2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
5 * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
7 * Created by David Woodhouse <dwmw2@infradead.org>
9 * For licensing information, see the file 'LICENCE' in this directory.
13 #include <linux/capability.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
17 #include <linux/list.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/pagemap.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/vfs.h>
23 #include <linux/crc32.h>
26 static int jffs2_flash_setup(struct jffs2_sb_info
*c
);
28 int jffs2_do_setattr (struct inode
*inode
, struct iattr
*iattr
)
30 struct jffs2_full_dnode
*old_metadata
, *new_metadata
;
31 struct jffs2_inode_info
*f
= JFFS2_INODE_INFO(inode
);
32 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(inode
->i_sb
);
33 struct jffs2_raw_inode
*ri
;
34 union jffs2_device_node dev
;
35 unsigned char *mdata
= NULL
;
40 int alloc_type
= ALLOC_NORMAL
;
42 D1(printk(KERN_DEBUG
"jffs2_setattr(): ino #%lu\n", inode
->i_ino
));
44 /* Special cases - we don't want more than one data node
45 for these types on the medium at any time. So setattr
46 must read the original data associated with the node
47 (i.e. the device numbers or the target name) and write
48 it out again with the appropriate data attached */
49 if (S_ISBLK(inode
->i_mode
) || S_ISCHR(inode
->i_mode
)) {
50 /* For these, we don't actually need to read the old node */
51 mdatalen
= jffs2_encode_dev(&dev
, inode
->i_rdev
);
53 D1(printk(KERN_DEBUG
"jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen
));
54 } else if (S_ISLNK(inode
->i_mode
)) {
56 mdatalen
= f
->metadata
->size
;
57 mdata
= kmalloc(f
->metadata
->size
, GFP_USER
);
59 mutex_unlock(&f
->sem
);
62 ret
= jffs2_read_dnode(c
, f
, f
->metadata
, mdata
, 0, mdatalen
);
64 mutex_unlock(&f
->sem
);
68 mutex_unlock(&f
->sem
);
69 D1(printk(KERN_DEBUG
"jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen
));
72 ri
= jffs2_alloc_raw_inode();
74 if (S_ISLNK(inode
->i_mode
))
79 ret
= jffs2_reserve_space(c
, sizeof(*ri
) + mdatalen
, &alloclen
,
80 ALLOC_NORMAL
, JFFS2_SUMMARY_INODE_SIZE
);
82 jffs2_free_raw_inode(ri
);
83 if (S_ISLNK(inode
->i_mode
& S_IFMT
))
88 ivalid
= iattr
->ia_valid
;
90 ri
->magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
91 ri
->nodetype
= cpu_to_je16(JFFS2_NODETYPE_INODE
);
92 ri
->totlen
= cpu_to_je32(sizeof(*ri
) + mdatalen
);
93 ri
->hdr_crc
= cpu_to_je32(crc32(0, ri
, sizeof(struct jffs2_unknown_node
)-4));
95 ri
->ino
= cpu_to_je32(inode
->i_ino
);
96 ri
->version
= cpu_to_je32(++f
->highest_version
);
98 ri
->uid
= cpu_to_je16((ivalid
& ATTR_UID
)?iattr
->ia_uid
:inode
->i_uid
);
99 ri
->gid
= cpu_to_je16((ivalid
& ATTR_GID
)?iattr
->ia_gid
:inode
->i_gid
);
101 if (ivalid
& ATTR_MODE
)
102 ri
->mode
= cpu_to_jemode(iattr
->ia_mode
);
104 ri
->mode
= cpu_to_jemode(inode
->i_mode
);
107 ri
->isize
= cpu_to_je32((ivalid
& ATTR_SIZE
)?iattr
->ia_size
:inode
->i_size
);
108 ri
->atime
= cpu_to_je32(I_SEC((ivalid
& ATTR_ATIME
)?iattr
->ia_atime
:inode
->i_atime
));
109 ri
->mtime
= cpu_to_je32(I_SEC((ivalid
& ATTR_MTIME
)?iattr
->ia_mtime
:inode
->i_mtime
));
110 ri
->ctime
= cpu_to_je32(I_SEC((ivalid
& ATTR_CTIME
)?iattr
->ia_ctime
:inode
->i_ctime
));
112 ri
->offset
= cpu_to_je32(0);
113 ri
->csize
= ri
->dsize
= cpu_to_je32(mdatalen
);
114 ri
->compr
= JFFS2_COMPR_NONE
;
115 if (ivalid
& ATTR_SIZE
&& inode
->i_size
< iattr
->ia_size
) {
116 /* It's an extension. Make it a hole node */
117 ri
->compr
= JFFS2_COMPR_ZERO
;
118 ri
->dsize
= cpu_to_je32(iattr
->ia_size
- inode
->i_size
);
119 ri
->offset
= cpu_to_je32(inode
->i_size
);
120 } else if (ivalid
& ATTR_SIZE
&& !iattr
->ia_size
) {
121 /* For truncate-to-zero, treat it as deletion because
122 it'll always be obsoleting all previous nodes */
123 alloc_type
= ALLOC_DELETION
;
125 ri
->node_crc
= cpu_to_je32(crc32(0, ri
, sizeof(*ri
)-8));
127 ri
->data_crc
= cpu_to_je32(crc32(0, mdata
, mdatalen
));
129 ri
->data_crc
= cpu_to_je32(0);
131 new_metadata
= jffs2_write_dnode(c
, f
, ri
, mdata
, mdatalen
, alloc_type
);
132 if (S_ISLNK(inode
->i_mode
))
135 if (IS_ERR(new_metadata
)) {
136 jffs2_complete_reservation(c
);
137 jffs2_free_raw_inode(ri
);
138 mutex_unlock(&f
->sem
);
139 return PTR_ERR(new_metadata
);
141 /* It worked. Update the inode */
142 inode
->i_atime
= ITIME(je32_to_cpu(ri
->atime
));
143 inode
->i_ctime
= ITIME(je32_to_cpu(ri
->ctime
));
144 inode
->i_mtime
= ITIME(je32_to_cpu(ri
->mtime
));
145 inode
->i_mode
= jemode_to_cpu(ri
->mode
);
146 inode
->i_uid
= je16_to_cpu(ri
->uid
);
147 inode
->i_gid
= je16_to_cpu(ri
->gid
);
150 old_metadata
= f
->metadata
;
152 if (ivalid
& ATTR_SIZE
&& inode
->i_size
> iattr
->ia_size
)
153 jffs2_truncate_fragtree (c
, &f
->fragtree
, iattr
->ia_size
);
155 if (ivalid
& ATTR_SIZE
&& inode
->i_size
< iattr
->ia_size
) {
156 jffs2_add_full_dnode_to_inode(c
, f
, new_metadata
);
157 inode
->i_size
= iattr
->ia_size
;
158 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
161 f
->metadata
= new_metadata
;
164 jffs2_mark_node_obsolete(c
, old_metadata
->raw
);
165 jffs2_free_full_dnode(old_metadata
);
167 jffs2_free_raw_inode(ri
);
169 mutex_unlock(&f
->sem
);
170 jffs2_complete_reservation(c
);
172 /* We have to do the truncate_setsize() without f->sem held, since
173 some pages may be locked and waiting for it in readpage().
174 We are protected from a simultaneous write() extending i_size
175 back past iattr->ia_size, because do_truncate() holds the
176 generic inode semaphore. */
177 if (ivalid
& ATTR_SIZE
&& inode
->i_size
> iattr
->ia_size
) {
178 truncate_setsize(inode
, iattr
->ia_size
);
179 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
185 int jffs2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
189 rc
= inode_change_ok(dentry
->d_inode
, iattr
);
193 rc
= jffs2_do_setattr(dentry
->d_inode
, iattr
);
194 if (!rc
&& (iattr
->ia_valid
& ATTR_MODE
))
195 rc
= jffs2_acl_chmod(dentry
->d_inode
);
200 int jffs2_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
202 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(dentry
->d_sb
);
205 buf
->f_type
= JFFS2_SUPER_MAGIC
;
206 buf
->f_bsize
= 1 << PAGE_SHIFT
;
207 buf
->f_blocks
= c
->flash_size
>> PAGE_SHIFT
;
210 buf
->f_namelen
= JFFS2_MAX_NAME_LEN
;
211 buf
->f_fsid
.val
[0] = JFFS2_SUPER_MAGIC
;
212 buf
->f_fsid
.val
[1] = c
->mtd
->index
;
214 spin_lock(&c
->erase_completion_lock
);
215 avail
= c
->dirty_size
+ c
->free_size
;
216 if (avail
> c
->sector_size
* c
->resv_blocks_write
)
217 avail
-= c
->sector_size
* c
->resv_blocks_write
;
220 spin_unlock(&c
->erase_completion_lock
);
222 buf
->f_bavail
= buf
->f_bfree
= avail
>> PAGE_SHIFT
;
228 void jffs2_evict_inode (struct inode
*inode
)
230 /* We can forget about this inode for now - drop all
231 * the nodelists associated with it, etc.
233 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(inode
->i_sb
);
234 struct jffs2_inode_info
*f
= JFFS2_INODE_INFO(inode
);
236 D1(printk(KERN_DEBUG
"jffs2_evict_inode(): ino #%lu mode %o\n", inode
->i_ino
, inode
->i_mode
));
237 truncate_inode_pages(&inode
->i_data
, 0);
238 end_writeback(inode
);
239 jffs2_do_clear_inode(c
, f
);
242 struct inode
*jffs2_iget(struct super_block
*sb
, unsigned long ino
)
244 struct jffs2_inode_info
*f
;
245 struct jffs2_sb_info
*c
;
246 struct jffs2_raw_inode latest_node
;
247 union jffs2_device_node jdev
;
252 D1(printk(KERN_DEBUG
"jffs2_iget(): ino == %lu\n", ino
));
254 inode
= iget_locked(sb
, ino
);
256 return ERR_PTR(-ENOMEM
);
257 if (!(inode
->i_state
& I_NEW
))
260 f
= JFFS2_INODE_INFO(inode
);
261 c
= JFFS2_SB_INFO(inode
->i_sb
);
263 jffs2_init_inode_info(f
);
266 ret
= jffs2_do_read_inode(c
, f
, inode
->i_ino
, &latest_node
);
269 mutex_unlock(&f
->sem
);
273 inode
->i_mode
= jemode_to_cpu(latest_node
.mode
);
274 inode
->i_uid
= je16_to_cpu(latest_node
.uid
);
275 inode
->i_gid
= je16_to_cpu(latest_node
.gid
);
276 inode
->i_size
= je32_to_cpu(latest_node
.isize
);
277 inode
->i_atime
= ITIME(je32_to_cpu(latest_node
.atime
));
278 inode
->i_mtime
= ITIME(je32_to_cpu(latest_node
.mtime
));
279 inode
->i_ctime
= ITIME(je32_to_cpu(latest_node
.ctime
));
281 inode
->i_nlink
= f
->inocache
->pino_nlink
;
283 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
285 switch (inode
->i_mode
& S_IFMT
) {
288 inode
->i_op
= &jffs2_symlink_inode_operations
;
293 struct jffs2_full_dirent
*fd
;
294 inode
->i_nlink
= 2; /* parent and '.' */
296 for (fd
=f
->dents
; fd
; fd
= fd
->next
) {
297 if (fd
->type
== DT_DIR
&& fd
->ino
)
300 /* Root dir gets i_nlink 3 for some reason */
301 if (inode
->i_ino
== 1)
304 inode
->i_op
= &jffs2_dir_inode_operations
;
305 inode
->i_fop
= &jffs2_dir_operations
;
309 inode
->i_op
= &jffs2_file_inode_operations
;
310 inode
->i_fop
= &jffs2_file_operations
;
311 inode
->i_mapping
->a_ops
= &jffs2_file_address_operations
;
312 inode
->i_mapping
->nrpages
= 0;
317 /* Read the device numbers from the media */
318 if (f
->metadata
->size
!= sizeof(jdev
.old_id
) &&
319 f
->metadata
->size
!= sizeof(jdev
.new_id
)) {
320 printk(KERN_NOTICE
"Device node has strange size %d\n", f
->metadata
->size
);
323 D1(printk(KERN_DEBUG
"Reading device numbers from flash\n"));
324 ret
= jffs2_read_dnode(c
, f
, f
->metadata
, (char *)&jdev
, 0, f
->metadata
->size
);
327 printk(KERN_NOTICE
"Read device numbers for inode %lu failed\n", (unsigned long)inode
->i_ino
);
330 if (f
->metadata
->size
== sizeof(jdev
.old_id
))
331 rdev
= old_decode_dev(je16_to_cpu(jdev
.old_id
));
333 rdev
= new_decode_dev(je32_to_cpu(jdev
.new_id
));
337 inode
->i_op
= &jffs2_file_inode_operations
;
338 init_special_inode(inode
, inode
->i_mode
, rdev
);
342 printk(KERN_WARNING
"jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode
->i_mode
, (unsigned long)inode
->i_ino
);
345 mutex_unlock(&f
->sem
);
347 D1(printk(KERN_DEBUG
"jffs2_read_inode() returning\n"));
348 unlock_new_inode(inode
);
354 mutex_unlock(&f
->sem
);
355 jffs2_do_clear_inode(c
, f
);
360 void jffs2_dirty_inode(struct inode
*inode
)
364 if (!(inode
->i_state
& I_DIRTY_DATASYNC
)) {
365 D2(printk(KERN_DEBUG
"jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode
->i_ino
));
369 D1(printk(KERN_DEBUG
"jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode
->i_ino
));
371 iattr
.ia_valid
= ATTR_MODE
|ATTR_UID
|ATTR_GID
|ATTR_ATIME
|ATTR_MTIME
|ATTR_CTIME
;
372 iattr
.ia_mode
= inode
->i_mode
;
373 iattr
.ia_uid
= inode
->i_uid
;
374 iattr
.ia_gid
= inode
->i_gid
;
375 iattr
.ia_atime
= inode
->i_atime
;
376 iattr
.ia_mtime
= inode
->i_mtime
;
377 iattr
.ia_ctime
= inode
->i_ctime
;
379 jffs2_do_setattr(inode
, &iattr
);
382 int jffs2_remount_fs (struct super_block
*sb
, int *flags
, char *data
)
384 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(sb
);
386 if (c
->flags
& JFFS2_SB_FLAG_RO
&& !(sb
->s_flags
& MS_RDONLY
))
389 /* We stop if it was running, then restart if it needs to.
390 This also catches the case where it was stopped and this
391 is just a remount to restart it.
392 Flush the writebuffer, if neccecary, else we loose it */
393 if (!(sb
->s_flags
& MS_RDONLY
)) {
394 jffs2_stop_garbage_collect_thread(c
);
395 mutex_lock(&c
->alloc_sem
);
396 jffs2_flush_wbuf_pad(c
);
397 mutex_unlock(&c
->alloc_sem
);
400 if (!(*flags
& MS_RDONLY
))
401 jffs2_start_garbage_collect_thread(c
);
403 *flags
|= MS_NOATIME
;
407 /* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
408 fill in the raw_inode while you're at it. */
409 struct inode
*jffs2_new_inode (struct inode
*dir_i
, int mode
, struct jffs2_raw_inode
*ri
)
412 struct super_block
*sb
= dir_i
->i_sb
;
413 struct jffs2_sb_info
*c
;
414 struct jffs2_inode_info
*f
;
417 D1(printk(KERN_DEBUG
"jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i
->i_ino
, mode
));
419 c
= JFFS2_SB_INFO(sb
);
421 inode
= new_inode(sb
);
424 return ERR_PTR(-ENOMEM
);
426 f
= JFFS2_INODE_INFO(inode
);
427 jffs2_init_inode_info(f
);
430 memset(ri
, 0, sizeof(*ri
));
431 /* Set OS-specific defaults for new inodes */
432 ri
->uid
= cpu_to_je16(current_fsuid());
434 if (dir_i
->i_mode
& S_ISGID
) {
435 ri
->gid
= cpu_to_je16(dir_i
->i_gid
);
439 ri
->gid
= cpu_to_je16(current_fsgid());
442 /* POSIX ACLs have to be processed now, at least partly.
443 The umask is only applied if there's no default ACL */
444 ret
= jffs2_init_acl_pre(dir_i
, inode
, &mode
);
446 make_bad_inode(inode
);
450 ret
= jffs2_do_new_inode (c
, f
, mode
, ri
);
452 make_bad_inode(inode
);
457 inode
->i_ino
= je32_to_cpu(ri
->ino
);
458 inode
->i_mode
= jemode_to_cpu(ri
->mode
);
459 inode
->i_gid
= je16_to_cpu(ri
->gid
);
460 inode
->i_uid
= je16_to_cpu(ri
->uid
);
461 inode
->i_atime
= inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME_SEC
;
462 ri
->atime
= ri
->mtime
= ri
->ctime
= cpu_to_je32(I_SEC(inode
->i_mtime
));
467 if (insert_inode_locked(inode
) < 0) {
468 make_bad_inode(inode
);
469 unlock_new_inode(inode
);
471 return ERR_PTR(-EINVAL
);
478 int jffs2_do_fill_super(struct super_block
*sb
, void *data
, int silent
)
480 struct jffs2_sb_info
*c
;
481 struct inode
*root_i
;
485 c
= JFFS2_SB_INFO(sb
);
487 #ifndef CONFIG_JFFS2_FS_WRITEBUFFER
488 if (c
->mtd
->type
== MTD_NANDFLASH
) {
489 printk(KERN_ERR
"jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
492 if (c
->mtd
->type
== MTD_DATAFLASH
) {
493 printk(KERN_ERR
"jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n");
498 c
->flash_size
= c
->mtd
->size
;
499 c
->sector_size
= c
->mtd
->erasesize
;
500 blocks
= c
->flash_size
/ c
->sector_size
;
503 * Size alignment check
505 if ((c
->sector_size
* blocks
) != c
->flash_size
) {
506 c
->flash_size
= c
->sector_size
* blocks
;
507 printk(KERN_INFO
"jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n",
508 c
->flash_size
/ 1024);
511 if (c
->flash_size
< 5*c
->sector_size
) {
512 printk(KERN_ERR
"jffs2: Too few erase blocks (%d)\n", c
->flash_size
/ c
->sector_size
);
516 c
->cleanmarker_size
= sizeof(struct jffs2_unknown_node
);
518 /* NAND (or other bizarre) flash... do setup accordingly */
519 ret
= jffs2_flash_setup(c
);
523 c
->inocache_list
= kcalloc(INOCACHE_HASHSIZE
, sizeof(struct jffs2_inode_cache
*), GFP_KERNEL
);
524 if (!c
->inocache_list
) {
529 jffs2_init_xattr_subsystem(c
);
531 if ((ret
= jffs2_do_mount_fs(c
)))
534 D1(printk(KERN_DEBUG
"jffs2_do_fill_super(): Getting root inode\n"));
535 root_i
= jffs2_iget(sb
, 1);
536 if (IS_ERR(root_i
)) {
537 D1(printk(KERN_WARNING
"get root inode failed\n"));
538 ret
= PTR_ERR(root_i
);
544 D1(printk(KERN_DEBUG
"jffs2_do_fill_super(): d_alloc_root()\n"));
545 sb
->s_root
= d_alloc_root(root_i
);
549 sb
->s_maxbytes
= 0xFFFFFFFF;
550 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
551 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
552 sb
->s_magic
= JFFS2_SUPER_MAGIC
;
553 if (!(sb
->s_flags
& MS_RDONLY
))
554 jffs2_start_garbage_collect_thread(c
);
560 jffs2_free_ino_caches(c
);
561 jffs2_free_raw_node_refs(c
);
562 if (jffs2_blocks_use_vmalloc(c
))
567 jffs2_clear_xattr_subsystem(c
);
568 kfree(c
->inocache_list
);
570 jffs2_flash_cleanup(c
);
575 void jffs2_gc_release_inode(struct jffs2_sb_info
*c
,
576 struct jffs2_inode_info
*f
)
578 iput(OFNI_EDONI_2SFFJ(f
));
581 struct jffs2_inode_info
*jffs2_gc_fetch_inode(struct jffs2_sb_info
*c
,
582 int inum
, int unlinked
)
585 struct jffs2_inode_cache
*ic
;
588 /* The inode has zero nlink but its nodes weren't yet marked
589 obsolete. This has to be because we're still waiting for
590 the final (close() and) iput() to happen.
592 There's a possibility that the final iput() could have
593 happened while we were contemplating. In order to ensure
594 that we don't cause a new read_inode() (which would fail)
595 for the inode in question, we use ilookup() in this case
598 The nlink can't _become_ zero at this point because we're
599 holding the alloc_sem, and jffs2_do_unlink() would also
600 need that while decrementing nlink on any inode.
602 inode
= ilookup(OFNI_BS_2SFFJ(c
), inum
);
604 D1(printk(KERN_DEBUG
"ilookup() failed for ino #%u; inode is probably deleted.\n",
607 spin_lock(&c
->inocache_lock
);
608 ic
= jffs2_get_ino_cache(c
, inum
);
610 D1(printk(KERN_DEBUG
"Inode cache for ino #%u is gone.\n", inum
));
611 spin_unlock(&c
->inocache_lock
);
614 if (ic
->state
!= INO_STATE_CHECKEDABSENT
) {
615 /* Wait for progress. Don't just loop */
616 D1(printk(KERN_DEBUG
"Waiting for ino #%u in state %d\n",
617 ic
->ino
, ic
->state
));
618 sleep_on_spinunlock(&c
->inocache_wq
, &c
->inocache_lock
);
620 spin_unlock(&c
->inocache_lock
);
626 /* Inode has links to it still; they're not going away because
627 jffs2_do_unlink() would need the alloc_sem and we have it.
628 Just iget() it, and if read_inode() is necessary that's OK.
630 inode
= jffs2_iget(OFNI_BS_2SFFJ(c
), inum
);
632 return ERR_CAST(inode
);
634 if (is_bad_inode(inode
)) {
635 printk(KERN_NOTICE
"Eep. read_inode() failed for ino #%u. unlinked %d\n",
637 /* NB. This will happen again. We need to do something appropriate here. */
639 return ERR_PTR(-EIO
);
642 return JFFS2_INODE_INFO(inode
);
645 unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info
*c
,
646 struct jffs2_inode_info
*f
,
647 unsigned long offset
,
650 struct inode
*inode
= OFNI_EDONI_2SFFJ(f
);
653 pg
= read_cache_page_async(inode
->i_mapping
, offset
>> PAGE_CACHE_SHIFT
,
654 (void *)jffs2_do_readpage_unlock
, inode
);
658 *priv
= (unsigned long)pg
;
662 void jffs2_gc_release_page(struct jffs2_sb_info
*c
,
666 struct page
*pg
= (void *)*priv
;
669 page_cache_release(pg
);
672 static int jffs2_flash_setup(struct jffs2_sb_info
*c
) {
675 if (jffs2_cleanmarker_oob(c
)) {
676 /* NAND flash... do setup accordingly */
677 ret
= jffs2_nand_flash_setup(c
);
683 if (jffs2_dataflash(c
)) {
684 ret
= jffs2_dataflash_setup(c
);
689 /* and Intel "Sibley" flash */
690 if (jffs2_nor_wbuf_flash(c
)) {
691 ret
= jffs2_nor_wbuf_flash_setup(c
);
696 /* and an UBI volume */
697 if (jffs2_ubivol(c
)) {
698 ret
= jffs2_ubivol_setup(c
);
706 void jffs2_flash_cleanup(struct jffs2_sb_info
*c
) {
708 if (jffs2_cleanmarker_oob(c
)) {
709 jffs2_nand_flash_cleanup(c
);
713 if (jffs2_dataflash(c
)) {
714 jffs2_dataflash_cleanup(c
);
717 /* and Intel "Sibley" flash */
718 if (jffs2_nor_wbuf_flash(c
)) {
719 jffs2_nor_wbuf_flash_cleanup(c
);
722 /* and an UBI volume */
723 if (jffs2_ubivol(c
)) {
724 jffs2_ubivol_cleanup(c
);