Linux 2.6.13-rc4
[linux-2.6/next.git] / arch / x86_64 / mm / fault.c
blob2f187986f940b6e6bfe8f6a475b6658571d2cabe
1 /*
2 * linux/arch/x86-64/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
8 #include <linux/config.h>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/tty.h>
23 #include <linux/vt_kern.h> /* For unblank_screen() */
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
28 #include <asm/system.h>
29 #include <asm/uaccess.h>
30 #include <asm/pgalloc.h>
31 #include <asm/smp.h>
32 #include <asm/tlbflush.h>
33 #include <asm/proto.h>
34 #include <asm/kdebug.h>
35 #include <asm-generic/sections.h>
36 #include <asm/kdebug.h>
38 void bust_spinlocks(int yes)
40 int loglevel_save = console_loglevel;
41 if (yes) {
42 oops_in_progress = 1;
43 } else {
44 #ifdef CONFIG_VT
45 unblank_screen();
46 #endif
47 oops_in_progress = 0;
49 * OK, the message is on the console. Now we call printk()
50 * without oops_in_progress set so that printk will give klogd
51 * a poke. Hold onto your hats...
53 console_loglevel = 15; /* NMI oopser may have shut the console up */
54 printk(" ");
55 console_loglevel = loglevel_save;
59 /* Sometimes the CPU reports invalid exceptions on prefetch.
60 Check that here and ignore.
61 Opcode checker based on code by Richard Brunner */
62 static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
63 unsigned long error_code)
65 unsigned char *instr;
66 int scan_more = 1;
67 int prefetch = 0;
68 unsigned char *max_instr;
70 /* If it was a exec fault ignore */
71 if (error_code & (1<<4))
72 return 0;
74 instr = (unsigned char *)convert_rip_to_linear(current, regs);
75 max_instr = instr + 15;
77 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
78 return 0;
80 while (scan_more && instr < max_instr) {
81 unsigned char opcode;
82 unsigned char instr_hi;
83 unsigned char instr_lo;
85 if (__get_user(opcode, instr))
86 break;
88 instr_hi = opcode & 0xf0;
89 instr_lo = opcode & 0x0f;
90 instr++;
92 switch (instr_hi) {
93 case 0x20:
94 case 0x30:
95 /* Values 0x26,0x2E,0x36,0x3E are valid x86
96 prefixes. In long mode, the CPU will signal
97 invalid opcode if some of these prefixes are
98 present so we will never get here anyway */
99 scan_more = ((instr_lo & 7) == 0x6);
100 break;
102 case 0x40:
103 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
104 Need to figure out under what instruction mode the
105 instruction was issued ... */
106 /* Could check the LDT for lm, but for now it's good
107 enough to assume that long mode only uses well known
108 segments or kernel. */
109 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
110 break;
112 case 0x60:
113 /* 0x64 thru 0x67 are valid prefixes in all modes. */
114 scan_more = (instr_lo & 0xC) == 0x4;
115 break;
116 case 0xF0:
117 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
118 scan_more = !instr_lo || (instr_lo>>1) == 1;
119 break;
120 case 0x00:
121 /* Prefetch instruction is 0x0F0D or 0x0F18 */
122 scan_more = 0;
123 if (__get_user(opcode, instr))
124 break;
125 prefetch = (instr_lo == 0xF) &&
126 (opcode == 0x0D || opcode == 0x18);
127 break;
128 default:
129 scan_more = 0;
130 break;
133 return prefetch;
136 static int bad_address(void *p)
138 unsigned long dummy;
139 return __get_user(dummy, (unsigned long *)p);
142 void dump_pagetable(unsigned long address)
144 pgd_t *pgd;
145 pud_t *pud;
146 pmd_t *pmd;
147 pte_t *pte;
149 asm("movq %%cr3,%0" : "=r" (pgd));
151 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
152 pgd += pgd_index(address);
153 printk("PGD %lx ", pgd_val(*pgd));
154 if (bad_address(pgd)) goto bad;
155 if (!pgd_present(*pgd)) goto ret;
157 pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
158 if (bad_address(pud)) goto bad;
159 printk("PUD %lx ", pud_val(*pud));
160 if (!pud_present(*pud)) goto ret;
162 pmd = pmd_offset(pud, address);
163 if (bad_address(pmd)) goto bad;
164 printk("PMD %lx ", pmd_val(*pmd));
165 if (!pmd_present(*pmd)) goto ret;
167 pte = pte_offset_kernel(pmd, address);
168 if (bad_address(pte)) goto bad;
169 printk("PTE %lx", pte_val(*pte));
170 ret:
171 printk("\n");
172 return;
173 bad:
174 printk("BAD\n");
177 static const char errata93_warning[] =
178 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
179 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
180 KERN_ERR "******* Please consider a BIOS update.\n"
181 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
183 /* Workaround for K8 erratum #93 & buggy BIOS.
184 BIOS SMM functions are required to use a specific workaround
185 to avoid corruption of the 64bit RIP register on C stepping K8.
186 A lot of BIOS that didn't get tested properly miss this.
187 The OS sees this as a page fault with the upper 32bits of RIP cleared.
188 Try to work around it here.
189 Note we only handle faults in kernel here. */
191 static int is_errata93(struct pt_regs *regs, unsigned long address)
193 static int warned;
194 if (address != regs->rip)
195 return 0;
196 if ((address >> 32) != 0)
197 return 0;
198 address |= 0xffffffffUL << 32;
199 if ((address >= (u64)_stext && address <= (u64)_etext) ||
200 (address >= MODULES_VADDR && address <= MODULES_END)) {
201 if (!warned) {
202 printk(errata93_warning);
203 warned = 1;
205 regs->rip = address;
206 return 1;
208 return 0;
211 int unhandled_signal(struct task_struct *tsk, int sig)
213 if (tsk->pid == 1)
214 return 1;
215 /* Warn for strace, but not for gdb */
216 if (!test_ti_thread_flag(tsk->thread_info, TIF_SYSCALL_TRACE) &&
217 (tsk->ptrace & PT_PTRACED))
218 return 0;
219 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
220 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
223 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
224 unsigned long error_code)
226 oops_begin();
227 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
228 current->comm, address);
229 dump_pagetable(address);
230 __die("Bad pagetable", regs, error_code);
231 oops_end();
232 do_exit(SIGKILL);
236 * Handle a fault on the vmalloc or module mapping area
238 * This assumes no large pages in there.
240 static int vmalloc_fault(unsigned long address)
242 pgd_t *pgd, *pgd_ref;
243 pud_t *pud, *pud_ref;
244 pmd_t *pmd, *pmd_ref;
245 pte_t *pte, *pte_ref;
247 /* Copy kernel mappings over when needed. This can also
248 happen within a race in page table update. In the later
249 case just flush. */
251 pgd = pgd_offset(current->mm ?: &init_mm, address);
252 pgd_ref = pgd_offset_k(address);
253 if (pgd_none(*pgd_ref))
254 return -1;
255 if (pgd_none(*pgd))
256 set_pgd(pgd, *pgd_ref);
258 /* Below here mismatches are bugs because these lower tables
259 are shared */
261 pud = pud_offset(pgd, address);
262 pud_ref = pud_offset(pgd_ref, address);
263 if (pud_none(*pud_ref))
264 return -1;
265 if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
266 BUG();
267 pmd = pmd_offset(pud, address);
268 pmd_ref = pmd_offset(pud_ref, address);
269 if (pmd_none(*pmd_ref))
270 return -1;
271 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
272 BUG();
273 pte_ref = pte_offset_kernel(pmd_ref, address);
274 if (!pte_present(*pte_ref))
275 return -1;
276 pte = pte_offset_kernel(pmd, address);
277 /* Don't use pte_page here, because the mappings can point
278 outside mem_map, and the NUMA hash lookup cannot handle
279 that. */
280 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
281 BUG();
282 __flush_tlb_all();
283 return 0;
286 int page_fault_trace = 0;
287 int exception_trace = 1;
290 * This routine handles page faults. It determines the address,
291 * and the problem, and then passes it off to one of the appropriate
292 * routines.
294 * error_code:
295 * bit 0 == 0 means no page found, 1 means protection fault
296 * bit 1 == 0 means read, 1 means write
297 * bit 2 == 0 means kernel, 1 means user-mode
298 * bit 3 == 1 means fault was an instruction fetch
300 asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code)
302 struct task_struct *tsk;
303 struct mm_struct *mm;
304 struct vm_area_struct * vma;
305 unsigned long address;
306 const struct exception_table_entry *fixup;
307 int write;
308 siginfo_t info;
310 #ifdef CONFIG_CHECKING
312 unsigned long gs;
313 struct x8664_pda *pda = cpu_pda + stack_smp_processor_id();
314 rdmsrl(MSR_GS_BASE, gs);
315 if (gs != (unsigned long)pda) {
316 wrmsrl(MSR_GS_BASE, pda);
317 printk("page_fault: wrong gs %lx expected %p\n", gs, pda);
320 #endif
322 /* get the address */
323 __asm__("movq %%cr2,%0":"=r" (address));
324 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
325 SIGSEGV) == NOTIFY_STOP)
326 return;
328 if (likely(regs->eflags & X86_EFLAGS_IF))
329 local_irq_enable();
331 if (unlikely(page_fault_trace))
332 printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
333 regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
335 tsk = current;
336 mm = tsk->mm;
337 info.si_code = SEGV_MAPERR;
341 * We fault-in kernel-space virtual memory on-demand. The
342 * 'reference' page table is init_mm.pgd.
344 * NOTE! We MUST NOT take any locks for this case. We may
345 * be in an interrupt or a critical region, and should
346 * only copy the information from the master page table,
347 * nothing more.
349 * This verifies that the fault happens in kernel space
350 * (error_code & 4) == 0, and that the fault was not a
351 * protection error (error_code & 1) == 0.
353 if (unlikely(address >= TASK_SIZE64)) {
354 if (!(error_code & 5) &&
355 ((address >= VMALLOC_START && address < VMALLOC_END) ||
356 (address >= MODULES_VADDR && address < MODULES_END))) {
357 if (vmalloc_fault(address) < 0)
358 goto bad_area_nosemaphore;
359 return;
362 * Don't take the mm semaphore here. If we fixup a prefetch
363 * fault we could otherwise deadlock.
365 goto bad_area_nosemaphore;
368 if (unlikely(error_code & (1 << 3)))
369 pgtable_bad(address, regs, error_code);
372 * If we're in an interrupt or have no user
373 * context, we must not take the fault..
375 if (unlikely(in_atomic() || !mm))
376 goto bad_area_nosemaphore;
378 again:
379 /* When running in the kernel we expect faults to occur only to
380 * addresses in user space. All other faults represent errors in the
381 * kernel and should generate an OOPS. Unfortunatly, in the case of an
382 * erroneous fault occuring in a code path which already holds mmap_sem
383 * we will deadlock attempting to validate the fault against the
384 * address space. Luckily the kernel only validly references user
385 * space from well defined areas of code, which are listed in the
386 * exceptions table.
388 * As the vast majority of faults will be valid we will only perform
389 * the source reference check when there is a possibilty of a deadlock.
390 * Attempt to lock the address space, if we cannot we then validate the
391 * source. If this is invalid we can skip the address space check,
392 * thus avoiding the deadlock.
394 if (!down_read_trylock(&mm->mmap_sem)) {
395 if ((error_code & 4) == 0 &&
396 !search_exception_tables(regs->rip))
397 goto bad_area_nosemaphore;
398 down_read(&mm->mmap_sem);
401 vma = find_vma(mm, address);
402 if (!vma)
403 goto bad_area;
404 if (likely(vma->vm_start <= address))
405 goto good_area;
406 if (!(vma->vm_flags & VM_GROWSDOWN))
407 goto bad_area;
408 if (error_code & 4) {
409 // XXX: align red zone size with ABI
410 if (address + 128 < regs->rsp)
411 goto bad_area;
413 if (expand_stack(vma, address))
414 goto bad_area;
416 * Ok, we have a good vm_area for this memory access, so
417 * we can handle it..
419 good_area:
420 info.si_code = SEGV_ACCERR;
421 write = 0;
422 switch (error_code & 3) {
423 default: /* 3: write, present */
424 /* fall through */
425 case 2: /* write, not present */
426 if (!(vma->vm_flags & VM_WRITE))
427 goto bad_area;
428 write++;
429 break;
430 case 1: /* read, present */
431 goto bad_area;
432 case 0: /* read, not present */
433 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
434 goto bad_area;
438 * If for any reason at all we couldn't handle the fault,
439 * make sure we exit gracefully rather than endlessly redo
440 * the fault.
442 switch (handle_mm_fault(mm, vma, address, write)) {
443 case 1:
444 tsk->min_flt++;
445 break;
446 case 2:
447 tsk->maj_flt++;
448 break;
449 case 0:
450 goto do_sigbus;
451 default:
452 goto out_of_memory;
455 up_read(&mm->mmap_sem);
456 return;
459 * Something tried to access memory that isn't in our memory map..
460 * Fix it, but check if it's kernel or user first..
462 bad_area:
463 up_read(&mm->mmap_sem);
465 bad_area_nosemaphore:
466 /* User mode accesses just cause a SIGSEGV */
467 if (error_code & 4) {
468 if (is_prefetch(regs, address, error_code))
469 return;
471 /* Work around K8 erratum #100 K8 in compat mode
472 occasionally jumps to illegal addresses >4GB. We
473 catch this here in the page fault handler because
474 these addresses are not reachable. Just detect this
475 case and return. Any code segment in LDT is
476 compatibility mode. */
477 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
478 (address >> 32))
479 return;
481 if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
482 printk(
483 "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
484 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
485 tsk->comm, tsk->pid, address, regs->rip,
486 regs->rsp, error_code);
489 tsk->thread.cr2 = address;
490 /* Kernel addresses are always protection faults */
491 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
492 tsk->thread.trap_no = 14;
493 info.si_signo = SIGSEGV;
494 info.si_errno = 0;
495 /* info.si_code has been set above */
496 info.si_addr = (void __user *)address;
497 force_sig_info(SIGSEGV, &info, tsk);
498 return;
501 no_context:
503 /* Are we prepared to handle this kernel fault? */
504 fixup = search_exception_tables(regs->rip);
505 if (fixup) {
506 regs->rip = fixup->fixup;
507 return;
511 * Hall of shame of CPU/BIOS bugs.
514 if (is_prefetch(regs, address, error_code))
515 return;
517 if (is_errata93(regs, address))
518 return;
521 * Oops. The kernel tried to access some bad page. We'll have to
522 * terminate things with extreme prejudice.
525 oops_begin();
527 if (address < PAGE_SIZE)
528 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
529 else
530 printk(KERN_ALERT "Unable to handle kernel paging request");
531 printk(" at %016lx RIP: \n" KERN_ALERT,address);
532 printk_address(regs->rip);
533 printk("\n");
534 dump_pagetable(address);
535 __die("Oops", regs, error_code);
536 /* Executive summary in case the body of the oops scrolled away */
537 printk(KERN_EMERG "CR2: %016lx\n", address);
538 oops_end();
539 do_exit(SIGKILL);
542 * We ran out of memory, or some other thing happened to us that made
543 * us unable to handle the page fault gracefully.
545 out_of_memory:
546 up_read(&mm->mmap_sem);
547 if (current->pid == 1) {
548 yield();
549 goto again;
551 printk("VM: killing process %s\n", tsk->comm);
552 if (error_code & 4)
553 do_exit(SIGKILL);
554 goto no_context;
556 do_sigbus:
557 up_read(&mm->mmap_sem);
559 /* Kernel mode? Handle exceptions or die */
560 if (!(error_code & 4))
561 goto no_context;
563 tsk->thread.cr2 = address;
564 tsk->thread.error_code = error_code;
565 tsk->thread.trap_no = 14;
566 info.si_signo = SIGBUS;
567 info.si_errno = 0;
568 info.si_code = BUS_ADRERR;
569 info.si_addr = (void __user *)address;
570 force_sig_info(SIGBUS, &info, tsk);
571 return;