kvm tools, setup: Create private directory
[linux-2.6/next.git] / arch / powerpc / kernel / kprobes.c
blobbc47352deb1fec8f76fc1ac9f094c941cc2a9e4f
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/cacheflush.h>
36 #include <asm/sstep.h>
37 #include <asm/uaccess.h>
38 #include <asm/system.h>
40 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
41 #define MSR_SINGLESTEP (MSR_DE)
42 #else
43 #define MSR_SINGLESTEP (MSR_SE)
44 #endif
46 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
47 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
49 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
51 int __kprobes arch_prepare_kprobe(struct kprobe *p)
53 int ret = 0;
54 kprobe_opcode_t insn = *p->addr;
56 if ((unsigned long)p->addr & 0x03) {
57 printk("Attempt to register kprobe at an unaligned address\n");
58 ret = -EINVAL;
59 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
60 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
61 ret = -EINVAL;
64 /* insn must be on a special executable page on ppc64. This is
65 * not explicitly required on ppc32 (right now), but it doesn't hurt */
66 if (!ret) {
67 p->ainsn.insn = get_insn_slot();
68 if (!p->ainsn.insn)
69 ret = -ENOMEM;
72 if (!ret) {
73 memcpy(p->ainsn.insn, p->addr,
74 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
75 p->opcode = *p->addr;
76 flush_icache_range((unsigned long)p->ainsn.insn,
77 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
80 p->ainsn.boostable = 0;
81 return ret;
84 void __kprobes arch_arm_kprobe(struct kprobe *p)
86 *p->addr = BREAKPOINT_INSTRUCTION;
87 flush_icache_range((unsigned long) p->addr,
88 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
91 void __kprobes arch_disarm_kprobe(struct kprobe *p)
93 *p->addr = p->opcode;
94 flush_icache_range((unsigned long) p->addr,
95 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
98 void __kprobes arch_remove_kprobe(struct kprobe *p)
100 if (p->ainsn.insn) {
101 free_insn_slot(p->ainsn.insn, 0);
102 p->ainsn.insn = NULL;
106 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
108 /* We turn off async exceptions to ensure that the single step will
109 * be for the instruction we have the kprobe on, if we dont its
110 * possible we'd get the single step reported for an exception handler
111 * like Decrementer or External Interrupt */
112 regs->msr &= ~MSR_EE;
113 regs->msr |= MSR_SINGLESTEP;
114 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
115 regs->msr &= ~MSR_CE;
116 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
117 #ifdef CONFIG_PPC_47x
118 isync();
119 #endif
120 #endif
123 * On powerpc we should single step on the original
124 * instruction even if the probed insn is a trap
125 * variant as values in regs could play a part in
126 * if the trap is taken or not
128 regs->nip = (unsigned long)p->ainsn.insn;
131 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
133 kcb->prev_kprobe.kp = kprobe_running();
134 kcb->prev_kprobe.status = kcb->kprobe_status;
135 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
138 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
140 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
141 kcb->kprobe_status = kcb->prev_kprobe.status;
142 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
145 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
146 struct kprobe_ctlblk *kcb)
148 __get_cpu_var(current_kprobe) = p;
149 kcb->kprobe_saved_msr = regs->msr;
152 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
153 struct pt_regs *regs)
155 ri->ret_addr = (kprobe_opcode_t *)regs->link;
157 /* Replace the return addr with trampoline addr */
158 regs->link = (unsigned long)kretprobe_trampoline;
161 static int __kprobes kprobe_handler(struct pt_regs *regs)
163 struct kprobe *p;
164 int ret = 0;
165 unsigned int *addr = (unsigned int *)regs->nip;
166 struct kprobe_ctlblk *kcb;
169 * We don't want to be preempted for the entire
170 * duration of kprobe processing
172 preempt_disable();
173 kcb = get_kprobe_ctlblk();
175 /* Check we're not actually recursing */
176 if (kprobe_running()) {
177 p = get_kprobe(addr);
178 if (p) {
179 kprobe_opcode_t insn = *p->ainsn.insn;
180 if (kcb->kprobe_status == KPROBE_HIT_SS &&
181 is_trap(insn)) {
182 /* Turn off 'trace' bits */
183 regs->msr &= ~MSR_SINGLESTEP;
184 regs->msr |= kcb->kprobe_saved_msr;
185 goto no_kprobe;
187 /* We have reentered the kprobe_handler(), since
188 * another probe was hit while within the handler.
189 * We here save the original kprobes variables and
190 * just single step on the instruction of the new probe
191 * without calling any user handlers.
193 save_previous_kprobe(kcb);
194 set_current_kprobe(p, regs, kcb);
195 kcb->kprobe_saved_msr = regs->msr;
196 kprobes_inc_nmissed_count(p);
197 prepare_singlestep(p, regs);
198 kcb->kprobe_status = KPROBE_REENTER;
199 return 1;
200 } else {
201 if (*addr != BREAKPOINT_INSTRUCTION) {
202 /* If trap variant, then it belongs not to us */
203 kprobe_opcode_t cur_insn = *addr;
204 if (is_trap(cur_insn))
205 goto no_kprobe;
206 /* The breakpoint instruction was removed by
207 * another cpu right after we hit, no further
208 * handling of this interrupt is appropriate
210 ret = 1;
211 goto no_kprobe;
213 p = __get_cpu_var(current_kprobe);
214 if (p->break_handler && p->break_handler(p, regs)) {
215 goto ss_probe;
218 goto no_kprobe;
221 p = get_kprobe(addr);
222 if (!p) {
223 if (*addr != BREAKPOINT_INSTRUCTION) {
225 * PowerPC has multiple variants of the "trap"
226 * instruction. If the current instruction is a
227 * trap variant, it could belong to someone else
229 kprobe_opcode_t cur_insn = *addr;
230 if (is_trap(cur_insn))
231 goto no_kprobe;
233 * The breakpoint instruction was removed right
234 * after we hit it. Another cpu has removed
235 * either a probepoint or a debugger breakpoint
236 * at this address. In either case, no further
237 * handling of this interrupt is appropriate.
239 ret = 1;
241 /* Not one of ours: let kernel handle it */
242 goto no_kprobe;
245 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
246 set_current_kprobe(p, regs, kcb);
247 if (p->pre_handler && p->pre_handler(p, regs))
248 /* handler has already set things up, so skip ss setup */
249 return 1;
251 ss_probe:
252 if (p->ainsn.boostable >= 0) {
253 unsigned int insn = *p->ainsn.insn;
255 /* regs->nip is also adjusted if emulate_step returns 1 */
256 ret = emulate_step(regs, insn);
257 if (ret > 0) {
259 * Once this instruction has been boosted
260 * successfully, set the boostable flag
262 if (unlikely(p->ainsn.boostable == 0))
263 p->ainsn.boostable = 1;
265 if (p->post_handler)
266 p->post_handler(p, regs, 0);
268 kcb->kprobe_status = KPROBE_HIT_SSDONE;
269 reset_current_kprobe();
270 preempt_enable_no_resched();
271 return 1;
272 } else if (ret < 0) {
274 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
275 * So, we should never get here... but, its still
276 * good to catch them, just in case...
278 printk("Can't step on instruction %x\n", insn);
279 BUG();
280 } else if (ret == 0)
281 /* This instruction can't be boosted */
282 p->ainsn.boostable = -1;
284 prepare_singlestep(p, regs);
285 kcb->kprobe_status = KPROBE_HIT_SS;
286 return 1;
288 no_kprobe:
289 preempt_enable_no_resched();
290 return ret;
294 * Function return probe trampoline:
295 * - init_kprobes() establishes a probepoint here
296 * - When the probed function returns, this probe
297 * causes the handlers to fire
299 static void __used kretprobe_trampoline_holder(void)
301 asm volatile(".global kretprobe_trampoline\n"
302 "kretprobe_trampoline:\n"
303 "nop\n");
307 * Called when the probe at kretprobe trampoline is hit
309 static int __kprobes trampoline_probe_handler(struct kprobe *p,
310 struct pt_regs *regs)
312 struct kretprobe_instance *ri = NULL;
313 struct hlist_head *head, empty_rp;
314 struct hlist_node *node, *tmp;
315 unsigned long flags, orig_ret_address = 0;
316 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
318 INIT_HLIST_HEAD(&empty_rp);
319 kretprobe_hash_lock(current, &head, &flags);
322 * It is possible to have multiple instances associated with a given
323 * task either because an multiple functions in the call path
324 * have a return probe installed on them, and/or more than one return
325 * return probe was registered for a target function.
327 * We can handle this because:
328 * - instances are always inserted at the head of the list
329 * - when multiple return probes are registered for the same
330 * function, the first instance's ret_addr will point to the
331 * real return address, and all the rest will point to
332 * kretprobe_trampoline
334 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
335 if (ri->task != current)
336 /* another task is sharing our hash bucket */
337 continue;
339 if (ri->rp && ri->rp->handler)
340 ri->rp->handler(ri, regs);
342 orig_ret_address = (unsigned long)ri->ret_addr;
343 recycle_rp_inst(ri, &empty_rp);
345 if (orig_ret_address != trampoline_address)
347 * This is the real return address. Any other
348 * instances associated with this task are for
349 * other calls deeper on the call stack
351 break;
354 kretprobe_assert(ri, orig_ret_address, trampoline_address);
355 regs->nip = orig_ret_address;
357 reset_current_kprobe();
358 kretprobe_hash_unlock(current, &flags);
359 preempt_enable_no_resched();
361 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
362 hlist_del(&ri->hlist);
363 kfree(ri);
366 * By returning a non-zero value, we are telling
367 * kprobe_handler() that we don't want the post_handler
368 * to run (and have re-enabled preemption)
370 return 1;
374 * Called after single-stepping. p->addr is the address of the
375 * instruction whose first byte has been replaced by the "breakpoint"
376 * instruction. To avoid the SMP problems that can occur when we
377 * temporarily put back the original opcode to single-step, we
378 * single-stepped a copy of the instruction. The address of this
379 * copy is p->ainsn.insn.
381 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
383 struct kprobe *cur = kprobe_running();
384 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
386 if (!cur)
387 return 0;
389 /* make sure we got here for instruction we have a kprobe on */
390 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
391 return 0;
393 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
394 kcb->kprobe_status = KPROBE_HIT_SSDONE;
395 cur->post_handler(cur, regs, 0);
398 /* Adjust nip to after the single-stepped instruction */
399 regs->nip = (unsigned long)cur->addr + 4;
400 regs->msr |= kcb->kprobe_saved_msr;
402 /*Restore back the original saved kprobes variables and continue. */
403 if (kcb->kprobe_status == KPROBE_REENTER) {
404 restore_previous_kprobe(kcb);
405 goto out;
407 reset_current_kprobe();
408 out:
409 preempt_enable_no_resched();
412 * if somebody else is singlestepping across a probe point, msr
413 * will have DE/SE set, in which case, continue the remaining processing
414 * of do_debug, as if this is not a probe hit.
416 if (regs->msr & MSR_SINGLESTEP)
417 return 0;
419 return 1;
422 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
424 struct kprobe *cur = kprobe_running();
425 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
426 const struct exception_table_entry *entry;
428 switch(kcb->kprobe_status) {
429 case KPROBE_HIT_SS:
430 case KPROBE_REENTER:
432 * We are here because the instruction being single
433 * stepped caused a page fault. We reset the current
434 * kprobe and the nip points back to the probe address
435 * and allow the page fault handler to continue as a
436 * normal page fault.
438 regs->nip = (unsigned long)cur->addr;
439 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
440 regs->msr |= kcb->kprobe_saved_msr;
441 if (kcb->kprobe_status == KPROBE_REENTER)
442 restore_previous_kprobe(kcb);
443 else
444 reset_current_kprobe();
445 preempt_enable_no_resched();
446 break;
447 case KPROBE_HIT_ACTIVE:
448 case KPROBE_HIT_SSDONE:
450 * We increment the nmissed count for accounting,
451 * we can also use npre/npostfault count for accouting
452 * these specific fault cases.
454 kprobes_inc_nmissed_count(cur);
457 * We come here because instructions in the pre/post
458 * handler caused the page_fault, this could happen
459 * if handler tries to access user space by
460 * copy_from_user(), get_user() etc. Let the
461 * user-specified handler try to fix it first.
463 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
464 return 1;
467 * In case the user-specified fault handler returned
468 * zero, try to fix up.
470 if ((entry = search_exception_tables(regs->nip)) != NULL) {
471 regs->nip = entry->fixup;
472 return 1;
476 * fixup_exception() could not handle it,
477 * Let do_page_fault() fix it.
479 break;
480 default:
481 break;
483 return 0;
487 * Wrapper routine to for handling exceptions.
489 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
490 unsigned long val, void *data)
492 struct die_args *args = (struct die_args *)data;
493 int ret = NOTIFY_DONE;
495 if (args->regs && user_mode(args->regs))
496 return ret;
498 switch (val) {
499 case DIE_BPT:
500 if (kprobe_handler(args->regs))
501 ret = NOTIFY_STOP;
502 break;
503 case DIE_SSTEP:
504 if (post_kprobe_handler(args->regs))
505 ret = NOTIFY_STOP;
506 break;
507 default:
508 break;
510 return ret;
513 #ifdef CONFIG_PPC64
514 unsigned long arch_deref_entry_point(void *entry)
516 return ((func_descr_t *)entry)->entry;
518 #endif
520 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
522 struct jprobe *jp = container_of(p, struct jprobe, kp);
523 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
525 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
527 /* setup return addr to the jprobe handler routine */
528 regs->nip = arch_deref_entry_point(jp->entry);
529 #ifdef CONFIG_PPC64
530 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
531 #endif
533 return 1;
536 void __used __kprobes jprobe_return(void)
538 asm volatile("trap" ::: "memory");
541 static void __used __kprobes jprobe_return_end(void)
545 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
547 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
550 * FIXME - we should ideally be validating that we got here 'cos
551 * of the "trap" in jprobe_return() above, before restoring the
552 * saved regs...
554 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
555 preempt_enable_no_resched();
556 return 1;
559 static struct kprobe trampoline_p = {
560 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
561 .pre_handler = trampoline_probe_handler
564 int __init arch_init_kprobes(void)
566 return register_kprobe(&trampoline_p);
569 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
571 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
572 return 1;
574 return 0;