Linux 2.6.13-rc4
[linux-2.6/next.git] / arch / arm / kernel / smp.c
blob295e0a8379cfc9c95e080f063b815b968acf6a10
1 /*
2 * linux/arch/arm/kernel/smp.c
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
35 * bitmask of present and online CPUs.
36 * The present bitmask indicates that the CPU is physically present.
37 * The online bitmask indicates that the CPU is up and running.
39 cpumask_t cpu_possible_map;
40 cpumask_t cpu_online_map;
43 * as from 2.5, kernels no longer have an init_tasks structure
44 * so we need some other way of telling a new secondary core
45 * where to place its SVC stack
47 struct secondary_data secondary_data;
50 * structures for inter-processor calls
51 * - A collection of single bit ipi messages.
53 struct ipi_data {
54 spinlock_t lock;
55 unsigned long ipi_count;
56 unsigned long bits;
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 .lock = SPIN_LOCK_UNLOCKED,
63 enum ipi_msg_type {
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CPU_STOP,
70 struct smp_call_struct {
71 void (*func)(void *info);
72 void *info;
73 int wait;
74 cpumask_t pending;
75 cpumask_t unfinished;
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
81 int __cpuinit __cpu_up(unsigned int cpu)
83 struct task_struct *idle;
84 pgd_t *pgd;
85 pmd_t *pmd;
86 int ret;
89 * Spawn a new process manually. Grab a pointer to
90 * its task struct so we can mess with it
92 idle = fork_idle(cpu);
93 if (IS_ERR(idle)) {
94 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
95 return PTR_ERR(idle);
99 * Allocate initial page tables to allow the new CPU to
100 * enable the MMU safely. This essentially means a set
101 * of our "standard" page tables, with the addition of
102 * a 1:1 mapping for the physical address of the kernel.
104 pgd = pgd_alloc(&init_mm);
105 pmd = pmd_offset(pgd, PHYS_OFFSET);
106 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
107 PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
110 * We need to tell the secondary core where to find
111 * its stack and the page tables.
113 secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8;
114 secondary_data.pgdir = virt_to_phys(pgd);
115 wmb();
118 * Now bring the CPU into our world.
120 ret = boot_secondary(cpu, idle);
121 if (ret == 0) {
122 unsigned long timeout;
125 * CPU was successfully started, wait for it
126 * to come online or time out.
128 timeout = jiffies + HZ;
129 while (time_before(jiffies, timeout)) {
130 if (cpu_online(cpu))
131 break;
133 udelay(10);
134 barrier();
137 if (!cpu_online(cpu))
138 ret = -EIO;
141 secondary_data.stack = 0;
142 secondary_data.pgdir = 0;
144 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
145 pgd_free(pgd);
147 if (ret) {
148 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
151 * FIXME: We need to clean up the new idle thread. --rmk
155 return ret;
159 * This is the secondary CPU boot entry. We're using this CPUs
160 * idle thread stack, but a set of temporary page tables.
162 asmlinkage void __cpuinit secondary_start_kernel(void)
164 struct mm_struct *mm = &init_mm;
165 unsigned int cpu = smp_processor_id();
167 printk("CPU%u: Booted secondary processor\n", cpu);
170 * All kernel threads share the same mm context; grab a
171 * reference and switch to it.
173 atomic_inc(&mm->mm_users);
174 atomic_inc(&mm->mm_count);
175 current->active_mm = mm;
176 cpu_set(cpu, mm->cpu_vm_mask);
177 cpu_switch_mm(mm->pgd, mm);
178 enter_lazy_tlb(mm, current);
180 cpu_init();
183 * Give the platform a chance to do its own initialisation.
185 platform_secondary_init(cpu);
188 * Enable local interrupts.
190 local_irq_enable();
191 local_fiq_enable();
193 calibrate_delay();
195 smp_store_cpu_info(cpu);
198 * OK, now it's safe to let the boot CPU continue
200 cpu_set(cpu, cpu_online_map);
203 * OK, it's off to the idle thread for us
205 cpu_idle();
209 * Called by both boot and secondaries to move global data into
210 * per-processor storage.
212 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
214 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
216 cpu_info->loops_per_jiffy = loops_per_jiffy;
219 void __init smp_cpus_done(unsigned int max_cpus)
221 int cpu;
222 unsigned long bogosum = 0;
224 for_each_online_cpu(cpu)
225 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
227 printk(KERN_INFO "SMP: Total of %d processors activated "
228 "(%lu.%02lu BogoMIPS).\n",
229 num_online_cpus(),
230 bogosum / (500000/HZ),
231 (bogosum / (5000/HZ)) % 100);
234 void __init smp_prepare_boot_cpu(void)
236 unsigned int cpu = smp_processor_id();
238 cpu_set(cpu, cpu_possible_map);
239 cpu_set(cpu, cpu_present_map);
240 cpu_set(cpu, cpu_online_map);
243 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
245 unsigned long flags;
246 unsigned int cpu;
248 local_irq_save(flags);
250 for_each_cpu_mask(cpu, callmap) {
251 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
253 spin_lock(&ipi->lock);
254 ipi->bits |= 1 << msg;
255 spin_unlock(&ipi->lock);
259 * Call the platform specific cross-CPU call function.
261 smp_cross_call(callmap);
263 local_irq_restore(flags);
267 * You must not call this function with disabled interrupts, from a
268 * hardware interrupt handler, nor from a bottom half handler.
270 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
271 int wait, cpumask_t callmap)
273 struct smp_call_struct data;
274 unsigned long timeout;
275 int ret = 0;
277 data.func = func;
278 data.info = info;
279 data.wait = wait;
281 cpu_clear(smp_processor_id(), callmap);
282 if (cpus_empty(callmap))
283 goto out;
285 data.pending = callmap;
286 if (wait)
287 data.unfinished = callmap;
290 * try to get the mutex on smp_call_function_data
292 spin_lock(&smp_call_function_lock);
293 smp_call_function_data = &data;
295 send_ipi_message(callmap, IPI_CALL_FUNC);
297 timeout = jiffies + HZ;
298 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
299 barrier();
302 * did we time out?
304 if (!cpus_empty(data.pending)) {
306 * this may be causing our panic - report it
308 printk(KERN_CRIT
309 "CPU%u: smp_call_function timeout for %p(%p)\n"
310 " callmap %lx pending %lx, %swait\n",
311 smp_processor_id(), func, info, callmap, data.pending,
312 wait ? "" : "no ");
315 * TRACE
317 timeout = jiffies + (5 * HZ);
318 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
319 barrier();
321 if (cpus_empty(data.pending))
322 printk(KERN_CRIT " RESOLVED\n");
323 else
324 printk(KERN_CRIT " STILL STUCK\n");
328 * whatever happened, we're done with the data, so release it
330 smp_call_function_data = NULL;
331 spin_unlock(&smp_call_function_lock);
333 if (!cpus_empty(data.pending)) {
334 ret = -ETIMEDOUT;
335 goto out;
338 if (wait)
339 while (!cpus_empty(data.unfinished))
340 barrier();
341 out:
343 return 0;
346 int smp_call_function(void (*func)(void *info), void *info, int retry,
347 int wait)
349 return smp_call_function_on_cpu(func, info, retry, wait,
350 cpu_online_map);
353 void show_ipi_list(struct seq_file *p)
355 unsigned int cpu;
357 seq_puts(p, "IPI:");
359 for_each_present_cpu(cpu)
360 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
362 seq_putc(p, '\n');
365 static void ipi_timer(struct pt_regs *regs)
367 int user = user_mode(regs);
369 irq_enter();
370 profile_tick(CPU_PROFILING, regs);
371 update_process_times(user);
372 irq_exit();
376 * ipi_call_function - handle IPI from smp_call_function()
378 * Note that we copy data out of the cross-call structure and then
379 * let the caller know that we're here and have done with their data
381 static void ipi_call_function(unsigned int cpu)
383 struct smp_call_struct *data = smp_call_function_data;
384 void (*func)(void *info) = data->func;
385 void *info = data->info;
386 int wait = data->wait;
388 cpu_clear(cpu, data->pending);
390 func(info);
392 if (wait)
393 cpu_clear(cpu, data->unfinished);
396 static DEFINE_SPINLOCK(stop_lock);
399 * ipi_cpu_stop - handle IPI from smp_send_stop()
401 static void ipi_cpu_stop(unsigned int cpu)
403 spin_lock(&stop_lock);
404 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
405 dump_stack();
406 spin_unlock(&stop_lock);
408 cpu_clear(cpu, cpu_online_map);
410 local_fiq_disable();
411 local_irq_disable();
413 while (1)
414 cpu_relax();
418 * Main handler for inter-processor interrupts
420 * For ARM, the ipimask now only identifies a single
421 * category of IPI (Bit 1 IPIs have been replaced by a
422 * different mechanism):
424 * Bit 0 - Inter-processor function call
426 void do_IPI(struct pt_regs *regs)
428 unsigned int cpu = smp_processor_id();
429 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
431 ipi->ipi_count++;
433 for (;;) {
434 unsigned long msgs;
436 spin_lock(&ipi->lock);
437 msgs = ipi->bits;
438 ipi->bits = 0;
439 spin_unlock(&ipi->lock);
441 if (!msgs)
442 break;
444 do {
445 unsigned nextmsg;
447 nextmsg = msgs & -msgs;
448 msgs &= ~nextmsg;
449 nextmsg = ffz(~nextmsg);
451 switch (nextmsg) {
452 case IPI_TIMER:
453 ipi_timer(regs);
454 break;
456 case IPI_RESCHEDULE:
458 * nothing more to do - eveything is
459 * done on the interrupt return path
461 break;
463 case IPI_CALL_FUNC:
464 ipi_call_function(cpu);
465 break;
467 case IPI_CPU_STOP:
468 ipi_cpu_stop(cpu);
469 break;
471 default:
472 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
473 cpu, nextmsg);
474 break;
476 } while (msgs);
480 void smp_send_reschedule(int cpu)
482 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
485 void smp_send_timer(void)
487 cpumask_t mask = cpu_online_map;
488 cpu_clear(smp_processor_id(), mask);
489 send_ipi_message(mask, IPI_TIMER);
492 void smp_send_stop(void)
494 cpumask_t mask = cpu_online_map;
495 cpu_clear(smp_processor_id(), mask);
496 send_ipi_message(mask, IPI_CPU_STOP);
500 * not supported here
502 int __init setup_profiling_timer(unsigned int multiplier)
504 return -EINVAL;
507 static int
508 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
509 cpumask_t mask)
511 int ret = 0;
513 preempt_disable();
515 ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
516 if (cpu_isset(smp_processor_id(), mask))
517 func(info);
519 preempt_enable();
521 return ret;
524 /**********************************************************************/
527 * TLB operations
529 struct tlb_args {
530 struct vm_area_struct *ta_vma;
531 unsigned long ta_start;
532 unsigned long ta_end;
535 static inline void ipi_flush_tlb_all(void *ignored)
537 local_flush_tlb_all();
540 static inline void ipi_flush_tlb_mm(void *arg)
542 struct mm_struct *mm = (struct mm_struct *)arg;
544 local_flush_tlb_mm(mm);
547 static inline void ipi_flush_tlb_page(void *arg)
549 struct tlb_args *ta = (struct tlb_args *)arg;
551 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
554 static inline void ipi_flush_tlb_kernel_page(void *arg)
556 struct tlb_args *ta = (struct tlb_args *)arg;
558 local_flush_tlb_kernel_page(ta->ta_start);
561 static inline void ipi_flush_tlb_range(void *arg)
563 struct tlb_args *ta = (struct tlb_args *)arg;
565 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
568 static inline void ipi_flush_tlb_kernel_range(void *arg)
570 struct tlb_args *ta = (struct tlb_args *)arg;
572 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
575 void flush_tlb_all(void)
577 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
580 void flush_tlb_mm(struct mm_struct *mm)
582 cpumask_t mask = mm->cpu_vm_mask;
584 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
587 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
589 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
590 struct tlb_args ta;
592 ta.ta_vma = vma;
593 ta.ta_start = uaddr;
595 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
598 void flush_tlb_kernel_page(unsigned long kaddr)
600 struct tlb_args ta;
602 ta.ta_start = kaddr;
604 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
607 void flush_tlb_range(struct vm_area_struct *vma,
608 unsigned long start, unsigned long end)
610 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
611 struct tlb_args ta;
613 ta.ta_vma = vma;
614 ta.ta_start = start;
615 ta.ta_end = end;
617 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
620 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
622 struct tlb_args ta;
624 ta.ta_start = start;
625 ta.ta_end = end;
627 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);