kvm tools, setup: Create private directory
[linux-2.6/next.git] / arch / powerpc / platforms / wsp / opb_pic.c
blobbe05631a3c1cf7f046c73397385e66cf3b83eb07
1 /*
2 * IBM Onboard Peripheral Bus Interrupt Controller
4 * Copyright 2010 Jack Miller, IBM Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/of.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
19 #include <asm/reg_a2.h>
20 #include <asm/irq.h>
22 #define OPB_NR_IRQS 32
24 #define OPB_MLSASIER 0x04 /* MLS Accumulated Status IER */
25 #define OPB_MLSIR 0x50 /* MLS Interrupt Register */
26 #define OPB_MLSIER 0x54 /* MLS Interrupt Enable Register */
27 #define OPB_MLSIPR 0x58 /* MLS Interrupt Polarity Register */
28 #define OPB_MLSIIR 0x5c /* MLS Interrupt Inputs Register */
30 static int opb_index = 0;
32 struct opb_pic {
33 struct irq_host *host;
34 void *regs;
35 int index;
36 spinlock_t lock;
39 static u32 opb_in(struct opb_pic *opb, int offset)
41 return in_be32(opb->regs + offset);
44 static void opb_out(struct opb_pic *opb, int offset, u32 val)
46 out_be32(opb->regs + offset, val);
49 static void opb_unmask_irq(struct irq_data *d)
51 struct opb_pic *opb;
52 unsigned long flags;
53 u32 ier, bitset;
55 opb = d->chip_data;
56 bitset = (1 << (31 - irqd_to_hwirq(d)));
58 spin_lock_irqsave(&opb->lock, flags);
60 ier = opb_in(opb, OPB_MLSIER);
61 opb_out(opb, OPB_MLSIER, ier | bitset);
62 ier = opb_in(opb, OPB_MLSIER);
64 spin_unlock_irqrestore(&opb->lock, flags);
67 static void opb_mask_irq(struct irq_data *d)
69 struct opb_pic *opb;
70 unsigned long flags;
71 u32 ier, mask;
73 opb = d->chip_data;
74 mask = ~(1 << (31 - irqd_to_hwirq(d)));
76 spin_lock_irqsave(&opb->lock, flags);
78 ier = opb_in(opb, OPB_MLSIER);
79 opb_out(opb, OPB_MLSIER, ier & mask);
80 ier = opb_in(opb, OPB_MLSIER); // Flush posted writes
82 spin_unlock_irqrestore(&opb->lock, flags);
85 static void opb_ack_irq(struct irq_data *d)
87 struct opb_pic *opb;
88 unsigned long flags;
89 u32 bitset;
91 opb = d->chip_data;
92 bitset = (1 << (31 - irqd_to_hwirq(d)));
94 spin_lock_irqsave(&opb->lock, flags);
96 opb_out(opb, OPB_MLSIR, bitset);
97 opb_in(opb, OPB_MLSIR); // Flush posted writes
99 spin_unlock_irqrestore(&opb->lock, flags);
102 static void opb_mask_ack_irq(struct irq_data *d)
104 struct opb_pic *opb;
105 unsigned long flags;
106 u32 bitset;
107 u32 ier, ir;
109 opb = d->chip_data;
110 bitset = (1 << (31 - irqd_to_hwirq(d)));
112 spin_lock_irqsave(&opb->lock, flags);
114 ier = opb_in(opb, OPB_MLSIER);
115 opb_out(opb, OPB_MLSIER, ier & ~bitset);
116 ier = opb_in(opb, OPB_MLSIER); // Flush posted writes
118 opb_out(opb, OPB_MLSIR, bitset);
119 ir = opb_in(opb, OPB_MLSIR); // Flush posted writes
121 spin_unlock_irqrestore(&opb->lock, flags);
124 static int opb_set_irq_type(struct irq_data *d, unsigned int flow)
126 struct opb_pic *opb;
127 unsigned long flags;
128 int invert, ipr, mask, bit;
130 opb = d->chip_data;
132 /* The only information we're interested in in the type is whether it's
133 * a high or low trigger. For high triggered interrupts, the polarity
134 * set for it in the MLS Interrupt Polarity Register is 0, for low
135 * interrupts it's 1 so that the proper input in the MLS Interrupt Input
136 * Register is interrupted as asserting the interrupt. */
138 switch (flow) {
139 case IRQ_TYPE_NONE:
140 opb_mask_irq(d);
141 return 0;
143 case IRQ_TYPE_LEVEL_HIGH:
144 invert = 0;
145 break;
147 case IRQ_TYPE_LEVEL_LOW:
148 invert = 1;
149 break;
151 default:
152 return -EINVAL;
155 bit = (1 << (31 - irqd_to_hwirq(d)));
156 mask = ~bit;
158 spin_lock_irqsave(&opb->lock, flags);
160 ipr = opb_in(opb, OPB_MLSIPR);
161 ipr = (ipr & mask) | (invert ? bit : 0);
162 opb_out(opb, OPB_MLSIPR, ipr);
163 ipr = opb_in(opb, OPB_MLSIPR); // Flush posted writes
165 spin_unlock_irqrestore(&opb->lock, flags);
167 /* Record the type in the interrupt descriptor */
168 irqd_set_trigger_type(d, flow);
170 return 0;
173 static struct irq_chip opb_irq_chip = {
174 .name = "OPB",
175 .irq_mask = opb_mask_irq,
176 .irq_unmask = opb_unmask_irq,
177 .irq_mask_ack = opb_mask_ack_irq,
178 .irq_ack = opb_ack_irq,
179 .irq_set_type = opb_set_irq_type
182 static int opb_host_map(struct irq_host *host, unsigned int virq,
183 irq_hw_number_t hwirq)
185 struct opb_pic *opb;
187 opb = host->host_data;
189 /* Most of the important stuff is handled by the generic host code, like
190 * the lookup, so just attach some info to the virtual irq */
192 irq_set_chip_data(virq, opb);
193 irq_set_chip_and_handler(virq, &opb_irq_chip, handle_level_irq);
194 irq_set_irq_type(virq, IRQ_TYPE_NONE);
196 return 0;
199 static int opb_host_xlate(struct irq_host *host, struct device_node *dn,
200 const u32 *intspec, unsigned int intsize,
201 irq_hw_number_t *out_hwirq, unsigned int *out_type)
203 /* Interrupt size must == 2 */
204 BUG_ON(intsize != 2);
205 *out_hwirq = intspec[0];
206 *out_type = intspec[1];
207 return 0;
210 static struct irq_host_ops opb_host_ops = {
211 .map = opb_host_map,
212 .xlate = opb_host_xlate,
215 irqreturn_t opb_irq_handler(int irq, void *private)
217 struct opb_pic *opb;
218 u32 ir, src, subvirq;
220 opb = (struct opb_pic *) private;
222 /* Read the OPB MLS Interrupt Register for
223 * asserted interrupts */
224 ir = opb_in(opb, OPB_MLSIR);
225 if (!ir)
226 return IRQ_NONE;
228 do {
229 /* Get 1 - 32 source, *NOT* bit */
230 src = 32 - ffs(ir);
232 /* Translate from the OPB's conception of interrupt number to
233 * Linux's virtual IRQ */
235 subvirq = irq_linear_revmap(opb->host, src);
237 generic_handle_irq(subvirq);
238 } while ((ir = opb_in(opb, OPB_MLSIR)));
240 return IRQ_HANDLED;
243 struct opb_pic *opb_pic_init_one(struct device_node *dn)
245 struct opb_pic *opb;
246 struct resource res;
248 if (of_address_to_resource(dn, 0, &res)) {
249 printk(KERN_ERR "opb: Couldn't translate resource\n");
250 return NULL;
253 opb = kzalloc(sizeof(struct opb_pic), GFP_KERNEL);
254 if (!opb) {
255 printk(KERN_ERR "opb: Failed to allocate opb struct!\n");
256 return NULL;
259 /* Get access to the OPB MMIO registers */
260 opb->regs = ioremap(res.start + 0x10000, 0x1000);
261 if (!opb->regs) {
262 printk(KERN_ERR "opb: Failed to allocate register space!\n");
263 goto free_opb;
266 /* Allocate an irq host so that Linux knows that despite only
267 * having one interrupt to issue, we're the controller for multiple
268 * hardware IRQs, so later we can lookup their virtual IRQs. */
270 opb->host = irq_alloc_host(dn, IRQ_HOST_MAP_LINEAR,
271 OPB_NR_IRQS, &opb_host_ops, -1);
273 if (!opb->host) {
274 printk(KERN_ERR "opb: Failed to allocate IRQ host!\n");
275 goto free_regs;
278 opb->index = opb_index++;
279 spin_lock_init(&opb->lock);
280 opb->host->host_data = opb;
282 /* Disable all interrupts by default */
283 opb_out(opb, OPB_MLSASIER, 0);
284 opb_out(opb, OPB_MLSIER, 0);
286 /* ACK any interrupts left by FW */
287 opb_out(opb, OPB_MLSIR, 0xFFFFFFFF);
289 return opb;
291 free_regs:
292 iounmap(opb->regs);
293 free_opb:
294 kfree(opb);
295 return NULL;
298 void __init opb_pic_init(void)
300 struct device_node *dn;
301 struct opb_pic *opb;
302 int virq;
303 int rc;
305 /* Call init_one for each OPB device */
306 for_each_compatible_node(dn, NULL, "ibm,opb") {
308 /* Fill in an OPB struct */
309 opb = opb_pic_init_one(dn);
310 if (!opb) {
311 printk(KERN_WARNING "opb: Failed to init node, skipped!\n");
312 continue;
315 /* Map / get opb's hardware virtual irq */
316 virq = irq_of_parse_and_map(dn, 0);
317 if (virq <= 0) {
318 printk("opb: irq_op_parse_and_map failed!\n");
319 continue;
322 /* Attach opb interrupt handler to new virtual IRQ */
323 rc = request_irq(virq, opb_irq_handler, 0, "OPB LS Cascade", opb);
324 if (rc) {
325 printk("opb: request_irq failed: %d\n", rc);
326 continue;
329 printk("OPB%d init with %d IRQs at %p\n", opb->index,
330 OPB_NR_IRQS, opb->regs);