kvm tools, setup: Create private directory
[linux-2.6/next.git] / arch / alpha / kernel / core_t2.c
blob2f770e99428961f6233c8d7742f705180455bdb2
1 /*
2 * linux/arch/alpha/kernel/core_t2.c
4 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
5 * December 1996.
7 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
9 * Code common to all T2 core logic chips.
12 #define __EXTERN_INLINE
13 #include <asm/io.h>
14 #include <asm/core_t2.h>
15 #undef __EXTERN_INLINE
17 #include <linux/types.h>
18 #include <linux/pci.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
22 #include <asm/ptrace.h>
23 #include <asm/delay.h>
25 #include "proto.h"
26 #include "pci_impl.h"
28 /* For dumping initial DMA window settings. */
29 #define DEBUG_PRINT_INITIAL_SETTINGS 0
31 /* For dumping final DMA window settings. */
32 #define DEBUG_PRINT_FINAL_SETTINGS 0
35 * By default, we direct-map starting at 2GB, in order to allow the
36 * maximum size direct-map window (2GB) to match the maximum amount of
37 * memory (2GB) that can be present on SABLEs. But that limits the
38 * floppy to DMA only via the scatter/gather window set up for 8MB
39 * ISA DMA, since the maximum ISA DMA address is 2GB-1.
41 * For now, this seems a reasonable trade-off: even though most SABLEs
42 * have less than 1GB of memory, floppy usage/performance will not
43 * really be affected by forcing it to go via scatter/gather...
45 #define T2_DIRECTMAP_2G 1
47 #if T2_DIRECTMAP_2G
48 # define T2_DIRECTMAP_START 0x80000000UL
49 # define T2_DIRECTMAP_LENGTH 0x80000000UL
50 #else
51 # define T2_DIRECTMAP_START 0x40000000UL
52 # define T2_DIRECTMAP_LENGTH 0x40000000UL
53 #endif
55 /* The ISA scatter/gather window settings. */
56 #define T2_ISA_SG_START 0x00800000UL
57 #define T2_ISA_SG_LENGTH 0x00800000UL
60 * NOTE: Herein lie back-to-back mb instructions. They are magic.
61 * One plausible explanation is that the i/o controller does not properly
62 * handle the system transaction. Another involves timing. Ho hum.
66 * BIOS32-style PCI interface:
69 #define DEBUG_CONFIG 0
71 #if DEBUG_CONFIG
72 # define DBG(args) printk args
73 #else
74 # define DBG(args)
75 #endif
77 static volatile unsigned int t2_mcheck_any_expected;
78 static volatile unsigned int t2_mcheck_last_taken;
80 /* Place to save the DMA Window registers as set up by SRM
81 for restoration during shutdown. */
82 static struct
84 struct {
85 unsigned long wbase;
86 unsigned long wmask;
87 unsigned long tbase;
88 } window[2];
89 unsigned long hae_1;
90 unsigned long hae_2;
91 unsigned long hae_3;
92 unsigned long hae_4;
93 unsigned long hbase;
94 } t2_saved_config __attribute((common));
97 * Given a bus, device, and function number, compute resulting
98 * configuration space address and setup the T2_HAXR2 register
99 * accordingly. It is therefore not safe to have concurrent
100 * invocations to configuration space access routines, but there
101 * really shouldn't be any need for this.
103 * Type 0:
105 * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
106 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
107 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
108 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
109 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
111 * 31:11 Device select bit.
112 * 10:8 Function number
113 * 7:2 Register number
115 * Type 1:
117 * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
118 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
121 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123 * 31:24 reserved
124 * 23:16 bus number (8 bits = 128 possible buses)
125 * 15:11 Device number (5 bits)
126 * 10:8 function number
127 * 7:2 register number
129 * Notes:
130 * The function number selects which function of a multi-function device
131 * (e.g., SCSI and Ethernet).
133 * The register selects a DWORD (32 bit) register offset. Hence it
134 * doesn't get shifted by 2 bits as we want to "drop" the bottom two
135 * bits.
138 static int
139 mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
140 unsigned long *pci_addr, unsigned char *type1)
142 unsigned long addr;
143 u8 bus = pbus->number;
145 DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
146 " addr=0x%lx, type1=0x%x)\n",
147 bus, device_fn, where, pci_addr, type1));
149 if (bus == 0) {
150 int device = device_fn >> 3;
152 /* Type 0 configuration cycle. */
154 if (device > 8) {
155 DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
156 device));
157 return -1;
160 *type1 = 0;
161 addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
162 } else {
163 /* Type 1 configuration cycle. */
164 *type1 = 1;
165 addr = (bus << 16) | (device_fn << 8) | (where);
167 *pci_addr = addr;
168 DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
169 return 0;
173 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
174 * to do type1 access. This is protected by the use of spinlock IRQ
175 * primitives in the wrapper functions pci_{read,write}_config_*()
176 * defined in drivers/pci/pci.c.
178 static unsigned int
179 conf_read(unsigned long addr, unsigned char type1)
181 unsigned int value, cpu, taken;
182 unsigned long t2_cfg = 0;
184 cpu = smp_processor_id();
186 DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));
188 /* If Type1 access, must set T2 CFG. */
189 if (type1) {
190 t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
191 *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
192 mb();
194 mb();
195 draina();
197 mcheck_expected(cpu) = 1;
198 mcheck_taken(cpu) = 0;
199 t2_mcheck_any_expected |= (1 << cpu);
200 mb();
202 /* Access configuration space. */
203 value = *(vuip)addr;
204 mb();
205 mb(); /* magic */
207 /* Wait for possible mcheck. Also, this lets other CPUs clear
208 their mchecks as well, as they can reliably tell when
209 another CPU is in the midst of handling a real mcheck via
210 the "taken" function. */
211 udelay(100);
213 if ((taken = mcheck_taken(cpu))) {
214 mcheck_taken(cpu) = 0;
215 t2_mcheck_last_taken |= (1 << cpu);
216 value = 0xffffffffU;
217 mb();
219 mcheck_expected(cpu) = 0;
220 t2_mcheck_any_expected = 0;
221 mb();
223 /* If Type1 access, must reset T2 CFG so normal IO space ops work. */
224 if (type1) {
225 *(vulp)T2_HAE_3 = t2_cfg;
226 mb();
229 return value;
232 static void
233 conf_write(unsigned long addr, unsigned int value, unsigned char type1)
235 unsigned int cpu, taken;
236 unsigned long t2_cfg = 0;
238 cpu = smp_processor_id();
240 /* If Type1 access, must set T2 CFG. */
241 if (type1) {
242 t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
243 *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
244 mb();
246 mb();
247 draina();
249 mcheck_expected(cpu) = 1;
250 mcheck_taken(cpu) = 0;
251 t2_mcheck_any_expected |= (1 << cpu);
252 mb();
254 /* Access configuration space. */
255 *(vuip)addr = value;
256 mb();
257 mb(); /* magic */
259 /* Wait for possible mcheck. Also, this lets other CPUs clear
260 their mchecks as well, as they can reliably tell when
261 this CPU is in the midst of handling a real mcheck via
262 the "taken" function. */
263 udelay(100);
265 if ((taken = mcheck_taken(cpu))) {
266 mcheck_taken(cpu) = 0;
267 t2_mcheck_last_taken |= (1 << cpu);
268 mb();
270 mcheck_expected(cpu) = 0;
271 t2_mcheck_any_expected = 0;
272 mb();
274 /* If Type1 access, must reset T2 CFG so normal IO space ops work. */
275 if (type1) {
276 *(vulp)T2_HAE_3 = t2_cfg;
277 mb();
281 static int
282 t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
283 int size, u32 *value)
285 unsigned long addr, pci_addr;
286 unsigned char type1;
287 int shift;
288 long mask;
290 if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
291 return PCIBIOS_DEVICE_NOT_FOUND;
293 mask = (size - 1) * 8;
294 shift = (where & 3) * 8;
295 addr = (pci_addr << 5) + mask + T2_CONF;
296 *value = conf_read(addr, type1) >> (shift);
297 return PCIBIOS_SUCCESSFUL;
300 static int
301 t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
302 u32 value)
304 unsigned long addr, pci_addr;
305 unsigned char type1;
306 long mask;
308 if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
309 return PCIBIOS_DEVICE_NOT_FOUND;
311 mask = (size - 1) * 8;
312 addr = (pci_addr << 5) + mask + T2_CONF;
313 conf_write(addr, value << ((where & 3) * 8), type1);
314 return PCIBIOS_SUCCESSFUL;
317 struct pci_ops t2_pci_ops =
319 .read = t2_read_config,
320 .write = t2_write_config,
323 static void __init
324 t2_direct_map_window1(unsigned long base, unsigned long length)
326 unsigned long temp;
328 __direct_map_base = base;
329 __direct_map_size = length;
331 temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
332 *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
333 temp = (length - 1) & 0xfff00000UL;
334 *(vulp)T2_WMASK1 = temp;
335 *(vulp)T2_TBASE1 = 0;
337 #if DEBUG_PRINT_FINAL_SETTINGS
338 printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
339 __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
340 #endif
343 static void __init
344 t2_sg_map_window2(struct pci_controller *hose,
345 unsigned long base,
346 unsigned long length)
348 unsigned long temp;
350 /* Note we can only do 1 SG window, as the other is for direct, so
351 do an ISA SG area, especially for the floppy. */
352 hose->sg_isa = iommu_arena_new(hose, base, length, 0);
353 hose->sg_pci = NULL;
355 temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
356 *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
357 temp = (length - 1) & 0xfff00000UL;
358 *(vulp)T2_WMASK2 = temp;
359 *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
360 mb();
362 t2_pci_tbi(hose, 0, -1); /* flush TLB all */
364 #if DEBUG_PRINT_FINAL_SETTINGS
365 printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
366 __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
367 #endif
370 static void __init
371 t2_save_configuration(void)
373 #if DEBUG_PRINT_INITIAL_SETTINGS
374 printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */
375 printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2);
376 printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3);
377 printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4);
378 printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE);
380 printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__,
381 *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
382 printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__,
383 *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
384 #endif
387 * Save the DMA Window registers.
389 t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
390 t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
391 t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
392 t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
393 t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
394 t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;
396 t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
397 t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
398 t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
399 t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
400 t2_saved_config.hbase = *(vulp)T2_HBASE;
403 void __init
404 t2_init_arch(void)
406 struct pci_controller *hose;
407 struct resource *hae_mem;
408 unsigned long temp;
409 unsigned int i;
411 for (i = 0; i < NR_CPUS; i++) {
412 mcheck_expected(i) = 0;
413 mcheck_taken(i) = 0;
415 t2_mcheck_any_expected = 0;
416 t2_mcheck_last_taken = 0;
418 /* Enable scatter/gather TLB use. */
419 temp = *(vulp)T2_IOCSR;
420 if (!(temp & (0x1UL << 26))) {
421 printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
422 temp);
423 *(vulp)T2_IOCSR = temp | (0x1UL << 26);
424 mb();
425 *(vulp)T2_IOCSR; /* read it back to make sure */
428 t2_save_configuration();
431 * Create our single hose.
433 pci_isa_hose = hose = alloc_pci_controller();
434 hose->io_space = &ioport_resource;
435 hae_mem = alloc_resource();
436 hae_mem->start = 0;
437 hae_mem->end = T2_MEM_R1_MASK;
438 hae_mem->name = pci_hae0_name;
439 if (request_resource(&iomem_resource, hae_mem) < 0)
440 printk(KERN_ERR "Failed to request HAE_MEM\n");
441 hose->mem_space = hae_mem;
442 hose->index = 0;
444 hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
445 hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
446 hose->sparse_io_base = T2_IO - IDENT_ADDR;
447 hose->dense_io_base = 0;
450 * Set up the PCI->physical memory translation windows.
452 * Window 1 is direct mapped.
453 * Window 2 is scatter/gather (for ISA).
456 t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);
458 /* Always make an ISA DMA window. */
459 t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);
461 *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */
463 /* Zero HAE. */
464 *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
465 *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
466 *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */
469 * We also now zero out HAE_4, the dense memory HAE, so that
470 * we need not account for its "offset" when accessing dense
471 * memory resources which we allocated in our normal way. This
472 * HAE would need to stay untouched were we to keep the SRM
473 * resource settings.
475 * Thus we can now run standard X servers on SABLE/LYNX. :-)
477 *(vulp)T2_HAE_4 = 0; mb();
480 void
481 t2_kill_arch(int mode)
484 * Restore the DMA Window registers.
486 *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
487 *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
488 *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
489 *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
490 *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
491 *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
492 mb();
494 *(vulp)T2_HAE_1 = srm_hae;
495 *(vulp)T2_HAE_2 = t2_saved_config.hae_2;
496 *(vulp)T2_HAE_3 = t2_saved_config.hae_3;
497 *(vulp)T2_HAE_4 = t2_saved_config.hae_4;
498 *(vulp)T2_HBASE = t2_saved_config.hbase;
499 mb();
500 *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
503 void
504 t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
506 unsigned long t2_iocsr;
508 t2_iocsr = *(vulp)T2_IOCSR;
510 /* set the TLB Clear bit */
511 *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
512 mb();
513 *(vulp)T2_IOCSR; /* read it back to make sure */
515 /* clear the TLB Clear bit */
516 *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
517 mb();
518 *(vulp)T2_IOCSR; /* read it back to make sure */
521 #define SIC_SEIC (1UL << 33) /* System Event Clear */
523 static void
524 t2_clear_errors(int cpu)
526 struct sable_cpu_csr *cpu_regs;
528 cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
530 cpu_regs->sic &= ~SIC_SEIC;
532 /* Clear CPU errors. */
533 cpu_regs->bcce |= cpu_regs->bcce;
534 cpu_regs->cbe |= cpu_regs->cbe;
535 cpu_regs->bcue |= cpu_regs->bcue;
536 cpu_regs->dter |= cpu_regs->dter;
538 *(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
539 *(vulp)T2_PERR1 |= *(vulp)T2_PERR1;
541 mb();
542 mb(); /* magic */
546 * SABLE seems to have a "broadcast" style machine check, in that all
547 * CPUs receive it. And, the issuing CPU, in the case of PCI Config
548 * space read/write faults, will also receive a second mcheck, upon
549 * lowering IPL during completion processing in pci_read_config_byte()
550 * et al.
552 * Hence all the taken/expected/any_expected/last_taken stuff...
554 void
555 t2_machine_check(unsigned long vector, unsigned long la_ptr)
557 int cpu = smp_processor_id();
558 #ifdef CONFIG_VERBOSE_MCHECK
559 struct el_common *mchk_header = (struct el_common *)la_ptr;
560 #endif
562 /* Clear the error before any reporting. */
563 mb();
564 mb(); /* magic */
565 draina();
566 t2_clear_errors(cpu);
568 /* This should not actually be done until the logout frame is
569 examined, but, since we don't do that, go on and do this... */
570 wrmces(0x7);
571 mb();
573 /* Now, do testing for the anomalous conditions. */
574 if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
576 * FUNKY: Received mcheck on a CPU and not
577 * expecting it, but another CPU is expecting one.
579 * Just dismiss it for now on this CPU...
581 #ifdef CONFIG_VERBOSE_MCHECK
582 if (alpha_verbose_mcheck > 1) {
583 printk("t2_machine_check(cpu%d): any_expected 0x%x -"
584 " (assumed) spurious -"
585 " code 0x%x\n", cpu, t2_mcheck_any_expected,
586 (unsigned int)mchk_header->code);
588 #endif
589 return;
592 if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
593 if (t2_mcheck_last_taken & (1 << cpu)) {
594 #ifdef CONFIG_VERBOSE_MCHECK
595 if (alpha_verbose_mcheck > 1) {
596 printk("t2_machine_check(cpu%d): last_taken 0x%x - "
597 "unexpected mcheck - code 0x%x\n",
598 cpu, t2_mcheck_last_taken,
599 (unsigned int)mchk_header->code);
601 #endif
602 t2_mcheck_last_taken = 0;
603 mb();
604 return;
605 } else {
606 t2_mcheck_last_taken = 0;
607 mb();
611 #ifdef CONFIG_VERBOSE_MCHECK
612 if (alpha_verbose_mcheck > 1) {
613 printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
614 "any_expected 0x%x - code 0x%x\n",
615 (mcheck_expected(cpu) ? "EX" : "UN"), cpu,
616 t2_mcheck_last_taken, t2_mcheck_any_expected,
617 (unsigned int)mchk_header->code);
619 #endif
621 process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu));