= PF_EXITING;
2386 if (!signal_pending(tsk))
2387 goto out;
2389 unblocked = tsk->blocked;
2390 signotset(&unblocked);
2391 retarget_shared_pending(tsk, &unblocked);
2393 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2394 task_participate_group_stop(tsk))
2395 group_stop = CLD_STOPPED;
2396 out:
2397 spin_unlock_irq(&tsk->sighand->siglock);
2400 * If group stop has completed, deliver the notification. This
2401 * should always go to the real parent of the group leader.
2403 if (unlikely(group_stop)) {
2404 read_lock(&tasklist_lock);
2405 do_notify_parent_cldstop(tsk, false, group_stop);
2406 read_unlock(&tasklist_lock);
2410 EXPORT_SYMBOL(recalc_sigpending);
2411 EXPORT_SYMBOL_GPL(dequeue_signal);
2412 EXPORT_SYMBOL(flush_signals);
2413 EXPORT_SYMBOL(force_sig);
2414 EXPORT_SYMBOL(send_sig);
2415 EXPORT_SYMBOL(send_sig_info);
2416 EXPORT_SYMBOL(sigprocmask);
2417 EXPORT_SYMBOL(block_all_signals);
2418 EXPORT_SYMBOL(unblock_all_signals);
2422 * System call entry points.
2426 * sys_restart_syscall - restart a system call
2428 SYSCALL_DEFINE0(restart_syscall)
2430 struct restart_block *restart = &current_thread_info()->restart_block;
2431 return restart->fn(restart);
2434 long do_no_restart_syscall(struct restart_block *param)
2436 return -EINTR;
2439 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2441 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2442 sigset_t newblocked;
2443 /* A set of now blocked but previously unblocked signals. */
2444 sigandnsets(&newblocked, newset, &current->blocked);
2445 retarget_shared_pending(tsk, &newblocked);
2447 tsk->blocked = *newset;
2448 recalc_sigpending();
2452 * set_current_blocked - change current->blocked mask
2453 * @newset: new mask
2455 * It is wrong to change ->blocked directly, this helper should be used
2456 * to ensure the process can't miss a shared signal we are going to block.
2458 void set_current_blocked(const sigset_t *newset)
2460 struct task_struct *tsk = current;
2462 spin_lock_irq(&tsk->sighand->siglock);
2463 __set_task_blocked(tsk, newset);
2464 spin_unlock_irq(&tsk->sighand->siglock);
2466 EXPORT_SYMBOL(set_current_blocked);
2469 * This is also useful for kernel threads that want to temporarily
2470 * (or permanently) block certain signals.
2472 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2473 * interface happily blocks "unblockable" signals like SIGKILL
2474 * and friends.
2476 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2478 struct task_struct *tsk = current;
2479 sigset_t newset;
2481 /* Lockless, only current can change ->blocked, never from irq */
2482 if (oldset)
2483 *oldset = tsk->blocked;
2485 switch (how) {
2486 case SIG_BLOCK:
2487 sigorsets(&newset, &tsk->blocked, set);
2488 break;
2489 case SIG_UNBLOCK:
2490 sigandnsets(&newset, &tsk->blocked, set);
2491 break;
2492 case SIG_SETMASK:
2493 newset = *set;
2494 break;
2495 default:
2496 return -EINVAL;
2499 set_current_blocked(&newset);
2500 return 0;
2504 * sys_rt_sigprocmask - change the list of currently blocked signals
2505 * @how: whether to add, remove, or set signals
2506 * @nset: stores pending signals
2507 * @oset: previous value of signal mask if non-null
2508 * @sigsetsize: size of sigset_t type
2510 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2511 sigset_t __user *, oset, size_t, sigsetsize)
2513 sigset_t old_set, new_set;
2514 int error;
2516 /* XXX: Don't preclude handling different sized sigset_t's. */
2517 if (sigsetsize != sizeof(sigset_t))
2518 return -EINVAL;
2520 old_set = current->blocked;
2522 if (nset) {
2523 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2524 return -EFAULT;
2525 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2527 error = sigprocmask(how, &new_set, NULL);
2528 if (error)
2529 return error;
2532 if (oset) {
2533 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2534 return -EFAULT;
2537 return 0;
2540 long do_sigpending(void __user *set, unsigned long sigsetsize)
2542 long error = -EINVAL;
2543 sigset_t pending;
2545 if (sigsetsize > sizeof(sigset_t))
2546 goto out;
2548 spin_lock_irq(&current->sighand->siglock);
2549 sigorsets(&pending, &current->pending.signal,
2550 &current->signal->shared_pending.signal);
2551 spin_unlock_irq(&current->sighand->siglock);
2553 /* Outside the lock because only this thread touches it. */
2554 sigandsets(&pending, &current->blocked, &pending);
2556 error = -EFAULT;
2557 if (!copy_to_user(set, &pending, sigsetsize))
2558 error = 0;
2560 out:
2561 return error;
2565 * sys_rt_sigpending - examine a pending signal that has been raised
2566 * while blocked
2567 * @set: stores pending signals
2568 * @sigsetsize: size of sigset_t type or larger
2570 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2572 return do_sigpending(set, sigsetsize);
2575 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2577 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2579 int err;
2581 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2582 return -EFAULT;
2583 if (from->si_code < 0)
2584 return __copy_to_user(to, from, sizeof(siginfo_t))
2585 ? -EFAULT : 0;
2587 * If you change siginfo_t structure, please be sure
2588 * this code is fixed accordingly.
2589 * Please remember to update the signalfd_copyinfo() function
2590 * inside fs/signalfd.c too, in case siginfo_t changes.
2591 * It should never copy any pad contained in the structure
2592 * to avoid security leaks, but must copy the generic
2593 * 3 ints plus the relevant union member.
2595 err = __put_user(from->si_signo, &to->si_signo);
2596 err |= __put_user(from->si_errno, &to->si_errno);
2597 err |= __put_user((short)from->si_code, &to->si_code);
2598 switch (from->si_code & __SI_MASK) {
2599 case __SI_KILL:
2600 err |= __put_user(from->si_pid, &to->si_pid);
2601 err |= __put_user(from->si_uid, &to->si_uid);
2602 break;
2603 case __SI_TIMER:
2604 err |= __put_user(from->si_tid, &to->si_tid);
2605 err |= __put_user(from->si_overrun, &to->si_overrun);
2606 err |= __put_user(from->si_ptr, &to->si_ptr);
2607 break;
2608 case __SI_POLL:
2609 err |= __put_user(from->si_band, &to->si_band);
2610 err |= __put_user(from->si_fd, &to->si_fd);
2611 break;
2612 case __SI_FAULT:
2613 err |= __put_user(from->si_addr, &to->si_addr);
2614 #ifdef __ARCH_SI_TRAPNO
2615 err |= __put_user(from->si_trapno, &to->si_trapno);
2616 #endif
2617 #ifdef BUS_MCEERR_AO
2619 * Other callers might not initialize the si_lsb field,
2620 * so check explicitly for the right codes here.
2622 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2623 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2624 #endif
2625 break;
2626 case __SI_CHLD:
2627 err |= __put_user(from->si_pid, &to->si_pid);
2628 err |= __put_user(from->si_uid, &to->si_uid);
2629 err |= __put_user(from->si_status, &to->si_status);
2630 err |= __put_user(from->si_utime, &to->si_utime);
2631 err |= __put_user(from->si_stime, &to->si_stime);
2632 break;
2633 case __SI_RT: /* This is not generated by the kernel as of now. */
2634 case __SI_MESGQ: /* But this is */
2635 err |= __put_user(from->si_pid, &to->si_pid);
2636 err |= __put_user(from->si_uid, &to->si_uid);
2637 err |= __put_user(from->si_ptr, &to->si_ptr);
2638 break;
2639 default: /* this is just in case for now ... */
2640 err |= __put_user(from->si_pid, &to->si_pid);
2641 err |= __put_user(from->si_uid, &to->si_uid);
2642 break;
2644 return err;
2647 #endif
2650 * do_sigtimedwait - wait for queued signals specified in @which
2651 * @which: queued signals to wait for
2652 * @info: if non-null, the signal's siginfo is returned here
2653 * @ts: upper bound on process time suspension
2655 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2656 const struct timespec *ts)
2658 struct task_struct *tsk = current;
2659 long timeout = MAX_SCHEDULE_TIMEOUT;
2660 sigset_t mask = *which;
2661 int sig;
2663 if (ts) {
2664 if (!timespec_valid(ts))
2665 return -EINVAL;
2666 timeout = timespec_to_jiffies(ts);
2668 * We can be close to the next tick, add another one
2669 * to ensure we will wait at least the time asked for.
2671 if (ts->tv_sec || ts->tv_nsec)
2672 timeout++;
2676 * Invert the set of allowed signals to get those we want to block.
2678 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2679 signotset(&mask);
2681 spin_lock_irq(&tsk->sighand->siglock);
2682 sig = dequeue_signal(tsk, &mask, info);
2683 if (!sig && timeout) {
2685 * None ready, temporarily unblock those we're interested
2686 * while we are sleeping in so that we'll be awakened when
2687 * they arrive. Unblocking is always fine, we can avoid
2688 * set_current_blocked().
2690 tsk->real_blocked = tsk->blocked;
2691 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2692 recalc_sigpending();
2693 spin_unlock_irq(&tsk->sighand->siglock);
2695 timeout = schedule_timeout_interruptible(timeout);
2697 spin_lock_irq(&tsk->sighand->siglock);
2698 __set_task_blocked(tsk, &tsk->real_blocked);
2699 siginitset(&tsk->real_blocked, 0);
2700 sig = dequeue_signal(tsk, &mask, info);
2702 spin_unlock_irq(&tsk->sighand->siglock);
2704 if (sig)
2705 return sig;
2706 return timeout ? -EINTR : -EAGAIN;
2710 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2711 * in @uthese
2712 * @uthese: queued signals to wait for
2713 * @uinfo: if non-null, the signal's siginfo is returned here
2714 * @uts: upper bound on process time suspension
2715 * @sigsetsize: size of sigset_t type
2717 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2718 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2719 size_t, sigsetsize)
2721 sigset_t these;
2722 struct timespec ts;
2723 siginfo_t info;
2724 int ret;
2726 /* XXX: Don't preclude handling different sized sigset_t's. */
2727 if (sigsetsize != sizeof(sigset_t))
2728 return -EINVAL;
2730 if (copy_from_user(&these, uthese, sizeof(these)))
2731 return -EFAULT;
2733 if (uts) {
2734 if (copy_from_user(&ts, uts, sizeof(ts)))
2735 return -EFAULT;
2738 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2740 if (ret > 0 && uinfo) {
2741 if (copy_siginfo_to_user(uinfo, &info))
2742 ret = -EFAULT;
2745 return ret;
2749 * sys_kill - send a signal to a process
2750 * @pid: the PID of the process
2751 * @sig: signal to be sent
2753 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2755 struct siginfo info;
2757 info.si_signo = sig;
2758 info.si_errno = 0;
2759 info.si_code = SI_USER;
2760 info.si_pid = task_tgid_vnr(current);
2761 info.si_uid = current_uid();
2763 return kill_something_info(sig, &info, pid);
2766 static int
2767 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2769 struct task_struct *p;
2770 int error = -ESRCH;
2772 rcu_read_lock();
2773 p = find_task_by_vpid(pid);
2774 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2775 error = check_kill_permission(sig, info, p);
2777 * The null signal is a permissions and process existence
2778 * probe. No signal is actually delivered.
2780 if (!error && sig) {
2781 error = do_send_sig_info(sig, info, p, false);
2783 * If lock_task_sighand() failed we pretend the task
2784 * dies after receiving the signal. The window is tiny,
2785 * and the signal is private anyway.
2787 if (unlikely(error == -ESRCH))
2788 error = 0;
2791 rcu_read_unlock();
2793 return error;
2796 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2798 struct siginfo info;
2800 info.si_signo = sig;
2801 info.si_errno = 0;
2802 info.si_code = SI_TKILL;
2803 info.si_pid = task_tgid_vnr(current);
2804 info.si_uid = current_uid();
2806 return do_send_specific(tgid, pid, sig, &info);
2810 * sys_tgkill - send signal to one specific thread
2811 * @tgid: the thread group ID of the thread
2812 * @pid: the PID of the thread
2813 * @sig: signal to be sent
2815 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2816 * exists but it's not belonging to the target process anymore. This
2817 * method solves the problem of threads exiting and PIDs getting reused.
2819 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2821 /* This is only valid for single tasks */
2822 if (pid <= 0 || tgid <= 0)
2823 return -EINVAL;
2825 return do_tkill(tgid, pid, sig);
2829 * sys_tkill - send signal to one specific task
2830 * @pid: the PID of the task
2831 * @sig: signal to be sent
2833 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2835 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2837 /* This is only valid for single tasks */
2838 if (pid <= 0)
2839 return -EINVAL;
2841 return do_tkill(0, pid, sig);
2845 * sys_rt_sigqueueinfo - send signal information to a signal
2846 * @pid: the PID of the thread
2847 * @sig: signal to be sent
2848 * @uinfo: signal info to be sent
2850 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2851 siginfo_t __user *, uinfo)
2853 siginfo_t info;
2855 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2856 return -EFAULT;
2858 /* Not even root can pretend to send signals from the kernel.
2859 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2861 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2862 /* We used to allow any < 0 si_code */
2863 WARN_ON_ONCE(info.si_code < 0);
2864 return -EPERM;
2866 info.si_signo = sig;
2868 /* POSIX.1b doesn't mention process groups. */
2869 return kill_proc_info(sig, &info, pid);
2872 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2874 /* This is only valid for single tasks */
2875 if (pid <= 0 || tgid <= 0)
2876 return -EINVAL;
2878 /* Not even root can pretend to send signals from the kernel.
2879 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2881 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2882 /* We used to allow any < 0 si_code */
2883 WARN_ON_ONCE(info->si_code < 0);
2884 return -EPERM;
2886 info->si_signo = sig;
2888 return do_send_specific(tgid, pid, sig, info);
2891 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2892 siginfo_t __user *, uinfo)
2894 siginfo_t info;
2896 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2897 return -EFAULT;
2899 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2902 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2904 struct task_struct *t = current;
2905 struct k_sigaction *k;
2906 sigset_t mask;
2908 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2909 return -EINVAL;
2911 k = &t->sighand->action[sig-1];
2913 spin_lock_irq(&current->sighand->siglock);
2914 if (oact)
2915 *oact = *k;
2917 if (act) {
2918 sigdelsetmask(&act->sa.sa_mask,
2919 sigmask(SIGKILL) | sigmask(SIGSTOP));
2920 *k = *act;
2922 * POSIX 3.3.1.3:
2923 * "Setting a signal action to SIG_IGN for a signal that is
2924 * pending shall cause the pending signal to be discarded,
2925 * whether or not it is blocked."
2927 * "Setting a signal action to SIG_DFL for a signal that is
2928 * pending and whose default action is to ignore the signal
2929 * (for example, SIGCHLD), shall cause the pending signal to
2930 * be discarded, whether or not it is blocked"
2932 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2933 sigemptyset(&mask);
2934 sigaddset(&mask, sig);
2935 rm_from_queue_full(&mask, &t->signal->shared_pending);
2936 do {
2937 rm_from_queue_full(&mask, &t->pending);
2938 t = next_thread(t);
2939 } while (t != current);
2943 spin_unlock_irq(&current->sighand->siglock);
2944 return 0;
2947 int
2948 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2950 stack_t oss;
2951 int error;
2953 oss.ss_sp = (void __user *) current->sas_ss_sp;
2954 oss.ss_size = current->sas_ss_size;
2955 oss.ss_flags = sas_ss_flags(sp);
2957 if (uss) {
2958 void __user *ss_sp;
2959 size_t ss_size;
2960 int ss_flags;
2962 error = -EFAULT;
2963 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2964 goto out;
2965 error = __get_user(ss_sp, &uss->ss_sp) |
2966 __get_user(ss_flags, &uss->ss_flags) |
2967 __get_user(ss_size, &uss->ss_size);
2968 if (error)
2969 goto out;
2971 error = -EPERM;
2972 if (on_sig_stack(sp))
2973 goto out;
2975 error = -EINVAL;
2977 * Note - this code used to test ss_flags incorrectly:
2978 * old code may have been written using ss_flags==0
2979 * to mean ss_flags==SS_ONSTACK (as this was the only
2980 * way that worked) - this fix preserves that older
2981 * mechanism.
2983 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2984 goto out;
2986 if (ss_flags == SS_DISABLE) {
2987 ss_size = 0;
2988 ss_sp = NULL;
2989 } else {
2990 error = -ENOMEM;
2991 if (ss_size < MINSIGSTKSZ)
2992 goto out;
2995 current->sas_ss_sp = (unsigned long) ss_sp;
2996 current->sas_ss_size = ss_size;
2999 error = 0;
3000 if (uoss) {
3001 error = -EFAULT;
3002 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3003 goto out;
3004 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3005 __put_user(oss.ss_size, &uoss->ss_size) |
3006 __put_user(oss.ss_flags, &uoss->ss_flags);
3009 out:
3010 return error;
3013 #ifdef __ARCH_WANT_SYS_SIGPENDING
3016 * sys_sigpending - examine pending signals
3017 * @set: where mask of pending signal is returned
3019 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3021 return do_sigpending(set, sizeof(*set));
3024 #endif
3026 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3028 * sys_sigprocmask - examine and change blocked signals
3029 * @how: whether to add, remove, or set signals
3030 * @nset: signals to add or remove (if non-null)
3031 * @oset: previous value of signal mask if non-null
3033 * Some platforms have their own version with special arguments;
3034 * others support only sys_rt_sigprocmask.
3037 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3038 old_sigset_t __user *, oset)
3040 old_sigset_t old_set, new_set;
3041 sigset_t new_blocked;
3043 old_set = current->blocked.sig[0];
3045 if (nset) {
3046 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3047 return -EFAULT;
3048 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3050 new_blocked = current->blocked;
3052 switch (how) {
3053 case SIG_BLOCK:
3054 sigaddsetmask(&new_blocked, new_set);
3055 break;
3056 case SIG_UNBLOCK:
3057 sigdelsetmask(&new_blocked, new_set);
3058 break;
3059 case SIG_SETMASK:
3060 new_blocked.sig[0] = new_set;
3061 break;
3062 default:
3063 return -EINVAL;
3066 set_current_blocked(&new_blocked);
3069 if (oset) {
3070 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3071 return -EFAULT;
3074 return 0;
3076 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3078 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3080 * sys_rt_sigaction - alter an action taken by a process
3081 * @sig: signal to be sent
3082 * @act: new sigaction
3083 * @oact: used to save the previous sigaction
3084 * @sigsetsize: size of sigset_t type
3086 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3087 const struct sigaction __user *, act,
3088 struct sigaction __user *, oact,
3089 size_t, sigsetsize)
3091 struct k_sigaction new_sa, old_sa;
3092 int ret = -EINVAL;
3094 /* XXX: Don't preclude handling different sized sigset_t's. */
3095 if (sigsetsize != sizeof(sigset_t))
3096 goto out;
3098 if (act) {
3099 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3100 return -EFAULT;
3103 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3105 if (!ret && oact) {
3106 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3107 return -EFAULT;
3109 out:
3110 return ret;
3112 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3114 #ifdef __ARCH_WANT_SYS_SGETMASK
3117 * For backwards compatibility. Functionality superseded by sigprocmask.
3119 SYSCALL_DEFINE0(sgetmask)
3121 /* SMP safe */
3122 return current->blocked.sig[0];
3125 SYSCALL_DEFINE1(ssetmask, int, newmask)
3127 int old = current->blocked.sig[0];
3128 sigset_t newset;
3130 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3131 set_current_blocked(&newset);
3133 return old;
3135 #endif /* __ARCH_WANT_SGETMASK */
3137 #ifdef __ARCH_WANT_SYS_SIGNAL
3139 * For backwards compatibility. Functionality superseded by sigaction.
3141 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3143 struct k_sigaction new_sa, old_sa;
3144 int ret;
3146 new_sa.sa.sa_handler = handler;
3147 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3148 sigemptyset(&new_sa.sa.sa_mask);
3150 ret = do_sigaction(sig, &new_sa, &old_sa);
3152 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3154 #endif /* __ARCH_WANT_SYS_SIGNAL */
3156 #ifdef __ARCH_WANT_SYS_PAUSE
3158 SYSCALL_DEFINE0(pause)
3160 while (!signal_pending(current)) {
3161 current->state = TASK_INTERRUPTIBLE;
3162 schedule();
3164 return -ERESTARTNOHAND;
3167 #endif
3169 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3171 * sys_rt_sigsuspend - replace the signal mask for a value with the
3172 * @unewset value until a signal is received
3173 * @unewset: new signal mask value
3174 * @sigsetsize: size of sigset_t type
3176 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3178 sigset_t newset;
3180 /* XXX: Don't preclude handling different sized sigset_t's. */
3181 if (sigsetsize != sizeof(sigset_t))
3182 return -EINVAL;
3184 if (copy_from_user(&newset, unewset, sizeof(newset)))
3185 return -EFAULT;
3186 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188 current->saved_sigmask = current->blocked;
3189 set_current_blocked(&newset);
3191 current->state = TASK_INTERRUPTIBLE;
3192 schedule();
3193 set_restore_sigmask();
3194 return -ERESTARTNOHAND;
3196 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3198 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3200 return NULL;
3203 void __init signals_init(void)
3205 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3208 #ifdef CONFIG_KGDB_KDB
3209 #include <linux/kdb.h>
3211 * kdb_send_sig_info - Allows kdb to send signals without exposing
3212 * signal internals. This function checks if the required locks are
3213 * available before calling the main signal code, to avoid kdb
3214 * deadlocks.
3216 void
3217 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3219 static struct task_struct *kdb_prev_t;
3220 int sig, new_t;
3221 if (!spin_trylock(&t->sighand->siglock)) {
3222 kdb_printf("Can't do kill command now.\n"
3223 "The sigmask lock is held somewhere else in "
3224 "kernel, try again later\n");
3225 return;
3227 spin_unlock(&t->sighand->siglock);
3228 new_t = kdb_prev_t != t;
3229 kdb_prev_t = t;
3230 if (t->state != TASK_RUNNING && new_t) {
3231 kdb_printf("Process is not RUNNING, sending a signal from "
3232 "kdb risks deadlock\n"
3233 "on the run queue locks. "
3234 "The signal has _not_ been sent.\n"
3235 "Reissue the kill command if you want to risk "
3236 "the deadlock.\n");
3237 return;
3239 sig = info->si_signo;
3240 if (send_sig_info(sig, info, t))
3241 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3242 sig, t->pid);
3243 else
3244 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3246 #endif /* CONFIG_KGDB_KDB */