kvm tools, setup: Create private directory
[linux-2.6/next.git] / arch / x86 / platform / uv / tlb_uv.c
blob68e467f69fec8b022446de87ff60d4327b38f893
1 /*
2 * SGI UltraViolet TLB flush routines.
4 * (c) 2008-2011 Cliff Wickman <cpw@sgi.com>, SGI.
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
27 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28 static int timeout_base_ns[] = {
29 20,
30 160,
31 1280,
32 10240,
33 81920,
34 655360,
35 5242880,
36 167772160
39 static int timeout_us;
40 static int nobau;
41 static int baudisabled;
42 static spinlock_t disable_lock;
43 static cycles_t congested_cycles;
45 /* tunables: */
46 static int max_concurr = MAX_BAU_CONCURRENT;
47 static int max_concurr_const = MAX_BAU_CONCURRENT;
48 static int plugged_delay = PLUGGED_DELAY;
49 static int plugsb4reset = PLUGSB4RESET;
50 static int timeoutsb4reset = TIMEOUTSB4RESET;
51 static int ipi_reset_limit = IPI_RESET_LIMIT;
52 static int complete_threshold = COMPLETE_THRESHOLD;
53 static int congested_respns_us = CONGESTED_RESPONSE_US;
54 static int congested_reps = CONGESTED_REPS;
55 static int congested_period = CONGESTED_PERIOD;
57 static struct tunables tunables[] = {
58 {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
59 {&plugged_delay, PLUGGED_DELAY},
60 {&plugsb4reset, PLUGSB4RESET},
61 {&timeoutsb4reset, TIMEOUTSB4RESET},
62 {&ipi_reset_limit, IPI_RESET_LIMIT},
63 {&complete_threshold, COMPLETE_THRESHOLD},
64 {&congested_respns_us, CONGESTED_RESPONSE_US},
65 {&congested_reps, CONGESTED_REPS},
66 {&congested_period, CONGESTED_PERIOD}
69 static struct dentry *tunables_dir;
70 static struct dentry *tunables_file;
72 /* these correspond to the statistics printed by ptc_seq_show() */
73 static char *stat_description[] = {
74 "sent: number of shootdown messages sent",
75 "stime: time spent sending messages",
76 "numuvhubs: number of hubs targeted with shootdown",
77 "numuvhubs16: number times 16 or more hubs targeted",
78 "numuvhubs8: number times 8 or more hubs targeted",
79 "numuvhubs4: number times 4 or more hubs targeted",
80 "numuvhubs2: number times 2 or more hubs targeted",
81 "numuvhubs1: number times 1 hub targeted",
82 "numcpus: number of cpus targeted with shootdown",
83 "dto: number of destination timeouts",
84 "retries: destination timeout retries sent",
85 "rok: : destination timeouts successfully retried",
86 "resetp: ipi-style resource resets for plugs",
87 "resett: ipi-style resource resets for timeouts",
88 "giveup: fall-backs to ipi-style shootdowns",
89 "sto: number of source timeouts",
90 "bz: number of stay-busy's",
91 "throt: number times spun in throttle",
92 "swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
93 "recv: shootdown messages received",
94 "rtime: time spent processing messages",
95 "all: shootdown all-tlb messages",
96 "one: shootdown one-tlb messages",
97 "mult: interrupts that found multiple messages",
98 "none: interrupts that found no messages",
99 "retry: number of retry messages processed",
100 "canc: number messages canceled by retries",
101 "nocan: number retries that found nothing to cancel",
102 "reset: number of ipi-style reset requests processed",
103 "rcan: number messages canceled by reset requests",
104 "disable: number times use of the BAU was disabled",
105 "enable: number times use of the BAU was re-enabled"
108 static int __init
109 setup_nobau(char *arg)
111 nobau = 1;
112 return 0;
114 early_param("nobau", setup_nobau);
116 /* base pnode in this partition */
117 static int uv_base_pnode __read_mostly;
118 /* position of pnode (which is nasid>>1): */
119 static int uv_nshift __read_mostly;
120 static unsigned long uv_mmask __read_mostly;
122 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
123 static DEFINE_PER_CPU(struct bau_control, bau_control);
124 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
127 * Determine the first node on a uvhub. 'Nodes' are used for kernel
128 * memory allocation.
130 static int __init uvhub_to_first_node(int uvhub)
132 int node, b;
134 for_each_online_node(node) {
135 b = uv_node_to_blade_id(node);
136 if (uvhub == b)
137 return node;
139 return -1;
143 * Determine the apicid of the first cpu on a uvhub.
145 static int __init uvhub_to_first_apicid(int uvhub)
147 int cpu;
149 for_each_present_cpu(cpu)
150 if (uvhub == uv_cpu_to_blade_id(cpu))
151 return per_cpu(x86_cpu_to_apicid, cpu);
152 return -1;
156 * Free a software acknowledge hardware resource by clearing its Pending
157 * bit. This will return a reply to the sender.
158 * If the message has timed out, a reply has already been sent by the
159 * hardware but the resource has not been released. In that case our
160 * clear of the Timeout bit (as well) will free the resource. No reply will
161 * be sent (the hardware will only do one reply per message).
163 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp)
165 unsigned long dw;
166 struct bau_pq_entry *msg;
168 msg = mdp->msg;
169 if (!msg->canceled) {
170 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
171 write_mmr_sw_ack(dw);
173 msg->replied_to = 1;
174 msg->swack_vec = 0;
178 * Process the receipt of a RETRY message
180 static void bau_process_retry_msg(struct msg_desc *mdp,
181 struct bau_control *bcp)
183 int i;
184 int cancel_count = 0;
185 unsigned long msg_res;
186 unsigned long mmr = 0;
187 struct bau_pq_entry *msg = mdp->msg;
188 struct bau_pq_entry *msg2;
189 struct ptc_stats *stat = bcp->statp;
191 stat->d_retries++;
193 * cancel any message from msg+1 to the retry itself
195 for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
196 if (msg2 > mdp->queue_last)
197 msg2 = mdp->queue_first;
198 if (msg2 == msg)
199 break;
201 /* same conditions for cancellation as do_reset */
202 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
203 (msg2->swack_vec) && ((msg2->swack_vec &
204 msg->swack_vec) == 0) &&
205 (msg2->sending_cpu == msg->sending_cpu) &&
206 (msg2->msg_type != MSG_NOOP)) {
207 mmr = read_mmr_sw_ack();
208 msg_res = msg2->swack_vec;
210 * This is a message retry; clear the resources held
211 * by the previous message only if they timed out.
212 * If it has not timed out we have an unexpected
213 * situation to report.
215 if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
216 unsigned long mr;
218 * is the resource timed out?
219 * make everyone ignore the cancelled message.
221 msg2->canceled = 1;
222 stat->d_canceled++;
223 cancel_count++;
224 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
225 write_mmr_sw_ack(mr);
229 if (!cancel_count)
230 stat->d_nocanceled++;
234 * Do all the things a cpu should do for a TLB shootdown message.
235 * Other cpu's may come here at the same time for this message.
237 static void bau_process_message(struct msg_desc *mdp,
238 struct bau_control *bcp)
240 short socket_ack_count = 0;
241 short *sp;
242 struct atomic_short *asp;
243 struct ptc_stats *stat = bcp->statp;
244 struct bau_pq_entry *msg = mdp->msg;
245 struct bau_control *smaster = bcp->socket_master;
248 * This must be a normal message, or retry of a normal message
250 if (msg->address == TLB_FLUSH_ALL) {
251 local_flush_tlb();
252 stat->d_alltlb++;
253 } else {
254 __flush_tlb_one(msg->address);
255 stat->d_onetlb++;
257 stat->d_requestee++;
260 * One cpu on each uvhub has the additional job on a RETRY
261 * of releasing the resource held by the message that is
262 * being retried. That message is identified by sending
263 * cpu number.
265 if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
266 bau_process_retry_msg(mdp, bcp);
269 * This is a swack message, so we have to reply to it.
270 * Count each responding cpu on the socket. This avoids
271 * pinging the count's cache line back and forth between
272 * the sockets.
274 sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
275 asp = (struct atomic_short *)sp;
276 socket_ack_count = atom_asr(1, asp);
277 if (socket_ack_count == bcp->cpus_in_socket) {
278 int msg_ack_count;
280 * Both sockets dump their completed count total into
281 * the message's count.
283 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
284 asp = (struct atomic_short *)&msg->acknowledge_count;
285 msg_ack_count = atom_asr(socket_ack_count, asp);
287 if (msg_ack_count == bcp->cpus_in_uvhub) {
289 * All cpus in uvhub saw it; reply
291 reply_to_message(mdp, bcp);
295 return;
299 * Determine the first cpu on a uvhub.
301 static int uvhub_to_first_cpu(int uvhub)
303 int cpu;
304 for_each_present_cpu(cpu)
305 if (uvhub == uv_cpu_to_blade_id(cpu))
306 return cpu;
307 return -1;
311 * Last resort when we get a large number of destination timeouts is
312 * to clear resources held by a given cpu.
313 * Do this with IPI so that all messages in the BAU message queue
314 * can be identified by their nonzero swack_vec field.
316 * This is entered for a single cpu on the uvhub.
317 * The sender want's this uvhub to free a specific message's
318 * swack resources.
320 static void do_reset(void *ptr)
322 int i;
323 struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
324 struct reset_args *rap = (struct reset_args *)ptr;
325 struct bau_pq_entry *msg;
326 struct ptc_stats *stat = bcp->statp;
328 stat->d_resets++;
330 * We're looking for the given sender, and
331 * will free its swack resource.
332 * If all cpu's finally responded after the timeout, its
333 * message 'replied_to' was set.
335 for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
336 unsigned long msg_res;
337 /* do_reset: same conditions for cancellation as
338 bau_process_retry_msg() */
339 if ((msg->replied_to == 0) &&
340 (msg->canceled == 0) &&
341 (msg->sending_cpu == rap->sender) &&
342 (msg->swack_vec) &&
343 (msg->msg_type != MSG_NOOP)) {
344 unsigned long mmr;
345 unsigned long mr;
347 * make everyone else ignore this message
349 msg->canceled = 1;
351 * only reset the resource if it is still pending
353 mmr = read_mmr_sw_ack();
354 msg_res = msg->swack_vec;
355 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
356 if (mmr & msg_res) {
357 stat->d_rcanceled++;
358 write_mmr_sw_ack(mr);
362 return;
366 * Use IPI to get all target uvhubs to release resources held by
367 * a given sending cpu number.
369 static void reset_with_ipi(struct bau_targ_hubmask *distribution, int sender)
371 int uvhub;
372 int maskbits;
373 cpumask_t mask;
374 struct reset_args reset_args;
376 reset_args.sender = sender;
377 cpus_clear(mask);
378 /* find a single cpu for each uvhub in this distribution mask */
379 maskbits = sizeof(struct bau_targ_hubmask) * BITSPERBYTE;
380 for (uvhub = 0; uvhub < maskbits; uvhub++) {
381 int cpu;
382 if (!bau_uvhub_isset(uvhub, distribution))
383 continue;
384 /* find a cpu for this uvhub */
385 cpu = uvhub_to_first_cpu(uvhub);
386 cpu_set(cpu, mask);
389 /* IPI all cpus; preemption is already disabled */
390 smp_call_function_many(&mask, do_reset, (void *)&reset_args, 1);
391 return;
394 static inline unsigned long cycles_2_us(unsigned long long cyc)
396 unsigned long long ns;
397 unsigned long us;
398 int cpu = smp_processor_id();
400 ns = (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR;
401 us = ns / 1000;
402 return us;
406 * wait for all cpus on this hub to finish their sends and go quiet
407 * leaves uvhub_quiesce set so that no new broadcasts are started by
408 * bau_flush_send_and_wait()
410 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
412 atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
416 * mark this quiet-requestor as done
418 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
420 atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
423 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
425 unsigned long descriptor_status;
427 descriptor_status = uv_read_local_mmr(mmr_offset);
428 descriptor_status >>= right_shift;
429 descriptor_status &= UV_ACT_STATUS_MASK;
430 return descriptor_status;
434 * Wait for completion of a broadcast software ack message
435 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
437 static int uv1_wait_completion(struct bau_desc *bau_desc,
438 unsigned long mmr_offset, int right_shift,
439 struct bau_control *bcp, long try)
441 unsigned long descriptor_status;
442 cycles_t ttm;
443 struct ptc_stats *stat = bcp->statp;
445 descriptor_status = uv1_read_status(mmr_offset, right_shift);
446 /* spin on the status MMR, waiting for it to go idle */
447 while ((descriptor_status != DS_IDLE)) {
449 * Our software ack messages may be blocked because
450 * there are no swack resources available. As long
451 * as none of them has timed out hardware will NACK
452 * our message and its state will stay IDLE.
454 if (descriptor_status == DS_SOURCE_TIMEOUT) {
455 stat->s_stimeout++;
456 return FLUSH_GIVEUP;
457 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
458 stat->s_dtimeout++;
459 ttm = get_cycles();
462 * Our retries may be blocked by all destination
463 * swack resources being consumed, and a timeout
464 * pending. In that case hardware returns the
465 * ERROR that looks like a destination timeout.
467 if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
468 bcp->conseccompletes = 0;
469 return FLUSH_RETRY_PLUGGED;
472 bcp->conseccompletes = 0;
473 return FLUSH_RETRY_TIMEOUT;
474 } else {
476 * descriptor_status is still BUSY
478 cpu_relax();
480 descriptor_status = uv1_read_status(mmr_offset, right_shift);
482 bcp->conseccompletes++;
483 return FLUSH_COMPLETE;
487 * UV2 has an extra bit of status in the ACTIVATION_STATUS_2 register.
489 static unsigned long uv2_read_status(unsigned long offset, int rshft, int cpu)
491 unsigned long descriptor_status;
492 unsigned long descriptor_status2;
494 descriptor_status = ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK);
495 descriptor_status2 = (read_mmr_uv2_status() >> cpu) & 0x1UL;
496 descriptor_status = (descriptor_status << 1) | descriptor_status2;
497 return descriptor_status;
500 static int uv2_wait_completion(struct bau_desc *bau_desc,
501 unsigned long mmr_offset, int right_shift,
502 struct bau_control *bcp, long try)
504 unsigned long descriptor_stat;
505 cycles_t ttm;
506 int cpu = bcp->uvhub_cpu;
507 struct ptc_stats *stat = bcp->statp;
509 descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu);
511 /* spin on the status MMR, waiting for it to go idle */
512 while (descriptor_stat != UV2H_DESC_IDLE) {
514 * Our software ack messages may be blocked because
515 * there are no swack resources available. As long
516 * as none of them has timed out hardware will NACK
517 * our message and its state will stay IDLE.
519 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) ||
520 (descriptor_stat == UV2H_DESC_DEST_STRONG_NACK) ||
521 (descriptor_stat == UV2H_DESC_DEST_PUT_ERR)) {
522 stat->s_stimeout++;
523 return FLUSH_GIVEUP;
524 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
525 stat->s_dtimeout++;
526 ttm = get_cycles();
528 * Our retries may be blocked by all destination
529 * swack resources being consumed, and a timeout
530 * pending. In that case hardware returns the
531 * ERROR that looks like a destination timeout.
533 if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
534 bcp->conseccompletes = 0;
535 return FLUSH_RETRY_PLUGGED;
537 bcp->conseccompletes = 0;
538 return FLUSH_RETRY_TIMEOUT;
539 } else {
541 * descriptor_stat is still BUSY
543 cpu_relax();
545 descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu);
547 bcp->conseccompletes++;
548 return FLUSH_COMPLETE;
552 * There are 2 status registers; each and array[32] of 2 bits. Set up for
553 * which register to read and position in that register based on cpu in
554 * current hub.
556 static int wait_completion(struct bau_desc *bau_desc,
557 struct bau_control *bcp, long try)
559 int right_shift;
560 unsigned long mmr_offset;
561 int cpu = bcp->uvhub_cpu;
563 if (cpu < UV_CPUS_PER_AS) {
564 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
565 right_shift = cpu * UV_ACT_STATUS_SIZE;
566 } else {
567 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
568 right_shift = ((cpu - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
571 if (is_uv1_hub())
572 return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
573 bcp, try);
574 else
575 return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
576 bcp, try);
579 static inline cycles_t sec_2_cycles(unsigned long sec)
581 unsigned long ns;
582 cycles_t cyc;
584 ns = sec * 1000000000;
585 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
586 return cyc;
590 * Our retries are blocked by all destination sw ack resources being
591 * in use, and a timeout is pending. In that case hardware immediately
592 * returns the ERROR that looks like a destination timeout.
594 static void destination_plugged(struct bau_desc *bau_desc,
595 struct bau_control *bcp,
596 struct bau_control *hmaster, struct ptc_stats *stat)
598 udelay(bcp->plugged_delay);
599 bcp->plugged_tries++;
601 if (bcp->plugged_tries >= bcp->plugsb4reset) {
602 bcp->plugged_tries = 0;
604 quiesce_local_uvhub(hmaster);
606 spin_lock(&hmaster->queue_lock);
607 reset_with_ipi(&bau_desc->distribution, bcp->cpu);
608 spin_unlock(&hmaster->queue_lock);
610 end_uvhub_quiesce(hmaster);
612 bcp->ipi_attempts++;
613 stat->s_resets_plug++;
617 static void destination_timeout(struct bau_desc *bau_desc,
618 struct bau_control *bcp, struct bau_control *hmaster,
619 struct ptc_stats *stat)
621 hmaster->max_concurr = 1;
622 bcp->timeout_tries++;
623 if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
624 bcp->timeout_tries = 0;
626 quiesce_local_uvhub(hmaster);
628 spin_lock(&hmaster->queue_lock);
629 reset_with_ipi(&bau_desc->distribution, bcp->cpu);
630 spin_unlock(&hmaster->queue_lock);
632 end_uvhub_quiesce(hmaster);
634 bcp->ipi_attempts++;
635 stat->s_resets_timeout++;
640 * Completions are taking a very long time due to a congested numalink
641 * network.
643 static void disable_for_congestion(struct bau_control *bcp,
644 struct ptc_stats *stat)
646 /* let only one cpu do this disabling */
647 spin_lock(&disable_lock);
649 if (!baudisabled && bcp->period_requests &&
650 ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
651 int tcpu;
652 struct bau_control *tbcp;
653 /* it becomes this cpu's job to turn on the use of the
654 BAU again */
655 baudisabled = 1;
656 bcp->set_bau_off = 1;
657 bcp->set_bau_on_time = get_cycles();
658 bcp->set_bau_on_time += sec_2_cycles(bcp->cong_period);
659 stat->s_bau_disabled++;
660 for_each_present_cpu(tcpu) {
661 tbcp = &per_cpu(bau_control, tcpu);
662 tbcp->baudisabled = 1;
666 spin_unlock(&disable_lock);
669 static void count_max_concurr(int stat, struct bau_control *bcp,
670 struct bau_control *hmaster)
672 bcp->plugged_tries = 0;
673 bcp->timeout_tries = 0;
674 if (stat != FLUSH_COMPLETE)
675 return;
676 if (bcp->conseccompletes <= bcp->complete_threshold)
677 return;
678 if (hmaster->max_concurr >= hmaster->max_concurr_const)
679 return;
680 hmaster->max_concurr++;
683 static void record_send_stats(cycles_t time1, cycles_t time2,
684 struct bau_control *bcp, struct ptc_stats *stat,
685 int completion_status, int try)
687 cycles_t elapsed;
689 if (time2 > time1) {
690 elapsed = time2 - time1;
691 stat->s_time += elapsed;
693 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
694 bcp->period_requests++;
695 bcp->period_time += elapsed;
696 if ((elapsed > congested_cycles) &&
697 (bcp->period_requests > bcp->cong_reps))
698 disable_for_congestion(bcp, stat);
700 } else
701 stat->s_requestor--;
703 if (completion_status == FLUSH_COMPLETE && try > 1)
704 stat->s_retriesok++;
705 else if (completion_status == FLUSH_GIVEUP)
706 stat->s_giveup++;
710 * Because of a uv1 hardware bug only a limited number of concurrent
711 * requests can be made.
713 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
715 spinlock_t *lock = &hmaster->uvhub_lock;
716 atomic_t *v;
718 v = &hmaster->active_descriptor_count;
719 if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
720 stat->s_throttles++;
721 do {
722 cpu_relax();
723 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
728 * Handle the completion status of a message send.
730 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
731 struct bau_control *bcp, struct bau_control *hmaster,
732 struct ptc_stats *stat)
734 if (completion_status == FLUSH_RETRY_PLUGGED)
735 destination_plugged(bau_desc, bcp, hmaster, stat);
736 else if (completion_status == FLUSH_RETRY_TIMEOUT)
737 destination_timeout(bau_desc, bcp, hmaster, stat);
741 * Send a broadcast and wait for it to complete.
743 * The flush_mask contains the cpus the broadcast is to be sent to including
744 * cpus that are on the local uvhub.
746 * Returns 0 if all flushing represented in the mask was done.
747 * Returns 1 if it gives up entirely and the original cpu mask is to be
748 * returned to the kernel.
750 int uv_flush_send_and_wait(struct bau_desc *bau_desc,
751 struct cpumask *flush_mask, struct bau_control *bcp)
753 int seq_number = 0;
754 int completion_stat = 0;
755 long try = 0;
756 unsigned long index;
757 cycles_t time1;
758 cycles_t time2;
759 struct ptc_stats *stat = bcp->statp;
760 struct bau_control *hmaster = bcp->uvhub_master;
762 if (is_uv1_hub())
763 uv1_throttle(hmaster, stat);
765 while (hmaster->uvhub_quiesce)
766 cpu_relax();
768 time1 = get_cycles();
769 do {
770 if (try == 0) {
771 bau_desc->header.msg_type = MSG_REGULAR;
772 seq_number = bcp->message_number++;
773 } else {
774 bau_desc->header.msg_type = MSG_RETRY;
775 stat->s_retry_messages++;
778 bau_desc->header.sequence = seq_number;
779 index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
780 bcp->send_message = get_cycles();
782 write_mmr_activation(index);
784 try++;
785 completion_stat = wait_completion(bau_desc, bcp, try);
787 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
789 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
790 bcp->ipi_attempts = 0;
791 completion_stat = FLUSH_GIVEUP;
792 break;
794 cpu_relax();
795 } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
796 (completion_stat == FLUSH_RETRY_TIMEOUT));
798 time2 = get_cycles();
800 count_max_concurr(completion_stat, bcp, hmaster);
802 while (hmaster->uvhub_quiesce)
803 cpu_relax();
805 atomic_dec(&hmaster->active_descriptor_count);
807 record_send_stats(time1, time2, bcp, stat, completion_stat, try);
809 if (completion_stat == FLUSH_GIVEUP)
810 return 1;
811 return 0;
815 * The BAU is disabled. When the disabled time period has expired, the cpu
816 * that disabled it must re-enable it.
817 * Return 0 if it is re-enabled for all cpus.
819 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
821 int tcpu;
822 struct bau_control *tbcp;
824 if (bcp->set_bau_off) {
825 if (get_cycles() >= bcp->set_bau_on_time) {
826 stat->s_bau_reenabled++;
827 baudisabled = 0;
828 for_each_present_cpu(tcpu) {
829 tbcp = &per_cpu(bau_control, tcpu);
830 tbcp->baudisabled = 0;
831 tbcp->period_requests = 0;
832 tbcp->period_time = 0;
834 return 0;
837 return -1;
840 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
841 int remotes, struct bau_desc *bau_desc)
843 stat->s_requestor++;
844 stat->s_ntargcpu += remotes + locals;
845 stat->s_ntargremotes += remotes;
846 stat->s_ntarglocals += locals;
848 /* uvhub statistics */
849 hubs = bau_uvhub_weight(&bau_desc->distribution);
850 if (locals) {
851 stat->s_ntarglocaluvhub++;
852 stat->s_ntargremoteuvhub += (hubs - 1);
853 } else
854 stat->s_ntargremoteuvhub += hubs;
856 stat->s_ntarguvhub += hubs;
858 if (hubs >= 16)
859 stat->s_ntarguvhub16++;
860 else if (hubs >= 8)
861 stat->s_ntarguvhub8++;
862 else if (hubs >= 4)
863 stat->s_ntarguvhub4++;
864 else if (hubs >= 2)
865 stat->s_ntarguvhub2++;
866 else
867 stat->s_ntarguvhub1++;
871 * Translate a cpu mask to the uvhub distribution mask in the BAU
872 * activation descriptor.
874 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
875 struct bau_desc *bau_desc, int *localsp, int *remotesp)
877 int cpu;
878 int pnode;
879 int cnt = 0;
880 struct hub_and_pnode *hpp;
882 for_each_cpu(cpu, flush_mask) {
884 * The distribution vector is a bit map of pnodes, relative
885 * to the partition base pnode (and the partition base nasid
886 * in the header).
887 * Translate cpu to pnode and hub using a local memory array.
889 hpp = &bcp->socket_master->thp[cpu];
890 pnode = hpp->pnode - bcp->partition_base_pnode;
891 bau_uvhub_set(pnode, &bau_desc->distribution);
892 cnt++;
893 if (hpp->uvhub == bcp->uvhub)
894 (*localsp)++;
895 else
896 (*remotesp)++;
898 if (!cnt)
899 return 1;
900 return 0;
904 * globally purge translation cache of a virtual address or all TLB's
905 * @cpumask: mask of all cpu's in which the address is to be removed
906 * @mm: mm_struct containing virtual address range
907 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
908 * @cpu: the current cpu
910 * This is the entry point for initiating any UV global TLB shootdown.
912 * Purges the translation caches of all specified processors of the given
913 * virtual address, or purges all TLB's on specified processors.
915 * The caller has derived the cpumask from the mm_struct. This function
916 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
918 * The cpumask is converted into a uvhubmask of the uvhubs containing
919 * those cpus.
921 * Note that this function should be called with preemption disabled.
923 * Returns NULL if all remote flushing was done.
924 * Returns pointer to cpumask if some remote flushing remains to be
925 * done. The returned pointer is valid till preemption is re-enabled.
927 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
928 struct mm_struct *mm, unsigned long va,
929 unsigned int cpu)
931 int locals = 0;
932 int remotes = 0;
933 int hubs = 0;
934 struct bau_desc *bau_desc;
935 struct cpumask *flush_mask;
936 struct ptc_stats *stat;
937 struct bau_control *bcp;
939 /* kernel was booted 'nobau' */
940 if (nobau)
941 return cpumask;
943 bcp = &per_cpu(bau_control, cpu);
944 stat = bcp->statp;
946 /* bau was disabled due to slow response */
947 if (bcp->baudisabled) {
948 if (check_enable(bcp, stat))
949 return cpumask;
953 * Each sending cpu has a per-cpu mask which it fills from the caller's
954 * cpu mask. All cpus are converted to uvhubs and copied to the
955 * activation descriptor.
957 flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
958 /* don't actually do a shootdown of the local cpu */
959 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
961 if (cpu_isset(cpu, *cpumask))
962 stat->s_ntargself++;
964 bau_desc = bcp->descriptor_base;
965 bau_desc += ITEMS_PER_DESC * bcp->uvhub_cpu;
966 bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
967 if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
968 return NULL;
970 record_send_statistics(stat, locals, hubs, remotes, bau_desc);
972 bau_desc->payload.address = va;
973 bau_desc->payload.sending_cpu = cpu;
975 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
976 * or 1 if it gave up and the original cpumask should be returned.
978 if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
979 return NULL;
980 else
981 return cpumask;
985 * The BAU message interrupt comes here. (registered by set_intr_gate)
986 * See entry_64.S
988 * We received a broadcast assist message.
990 * Interrupts are disabled; this interrupt could represent
991 * the receipt of several messages.
993 * All cores/threads on this hub get this interrupt.
994 * The last one to see it does the software ack.
995 * (the resource will not be freed until noninterruptable cpus see this
996 * interrupt; hardware may timeout the s/w ack and reply ERROR)
998 void uv_bau_message_interrupt(struct pt_regs *regs)
1000 int count = 0;
1001 cycles_t time_start;
1002 struct bau_pq_entry *msg;
1003 struct bau_control *bcp;
1004 struct ptc_stats *stat;
1005 struct msg_desc msgdesc;
1007 time_start = get_cycles();
1009 bcp = &per_cpu(bau_control, smp_processor_id());
1010 stat = bcp->statp;
1012 msgdesc.queue_first = bcp->queue_first;
1013 msgdesc.queue_last = bcp->queue_last;
1015 msg = bcp->bau_msg_head;
1016 while (msg->swack_vec) {
1017 count++;
1019 msgdesc.msg_slot = msg - msgdesc.queue_first;
1020 msgdesc.swack_slot = ffs(msg->swack_vec) - 1;
1021 msgdesc.msg = msg;
1022 bau_process_message(&msgdesc, bcp);
1024 msg++;
1025 if (msg > msgdesc.queue_last)
1026 msg = msgdesc.queue_first;
1027 bcp->bau_msg_head = msg;
1029 stat->d_time += (get_cycles() - time_start);
1030 if (!count)
1031 stat->d_nomsg++;
1032 else if (count > 1)
1033 stat->d_multmsg++;
1035 ack_APIC_irq();
1039 * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1040 * shootdown message timeouts enabled. The timeout does not cause
1041 * an interrupt, but causes an error message to be returned to
1042 * the sender.
1044 static void __init enable_timeouts(void)
1046 int uvhub;
1047 int nuvhubs;
1048 int pnode;
1049 unsigned long mmr_image;
1051 nuvhubs = uv_num_possible_blades();
1053 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1054 if (!uv_blade_nr_possible_cpus(uvhub))
1055 continue;
1057 pnode = uv_blade_to_pnode(uvhub);
1058 mmr_image = read_mmr_misc_control(pnode);
1060 * Set the timeout period and then lock it in, in three
1061 * steps; captures and locks in the period.
1063 * To program the period, the SOFT_ACK_MODE must be off.
1065 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1066 write_mmr_misc_control(pnode, mmr_image);
1068 * Set the 4-bit period.
1070 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1071 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1072 write_mmr_misc_control(pnode, mmr_image);
1074 * UV1:
1075 * Subsequent reversals of the timebase bit (3) cause an
1076 * immediate timeout of one or all INTD resources as
1077 * indicated in bits 2:0 (7 causes all of them to timeout).
1079 mmr_image |= (1L << SOFTACK_MSHIFT);
1080 if (is_uv2_hub()) {
1081 mmr_image |= (1L << UV2_LEG_SHFT);
1082 mmr_image |= (1L << UV2_EXT_SHFT);
1084 write_mmr_misc_control(pnode, mmr_image);
1088 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1090 if (*offset < num_possible_cpus())
1091 return offset;
1092 return NULL;
1095 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1097 (*offset)++;
1098 if (*offset < num_possible_cpus())
1099 return offset;
1100 return NULL;
1103 static void ptc_seq_stop(struct seq_file *file, void *data)
1107 static inline unsigned long long usec_2_cycles(unsigned long microsec)
1109 unsigned long ns;
1110 unsigned long long cyc;
1112 ns = microsec * 1000;
1113 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
1114 return cyc;
1118 * Display the statistics thru /proc/sgi_uv/ptc_statistics
1119 * 'data' points to the cpu number
1120 * Note: see the descriptions in stat_description[].
1122 static int ptc_seq_show(struct seq_file *file, void *data)
1124 struct ptc_stats *stat;
1125 int cpu;
1127 cpu = *(loff_t *)data;
1128 if (!cpu) {
1129 seq_printf(file,
1130 "# cpu sent stime self locals remotes ncpus localhub ");
1131 seq_printf(file,
1132 "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1133 seq_printf(file,
1134 "numuvhubs4 numuvhubs2 numuvhubs1 dto retries rok ");
1135 seq_printf(file,
1136 "resetp resett giveup sto bz throt swack recv rtime ");
1137 seq_printf(file,
1138 "all one mult none retry canc nocan reset rcan ");
1139 seq_printf(file,
1140 "disable enable\n");
1142 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1143 stat = &per_cpu(ptcstats, cpu);
1144 /* source side statistics */
1145 seq_printf(file,
1146 "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1147 cpu, stat->s_requestor, cycles_2_us(stat->s_time),
1148 stat->s_ntargself, stat->s_ntarglocals,
1149 stat->s_ntargremotes, stat->s_ntargcpu,
1150 stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1151 stat->s_ntarguvhub, stat->s_ntarguvhub16);
1152 seq_printf(file, "%ld %ld %ld %ld %ld ",
1153 stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1154 stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1155 stat->s_dtimeout);
1156 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1157 stat->s_retry_messages, stat->s_retriesok,
1158 stat->s_resets_plug, stat->s_resets_timeout,
1159 stat->s_giveup, stat->s_stimeout,
1160 stat->s_busy, stat->s_throttles);
1162 /* destination side statistics */
1163 seq_printf(file,
1164 "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1165 read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
1166 stat->d_requestee, cycles_2_us(stat->d_time),
1167 stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1168 stat->d_nomsg, stat->d_retries, stat->d_canceled,
1169 stat->d_nocanceled, stat->d_resets,
1170 stat->d_rcanceled);
1171 seq_printf(file, "%ld %ld\n",
1172 stat->s_bau_disabled, stat->s_bau_reenabled);
1174 return 0;
1178 * Display the tunables thru debugfs
1180 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1181 size_t count, loff_t *ppos)
1183 char *buf;
1184 int ret;
1186 buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1187 "max_concur plugged_delay plugsb4reset",
1188 "timeoutsb4reset ipi_reset_limit complete_threshold",
1189 "congested_response_us congested_reps congested_period",
1190 max_concurr, plugged_delay, plugsb4reset,
1191 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1192 congested_respns_us, congested_reps, congested_period);
1194 if (!buf)
1195 return -ENOMEM;
1197 ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1198 kfree(buf);
1199 return ret;
1203 * handle a write to /proc/sgi_uv/ptc_statistics
1204 * -1: reset the statistics
1205 * 0: display meaning of the statistics
1207 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1208 size_t count, loff_t *data)
1210 int cpu;
1211 int i;
1212 int elements;
1213 long input_arg;
1214 char optstr[64];
1215 struct ptc_stats *stat;
1217 if (count == 0 || count > sizeof(optstr))
1218 return -EINVAL;
1219 if (copy_from_user(optstr, user, count))
1220 return -EFAULT;
1221 optstr[count - 1] = '\0';
1223 if (strict_strtol(optstr, 10, &input_arg) < 0) {
1224 printk(KERN_DEBUG "%s is invalid\n", optstr);
1225 return -EINVAL;
1228 if (input_arg == 0) {
1229 elements = sizeof(stat_description)/sizeof(*stat_description);
1230 printk(KERN_DEBUG "# cpu: cpu number\n");
1231 printk(KERN_DEBUG "Sender statistics:\n");
1232 for (i = 0; i < elements; i++)
1233 printk(KERN_DEBUG "%s\n", stat_description[i]);
1234 } else if (input_arg == -1) {
1235 for_each_present_cpu(cpu) {
1236 stat = &per_cpu(ptcstats, cpu);
1237 memset(stat, 0, sizeof(struct ptc_stats));
1241 return count;
1244 static int local_atoi(const char *name)
1246 int val = 0;
1248 for (;; name++) {
1249 switch (*name) {
1250 case '0' ... '9':
1251 val = 10*val+(*name-'0');
1252 break;
1253 default:
1254 return val;
1260 * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1261 * Zero values reset them to defaults.
1263 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1264 int count)
1266 char *p;
1267 char *q;
1268 int cnt = 0;
1269 int val;
1270 int e = sizeof(tunables) / sizeof(*tunables);
1272 p = instr + strspn(instr, WHITESPACE);
1273 q = p;
1274 for (; *p; p = q + strspn(q, WHITESPACE)) {
1275 q = p + strcspn(p, WHITESPACE);
1276 cnt++;
1277 if (q == p)
1278 break;
1280 if (cnt != e) {
1281 printk(KERN_INFO "bau tunable error: should be %d values\n", e);
1282 return -EINVAL;
1285 p = instr + strspn(instr, WHITESPACE);
1286 q = p;
1287 for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1288 q = p + strcspn(p, WHITESPACE);
1289 val = local_atoi(p);
1290 switch (cnt) {
1291 case 0:
1292 if (val == 0) {
1293 max_concurr = MAX_BAU_CONCURRENT;
1294 max_concurr_const = MAX_BAU_CONCURRENT;
1295 continue;
1297 if (val < 1 || val > bcp->cpus_in_uvhub) {
1298 printk(KERN_DEBUG
1299 "Error: BAU max concurrent %d is invalid\n",
1300 val);
1301 return -EINVAL;
1303 max_concurr = val;
1304 max_concurr_const = val;
1305 continue;
1306 default:
1307 if (val == 0)
1308 *tunables[cnt].tunp = tunables[cnt].deflt;
1309 else
1310 *tunables[cnt].tunp = val;
1311 continue;
1313 if (q == p)
1314 break;
1316 return 0;
1320 * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1322 static ssize_t tunables_write(struct file *file, const char __user *user,
1323 size_t count, loff_t *data)
1325 int cpu;
1326 int ret;
1327 char instr[100];
1328 struct bau_control *bcp;
1330 if (count == 0 || count > sizeof(instr)-1)
1331 return -EINVAL;
1332 if (copy_from_user(instr, user, count))
1333 return -EFAULT;
1335 instr[count] = '\0';
1337 bcp = &per_cpu(bau_control, smp_processor_id());
1339 ret = parse_tunables_write(bcp, instr, count);
1340 if (ret)
1341 return ret;
1343 for_each_present_cpu(cpu) {
1344 bcp = &per_cpu(bau_control, cpu);
1345 bcp->max_concurr = max_concurr;
1346 bcp->max_concurr_const = max_concurr;
1347 bcp->plugged_delay = plugged_delay;
1348 bcp->plugsb4reset = plugsb4reset;
1349 bcp->timeoutsb4reset = timeoutsb4reset;
1350 bcp->ipi_reset_limit = ipi_reset_limit;
1351 bcp->complete_threshold = complete_threshold;
1352 bcp->cong_response_us = congested_respns_us;
1353 bcp->cong_reps = congested_reps;
1354 bcp->cong_period = congested_period;
1356 return count;
1359 static const struct seq_operations uv_ptc_seq_ops = {
1360 .start = ptc_seq_start,
1361 .next = ptc_seq_next,
1362 .stop = ptc_seq_stop,
1363 .show = ptc_seq_show
1366 static int ptc_proc_open(struct inode *inode, struct file *file)
1368 return seq_open(file, &uv_ptc_seq_ops);
1371 static int tunables_open(struct inode *inode, struct file *file)
1373 return 0;
1376 static const struct file_operations proc_uv_ptc_operations = {
1377 .open = ptc_proc_open,
1378 .read = seq_read,
1379 .write = ptc_proc_write,
1380 .llseek = seq_lseek,
1381 .release = seq_release,
1384 static const struct file_operations tunables_fops = {
1385 .open = tunables_open,
1386 .read = tunables_read,
1387 .write = tunables_write,
1388 .llseek = default_llseek,
1391 static int __init uv_ptc_init(void)
1393 struct proc_dir_entry *proc_uv_ptc;
1395 if (!is_uv_system())
1396 return 0;
1398 proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1399 &proc_uv_ptc_operations);
1400 if (!proc_uv_ptc) {
1401 printk(KERN_ERR "unable to create %s proc entry\n",
1402 UV_PTC_BASENAME);
1403 return -EINVAL;
1406 tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1407 if (!tunables_dir) {
1408 printk(KERN_ERR "unable to create debugfs directory %s\n",
1409 UV_BAU_TUNABLES_DIR);
1410 return -EINVAL;
1412 tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1413 tunables_dir, NULL, &tunables_fops);
1414 if (!tunables_file) {
1415 printk(KERN_ERR "unable to create debugfs file %s\n",
1416 UV_BAU_TUNABLES_FILE);
1417 return -EINVAL;
1419 return 0;
1423 * Initialize the sending side's sending buffers.
1425 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1427 int i;
1428 int cpu;
1429 unsigned long pa;
1430 unsigned long m;
1431 unsigned long n;
1432 size_t dsize;
1433 struct bau_desc *bau_desc;
1434 struct bau_desc *bd2;
1435 struct bau_control *bcp;
1438 * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1439 * per cpu; and one per cpu on the uvhub (ADP_SZ)
1441 dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1442 bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1443 BUG_ON(!bau_desc);
1445 pa = uv_gpa(bau_desc); /* need the real nasid*/
1446 n = pa >> uv_nshift;
1447 m = pa & uv_mmask;
1449 /* the 14-bit pnode */
1450 write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1452 * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1453 * cpu even though we only use the first one; one descriptor can
1454 * describe a broadcast to 256 uv hubs.
1456 for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1457 memset(bd2, 0, sizeof(struct bau_desc));
1458 bd2->header.swack_flag = 1;
1460 * The base_dest_nasid set in the message header is the nasid
1461 * of the first uvhub in the partition. The bit map will
1462 * indicate destination pnode numbers relative to that base.
1463 * They may not be consecutive if nasid striding is being used.
1465 bd2->header.base_dest_nasid = UV_PNODE_TO_NASID(base_pnode);
1466 bd2->header.dest_subnodeid = UV_LB_SUBNODEID;
1467 bd2->header.command = UV_NET_ENDPOINT_INTD;
1468 bd2->header.int_both = 1;
1470 * all others need to be set to zero:
1471 * fairness chaining multilevel count replied_to
1474 for_each_present_cpu(cpu) {
1475 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1476 continue;
1477 bcp = &per_cpu(bau_control, cpu);
1478 bcp->descriptor_base = bau_desc;
1483 * initialize the destination side's receiving buffers
1484 * entered for each uvhub in the partition
1485 * - node is first node (kernel memory notion) on the uvhub
1486 * - pnode is the uvhub's physical identifier
1488 static void pq_init(int node, int pnode)
1490 int cpu;
1491 size_t plsize;
1492 char *cp;
1493 void *vp;
1494 unsigned long pn;
1495 unsigned long first;
1496 unsigned long pn_first;
1497 unsigned long last;
1498 struct bau_pq_entry *pqp;
1499 struct bau_control *bcp;
1501 plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1502 vp = kmalloc_node(plsize, GFP_KERNEL, node);
1503 pqp = (struct bau_pq_entry *)vp;
1504 BUG_ON(!pqp);
1506 cp = (char *)pqp + 31;
1507 pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1509 for_each_present_cpu(cpu) {
1510 if (pnode != uv_cpu_to_pnode(cpu))
1511 continue;
1512 /* for every cpu on this pnode: */
1513 bcp = &per_cpu(bau_control, cpu);
1514 bcp->queue_first = pqp;
1515 bcp->bau_msg_head = pqp;
1516 bcp->queue_last = pqp + (DEST_Q_SIZE - 1);
1519 * need the pnode of where the memory was really allocated
1521 pn = uv_gpa(pqp) >> uv_nshift;
1522 first = uv_physnodeaddr(pqp);
1523 pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
1524 last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
1525 write_mmr_payload_first(pnode, pn_first);
1526 write_mmr_payload_tail(pnode, first);
1527 write_mmr_payload_last(pnode, last);
1529 /* in effect, all msg_type's are set to MSG_NOOP */
1530 memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1534 * Initialization of each UV hub's structures
1536 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1538 int node;
1539 int pnode;
1540 unsigned long apicid;
1542 node = uvhub_to_first_node(uvhub);
1543 pnode = uv_blade_to_pnode(uvhub);
1545 activation_descriptor_init(node, pnode, base_pnode);
1547 pq_init(node, pnode);
1549 * The below initialization can't be in firmware because the
1550 * messaging IRQ will be determined by the OS.
1552 apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1553 write_mmr_data_config(pnode, ((apicid << 32) | vector));
1557 * We will set BAU_MISC_CONTROL with a timeout period.
1558 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1559 * So the destination timeout period has to be calculated from them.
1561 static int calculate_destination_timeout(void)
1563 unsigned long mmr_image;
1564 int mult1;
1565 int mult2;
1566 int index;
1567 int base;
1568 int ret;
1569 unsigned long ts_ns;
1571 if (is_uv1_hub()) {
1572 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1573 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1574 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1575 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1576 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1577 base = timeout_base_ns[index];
1578 ts_ns = base * mult1 * mult2;
1579 ret = ts_ns / 1000;
1580 } else {
1581 /* 4 bits 0/1 for 10/80us, 3 bits of multiplier */
1582 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1583 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1584 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1585 mult1 = 80;
1586 else
1587 mult1 = 10;
1588 base = mmr_image & UV2_ACK_MASK;
1589 ret = mult1 * base;
1591 return ret;
1594 static void __init init_per_cpu_tunables(void)
1596 int cpu;
1597 struct bau_control *bcp;
1599 for_each_present_cpu(cpu) {
1600 bcp = &per_cpu(bau_control, cpu);
1601 bcp->baudisabled = 0;
1602 bcp->statp = &per_cpu(ptcstats, cpu);
1603 /* time interval to catch a hardware stay-busy bug */
1604 bcp->timeout_interval = usec_2_cycles(2*timeout_us);
1605 bcp->max_concurr = max_concurr;
1606 bcp->max_concurr_const = max_concurr;
1607 bcp->plugged_delay = plugged_delay;
1608 bcp->plugsb4reset = plugsb4reset;
1609 bcp->timeoutsb4reset = timeoutsb4reset;
1610 bcp->ipi_reset_limit = ipi_reset_limit;
1611 bcp->complete_threshold = complete_threshold;
1612 bcp->cong_response_us = congested_respns_us;
1613 bcp->cong_reps = congested_reps;
1614 bcp->cong_period = congested_period;
1619 * Scan all cpus to collect blade and socket summaries.
1621 static int __init get_cpu_topology(int base_pnode,
1622 struct uvhub_desc *uvhub_descs,
1623 unsigned char *uvhub_mask)
1625 int cpu;
1626 int pnode;
1627 int uvhub;
1628 int socket;
1629 struct bau_control *bcp;
1630 struct uvhub_desc *bdp;
1631 struct socket_desc *sdp;
1633 for_each_present_cpu(cpu) {
1634 bcp = &per_cpu(bau_control, cpu);
1636 memset(bcp, 0, sizeof(struct bau_control));
1638 pnode = uv_cpu_hub_info(cpu)->pnode;
1639 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1640 printk(KERN_EMERG
1641 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1642 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1643 return 1;
1646 bcp->osnode = cpu_to_node(cpu);
1647 bcp->partition_base_pnode = base_pnode;
1649 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1650 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1651 bdp = &uvhub_descs[uvhub];
1653 bdp->num_cpus++;
1654 bdp->uvhub = uvhub;
1655 bdp->pnode = pnode;
1657 /* kludge: 'assuming' one node per socket, and assuming that
1658 disabling a socket just leaves a gap in node numbers */
1659 socket = bcp->osnode & 1;
1660 bdp->socket_mask |= (1 << socket);
1661 sdp = &bdp->socket[socket];
1662 sdp->cpu_number[sdp->num_cpus] = cpu;
1663 sdp->num_cpus++;
1664 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1665 printk(KERN_EMERG "%d cpus per socket invalid\n",
1666 sdp->num_cpus);
1667 return 1;
1670 return 0;
1674 * Each socket is to get a local array of pnodes/hubs.
1676 static void make_per_cpu_thp(struct bau_control *smaster)
1678 int cpu;
1679 size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1681 smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
1682 memset(smaster->thp, 0, hpsz);
1683 for_each_present_cpu(cpu) {
1684 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
1685 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1690 * Initialize all the per_cpu information for the cpu's on a given socket,
1691 * given what has been gathered into the socket_desc struct.
1692 * And reports the chosen hub and socket masters back to the caller.
1694 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
1695 struct bau_control **smasterp,
1696 struct bau_control **hmasterp)
1698 int i;
1699 int cpu;
1700 struct bau_control *bcp;
1702 for (i = 0; i < sdp->num_cpus; i++) {
1703 cpu = sdp->cpu_number[i];
1704 bcp = &per_cpu(bau_control, cpu);
1705 bcp->cpu = cpu;
1706 if (i == 0) {
1707 *smasterp = bcp;
1708 if (!(*hmasterp))
1709 *hmasterp = bcp;
1711 bcp->cpus_in_uvhub = bdp->num_cpus;
1712 bcp->cpus_in_socket = sdp->num_cpus;
1713 bcp->socket_master = *smasterp;
1714 bcp->uvhub = bdp->uvhub;
1715 bcp->uvhub_master = *hmasterp;
1716 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
1717 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1718 printk(KERN_EMERG "%d cpus per uvhub invalid\n",
1719 bcp->uvhub_cpu);
1720 return 1;
1723 return 0;
1727 * Summarize the blade and socket topology into the per_cpu structures.
1729 static int __init summarize_uvhub_sockets(int nuvhubs,
1730 struct uvhub_desc *uvhub_descs,
1731 unsigned char *uvhub_mask)
1733 int socket;
1734 int uvhub;
1735 unsigned short socket_mask;
1737 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1738 struct uvhub_desc *bdp;
1739 struct bau_control *smaster = NULL;
1740 struct bau_control *hmaster = NULL;
1742 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
1743 continue;
1745 bdp = &uvhub_descs[uvhub];
1746 socket_mask = bdp->socket_mask;
1747 socket = 0;
1748 while (socket_mask) {
1749 struct socket_desc *sdp;
1750 if ((socket_mask & 1)) {
1751 sdp = &bdp->socket[socket];
1752 if (scan_sock(sdp, bdp, &smaster, &hmaster))
1753 return 1;
1755 socket++;
1756 socket_mask = (socket_mask >> 1);
1757 make_per_cpu_thp(smaster);
1760 return 0;
1764 * initialize the bau_control structure for each cpu
1766 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
1768 unsigned char *uvhub_mask;
1769 void *vp;
1770 struct uvhub_desc *uvhub_descs;
1772 timeout_us = calculate_destination_timeout();
1774 vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1775 uvhub_descs = (struct uvhub_desc *)vp;
1776 memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
1777 uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1779 if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
1780 return 1;
1782 if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
1783 return 1;
1785 kfree(uvhub_descs);
1786 kfree(uvhub_mask);
1787 init_per_cpu_tunables();
1788 return 0;
1792 * Initialization of BAU-related structures
1794 static int __init uv_bau_init(void)
1796 int uvhub;
1797 int pnode;
1798 int nuvhubs;
1799 int cur_cpu;
1800 int cpus;
1801 int vector;
1802 cpumask_var_t *mask;
1804 if (!is_uv_system())
1805 return 0;
1807 if (nobau)
1808 return 0;
1810 for_each_possible_cpu(cur_cpu) {
1811 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
1812 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
1815 uv_nshift = uv_hub_info->m_val;
1816 uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1817 nuvhubs = uv_num_possible_blades();
1818 spin_lock_init(&disable_lock);
1819 congested_cycles = usec_2_cycles(congested_respns_us);
1821 uv_base_pnode = 0x7fffffff;
1822 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1823 cpus = uv_blade_nr_possible_cpus(uvhub);
1824 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
1825 uv_base_pnode = uv_blade_to_pnode(uvhub);
1828 if (init_per_cpu(nuvhubs, uv_base_pnode)) {
1829 nobau = 1;
1830 return 0;
1833 vector = UV_BAU_MESSAGE;
1834 for_each_possible_blade(uvhub)
1835 if (uv_blade_nr_possible_cpus(uvhub))
1836 init_uvhub(uvhub, vector, uv_base_pnode);
1838 enable_timeouts();
1839 alloc_intr_gate(vector, uv_bau_message_intr1);
1841 for_each_possible_blade(uvhub) {
1842 if (uv_blade_nr_possible_cpus(uvhub)) {
1843 unsigned long val;
1844 unsigned long mmr;
1845 pnode = uv_blade_to_pnode(uvhub);
1846 /* INIT the bau */
1847 val = 1L << 63;
1848 write_gmmr_activation(pnode, val);
1849 mmr = 1; /* should be 1 to broadcast to both sockets */
1850 write_mmr_data_broadcast(pnode, mmr);
1854 return 0;
1856 core_initcall(uv_bau_init);
1857 fs_initcall(uv_ptc_init);