2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
22 #include <linux/sched.h>
24 #include <linux/file.h>
26 #include <linux/mman.h>
27 #include <linux/mmu_context.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/aio.h>
31 #include <linux/highmem.h>
32 #include <linux/workqueue.h>
33 #include <linux/security.h>
34 #include <linux/eventfd.h>
36 #include <asm/kmap_types.h>
37 #include <asm/uaccess.h>
40 #define dprintk printk
42 #define dprintk(x...) do { ; } while (0)
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock
);
47 unsigned long aio_nr
; /* current system wide number of aio requests */
48 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache
*kiocb_cachep
;
52 static struct kmem_cache
*kioctx_cachep
;
54 static struct workqueue_struct
*aio_wq
;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct
*);
58 static DECLARE_WORK(fput_work
, aio_fput_routine
);
60 static DEFINE_SPINLOCK(fput_lock
);
61 static LIST_HEAD(fput_head
);
63 static void aio_kick_handler(struct work_struct
*);
64 static void aio_queue_work(struct kioctx
*);
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init
aio_setup(void)
72 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
73 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
75 aio_wq
= create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
82 static void aio_free_ring(struct kioctx
*ctx
)
84 struct aio_ring_info
*info
= &ctx
->ring_info
;
87 for (i
=0; i
<info
->nr_pages
; i
++)
88 put_page(info
->ring_pages
[i
]);
90 if (info
->mmap_size
) {
91 down_write(&ctx
->mm
->mmap_sem
);
92 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
93 up_write(&ctx
->mm
->mmap_sem
);
96 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
97 kfree(info
->ring_pages
);
98 info
->ring_pages
= NULL
;
102 static int aio_setup_ring(struct kioctx
*ctx
)
104 struct aio_ring
*ring
;
105 struct aio_ring_info
*info
= &ctx
->ring_info
;
106 unsigned nr_events
= ctx
->max_reqs
;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events
+= 2; /* 1 is required, 2 for good luck */
113 size
= sizeof(struct aio_ring
);
114 size
+= sizeof(struct io_event
) * nr_events
;
115 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
120 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
123 info
->ring_pages
= info
->internal_pages
;
124 if (nr_pages
> AIO_RING_PAGES
) {
125 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
126 if (!info
->ring_pages
)
130 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
131 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
132 down_write(&ctx
->mm
->mmap_sem
);
133 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
134 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
136 if (IS_ERR((void *)info
->mmap_base
)) {
137 up_write(&ctx
->mm
->mmap_sem
);
143 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
144 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
145 info
->mmap_base
, nr_pages
,
146 1, 0, info
->ring_pages
, NULL
);
147 up_write(&ctx
->mm
->mmap_sem
);
149 if (unlikely(info
->nr_pages
!= nr_pages
)) {
154 ctx
->user_id
= info
->mmap_base
;
156 info
->nr
= nr_events
; /* trusted copy */
158 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
159 ring
->nr
= nr_events
; /* user copy */
160 ring
->id
= ctx
->user_id
;
161 ring
->head
= ring
->tail
= 0;
162 ring
->magic
= AIO_RING_MAGIC
;
163 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
164 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
165 ring
->header_length
= sizeof(struct aio_ring
);
166 kunmap_atomic(ring
, KM_USER0
);
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
194 static void ctx_rcu_free(struct rcu_head
*head
)
196 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
197 unsigned nr_events
= ctx
->max_reqs
;
199 kmem_cache_free(kioctx_cachep
, ctx
);
202 spin_lock(&aio_nr_lock
);
203 BUG_ON(aio_nr
- nr_events
> aio_nr
);
205 spin_unlock(&aio_nr_lock
);
210 * Called when the last user of an aio context has gone away,
211 * and the struct needs to be freed.
213 static void __put_ioctx(struct kioctx
*ctx
)
215 BUG_ON(ctx
->reqs_active
);
217 cancel_delayed_work(&ctx
->wq
);
218 cancel_work_sync(&ctx
->wq
.work
);
222 pr_debug("__put_ioctx: freeing %p\n", ctx
);
223 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
226 #define get_ioctx(kioctx) do { \
227 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
228 atomic_inc(&(kioctx)->users); \
230 #define put_ioctx(kioctx) do { \
231 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
232 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
233 __put_ioctx(kioctx); \
237 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
239 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
241 struct mm_struct
*mm
;
245 /* Prevent overflows */
246 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
247 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
248 pr_debug("ENOMEM: nr_events too high\n");
249 return ERR_PTR(-EINVAL
);
252 if ((unsigned long)nr_events
> aio_max_nr
)
253 return ERR_PTR(-EAGAIN
);
255 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
257 return ERR_PTR(-ENOMEM
);
259 ctx
->max_reqs
= nr_events
;
260 mm
= ctx
->mm
= current
->mm
;
261 atomic_inc(&mm
->mm_count
);
263 atomic_set(&ctx
->users
, 1);
264 spin_lock_init(&ctx
->ctx_lock
);
265 spin_lock_init(&ctx
->ring_info
.ring_lock
);
266 init_waitqueue_head(&ctx
->wait
);
268 INIT_LIST_HEAD(&ctx
->active_reqs
);
269 INIT_LIST_HEAD(&ctx
->run_list
);
270 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
272 if (aio_setup_ring(ctx
) < 0)
275 /* limit the number of system wide aios */
277 spin_lock_bh(&aio_nr_lock
);
278 if (aio_nr
+ nr_events
> aio_max_nr
||
279 aio_nr
+ nr_events
< aio_nr
)
282 aio_nr
+= ctx
->max_reqs
;
283 spin_unlock_bh(&aio_nr_lock
);
284 if (ctx
->max_reqs
|| did_sync
)
287 /* wait for rcu callbacks to have completed before giving up */
290 ctx
->max_reqs
= nr_events
;
293 if (ctx
->max_reqs
== 0)
296 /* now link into global list. */
297 spin_lock(&mm
->ioctx_lock
);
298 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
299 spin_unlock(&mm
->ioctx_lock
);
301 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
302 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
307 return ERR_PTR(-EAGAIN
);
311 kmem_cache_free(kioctx_cachep
, ctx
);
312 ctx
= ERR_PTR(-ENOMEM
);
314 dprintk("aio: error allocating ioctx %p\n", ctx
);
319 * Cancels all outstanding aio requests on an aio context. Used
320 * when the processes owning a context have all exited to encourage
321 * the rapid destruction of the kioctx.
323 static void aio_cancel_all(struct kioctx
*ctx
)
325 int (*cancel
)(struct kiocb
*, struct io_event
*);
327 spin_lock_irq(&ctx
->ctx_lock
);
329 while (!list_empty(&ctx
->active_reqs
)) {
330 struct list_head
*pos
= ctx
->active_reqs
.next
;
331 struct kiocb
*iocb
= list_kiocb(pos
);
332 list_del_init(&iocb
->ki_list
);
333 cancel
= iocb
->ki_cancel
;
334 kiocbSetCancelled(iocb
);
337 spin_unlock_irq(&ctx
->ctx_lock
);
339 spin_lock_irq(&ctx
->ctx_lock
);
342 spin_unlock_irq(&ctx
->ctx_lock
);
345 static void wait_for_all_aios(struct kioctx
*ctx
)
347 struct task_struct
*tsk
= current
;
348 DECLARE_WAITQUEUE(wait
, tsk
);
350 spin_lock_irq(&ctx
->ctx_lock
);
351 if (!ctx
->reqs_active
)
354 add_wait_queue(&ctx
->wait
, &wait
);
355 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
356 while (ctx
->reqs_active
) {
357 spin_unlock_irq(&ctx
->ctx_lock
);
359 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
360 spin_lock_irq(&ctx
->ctx_lock
);
362 __set_task_state(tsk
, TASK_RUNNING
);
363 remove_wait_queue(&ctx
->wait
, &wait
);
366 spin_unlock_irq(&ctx
->ctx_lock
);
369 /* wait_on_sync_kiocb:
370 * Waits on the given sync kiocb to complete.
372 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
374 while (iocb
->ki_users
) {
375 set_current_state(TASK_UNINTERRUPTIBLE
);
380 __set_current_state(TASK_RUNNING
);
381 return iocb
->ki_user_data
;
384 /* exit_aio: called when the last user of mm goes away. At this point,
385 * there is no way for any new requests to be submited or any of the
386 * io_* syscalls to be called on the context. However, there may be
387 * outstanding requests which hold references to the context; as they
388 * go away, they will call put_ioctx and release any pinned memory
389 * associated with the request (held via struct page * references).
391 void exit_aio(struct mm_struct
*mm
)
395 while (!hlist_empty(&mm
->ioctx_list
)) {
396 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
397 hlist_del_rcu(&ctx
->list
);
401 wait_for_all_aios(ctx
);
403 * Ensure we don't leave the ctx on the aio_wq
405 cancel_work_sync(&ctx
->wq
.work
);
407 if (1 != atomic_read(&ctx
->users
))
409 "exit_aio:ioctx still alive: %d %d %d\n",
410 atomic_read(&ctx
->users
), ctx
->dead
,
417 * Allocate a slot for an aio request. Increments the users count
418 * of the kioctx so that the kioctx stays around until all requests are
419 * complete. Returns NULL if no requests are free.
421 * Returns with kiocb->users set to 2. The io submit code path holds
422 * an extra reference while submitting the i/o.
423 * This prevents races between the aio code path referencing the
424 * req (after submitting it) and aio_complete() freeing the req.
426 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
428 struct kiocb
*req
= NULL
;
429 struct aio_ring
*ring
;
432 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
440 req
->ki_cancel
= NULL
;
441 req
->ki_retry
= NULL
;
444 req
->ki_iovec
= NULL
;
445 INIT_LIST_HEAD(&req
->ki_run_list
);
446 req
->ki_eventfd
= NULL
;
448 /* Check if the completion queue has enough free space to
449 * accept an event from this io.
451 spin_lock_irq(&ctx
->ctx_lock
);
452 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
453 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
454 list_add(&req
->ki_list
, &ctx
->active_reqs
);
458 kunmap_atomic(ring
, KM_USER0
);
459 spin_unlock_irq(&ctx
->ctx_lock
);
462 kmem_cache_free(kiocb_cachep
, req
);
469 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
472 /* Handle a potential starvation case -- should be exceedingly rare as
473 * requests will be stuck on fput_head only if the aio_fput_routine is
474 * delayed and the requests were the last user of the struct file.
476 req
= __aio_get_req(ctx
);
477 if (unlikely(NULL
== req
)) {
478 aio_fput_routine(NULL
);
479 req
= __aio_get_req(ctx
);
484 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
486 assert_spin_locked(&ctx
->ctx_lock
);
488 if (req
->ki_eventfd
!= NULL
)
489 eventfd_ctx_put(req
->ki_eventfd
);
492 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
493 kfree(req
->ki_iovec
);
494 kmem_cache_free(kiocb_cachep
, req
);
497 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
501 static void aio_fput_routine(struct work_struct
*data
)
503 spin_lock_irq(&fput_lock
);
504 while (likely(!list_empty(&fput_head
))) {
505 struct kiocb
*req
= list_kiocb(fput_head
.next
);
506 struct kioctx
*ctx
= req
->ki_ctx
;
508 list_del(&req
->ki_list
);
509 spin_unlock_irq(&fput_lock
);
511 /* Complete the fput(s) */
512 if (req
->ki_filp
!= NULL
)
513 __fput(req
->ki_filp
);
515 /* Link the iocb into the context's free list */
516 spin_lock_irq(&ctx
->ctx_lock
);
517 really_put_req(ctx
, req
);
518 spin_unlock_irq(&ctx
->ctx_lock
);
521 spin_lock_irq(&fput_lock
);
523 spin_unlock_irq(&fput_lock
);
527 * Returns true if this put was the last user of the request.
529 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
531 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
532 req
, atomic_long_read(&req
->ki_filp
->f_count
));
534 assert_spin_locked(&ctx
->ctx_lock
);
537 BUG_ON(req
->ki_users
< 0);
538 if (likely(req
->ki_users
))
540 list_del(&req
->ki_list
); /* remove from active_reqs */
541 req
->ki_cancel
= NULL
;
542 req
->ki_retry
= NULL
;
545 * Try to optimize the aio and eventfd file* puts, by avoiding to
546 * schedule work in case it is not __fput() time. In normal cases,
547 * we would not be holding the last reference to the file*, so
548 * this function will be executed w/out any aio kthread wakeup.
550 if (unlikely(atomic_long_dec_and_test(&req
->ki_filp
->f_count
))) {
552 spin_lock(&fput_lock
);
553 list_add(&req
->ki_list
, &fput_head
);
554 spin_unlock(&fput_lock
);
555 queue_work(aio_wq
, &fput_work
);
558 really_put_req(ctx
, req
);
564 * Returns true if this put was the last user of the kiocb,
565 * false if the request is still in use.
567 int aio_put_req(struct kiocb
*req
)
569 struct kioctx
*ctx
= req
->ki_ctx
;
571 spin_lock_irq(&ctx
->ctx_lock
);
572 ret
= __aio_put_req(ctx
, req
);
573 spin_unlock_irq(&ctx
->ctx_lock
);
577 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
579 struct mm_struct
*mm
= current
->mm
;
580 struct kioctx
*ctx
, *ret
= NULL
;
581 struct hlist_node
*n
;
585 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
586 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
) {
598 * Queue up a kiocb to be retried. Assumes that the kiocb
599 * has already been marked as kicked, and places it on
600 * the retry run list for the corresponding ioctx, if it
601 * isn't already queued. Returns 1 if it actually queued
602 * the kiocb (to tell the caller to activate the work
603 * queue to process it), or 0, if it found that it was
606 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
608 struct kioctx
*ctx
= iocb
->ki_ctx
;
610 assert_spin_locked(&ctx
->ctx_lock
);
612 if (list_empty(&iocb
->ki_run_list
)) {
613 list_add_tail(&iocb
->ki_run_list
,
621 * This is the core aio execution routine. It is
622 * invoked both for initial i/o submission and
623 * subsequent retries via the aio_kick_handler.
624 * Expects to be invoked with iocb->ki_ctx->lock
625 * already held. The lock is released and reacquired
626 * as needed during processing.
628 * Calls the iocb retry method (already setup for the
629 * iocb on initial submission) for operation specific
630 * handling, but takes care of most of common retry
631 * execution details for a given iocb. The retry method
632 * needs to be non-blocking as far as possible, to avoid
633 * holding up other iocbs waiting to be serviced by the
634 * retry kernel thread.
636 * The trickier parts in this code have to do with
637 * ensuring that only one retry instance is in progress
638 * for a given iocb at any time. Providing that guarantee
639 * simplifies the coding of individual aio operations as
640 * it avoids various potential races.
642 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
644 struct kioctx
*ctx
= iocb
->ki_ctx
;
645 ssize_t (*retry
)(struct kiocb
*);
648 if (!(retry
= iocb
->ki_retry
)) {
649 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
654 * We don't want the next retry iteration for this
655 * operation to start until this one has returned and
656 * updated the iocb state. However, wait_queue functions
657 * can trigger a kick_iocb from interrupt context in the
658 * meantime, indicating that data is available for the next
659 * iteration. We want to remember that and enable the
660 * next retry iteration _after_ we are through with
663 * So, in order to be able to register a "kick", but
664 * prevent it from being queued now, we clear the kick
665 * flag, but make the kick code *think* that the iocb is
666 * still on the run list until we are actually done.
667 * When we are done with this iteration, we check if
668 * the iocb was kicked in the meantime and if so, queue
672 kiocbClearKicked(iocb
);
675 * This is so that aio_complete knows it doesn't need to
676 * pull the iocb off the run list (We can't just call
677 * INIT_LIST_HEAD because we don't want a kick_iocb to
678 * queue this on the run list yet)
680 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
681 spin_unlock_irq(&ctx
->ctx_lock
);
683 /* Quit retrying if the i/o has been cancelled */
684 if (kiocbIsCancelled(iocb
)) {
686 aio_complete(iocb
, ret
, 0);
687 /* must not access the iocb after this */
692 * Now we are all set to call the retry method in async
697 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
698 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
699 aio_complete(iocb
, ret
, 0);
702 spin_lock_irq(&ctx
->ctx_lock
);
704 if (-EIOCBRETRY
== ret
) {
706 * OK, now that we are done with this iteration
707 * and know that there is more left to go,
708 * this is where we let go so that a subsequent
709 * "kick" can start the next iteration
712 /* will make __queue_kicked_iocb succeed from here on */
713 INIT_LIST_HEAD(&iocb
->ki_run_list
);
714 /* we must queue the next iteration ourselves, if it
715 * has already been kicked */
716 if (kiocbIsKicked(iocb
)) {
717 __queue_kicked_iocb(iocb
);
720 * __queue_kicked_iocb will always return 1 here, because
721 * iocb->ki_run_list is empty at this point so it should
722 * be safe to unconditionally queue the context into the
733 * Process all pending retries queued on the ioctx
735 * Assumes it is operating within the aio issuer's mm
738 static int __aio_run_iocbs(struct kioctx
*ctx
)
741 struct list_head run_list
;
743 assert_spin_locked(&ctx
->ctx_lock
);
745 list_replace_init(&ctx
->run_list
, &run_list
);
746 while (!list_empty(&run_list
)) {
747 iocb
= list_entry(run_list
.next
, struct kiocb
,
749 list_del(&iocb
->ki_run_list
);
751 * Hold an extra reference while retrying i/o.
753 iocb
->ki_users
++; /* grab extra reference */
755 __aio_put_req(ctx
, iocb
);
757 if (!list_empty(&ctx
->run_list
))
762 static void aio_queue_work(struct kioctx
* ctx
)
764 unsigned long timeout
;
766 * if someone is waiting, get the work started right
767 * away, otherwise, use a longer delay
770 if (waitqueue_active(&ctx
->wait
))
774 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
780 * Process all pending retries queued on the ioctx
782 * Assumes it is operating within the aio issuer's mm
785 static inline void aio_run_iocbs(struct kioctx
*ctx
)
789 spin_lock_irq(&ctx
->ctx_lock
);
791 requeue
= __aio_run_iocbs(ctx
);
792 spin_unlock_irq(&ctx
->ctx_lock
);
798 * just like aio_run_iocbs, but keeps running them until
799 * the list stays empty
801 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
803 spin_lock_irq(&ctx
->ctx_lock
);
804 while (__aio_run_iocbs(ctx
))
806 spin_unlock_irq(&ctx
->ctx_lock
);
811 * Work queue handler triggered to process pending
812 * retries on an ioctx. Takes on the aio issuer's
813 * mm context before running the iocbs, so that
814 * copy_xxx_user operates on the issuer's address
816 * Run on aiod's context.
818 static void aio_kick_handler(struct work_struct
*work
)
820 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
821 mm_segment_t oldfs
= get_fs();
822 struct mm_struct
*mm
;
827 spin_lock_irq(&ctx
->ctx_lock
);
828 requeue
=__aio_run_iocbs(ctx
);
830 spin_unlock_irq(&ctx
->ctx_lock
);
834 * we're in a worker thread already, don't use queue_delayed_work,
837 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
842 * Called by kick_iocb to queue the kiocb for retry
843 * and if required activate the aio work queue to process
846 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
848 struct kioctx
*ctx
= iocb
->ki_ctx
;
852 /* We're supposed to be the only path putting the iocb back on the run
853 * list. If we find that the iocb is *back* on a wait queue already
854 * than retry has happened before we could queue the iocb. This also
855 * means that the retry could have completed and freed our iocb, no
857 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
859 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
860 /* set this inside the lock so that we can't race with aio_run_iocb()
861 * testing it and putting the iocb on the run list under the lock */
862 if (!kiocbTryKick(iocb
))
863 run
= __queue_kicked_iocb(iocb
);
864 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
871 * Called typically from a wait queue callback context
872 * (aio_wake_function) to trigger a retry of the iocb.
873 * The retry is usually executed by aio workqueue
874 * threads (See aio_kick_handler).
876 void kick_iocb(struct kiocb
*iocb
)
878 /* sync iocbs are easy: they can only ever be executing from a
880 if (is_sync_kiocb(iocb
)) {
881 kiocbSetKicked(iocb
);
882 wake_up_process(iocb
->ki_obj
.tsk
);
886 try_queue_kicked_iocb(iocb
);
888 EXPORT_SYMBOL(kick_iocb
);
891 * Called when the io request on the given iocb is complete.
892 * Returns true if this is the last user of the request. The
893 * only other user of the request can be the cancellation code.
895 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
897 struct kioctx
*ctx
= iocb
->ki_ctx
;
898 struct aio_ring_info
*info
;
899 struct aio_ring
*ring
;
900 struct io_event
*event
;
906 * Special case handling for sync iocbs:
907 * - events go directly into the iocb for fast handling
908 * - the sync task with the iocb in its stack holds the single iocb
909 * ref, no other paths have a way to get another ref
910 * - the sync task helpfully left a reference to itself in the iocb
912 if (is_sync_kiocb(iocb
)) {
913 BUG_ON(iocb
->ki_users
!= 1);
914 iocb
->ki_user_data
= res
;
916 wake_up_process(iocb
->ki_obj
.tsk
);
920 info
= &ctx
->ring_info
;
922 /* add a completion event to the ring buffer.
923 * must be done holding ctx->ctx_lock to prevent
924 * other code from messing with the tail
925 * pointer since we might be called from irq
928 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
930 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
931 list_del_init(&iocb
->ki_run_list
);
934 * cancelled requests don't get events, userland was given one
935 * when the event got cancelled.
937 if (kiocbIsCancelled(iocb
))
940 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
943 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
944 if (++tail
>= info
->nr
)
947 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
948 event
->data
= iocb
->ki_user_data
;
952 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
953 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
956 /* after flagging the request as done, we
957 * must never even look at it again
959 smp_wmb(); /* make event visible before updating tail */
964 put_aio_ring_event(event
, KM_IRQ0
);
965 kunmap_atomic(ring
, KM_IRQ1
);
967 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
970 * Check if the user asked us to deliver the result through an
971 * eventfd. The eventfd_signal() function is safe to be called
974 if (iocb
->ki_eventfd
!= NULL
)
975 eventfd_signal(iocb
->ki_eventfd
, 1);
978 /* everything turned out well, dispose of the aiocb. */
979 ret
= __aio_put_req(ctx
, iocb
);
982 * We have to order our ring_info tail store above and test
983 * of the wait list below outside the wait lock. This is
984 * like in wake_up_bit() where clearing a bit has to be
985 * ordered with the unlocked test.
989 if (waitqueue_active(&ctx
->wait
))
992 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
997 * Pull an event off of the ioctx's event ring. Returns the number of
998 * events fetched (0 or 1 ;-)
999 * FIXME: make this use cmpxchg.
1000 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1002 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1004 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1005 struct aio_ring
*ring
;
1009 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1010 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1011 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1012 (unsigned long)ring
->nr
);
1014 if (ring
->head
== ring
->tail
)
1017 spin_lock(&info
->ring_lock
);
1019 head
= ring
->head
% info
->nr
;
1020 if (head
!= ring
->tail
) {
1021 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1023 head
= (head
+ 1) % info
->nr
;
1024 smp_mb(); /* finish reading the event before updatng the head */
1027 put_aio_ring_event(evp
, KM_USER1
);
1029 spin_unlock(&info
->ring_lock
);
1032 kunmap_atomic(ring
, KM_USER0
);
1033 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1034 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1038 struct aio_timeout
{
1039 struct timer_list timer
;
1041 struct task_struct
*p
;
1044 static void timeout_func(unsigned long data
)
1046 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1049 wake_up_process(to
->p
);
1052 static inline void init_timeout(struct aio_timeout
*to
)
1054 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1059 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1060 const struct timespec
*ts
)
1062 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1063 if (time_after(to
->timer
.expires
, jiffies
))
1064 add_timer(&to
->timer
);
1069 static inline void clear_timeout(struct aio_timeout
*to
)
1071 del_singleshot_timer_sync(&to
->timer
);
1074 static int read_events(struct kioctx
*ctx
,
1075 long min_nr
, long nr
,
1076 struct io_event __user
*event
,
1077 struct timespec __user
*timeout
)
1079 long start_jiffies
= jiffies
;
1080 struct task_struct
*tsk
= current
;
1081 DECLARE_WAITQUEUE(wait
, tsk
);
1084 struct io_event ent
;
1085 struct aio_timeout to
;
1088 /* needed to zero any padding within an entry (there shouldn't be
1089 * any, but C is fun!
1091 memset(&ent
, 0, sizeof(ent
));
1094 while (likely(i
< nr
)) {
1095 ret
= aio_read_evt(ctx
, &ent
);
1096 if (unlikely(ret
<= 0))
1099 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1100 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1102 /* Could we split the check in two? */
1104 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1105 dprintk("aio: lost an event due to EFAULT.\n");
1110 /* Good, event copied to userland, update counts. */
1122 /* racey check, but it gets redone */
1123 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1125 aio_run_all_iocbs(ctx
);
1133 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1136 set_timeout(start_jiffies
, &to
, &ts
);
1139 while (likely(i
< nr
)) {
1140 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1142 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1143 ret
= aio_read_evt(ctx
, &ent
);
1148 if (unlikely(ctx
->dead
)) {
1152 if (to
.timed_out
) /* Only check after read evt */
1154 /* Try to only show up in io wait if there are ops
1156 if (ctx
->reqs_active
)
1160 if (signal_pending(tsk
)) {
1164 /*ret = aio_read_evt(ctx, &ent);*/
1167 set_task_state(tsk
, TASK_RUNNING
);
1168 remove_wait_queue(&ctx
->wait
, &wait
);
1170 if (unlikely(ret
<= 0))
1174 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1175 dprintk("aio: lost an event due to EFAULT.\n");
1179 /* Good, event copied to userland, update counts. */
1187 destroy_timer_on_stack(&to
.timer
);
1191 /* Take an ioctx and remove it from the list of ioctx's. Protects
1192 * against races with itself via ->dead.
1194 static void io_destroy(struct kioctx
*ioctx
)
1196 struct mm_struct
*mm
= current
->mm
;
1199 /* delete the entry from the list is someone else hasn't already */
1200 spin_lock(&mm
->ioctx_lock
);
1201 was_dead
= ioctx
->dead
;
1203 hlist_del_rcu(&ioctx
->list
);
1204 spin_unlock(&mm
->ioctx_lock
);
1206 dprintk("aio_release(%p)\n", ioctx
);
1207 if (likely(!was_dead
))
1208 put_ioctx(ioctx
); /* twice for the list */
1210 aio_cancel_all(ioctx
);
1211 wait_for_all_aios(ioctx
);
1214 * Wake up any waiters. The setting of ctx->dead must be seen
1215 * by other CPUs at this point. Right now, we rely on the
1216 * locking done by the above calls to ensure this consistency.
1218 wake_up(&ioctx
->wait
);
1219 put_ioctx(ioctx
); /* once for the lookup */
1223 * Create an aio_context capable of receiving at least nr_events.
1224 * ctxp must not point to an aio_context that already exists, and
1225 * must be initialized to 0 prior to the call. On successful
1226 * creation of the aio_context, *ctxp is filled in with the resulting
1227 * handle. May fail with -EINVAL if *ctxp is not initialized,
1228 * if the specified nr_events exceeds internal limits. May fail
1229 * with -EAGAIN if the specified nr_events exceeds the user's limit
1230 * of available events. May fail with -ENOMEM if insufficient kernel
1231 * resources are available. May fail with -EFAULT if an invalid
1232 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1235 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1237 struct kioctx
*ioctx
= NULL
;
1241 ret
= get_user(ctx
, ctxp
);
1246 if (unlikely(ctx
|| nr_events
== 0)) {
1247 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1252 ioctx
= ioctx_alloc(nr_events
);
1253 ret
= PTR_ERR(ioctx
);
1254 if (!IS_ERR(ioctx
)) {
1255 ret
= put_user(ioctx
->user_id
, ctxp
);
1259 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1268 * Destroy the aio_context specified. May cancel any outstanding
1269 * AIOs and block on completion. Will fail with -ENOSYS if not
1270 * implemented. May fail with -EFAULT if the context pointed to
1273 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1275 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1276 if (likely(NULL
!= ioctx
)) {
1280 pr_debug("EINVAL: io_destroy: invalid context id\n");
1284 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1286 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1290 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1291 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1292 iov
->iov_base
+= this;
1293 iov
->iov_len
-= this;
1294 iocb
->ki_left
-= this;
1296 if (iov
->iov_len
== 0) {
1302 /* the caller should not have done more io than what fit in
1303 * the remaining iovecs */
1304 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1307 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1309 struct file
*file
= iocb
->ki_filp
;
1310 struct address_space
*mapping
= file
->f_mapping
;
1311 struct inode
*inode
= mapping
->host
;
1312 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1313 unsigned long, loff_t
);
1315 unsigned short opcode
;
1317 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1318 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1319 rw_op
= file
->f_op
->aio_read
;
1320 opcode
= IOCB_CMD_PREADV
;
1322 rw_op
= file
->f_op
->aio_write
;
1323 opcode
= IOCB_CMD_PWRITEV
;
1326 /* This matches the pread()/pwrite() logic */
1327 if (iocb
->ki_pos
< 0)
1331 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1332 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1335 aio_advance_iovec(iocb
, ret
);
1337 /* retry all partial writes. retry partial reads as long as its a
1339 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1340 (opcode
== IOCB_CMD_PWRITEV
||
1341 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1343 /* This means we must have transferred all that we could */
1344 /* No need to retry anymore */
1345 if ((ret
== 0) || (iocb
->ki_left
== 0))
1346 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1348 /* If we managed to write some out we return that, rather than
1349 * the eventual error. */
1350 if (opcode
== IOCB_CMD_PWRITEV
1351 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1352 && iocb
->ki_nbytes
- iocb
->ki_left
)
1353 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1358 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1360 struct file
*file
= iocb
->ki_filp
;
1361 ssize_t ret
= -EINVAL
;
1363 if (file
->f_op
->aio_fsync
)
1364 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1368 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1370 struct file
*file
= iocb
->ki_filp
;
1371 ssize_t ret
= -EINVAL
;
1373 if (file
->f_op
->aio_fsync
)
1374 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1378 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
)
1382 ret
= rw_copy_check_uvector(type
, (struct iovec __user
*)kiocb
->ki_buf
,
1383 kiocb
->ki_nbytes
, 1,
1384 &kiocb
->ki_inline_vec
, &kiocb
->ki_iovec
);
1388 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1389 kiocb
->ki_cur_seg
= 0;
1390 /* ki_nbytes/left now reflect bytes instead of segs */
1391 kiocb
->ki_nbytes
= ret
;
1392 kiocb
->ki_left
= ret
;
1399 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1401 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1402 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1403 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1404 kiocb
->ki_nr_segs
= 1;
1405 kiocb
->ki_cur_seg
= 0;
1411 * Performs the initial checks and aio retry method
1412 * setup for the kiocb at the time of io submission.
1414 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1416 struct file
*file
= kiocb
->ki_filp
;
1419 switch (kiocb
->ki_opcode
) {
1420 case IOCB_CMD_PREAD
:
1422 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1425 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1428 ret
= security_file_permission(file
, MAY_READ
);
1431 ret
= aio_setup_single_vector(kiocb
);
1435 if (file
->f_op
->aio_read
)
1436 kiocb
->ki_retry
= aio_rw_vect_retry
;
1438 case IOCB_CMD_PWRITE
:
1440 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1443 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1446 ret
= security_file_permission(file
, MAY_WRITE
);
1449 ret
= aio_setup_single_vector(kiocb
);
1453 if (file
->f_op
->aio_write
)
1454 kiocb
->ki_retry
= aio_rw_vect_retry
;
1456 case IOCB_CMD_PREADV
:
1458 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1460 ret
= security_file_permission(file
, MAY_READ
);
1463 ret
= aio_setup_vectored_rw(READ
, kiocb
);
1467 if (file
->f_op
->aio_read
)
1468 kiocb
->ki_retry
= aio_rw_vect_retry
;
1470 case IOCB_CMD_PWRITEV
:
1472 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1474 ret
= security_file_permission(file
, MAY_WRITE
);
1477 ret
= aio_setup_vectored_rw(WRITE
, kiocb
);
1481 if (file
->f_op
->aio_write
)
1482 kiocb
->ki_retry
= aio_rw_vect_retry
;
1484 case IOCB_CMD_FDSYNC
:
1486 if (file
->f_op
->aio_fsync
)
1487 kiocb
->ki_retry
= aio_fdsync
;
1489 case IOCB_CMD_FSYNC
:
1491 if (file
->f_op
->aio_fsync
)
1492 kiocb
->ki_retry
= aio_fsync
;
1495 dprintk("EINVAL: io_submit: no operation provided\n");
1499 if (!kiocb
->ki_retry
)
1506 * aio_wake_function:
1507 * wait queue callback function for aio notification,
1508 * Simply triggers a retry of the operation via kick_iocb.
1510 * This callback is specified in the wait queue entry in
1514 * This routine is executed with the wait queue lock held.
1515 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1516 * the ioctx lock inside the wait queue lock. This is safe
1517 * because this callback isn't used for wait queues which
1518 * are nested inside ioctx lock (i.e. ctx->wait)
1520 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1521 int sync
, void *key
)
1523 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1525 list_del_init(&wait
->task_list
);
1530 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1537 /* enforce forwards compatibility on users */
1538 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1539 pr_debug("EINVAL: io_submit: reserve field set\n");
1543 /* prevent overflows */
1545 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1546 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1547 ((ssize_t
)iocb
->aio_nbytes
< 0)
1549 pr_debug("EINVAL: io_submit: overflow check\n");
1553 file
= fget(iocb
->aio_fildes
);
1554 if (unlikely(!file
))
1557 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1558 if (unlikely(!req
)) {
1562 req
->ki_filp
= file
;
1563 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1565 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1566 * instance of the file* now. The file descriptor must be
1567 * an eventfd() fd, and will be signaled for each completed
1568 * event using the eventfd_signal() function.
1570 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1571 if (IS_ERR(req
->ki_eventfd
)) {
1572 ret
= PTR_ERR(req
->ki_eventfd
);
1573 req
->ki_eventfd
= NULL
;
1578 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1579 if (unlikely(ret
)) {
1580 dprintk("EFAULT: aio_key\n");
1584 req
->ki_obj
.user
= user_iocb
;
1585 req
->ki_user_data
= iocb
->aio_data
;
1586 req
->ki_pos
= iocb
->aio_offset
;
1588 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1589 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1590 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1591 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1592 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1594 ret
= aio_setup_iocb(req
);
1599 spin_lock_irq(&ctx
->ctx_lock
);
1601 if (!list_empty(&ctx
->run_list
)) {
1602 /* drain the run list */
1603 while (__aio_run_iocbs(ctx
))
1606 spin_unlock_irq(&ctx
->ctx_lock
);
1607 aio_put_req(req
); /* drop extra ref to req */
1611 aio_put_req(req
); /* drop extra ref to req */
1612 aio_put_req(req
); /* drop i/o ref to req */
1617 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1618 * the number of iocbs queued. May return -EINVAL if the aio_context
1619 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1620 * *iocbpp[0] is not properly initialized, if the operation specified
1621 * is invalid for the file descriptor in the iocb. May fail with
1622 * -EFAULT if any of the data structures point to invalid data. May
1623 * fail with -EBADF if the file descriptor specified in the first
1624 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1625 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1626 * fail with -ENOSYS if not implemented.
1628 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1629 struct iocb __user
* __user
*, iocbpp
)
1635 if (unlikely(nr
< 0))
1638 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1641 ctx
= lookup_ioctx(ctx_id
);
1642 if (unlikely(!ctx
)) {
1643 pr_debug("EINVAL: io_submit: invalid context id\n");
1648 * AKPM: should this return a partial result if some of the IOs were
1649 * successfully submitted?
1651 for (i
=0; i
<nr
; i
++) {
1652 struct iocb __user
*user_iocb
;
1655 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1660 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1665 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1675 * Finds a given iocb for cancellation.
1677 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1680 struct list_head
*pos
;
1682 assert_spin_locked(&ctx
->ctx_lock
);
1684 /* TODO: use a hash or array, this sucks. */
1685 list_for_each(pos
, &ctx
->active_reqs
) {
1686 struct kiocb
*kiocb
= list_kiocb(pos
);
1687 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1694 * Attempts to cancel an iocb previously passed to io_submit. If
1695 * the operation is successfully cancelled, the resulting event is
1696 * copied into the memory pointed to by result without being placed
1697 * into the completion queue and 0 is returned. May fail with
1698 * -EFAULT if any of the data structures pointed to are invalid.
1699 * May fail with -EINVAL if aio_context specified by ctx_id is
1700 * invalid. May fail with -EAGAIN if the iocb specified was not
1701 * cancelled. Will fail with -ENOSYS if not implemented.
1703 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1704 struct io_event __user
*, result
)
1706 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1708 struct kiocb
*kiocb
;
1712 ret
= get_user(key
, &iocb
->aio_key
);
1716 ctx
= lookup_ioctx(ctx_id
);
1720 spin_lock_irq(&ctx
->ctx_lock
);
1722 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1723 if (kiocb
&& kiocb
->ki_cancel
) {
1724 cancel
= kiocb
->ki_cancel
;
1726 kiocbSetCancelled(kiocb
);
1729 spin_unlock_irq(&ctx
->ctx_lock
);
1731 if (NULL
!= cancel
) {
1732 struct io_event tmp
;
1733 pr_debug("calling cancel\n");
1734 memset(&tmp
, 0, sizeof(tmp
));
1735 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1736 tmp
.data
= kiocb
->ki_user_data
;
1737 ret
= cancel(kiocb
, &tmp
);
1739 /* Cancellation succeeded -- copy the result
1740 * into the user's buffer.
1742 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1754 * Attempts to read at least min_nr events and up to nr events from
1755 * the completion queue for the aio_context specified by ctx_id. May
1756 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1757 * if nr is out of range, if when is out of range. May fail with
1758 * -EFAULT if any of the memory specified to is invalid. May return
1759 * 0 or < min_nr if no events are available and the timeout specified
1760 * by when has elapsed, where when == NULL specifies an infinite
1761 * timeout. Note that the timeout pointed to by when is relative and
1762 * will be updated if not NULL and the operation blocks. Will fail
1763 * with -ENOSYS if not implemented.
1765 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1768 struct io_event __user
*, events
,
1769 struct timespec __user
*, timeout
)
1771 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1774 if (likely(ioctx
)) {
1775 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1776 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1780 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);
1784 __initcall(aio_setup
);
1786 EXPORT_SYMBOL(aio_complete
);
1787 EXPORT_SYMBOL(aio_put_req
);
1788 EXPORT_SYMBOL(wait_on_sync_kiocb
);