kvm tools, setup: Create private directory
[linux-2.6/next.git] / arch / arm / kernel / kprobes.c
blob1656c87501c0f5bee77ebaab931e8249d70ce451
1 /*
2 * arch/arm/kernel/kprobes.c
4 * Kprobes on ARM
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
31 #define MIN_STACK_SIZE(addr) \
32 min((unsigned long)MAX_STACK_SIZE, \
33 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
35 #define flush_insns(addr, cnt) \
36 flush_icache_range((unsigned long)(addr), \
37 (unsigned long)(addr) + \
38 sizeof(kprobe_opcode_t) * (cnt))
40 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
41 #define JPROBE_MAGIC_ADDR 0xffffffff
43 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
44 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47 int __kprobes arch_prepare_kprobe(struct kprobe *p)
49 kprobe_opcode_t insn;
50 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
51 unsigned long addr = (unsigned long)p->addr;
52 int is;
54 if (addr & 0x3 || in_exception_text(addr))
55 return -EINVAL;
57 insn = *p->addr;
58 p->opcode = insn;
59 p->ainsn.insn = tmp_insn;
61 switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
62 case INSN_REJECTED: /* not supported */
63 return -EINVAL;
65 case INSN_GOOD: /* instruction uses slot */
66 p->ainsn.insn = get_insn_slot();
67 if (!p->ainsn.insn)
68 return -ENOMEM;
69 for (is = 0; is < MAX_INSN_SIZE; ++is)
70 p->ainsn.insn[is] = tmp_insn[is];
71 flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
72 break;
74 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
75 p->ainsn.insn = NULL;
76 break;
79 return 0;
82 void __kprobes arch_arm_kprobe(struct kprobe *p)
84 *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
85 flush_insns(p->addr, 1);
89 * The actual disarming is done here on each CPU and synchronized using
90 * stop_machine. This synchronization is necessary on SMP to avoid removing
91 * a probe between the moment the 'Undefined Instruction' exception is raised
92 * and the moment the exception handler reads the faulting instruction from
93 * memory.
95 int __kprobes __arch_disarm_kprobe(void *p)
97 struct kprobe *kp = p;
98 *kp->addr = kp->opcode;
99 flush_insns(kp->addr, 1);
100 return 0;
103 void __kprobes arch_disarm_kprobe(struct kprobe *p)
105 stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
108 void __kprobes arch_remove_kprobe(struct kprobe *p)
110 if (p->ainsn.insn) {
111 free_insn_slot(p->ainsn.insn, 0);
112 p->ainsn.insn = NULL;
116 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
118 kcb->prev_kprobe.kp = kprobe_running();
119 kcb->prev_kprobe.status = kcb->kprobe_status;
122 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
124 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
125 kcb->kprobe_status = kcb->prev_kprobe.status;
128 static void __kprobes set_current_kprobe(struct kprobe *p)
130 __get_cpu_var(current_kprobe) = p;
133 static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
134 struct kprobe_ctlblk *kcb)
136 regs->ARM_pc += 4;
137 if (p->ainsn.insn_check_cc(regs->ARM_cpsr))
138 p->ainsn.insn_handler(p, regs);
142 * Called with IRQs disabled. IRQs must remain disabled from that point
143 * all the way until processing this kprobe is complete. The current
144 * kprobes implementation cannot process more than one nested level of
145 * kprobe, and that level is reserved for user kprobe handlers, so we can't
146 * risk encountering a new kprobe in an interrupt handler.
148 void __kprobes kprobe_handler(struct pt_regs *regs)
150 struct kprobe *p, *cur;
151 struct kprobe_ctlblk *kcb;
152 kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
154 kcb = get_kprobe_ctlblk();
155 cur = kprobe_running();
156 p = get_kprobe(addr);
158 if (p) {
159 if (cur) {
160 /* Kprobe is pending, so we're recursing. */
161 switch (kcb->kprobe_status) {
162 case KPROBE_HIT_ACTIVE:
163 case KPROBE_HIT_SSDONE:
164 /* A pre- or post-handler probe got us here. */
165 kprobes_inc_nmissed_count(p);
166 save_previous_kprobe(kcb);
167 set_current_kprobe(p);
168 kcb->kprobe_status = KPROBE_REENTER;
169 singlestep(p, regs, kcb);
170 restore_previous_kprobe(kcb);
171 break;
172 default:
173 /* impossible cases */
174 BUG();
176 } else {
177 set_current_kprobe(p);
178 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
181 * If we have no pre-handler or it returned 0, we
182 * continue with normal processing. If we have a
183 * pre-handler and it returned non-zero, it prepped
184 * for calling the break_handler below on re-entry,
185 * so get out doing nothing more here.
187 if (!p->pre_handler || !p->pre_handler(p, regs)) {
188 kcb->kprobe_status = KPROBE_HIT_SS;
189 singlestep(p, regs, kcb);
190 if (p->post_handler) {
191 kcb->kprobe_status = KPROBE_HIT_SSDONE;
192 p->post_handler(p, regs, 0);
194 reset_current_kprobe();
197 } else if (cur) {
198 /* We probably hit a jprobe. Call its break handler. */
199 if (cur->break_handler && cur->break_handler(cur, regs)) {
200 kcb->kprobe_status = KPROBE_HIT_SS;
201 singlestep(cur, regs, kcb);
202 if (cur->post_handler) {
203 kcb->kprobe_status = KPROBE_HIT_SSDONE;
204 cur->post_handler(cur, regs, 0);
207 reset_current_kprobe();
208 } else {
210 * The probe was removed and a race is in progress.
211 * There is nothing we can do about it. Let's restart
212 * the instruction. By the time we can restart, the
213 * real instruction will be there.
218 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
220 unsigned long flags;
221 local_irq_save(flags);
222 kprobe_handler(regs);
223 local_irq_restore(flags);
224 return 0;
227 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
229 struct kprobe *cur = kprobe_running();
230 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
232 switch (kcb->kprobe_status) {
233 case KPROBE_HIT_SS:
234 case KPROBE_REENTER:
236 * We are here because the instruction being single
237 * stepped caused a page fault. We reset the current
238 * kprobe and the PC to point back to the probe address
239 * and allow the page fault handler to continue as a
240 * normal page fault.
242 regs->ARM_pc = (long)cur->addr;
243 if (kcb->kprobe_status == KPROBE_REENTER) {
244 restore_previous_kprobe(kcb);
245 } else {
246 reset_current_kprobe();
248 break;
250 case KPROBE_HIT_ACTIVE:
251 case KPROBE_HIT_SSDONE:
253 * We increment the nmissed count for accounting,
254 * we can also use npre/npostfault count for accounting
255 * these specific fault cases.
257 kprobes_inc_nmissed_count(cur);
260 * We come here because instructions in the pre/post
261 * handler caused the page_fault, this could happen
262 * if handler tries to access user space by
263 * copy_from_user(), get_user() etc. Let the
264 * user-specified handler try to fix it.
266 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
267 return 1;
268 break;
270 default:
271 break;
274 return 0;
277 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
278 unsigned long val, void *data)
281 * notify_die() is currently never called on ARM,
282 * so this callback is currently empty.
284 return NOTIFY_DONE;
288 * When a retprobed function returns, trampoline_handler() is called,
289 * calling the kretprobe's handler. We construct a struct pt_regs to
290 * give a view of registers r0-r11 to the user return-handler. This is
291 * not a complete pt_regs structure, but that should be plenty sufficient
292 * for kretprobe handlers which should normally be interested in r0 only
293 * anyway.
295 void __naked __kprobes kretprobe_trampoline(void)
297 __asm__ __volatile__ (
298 "stmdb sp!, {r0 - r11} \n\t"
299 "mov r0, sp \n\t"
300 "bl trampoline_handler \n\t"
301 "mov lr, r0 \n\t"
302 "ldmia sp!, {r0 - r11} \n\t"
303 "mov pc, lr \n\t"
304 : : : "memory");
307 /* Called from kretprobe_trampoline */
308 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
310 struct kretprobe_instance *ri = NULL;
311 struct hlist_head *head, empty_rp;
312 struct hlist_node *node, *tmp;
313 unsigned long flags, orig_ret_address = 0;
314 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
316 INIT_HLIST_HEAD(&empty_rp);
317 kretprobe_hash_lock(current, &head, &flags);
320 * It is possible to have multiple instances associated with a given
321 * task either because multiple functions in the call path have
322 * a return probe installed on them, and/or more than one return
323 * probe was registered for a target function.
325 * We can handle this because:
326 * - instances are always inserted at the head of the list
327 * - when multiple return probes are registered for the same
328 * function, the first instance's ret_addr will point to the
329 * real return address, and all the rest will point to
330 * kretprobe_trampoline
332 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
333 if (ri->task != current)
334 /* another task is sharing our hash bucket */
335 continue;
337 if (ri->rp && ri->rp->handler) {
338 __get_cpu_var(current_kprobe) = &ri->rp->kp;
339 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
340 ri->rp->handler(ri, regs);
341 __get_cpu_var(current_kprobe) = NULL;
344 orig_ret_address = (unsigned long)ri->ret_addr;
345 recycle_rp_inst(ri, &empty_rp);
347 if (orig_ret_address != trampoline_address)
349 * This is the real return address. Any other
350 * instances associated with this task are for
351 * other calls deeper on the call stack
353 break;
356 kretprobe_assert(ri, orig_ret_address, trampoline_address);
357 kretprobe_hash_unlock(current, &flags);
359 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
360 hlist_del(&ri->hlist);
361 kfree(ri);
364 return (void *)orig_ret_address;
367 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
368 struct pt_regs *regs)
370 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
372 /* Replace the return addr with trampoline addr. */
373 regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
376 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
378 struct jprobe *jp = container_of(p, struct jprobe, kp);
379 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
380 long sp_addr = regs->ARM_sp;
382 kcb->jprobe_saved_regs = *regs;
383 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
384 regs->ARM_pc = (long)jp->entry;
385 regs->ARM_cpsr |= PSR_I_BIT;
386 preempt_disable();
387 return 1;
390 void __kprobes jprobe_return(void)
392 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
394 __asm__ __volatile__ (
396 * Setup an empty pt_regs. Fill SP and PC fields as
397 * they're needed by longjmp_break_handler.
399 * We allocate some slack between the original SP and start of
400 * our fabricated regs. To be precise we want to have worst case
401 * covered which is STMFD with all 16 regs so we allocate 2 *
402 * sizeof(struct_pt_regs)).
404 * This is to prevent any simulated instruction from writing
405 * over the regs when they are accessing the stack.
407 "sub sp, %0, %1 \n\t"
408 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
409 "str %0, [sp, %2] \n\t"
410 "str r0, [sp, %3] \n\t"
411 "mov r0, sp \n\t"
412 "bl kprobe_handler \n\t"
415 * Return to the context saved by setjmp_pre_handler
416 * and restored by longjmp_break_handler.
418 "ldr r0, [sp, %4] \n\t"
419 "msr cpsr_cxsf, r0 \n\t"
420 "ldmia sp, {r0 - pc} \n\t"
422 : "r" (kcb->jprobe_saved_regs.ARM_sp),
423 "I" (sizeof(struct pt_regs) * 2),
424 "J" (offsetof(struct pt_regs, ARM_sp)),
425 "J" (offsetof(struct pt_regs, ARM_pc)),
426 "J" (offsetof(struct pt_regs, ARM_cpsr))
427 : "memory", "cc");
430 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
432 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
433 long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
434 long orig_sp = regs->ARM_sp;
435 struct jprobe *jp = container_of(p, struct jprobe, kp);
437 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
438 if (orig_sp != stack_addr) {
439 struct pt_regs *saved_regs =
440 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
441 printk("current sp %lx does not match saved sp %lx\n",
442 orig_sp, stack_addr);
443 printk("Saved registers for jprobe %p\n", jp);
444 show_regs(saved_regs);
445 printk("Current registers\n");
446 show_regs(regs);
447 BUG();
449 *regs = kcb->jprobe_saved_regs;
450 memcpy((void *)stack_addr, kcb->jprobes_stack,
451 MIN_STACK_SIZE(stack_addr));
452 preempt_enable_no_resched();
453 return 1;
455 return 0;
458 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
460 return 0;
463 static struct undef_hook kprobes_break_hook = {
464 .instr_mask = 0xffffffff,
465 .instr_val = KPROBE_BREAKPOINT_INSTRUCTION,
466 .cpsr_mask = MODE_MASK,
467 .cpsr_val = SVC_MODE,
468 .fn = kprobe_trap_handler,
471 int __init arch_init_kprobes()
473 arm_kprobe_decode_init();
474 register_undef_hook(&kprobes_break_hook);
475 return 0;