1 /* IEEE754 floating point arithmetic
2 * double precision square root
5 * MIPS floating point support
6 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 * http://www.algor.co.uk
9 * ########################################################################
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
24 * ########################################################################
28 #include "ieee754dp.h"
30 static const unsigned table
[] = {
31 0, 1204, 3062, 5746, 9193, 13348, 18162, 23592,
32 29598, 36145, 43202, 50740, 58733, 67158, 75992,
33 85215, 83599, 71378, 60428, 50647, 41945, 34246,
34 27478, 21581, 16499, 12183, 8588, 5674, 3403,
38 ieee754dp
ieee754dp_sqrt(ieee754dp x
)
40 struct ieee754_csr oldcsr
;
49 /* x == INF or NAN? */
51 case IEEE754_CLASS_QNAN
:
53 return ieee754dp_nanxcpt(x
, "sqrt");
54 case IEEE754_CLASS_SNAN
:
55 SETCX(IEEE754_INVALID_OPERATION
);
56 return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
57 case IEEE754_CLASS_ZERO
:
60 case IEEE754_CLASS_INF
:
62 /* sqrt(-Inf) = Nan */
63 SETCX(IEEE754_INVALID_OPERATION
);
64 return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
66 /* sqrt(+Inf) = Inf */
68 case IEEE754_CLASS_DNORM
:
71 case IEEE754_CLASS_NORM
:
74 SETCX(IEEE754_INVALID_OPERATION
);
75 return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
80 /* save old csr; switch off INX enable & flag; set RN rounding */
82 ieee754_csr
.mx
&= ~IEEE754_INEXACT
;
83 ieee754_csr
.sx
&= ~IEEE754_INEXACT
;
84 ieee754_csr
.rm
= IEEE754_RN
;
86 /* adjust exponent to prevent overflow */
88 if (xe
> 512) { /* x > 2**-512? */
89 xe
-= 512; /* x = x / 2**512 */
91 } else if (xe
< -512) { /* x < 2**-512? */
92 xe
+= 512; /* x = x * 2**512 */
96 y
= x
= builddp(0, xe
+ DP_EBIAS
, xm
& ~DP_HIDDEN_BIT
);
98 /* magic initial approximation to almost 8 sig. bits */
100 yh
= (yh
>> 1) + 0x1ff80000;
101 yh
= yh
- table
[(yh
>> 15) & 31];
102 y
.bits
= ((u64
) yh
<< 32) | (y
.bits
& 0xffffffff);
104 /* Heron's rule once with correction to improve to ~18 sig. bits */
105 /* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */
106 t
= ieee754dp_div(x
, y
);
107 y
= ieee754dp_add(y
, t
);
108 y
.bits
-= 0x0010000600000000LL
;
109 y
.bits
&= 0xffffffff00000000LL
;
111 /* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */
112 /* t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */
113 z
= t
= ieee754dp_mul(y
, y
);
114 t
.parts
.bexp
+= 0x001;
115 t
= ieee754dp_add(t
, z
);
116 z
= ieee754dp_mul(ieee754dp_sub(x
, z
), y
);
118 /* t=z/(t+x) ; pt[n0]+=0x00100000; y+=t; */
119 t
= ieee754dp_div(z
, ieee754dp_add(t
, x
));
120 t
.parts
.bexp
+= 0x001;
121 y
= ieee754dp_add(y
, t
);
123 /* twiddle last bit to force y correctly rounded */
125 /* set RZ, clear INEX flag */
126 ieee754_csr
.rm
= IEEE754_RZ
;
127 ieee754_csr
.sx
&= ~IEEE754_INEXACT
;
129 /* t=x/y; ...chopped quotient, possibly inexact */
130 t
= ieee754dp_div(x
, y
);
132 if (ieee754_csr
.sx
& IEEE754_INEXACT
|| t
.bits
!= y
.bits
) {
134 if (!(ieee754_csr
.sx
& IEEE754_INEXACT
))
138 /* add inexact to result status */
139 oldcsr
.cx
|= IEEE754_INEXACT
;
140 oldcsr
.sx
|= IEEE754_INEXACT
;
151 /* y=y+t; ...chopped sum */
152 y
= ieee754dp_add(y
, t
);
154 /* adjust scalx for correctly rounded sqrt(x) */
158 /* py[n0]=py[n0]+scalx; ...scale back y */
159 y
.parts
.bexp
+= scalx
;
161 /* restore rounding mode, possibly set inexact */
162 ieee754_csr
= oldcsr
;