kvm tools, setup: Create private directory
[linux-2.6/next.git] / fs / ext4 / extents.c
blobf815cc81e7a287bd7198dc874d7954938c188464
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 static int ext4_split_extent(handle_t *handle,
50 struct inode *inode,
51 struct ext4_ext_path *path,
52 struct ext4_map_blocks *map,
53 int split_flag,
54 int flags);
56 static int ext4_ext_truncate_extend_restart(handle_t *handle,
57 struct inode *inode,
58 int needed)
60 int err;
62 if (!ext4_handle_valid(handle))
63 return 0;
64 if (handle->h_buffer_credits > needed)
65 return 0;
66 err = ext4_journal_extend(handle, needed);
67 if (err <= 0)
68 return err;
69 err = ext4_truncate_restart_trans(handle, inode, needed);
70 if (err == 0)
71 err = -EAGAIN;
73 return err;
77 * could return:
78 * - EROFS
79 * - ENOMEM
81 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82 struct ext4_ext_path *path)
84 if (path->p_bh) {
85 /* path points to block */
86 return ext4_journal_get_write_access(handle, path->p_bh);
88 /* path points to leaf/index in inode body */
89 /* we use in-core data, no need to protect them */
90 return 0;
94 * could return:
95 * - EROFS
96 * - ENOMEM
97 * - EIO
99 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
100 struct ext4_ext_path *path)
102 int err;
103 if (path->p_bh) {
104 /* path points to block */
105 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
106 } else {
107 /* path points to leaf/index in inode body */
108 err = ext4_mark_inode_dirty(handle, inode);
110 return err;
113 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
114 struct ext4_ext_path *path,
115 ext4_lblk_t block)
117 struct ext4_inode_info *ei = EXT4_I(inode);
118 ext4_fsblk_t bg_start;
119 ext4_fsblk_t last_block;
120 ext4_grpblk_t colour;
121 ext4_group_t block_group;
122 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
123 int depth;
125 if (path) {
126 struct ext4_extent *ex;
127 depth = path->p_depth;
130 * Try to predict block placement assuming that we are
131 * filling in a file which will eventually be
132 * non-sparse --- i.e., in the case of libbfd writing
133 * an ELF object sections out-of-order but in a way
134 * the eventually results in a contiguous object or
135 * executable file, or some database extending a table
136 * space file. However, this is actually somewhat
137 * non-ideal if we are writing a sparse file such as
138 * qemu or KVM writing a raw image file that is going
139 * to stay fairly sparse, since it will end up
140 * fragmenting the file system's free space. Maybe we
141 * should have some hueristics or some way to allow
142 * userspace to pass a hint to file system,
143 * especially if the latter case turns out to be
144 * common.
146 ex = path[depth].p_ext;
147 if (ex) {
148 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
149 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
151 if (block > ext_block)
152 return ext_pblk + (block - ext_block);
153 else
154 return ext_pblk - (ext_block - block);
157 /* it looks like index is empty;
158 * try to find starting block from index itself */
159 if (path[depth].p_bh)
160 return path[depth].p_bh->b_blocknr;
163 /* OK. use inode's group */
164 block_group = ei->i_block_group;
165 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
167 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
168 * block groups per flexgroup, reserve the first block
169 * group for directories and special files. Regular
170 * files will start at the second block group. This
171 * tends to speed up directory access and improves
172 * fsck times.
174 block_group &= ~(flex_size-1);
175 if (S_ISREG(inode->i_mode))
176 block_group++;
178 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
179 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
182 * If we are doing delayed allocation, we don't need take
183 * colour into account.
185 if (test_opt(inode->i_sb, DELALLOC))
186 return bg_start;
188 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
189 colour = (current->pid % 16) *
190 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
191 else
192 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
193 return bg_start + colour + block;
197 * Allocation for a meta data block
199 static ext4_fsblk_t
200 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
201 struct ext4_ext_path *path,
202 struct ext4_extent *ex, int *err, unsigned int flags)
204 ext4_fsblk_t goal, newblock;
206 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
207 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
208 NULL, err);
209 return newblock;
212 static inline int ext4_ext_space_block(struct inode *inode, int check)
214 int size;
216 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
217 / sizeof(struct ext4_extent);
218 if (!check) {
219 #ifdef AGGRESSIVE_TEST
220 if (size > 6)
221 size = 6;
222 #endif
224 return size;
227 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
229 int size;
231 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
232 / sizeof(struct ext4_extent_idx);
233 if (!check) {
234 #ifdef AGGRESSIVE_TEST
235 if (size > 5)
236 size = 5;
237 #endif
239 return size;
242 static inline int ext4_ext_space_root(struct inode *inode, int check)
244 int size;
246 size = sizeof(EXT4_I(inode)->i_data);
247 size -= sizeof(struct ext4_extent_header);
248 size /= sizeof(struct ext4_extent);
249 if (!check) {
250 #ifdef AGGRESSIVE_TEST
251 if (size > 3)
252 size = 3;
253 #endif
255 return size;
258 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
260 int size;
262 size = sizeof(EXT4_I(inode)->i_data);
263 size -= sizeof(struct ext4_extent_header);
264 size /= sizeof(struct ext4_extent_idx);
265 if (!check) {
266 #ifdef AGGRESSIVE_TEST
267 if (size > 4)
268 size = 4;
269 #endif
271 return size;
275 * Calculate the number of metadata blocks needed
276 * to allocate @blocks
277 * Worse case is one block per extent
279 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
281 struct ext4_inode_info *ei = EXT4_I(inode);
282 int idxs, num = 0;
284 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
285 / sizeof(struct ext4_extent_idx));
288 * If the new delayed allocation block is contiguous with the
289 * previous da block, it can share index blocks with the
290 * previous block, so we only need to allocate a new index
291 * block every idxs leaf blocks. At ldxs**2 blocks, we need
292 * an additional index block, and at ldxs**3 blocks, yet
293 * another index blocks.
295 if (ei->i_da_metadata_calc_len &&
296 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
297 if ((ei->i_da_metadata_calc_len % idxs) == 0)
298 num++;
299 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
300 num++;
301 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
302 num++;
303 ei->i_da_metadata_calc_len = 0;
304 } else
305 ei->i_da_metadata_calc_len++;
306 ei->i_da_metadata_calc_last_lblock++;
307 return num;
311 * In the worst case we need a new set of index blocks at
312 * every level of the inode's extent tree.
314 ei->i_da_metadata_calc_len = 1;
315 ei->i_da_metadata_calc_last_lblock = lblock;
316 return ext_depth(inode) + 1;
319 static int
320 ext4_ext_max_entries(struct inode *inode, int depth)
322 int max;
324 if (depth == ext_depth(inode)) {
325 if (depth == 0)
326 max = ext4_ext_space_root(inode, 1);
327 else
328 max = ext4_ext_space_root_idx(inode, 1);
329 } else {
330 if (depth == 0)
331 max = ext4_ext_space_block(inode, 1);
332 else
333 max = ext4_ext_space_block_idx(inode, 1);
336 return max;
339 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
341 ext4_fsblk_t block = ext4_ext_pblock(ext);
342 int len = ext4_ext_get_actual_len(ext);
344 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
347 static int ext4_valid_extent_idx(struct inode *inode,
348 struct ext4_extent_idx *ext_idx)
350 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
352 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
355 static int ext4_valid_extent_entries(struct inode *inode,
356 struct ext4_extent_header *eh,
357 int depth)
359 struct ext4_extent *ext;
360 struct ext4_extent_idx *ext_idx;
361 unsigned short entries;
362 if (eh->eh_entries == 0)
363 return 1;
365 entries = le16_to_cpu(eh->eh_entries);
367 if (depth == 0) {
368 /* leaf entries */
369 ext = EXT_FIRST_EXTENT(eh);
370 while (entries) {
371 if (!ext4_valid_extent(inode, ext))
372 return 0;
373 ext++;
374 entries--;
376 } else {
377 ext_idx = EXT_FIRST_INDEX(eh);
378 while (entries) {
379 if (!ext4_valid_extent_idx(inode, ext_idx))
380 return 0;
381 ext_idx++;
382 entries--;
385 return 1;
388 static int __ext4_ext_check(const char *function, unsigned int line,
389 struct inode *inode, struct ext4_extent_header *eh,
390 int depth)
392 const char *error_msg;
393 int max = 0;
395 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
396 error_msg = "invalid magic";
397 goto corrupted;
399 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
400 error_msg = "unexpected eh_depth";
401 goto corrupted;
403 if (unlikely(eh->eh_max == 0)) {
404 error_msg = "invalid eh_max";
405 goto corrupted;
407 max = ext4_ext_max_entries(inode, depth);
408 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
409 error_msg = "too large eh_max";
410 goto corrupted;
412 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
413 error_msg = "invalid eh_entries";
414 goto corrupted;
416 if (!ext4_valid_extent_entries(inode, eh, depth)) {
417 error_msg = "invalid extent entries";
418 goto corrupted;
420 return 0;
422 corrupted:
423 ext4_error_inode(inode, function, line, 0,
424 "bad header/extent: %s - magic %x, "
425 "entries %u, max %u(%u), depth %u(%u)",
426 error_msg, le16_to_cpu(eh->eh_magic),
427 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
428 max, le16_to_cpu(eh->eh_depth), depth);
430 return -EIO;
433 #define ext4_ext_check(inode, eh, depth) \
434 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
436 int ext4_ext_check_inode(struct inode *inode)
438 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
441 #ifdef EXT_DEBUG
442 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
444 int k, l = path->p_depth;
446 ext_debug("path:");
447 for (k = 0; k <= l; k++, path++) {
448 if (path->p_idx) {
449 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
450 ext4_idx_pblock(path->p_idx));
451 } else if (path->p_ext) {
452 ext_debug(" %d:[%d]%d:%llu ",
453 le32_to_cpu(path->p_ext->ee_block),
454 ext4_ext_is_uninitialized(path->p_ext),
455 ext4_ext_get_actual_len(path->p_ext),
456 ext4_ext_pblock(path->p_ext));
457 } else
458 ext_debug(" []");
460 ext_debug("\n");
463 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
465 int depth = ext_depth(inode);
466 struct ext4_extent_header *eh;
467 struct ext4_extent *ex;
468 int i;
470 if (!path)
471 return;
473 eh = path[depth].p_hdr;
474 ex = EXT_FIRST_EXTENT(eh);
476 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
478 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
479 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
480 ext4_ext_is_uninitialized(ex),
481 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
483 ext_debug("\n");
486 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
487 ext4_fsblk_t newblock, int level)
489 int depth = ext_depth(inode);
490 struct ext4_extent *ex;
492 if (depth != level) {
493 struct ext4_extent_idx *idx;
494 idx = path[level].p_idx;
495 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
496 ext_debug("%d: move %d:%llu in new index %llu\n", level,
497 le32_to_cpu(idx->ei_block),
498 ext4_idx_pblock(idx),
499 newblock);
500 idx++;
503 return;
506 ex = path[depth].p_ext;
507 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
508 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
509 le32_to_cpu(ex->ee_block),
510 ext4_ext_pblock(ex),
511 ext4_ext_is_uninitialized(ex),
512 ext4_ext_get_actual_len(ex),
513 newblock);
514 ex++;
518 #else
519 #define ext4_ext_show_path(inode, path)
520 #define ext4_ext_show_leaf(inode, path)
521 #define ext4_ext_show_move(inode, path, newblock, level)
522 #endif
524 void ext4_ext_drop_refs(struct ext4_ext_path *path)
526 int depth = path->p_depth;
527 int i;
529 for (i = 0; i <= depth; i++, path++)
530 if (path->p_bh) {
531 brelse(path->p_bh);
532 path->p_bh = NULL;
537 * ext4_ext_binsearch_idx:
538 * binary search for the closest index of the given block
539 * the header must be checked before calling this
541 static void
542 ext4_ext_binsearch_idx(struct inode *inode,
543 struct ext4_ext_path *path, ext4_lblk_t block)
545 struct ext4_extent_header *eh = path->p_hdr;
546 struct ext4_extent_idx *r, *l, *m;
549 ext_debug("binsearch for %u(idx): ", block);
551 l = EXT_FIRST_INDEX(eh) + 1;
552 r = EXT_LAST_INDEX(eh);
553 while (l <= r) {
554 m = l + (r - l) / 2;
555 if (block < le32_to_cpu(m->ei_block))
556 r = m - 1;
557 else
558 l = m + 1;
559 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
560 m, le32_to_cpu(m->ei_block),
561 r, le32_to_cpu(r->ei_block));
564 path->p_idx = l - 1;
565 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
566 ext4_idx_pblock(path->p_idx));
568 #ifdef CHECK_BINSEARCH
570 struct ext4_extent_idx *chix, *ix;
571 int k;
573 chix = ix = EXT_FIRST_INDEX(eh);
574 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
575 if (k != 0 &&
576 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
577 printk(KERN_DEBUG "k=%d, ix=0x%p, "
578 "first=0x%p\n", k,
579 ix, EXT_FIRST_INDEX(eh));
580 printk(KERN_DEBUG "%u <= %u\n",
581 le32_to_cpu(ix->ei_block),
582 le32_to_cpu(ix[-1].ei_block));
584 BUG_ON(k && le32_to_cpu(ix->ei_block)
585 <= le32_to_cpu(ix[-1].ei_block));
586 if (block < le32_to_cpu(ix->ei_block))
587 break;
588 chix = ix;
590 BUG_ON(chix != path->p_idx);
592 #endif
597 * ext4_ext_binsearch:
598 * binary search for closest extent of the given block
599 * the header must be checked before calling this
601 static void
602 ext4_ext_binsearch(struct inode *inode,
603 struct ext4_ext_path *path, ext4_lblk_t block)
605 struct ext4_extent_header *eh = path->p_hdr;
606 struct ext4_extent *r, *l, *m;
608 if (eh->eh_entries == 0) {
610 * this leaf is empty:
611 * we get such a leaf in split/add case
613 return;
616 ext_debug("binsearch for %u: ", block);
618 l = EXT_FIRST_EXTENT(eh) + 1;
619 r = EXT_LAST_EXTENT(eh);
621 while (l <= r) {
622 m = l + (r - l) / 2;
623 if (block < le32_to_cpu(m->ee_block))
624 r = m - 1;
625 else
626 l = m + 1;
627 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
628 m, le32_to_cpu(m->ee_block),
629 r, le32_to_cpu(r->ee_block));
632 path->p_ext = l - 1;
633 ext_debug(" -> %d:%llu:[%d]%d ",
634 le32_to_cpu(path->p_ext->ee_block),
635 ext4_ext_pblock(path->p_ext),
636 ext4_ext_is_uninitialized(path->p_ext),
637 ext4_ext_get_actual_len(path->p_ext));
639 #ifdef CHECK_BINSEARCH
641 struct ext4_extent *chex, *ex;
642 int k;
644 chex = ex = EXT_FIRST_EXTENT(eh);
645 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
646 BUG_ON(k && le32_to_cpu(ex->ee_block)
647 <= le32_to_cpu(ex[-1].ee_block));
648 if (block < le32_to_cpu(ex->ee_block))
649 break;
650 chex = ex;
652 BUG_ON(chex != path->p_ext);
654 #endif
658 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
660 struct ext4_extent_header *eh;
662 eh = ext_inode_hdr(inode);
663 eh->eh_depth = 0;
664 eh->eh_entries = 0;
665 eh->eh_magic = EXT4_EXT_MAGIC;
666 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
667 ext4_mark_inode_dirty(handle, inode);
668 ext4_ext_invalidate_cache(inode);
669 return 0;
672 struct ext4_ext_path *
673 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
674 struct ext4_ext_path *path)
676 struct ext4_extent_header *eh;
677 struct buffer_head *bh;
678 short int depth, i, ppos = 0, alloc = 0;
680 eh = ext_inode_hdr(inode);
681 depth = ext_depth(inode);
683 /* account possible depth increase */
684 if (!path) {
685 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
686 GFP_NOFS);
687 if (!path)
688 return ERR_PTR(-ENOMEM);
689 alloc = 1;
691 path[0].p_hdr = eh;
692 path[0].p_bh = NULL;
694 i = depth;
695 /* walk through the tree */
696 while (i) {
697 int need_to_validate = 0;
699 ext_debug("depth %d: num %d, max %d\n",
700 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
702 ext4_ext_binsearch_idx(inode, path + ppos, block);
703 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
704 path[ppos].p_depth = i;
705 path[ppos].p_ext = NULL;
707 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
708 if (unlikely(!bh))
709 goto err;
710 if (!bh_uptodate_or_lock(bh)) {
711 trace_ext4_ext_load_extent(inode, block,
712 path[ppos].p_block);
713 if (bh_submit_read(bh) < 0) {
714 put_bh(bh);
715 goto err;
717 /* validate the extent entries */
718 need_to_validate = 1;
720 eh = ext_block_hdr(bh);
721 ppos++;
722 if (unlikely(ppos > depth)) {
723 put_bh(bh);
724 EXT4_ERROR_INODE(inode,
725 "ppos %d > depth %d", ppos, depth);
726 goto err;
728 path[ppos].p_bh = bh;
729 path[ppos].p_hdr = eh;
730 i--;
732 if (need_to_validate && ext4_ext_check(inode, eh, i))
733 goto err;
736 path[ppos].p_depth = i;
737 path[ppos].p_ext = NULL;
738 path[ppos].p_idx = NULL;
740 /* find extent */
741 ext4_ext_binsearch(inode, path + ppos, block);
742 /* if not an empty leaf */
743 if (path[ppos].p_ext)
744 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
746 ext4_ext_show_path(inode, path);
748 return path;
750 err:
751 ext4_ext_drop_refs(path);
752 if (alloc)
753 kfree(path);
754 return ERR_PTR(-EIO);
758 * ext4_ext_insert_index:
759 * insert new index [@logical;@ptr] into the block at @curp;
760 * check where to insert: before @curp or after @curp
762 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
763 struct ext4_ext_path *curp,
764 int logical, ext4_fsblk_t ptr)
766 struct ext4_extent_idx *ix;
767 int len, err;
769 err = ext4_ext_get_access(handle, inode, curp);
770 if (err)
771 return err;
773 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
774 EXT4_ERROR_INODE(inode,
775 "logical %d == ei_block %d!",
776 logical, le32_to_cpu(curp->p_idx->ei_block));
777 return -EIO;
779 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
780 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
781 /* insert after */
782 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
783 len = (len - 1) * sizeof(struct ext4_extent_idx);
784 len = len < 0 ? 0 : len;
785 ext_debug("insert new index %d after: %llu. "
786 "move %d from 0x%p to 0x%p\n",
787 logical, ptr, len,
788 (curp->p_idx + 1), (curp->p_idx + 2));
789 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
791 ix = curp->p_idx + 1;
792 } else {
793 /* insert before */
794 len = len * sizeof(struct ext4_extent_idx);
795 len = len < 0 ? 0 : len;
796 ext_debug("insert new index %d before: %llu. "
797 "move %d from 0x%p to 0x%p\n",
798 logical, ptr, len,
799 curp->p_idx, (curp->p_idx + 1));
800 memmove(curp->p_idx + 1, curp->p_idx, len);
801 ix = curp->p_idx;
804 ix->ei_block = cpu_to_le32(logical);
805 ext4_idx_store_pblock(ix, ptr);
806 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
808 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
809 > le16_to_cpu(curp->p_hdr->eh_max))) {
810 EXT4_ERROR_INODE(inode,
811 "logical %d == ei_block %d!",
812 logical, le32_to_cpu(curp->p_idx->ei_block));
813 return -EIO;
815 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
816 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
817 return -EIO;
820 err = ext4_ext_dirty(handle, inode, curp);
821 ext4_std_error(inode->i_sb, err);
823 return err;
827 * ext4_ext_split:
828 * inserts new subtree into the path, using free index entry
829 * at depth @at:
830 * - allocates all needed blocks (new leaf and all intermediate index blocks)
831 * - makes decision where to split
832 * - moves remaining extents and index entries (right to the split point)
833 * into the newly allocated blocks
834 * - initializes subtree
836 static int ext4_ext_split(handle_t *handle, struct inode *inode,
837 unsigned int flags,
838 struct ext4_ext_path *path,
839 struct ext4_extent *newext, int at)
841 struct buffer_head *bh = NULL;
842 int depth = ext_depth(inode);
843 struct ext4_extent_header *neh;
844 struct ext4_extent_idx *fidx;
845 int i = at, k, m, a;
846 ext4_fsblk_t newblock, oldblock;
847 __le32 border;
848 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
849 int err = 0;
851 /* make decision: where to split? */
852 /* FIXME: now decision is simplest: at current extent */
854 /* if current leaf will be split, then we should use
855 * border from split point */
856 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
857 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
858 return -EIO;
860 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
861 border = path[depth].p_ext[1].ee_block;
862 ext_debug("leaf will be split."
863 " next leaf starts at %d\n",
864 le32_to_cpu(border));
865 } else {
866 border = newext->ee_block;
867 ext_debug("leaf will be added."
868 " next leaf starts at %d\n",
869 le32_to_cpu(border));
873 * If error occurs, then we break processing
874 * and mark filesystem read-only. index won't
875 * be inserted and tree will be in consistent
876 * state. Next mount will repair buffers too.
880 * Get array to track all allocated blocks.
881 * We need this to handle errors and free blocks
882 * upon them.
884 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
885 if (!ablocks)
886 return -ENOMEM;
888 /* allocate all needed blocks */
889 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
890 for (a = 0; a < depth - at; a++) {
891 newblock = ext4_ext_new_meta_block(handle, inode, path,
892 newext, &err, flags);
893 if (newblock == 0)
894 goto cleanup;
895 ablocks[a] = newblock;
898 /* initialize new leaf */
899 newblock = ablocks[--a];
900 if (unlikely(newblock == 0)) {
901 EXT4_ERROR_INODE(inode, "newblock == 0!");
902 err = -EIO;
903 goto cleanup;
905 bh = sb_getblk(inode->i_sb, newblock);
906 if (!bh) {
907 err = -EIO;
908 goto cleanup;
910 lock_buffer(bh);
912 err = ext4_journal_get_create_access(handle, bh);
913 if (err)
914 goto cleanup;
916 neh = ext_block_hdr(bh);
917 neh->eh_entries = 0;
918 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
919 neh->eh_magic = EXT4_EXT_MAGIC;
920 neh->eh_depth = 0;
922 /* move remainder of path[depth] to the new leaf */
923 if (unlikely(path[depth].p_hdr->eh_entries !=
924 path[depth].p_hdr->eh_max)) {
925 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
926 path[depth].p_hdr->eh_entries,
927 path[depth].p_hdr->eh_max);
928 err = -EIO;
929 goto cleanup;
931 /* start copy from next extent */
932 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
933 ext4_ext_show_move(inode, path, newblock, depth);
934 if (m) {
935 struct ext4_extent *ex;
936 ex = EXT_FIRST_EXTENT(neh);
937 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
938 le16_add_cpu(&neh->eh_entries, m);
941 set_buffer_uptodate(bh);
942 unlock_buffer(bh);
944 err = ext4_handle_dirty_metadata(handle, inode, bh);
945 if (err)
946 goto cleanup;
947 brelse(bh);
948 bh = NULL;
950 /* correct old leaf */
951 if (m) {
952 err = ext4_ext_get_access(handle, inode, path + depth);
953 if (err)
954 goto cleanup;
955 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
956 err = ext4_ext_dirty(handle, inode, path + depth);
957 if (err)
958 goto cleanup;
962 /* create intermediate indexes */
963 k = depth - at - 1;
964 if (unlikely(k < 0)) {
965 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
966 err = -EIO;
967 goto cleanup;
969 if (k)
970 ext_debug("create %d intermediate indices\n", k);
971 /* insert new index into current index block */
972 /* current depth stored in i var */
973 i = depth - 1;
974 while (k--) {
975 oldblock = newblock;
976 newblock = ablocks[--a];
977 bh = sb_getblk(inode->i_sb, newblock);
978 if (!bh) {
979 err = -EIO;
980 goto cleanup;
982 lock_buffer(bh);
984 err = ext4_journal_get_create_access(handle, bh);
985 if (err)
986 goto cleanup;
988 neh = ext_block_hdr(bh);
989 neh->eh_entries = cpu_to_le16(1);
990 neh->eh_magic = EXT4_EXT_MAGIC;
991 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
992 neh->eh_depth = cpu_to_le16(depth - i);
993 fidx = EXT_FIRST_INDEX(neh);
994 fidx->ei_block = border;
995 ext4_idx_store_pblock(fidx, oldblock);
997 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
998 i, newblock, le32_to_cpu(border), oldblock);
1000 /* move remainder of path[i] to the new index block */
1001 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1002 EXT_LAST_INDEX(path[i].p_hdr))) {
1003 EXT4_ERROR_INODE(inode,
1004 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1005 le32_to_cpu(path[i].p_ext->ee_block));
1006 err = -EIO;
1007 goto cleanup;
1009 /* start copy indexes */
1010 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1011 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1012 EXT_MAX_INDEX(path[i].p_hdr));
1013 ext4_ext_show_move(inode, path, newblock, i);
1014 if (m) {
1015 memmove(++fidx, path[i].p_idx,
1016 sizeof(struct ext4_extent_idx) * m);
1017 le16_add_cpu(&neh->eh_entries, m);
1019 set_buffer_uptodate(bh);
1020 unlock_buffer(bh);
1022 err = ext4_handle_dirty_metadata(handle, inode, bh);
1023 if (err)
1024 goto cleanup;
1025 brelse(bh);
1026 bh = NULL;
1028 /* correct old index */
1029 if (m) {
1030 err = ext4_ext_get_access(handle, inode, path + i);
1031 if (err)
1032 goto cleanup;
1033 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1034 err = ext4_ext_dirty(handle, inode, path + i);
1035 if (err)
1036 goto cleanup;
1039 i--;
1042 /* insert new index */
1043 err = ext4_ext_insert_index(handle, inode, path + at,
1044 le32_to_cpu(border), newblock);
1046 cleanup:
1047 if (bh) {
1048 if (buffer_locked(bh))
1049 unlock_buffer(bh);
1050 brelse(bh);
1053 if (err) {
1054 /* free all allocated blocks in error case */
1055 for (i = 0; i < depth; i++) {
1056 if (!ablocks[i])
1057 continue;
1058 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1059 EXT4_FREE_BLOCKS_METADATA);
1062 kfree(ablocks);
1064 return err;
1068 * ext4_ext_grow_indepth:
1069 * implements tree growing procedure:
1070 * - allocates new block
1071 * - moves top-level data (index block or leaf) into the new block
1072 * - initializes new top-level, creating index that points to the
1073 * just created block
1075 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1076 unsigned int flags,
1077 struct ext4_ext_path *path,
1078 struct ext4_extent *newext)
1080 struct ext4_ext_path *curp = path;
1081 struct ext4_extent_header *neh;
1082 struct buffer_head *bh;
1083 ext4_fsblk_t newblock;
1084 int err = 0;
1086 newblock = ext4_ext_new_meta_block(handle, inode, path,
1087 newext, &err, flags);
1088 if (newblock == 0)
1089 return err;
1091 bh = sb_getblk(inode->i_sb, newblock);
1092 if (!bh) {
1093 err = -EIO;
1094 ext4_std_error(inode->i_sb, err);
1095 return err;
1097 lock_buffer(bh);
1099 err = ext4_journal_get_create_access(handle, bh);
1100 if (err) {
1101 unlock_buffer(bh);
1102 goto out;
1105 /* move top-level index/leaf into new block */
1106 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1108 /* set size of new block */
1109 neh = ext_block_hdr(bh);
1110 /* old root could have indexes or leaves
1111 * so calculate e_max right way */
1112 if (ext_depth(inode))
1113 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1114 else
1115 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1116 neh->eh_magic = EXT4_EXT_MAGIC;
1117 set_buffer_uptodate(bh);
1118 unlock_buffer(bh);
1120 err = ext4_handle_dirty_metadata(handle, inode, bh);
1121 if (err)
1122 goto out;
1124 /* create index in new top-level index: num,max,pointer */
1125 err = ext4_ext_get_access(handle, inode, curp);
1126 if (err)
1127 goto out;
1129 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1130 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1131 curp->p_hdr->eh_entries = cpu_to_le16(1);
1132 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1134 if (path[0].p_hdr->eh_depth)
1135 curp->p_idx->ei_block =
1136 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1137 else
1138 curp->p_idx->ei_block =
1139 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1140 ext4_idx_store_pblock(curp->p_idx, newblock);
1142 neh = ext_inode_hdr(inode);
1143 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1144 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1145 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1146 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1148 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1149 err = ext4_ext_dirty(handle, inode, curp);
1150 out:
1151 brelse(bh);
1153 return err;
1157 * ext4_ext_create_new_leaf:
1158 * finds empty index and adds new leaf.
1159 * if no free index is found, then it requests in-depth growing.
1161 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1162 unsigned int flags,
1163 struct ext4_ext_path *path,
1164 struct ext4_extent *newext)
1166 struct ext4_ext_path *curp;
1167 int depth, i, err = 0;
1169 repeat:
1170 i = depth = ext_depth(inode);
1172 /* walk up to the tree and look for free index entry */
1173 curp = path + depth;
1174 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1175 i--;
1176 curp--;
1179 /* we use already allocated block for index block,
1180 * so subsequent data blocks should be contiguous */
1181 if (EXT_HAS_FREE_INDEX(curp)) {
1182 /* if we found index with free entry, then use that
1183 * entry: create all needed subtree and add new leaf */
1184 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1185 if (err)
1186 goto out;
1188 /* refill path */
1189 ext4_ext_drop_refs(path);
1190 path = ext4_ext_find_extent(inode,
1191 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1192 path);
1193 if (IS_ERR(path))
1194 err = PTR_ERR(path);
1195 } else {
1196 /* tree is full, time to grow in depth */
1197 err = ext4_ext_grow_indepth(handle, inode, flags,
1198 path, newext);
1199 if (err)
1200 goto out;
1202 /* refill path */
1203 ext4_ext_drop_refs(path);
1204 path = ext4_ext_find_extent(inode,
1205 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1206 path);
1207 if (IS_ERR(path)) {
1208 err = PTR_ERR(path);
1209 goto out;
1213 * only first (depth 0 -> 1) produces free space;
1214 * in all other cases we have to split the grown tree
1216 depth = ext_depth(inode);
1217 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1218 /* now we need to split */
1219 goto repeat;
1223 out:
1224 return err;
1228 * search the closest allocated block to the left for *logical
1229 * and returns it at @logical + it's physical address at @phys
1230 * if *logical is the smallest allocated block, the function
1231 * returns 0 at @phys
1232 * return value contains 0 (success) or error code
1234 static int ext4_ext_search_left(struct inode *inode,
1235 struct ext4_ext_path *path,
1236 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1238 struct ext4_extent_idx *ix;
1239 struct ext4_extent *ex;
1240 int depth, ee_len;
1242 if (unlikely(path == NULL)) {
1243 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1244 return -EIO;
1246 depth = path->p_depth;
1247 *phys = 0;
1249 if (depth == 0 && path->p_ext == NULL)
1250 return 0;
1252 /* usually extent in the path covers blocks smaller
1253 * then *logical, but it can be that extent is the
1254 * first one in the file */
1256 ex = path[depth].p_ext;
1257 ee_len = ext4_ext_get_actual_len(ex);
1258 if (*logical < le32_to_cpu(ex->ee_block)) {
1259 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1260 EXT4_ERROR_INODE(inode,
1261 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1262 *logical, le32_to_cpu(ex->ee_block));
1263 return -EIO;
1265 while (--depth >= 0) {
1266 ix = path[depth].p_idx;
1267 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1268 EXT4_ERROR_INODE(inode,
1269 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1270 ix != NULL ? ix->ei_block : 0,
1271 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1272 EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1273 depth);
1274 return -EIO;
1277 return 0;
1280 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1281 EXT4_ERROR_INODE(inode,
1282 "logical %d < ee_block %d + ee_len %d!",
1283 *logical, le32_to_cpu(ex->ee_block), ee_len);
1284 return -EIO;
1287 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1288 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1289 return 0;
1293 * search the closest allocated block to the right for *logical
1294 * and returns it at @logical + it's physical address at @phys
1295 * if *logical is the smallest allocated block, the function
1296 * returns 0 at @phys
1297 * return value contains 0 (success) or error code
1299 static int ext4_ext_search_right(struct inode *inode,
1300 struct ext4_ext_path *path,
1301 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1303 struct buffer_head *bh = NULL;
1304 struct ext4_extent_header *eh;
1305 struct ext4_extent_idx *ix;
1306 struct ext4_extent *ex;
1307 ext4_fsblk_t block;
1308 int depth; /* Note, NOT eh_depth; depth from top of tree */
1309 int ee_len;
1311 if (unlikely(path == NULL)) {
1312 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1313 return -EIO;
1315 depth = path->p_depth;
1316 *phys = 0;
1318 if (depth == 0 && path->p_ext == NULL)
1319 return 0;
1321 /* usually extent in the path covers blocks smaller
1322 * then *logical, but it can be that extent is the
1323 * first one in the file */
1325 ex = path[depth].p_ext;
1326 ee_len = ext4_ext_get_actual_len(ex);
1327 if (*logical < le32_to_cpu(ex->ee_block)) {
1328 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1329 EXT4_ERROR_INODE(inode,
1330 "first_extent(path[%d].p_hdr) != ex",
1331 depth);
1332 return -EIO;
1334 while (--depth >= 0) {
1335 ix = path[depth].p_idx;
1336 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1337 EXT4_ERROR_INODE(inode,
1338 "ix != EXT_FIRST_INDEX *logical %d!",
1339 *logical);
1340 return -EIO;
1343 *logical = le32_to_cpu(ex->ee_block);
1344 *phys = ext4_ext_pblock(ex);
1345 return 0;
1348 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1349 EXT4_ERROR_INODE(inode,
1350 "logical %d < ee_block %d + ee_len %d!",
1351 *logical, le32_to_cpu(ex->ee_block), ee_len);
1352 return -EIO;
1355 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1356 /* next allocated block in this leaf */
1357 ex++;
1358 *logical = le32_to_cpu(ex->ee_block);
1359 *phys = ext4_ext_pblock(ex);
1360 return 0;
1363 /* go up and search for index to the right */
1364 while (--depth >= 0) {
1365 ix = path[depth].p_idx;
1366 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1367 goto got_index;
1370 /* we've gone up to the root and found no index to the right */
1371 return 0;
1373 got_index:
1374 /* we've found index to the right, let's
1375 * follow it and find the closest allocated
1376 * block to the right */
1377 ix++;
1378 block = ext4_idx_pblock(ix);
1379 while (++depth < path->p_depth) {
1380 bh = sb_bread(inode->i_sb, block);
1381 if (bh == NULL)
1382 return -EIO;
1383 eh = ext_block_hdr(bh);
1384 /* subtract from p_depth to get proper eh_depth */
1385 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1386 put_bh(bh);
1387 return -EIO;
1389 ix = EXT_FIRST_INDEX(eh);
1390 block = ext4_idx_pblock(ix);
1391 put_bh(bh);
1394 bh = sb_bread(inode->i_sb, block);
1395 if (bh == NULL)
1396 return -EIO;
1397 eh = ext_block_hdr(bh);
1398 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1399 put_bh(bh);
1400 return -EIO;
1402 ex = EXT_FIRST_EXTENT(eh);
1403 *logical = le32_to_cpu(ex->ee_block);
1404 *phys = ext4_ext_pblock(ex);
1405 put_bh(bh);
1406 return 0;
1410 * ext4_ext_next_allocated_block:
1411 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1412 * NOTE: it considers block number from index entry as
1413 * allocated block. Thus, index entries have to be consistent
1414 * with leaves.
1416 static ext4_lblk_t
1417 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1419 int depth;
1421 BUG_ON(path == NULL);
1422 depth = path->p_depth;
1424 if (depth == 0 && path->p_ext == NULL)
1425 return EXT_MAX_BLOCKS;
1427 while (depth >= 0) {
1428 if (depth == path->p_depth) {
1429 /* leaf */
1430 if (path[depth].p_ext !=
1431 EXT_LAST_EXTENT(path[depth].p_hdr))
1432 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1433 } else {
1434 /* index */
1435 if (path[depth].p_idx !=
1436 EXT_LAST_INDEX(path[depth].p_hdr))
1437 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1439 depth--;
1442 return EXT_MAX_BLOCKS;
1446 * ext4_ext_next_leaf_block:
1447 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1449 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1450 struct ext4_ext_path *path)
1452 int depth;
1454 BUG_ON(path == NULL);
1455 depth = path->p_depth;
1457 /* zero-tree has no leaf blocks at all */
1458 if (depth == 0)
1459 return EXT_MAX_BLOCKS;
1461 /* go to index block */
1462 depth--;
1464 while (depth >= 0) {
1465 if (path[depth].p_idx !=
1466 EXT_LAST_INDEX(path[depth].p_hdr))
1467 return (ext4_lblk_t)
1468 le32_to_cpu(path[depth].p_idx[1].ei_block);
1469 depth--;
1472 return EXT_MAX_BLOCKS;
1476 * ext4_ext_correct_indexes:
1477 * if leaf gets modified and modified extent is first in the leaf,
1478 * then we have to correct all indexes above.
1479 * TODO: do we need to correct tree in all cases?
1481 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1482 struct ext4_ext_path *path)
1484 struct ext4_extent_header *eh;
1485 int depth = ext_depth(inode);
1486 struct ext4_extent *ex;
1487 __le32 border;
1488 int k, err = 0;
1490 eh = path[depth].p_hdr;
1491 ex = path[depth].p_ext;
1493 if (unlikely(ex == NULL || eh == NULL)) {
1494 EXT4_ERROR_INODE(inode,
1495 "ex %p == NULL or eh %p == NULL", ex, eh);
1496 return -EIO;
1499 if (depth == 0) {
1500 /* there is no tree at all */
1501 return 0;
1504 if (ex != EXT_FIRST_EXTENT(eh)) {
1505 /* we correct tree if first leaf got modified only */
1506 return 0;
1510 * TODO: we need correction if border is smaller than current one
1512 k = depth - 1;
1513 border = path[depth].p_ext->ee_block;
1514 err = ext4_ext_get_access(handle, inode, path + k);
1515 if (err)
1516 return err;
1517 path[k].p_idx->ei_block = border;
1518 err = ext4_ext_dirty(handle, inode, path + k);
1519 if (err)
1520 return err;
1522 while (k--) {
1523 /* change all left-side indexes */
1524 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1525 break;
1526 err = ext4_ext_get_access(handle, inode, path + k);
1527 if (err)
1528 break;
1529 path[k].p_idx->ei_block = border;
1530 err = ext4_ext_dirty(handle, inode, path + k);
1531 if (err)
1532 break;
1535 return err;
1539 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1540 struct ext4_extent *ex2)
1542 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1545 * Make sure that either both extents are uninitialized, or
1546 * both are _not_.
1548 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1549 return 0;
1551 if (ext4_ext_is_uninitialized(ex1))
1552 max_len = EXT_UNINIT_MAX_LEN;
1553 else
1554 max_len = EXT_INIT_MAX_LEN;
1556 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1557 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1559 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1560 le32_to_cpu(ex2->ee_block))
1561 return 0;
1564 * To allow future support for preallocated extents to be added
1565 * as an RO_COMPAT feature, refuse to merge to extents if
1566 * this can result in the top bit of ee_len being set.
1568 if (ext1_ee_len + ext2_ee_len > max_len)
1569 return 0;
1570 #ifdef AGGRESSIVE_TEST
1571 if (ext1_ee_len >= 4)
1572 return 0;
1573 #endif
1575 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1576 return 1;
1577 return 0;
1581 * This function tries to merge the "ex" extent to the next extent in the tree.
1582 * It always tries to merge towards right. If you want to merge towards
1583 * left, pass "ex - 1" as argument instead of "ex".
1584 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1585 * 1 if they got merged.
1587 static int ext4_ext_try_to_merge_right(struct inode *inode,
1588 struct ext4_ext_path *path,
1589 struct ext4_extent *ex)
1591 struct ext4_extent_header *eh;
1592 unsigned int depth, len;
1593 int merge_done = 0;
1594 int uninitialized = 0;
1596 depth = ext_depth(inode);
1597 BUG_ON(path[depth].p_hdr == NULL);
1598 eh = path[depth].p_hdr;
1600 while (ex < EXT_LAST_EXTENT(eh)) {
1601 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1602 break;
1603 /* merge with next extent! */
1604 if (ext4_ext_is_uninitialized(ex))
1605 uninitialized = 1;
1606 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1607 + ext4_ext_get_actual_len(ex + 1));
1608 if (uninitialized)
1609 ext4_ext_mark_uninitialized(ex);
1611 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1612 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1613 * sizeof(struct ext4_extent);
1614 memmove(ex + 1, ex + 2, len);
1616 le16_add_cpu(&eh->eh_entries, -1);
1617 merge_done = 1;
1618 WARN_ON(eh->eh_entries == 0);
1619 if (!eh->eh_entries)
1620 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1623 return merge_done;
1627 * This function tries to merge the @ex extent to neighbours in the tree.
1628 * return 1 if merge left else 0.
1630 static int ext4_ext_try_to_merge(struct inode *inode,
1631 struct ext4_ext_path *path,
1632 struct ext4_extent *ex) {
1633 struct ext4_extent_header *eh;
1634 unsigned int depth;
1635 int merge_done = 0;
1636 int ret = 0;
1638 depth = ext_depth(inode);
1639 BUG_ON(path[depth].p_hdr == NULL);
1640 eh = path[depth].p_hdr;
1642 if (ex > EXT_FIRST_EXTENT(eh))
1643 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1645 if (!merge_done)
1646 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1648 return ret;
1652 * check if a portion of the "newext" extent overlaps with an
1653 * existing extent.
1655 * If there is an overlap discovered, it updates the length of the newext
1656 * such that there will be no overlap, and then returns 1.
1657 * If there is no overlap found, it returns 0.
1659 static unsigned int ext4_ext_check_overlap(struct inode *inode,
1660 struct ext4_extent *newext,
1661 struct ext4_ext_path *path)
1663 ext4_lblk_t b1, b2;
1664 unsigned int depth, len1;
1665 unsigned int ret = 0;
1667 b1 = le32_to_cpu(newext->ee_block);
1668 len1 = ext4_ext_get_actual_len(newext);
1669 depth = ext_depth(inode);
1670 if (!path[depth].p_ext)
1671 goto out;
1672 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1675 * get the next allocated block if the extent in the path
1676 * is before the requested block(s)
1678 if (b2 < b1) {
1679 b2 = ext4_ext_next_allocated_block(path);
1680 if (b2 == EXT_MAX_BLOCKS)
1681 goto out;
1684 /* check for wrap through zero on extent logical start block*/
1685 if (b1 + len1 < b1) {
1686 len1 = EXT_MAX_BLOCKS - b1;
1687 newext->ee_len = cpu_to_le16(len1);
1688 ret = 1;
1691 /* check for overlap */
1692 if (b1 + len1 > b2) {
1693 newext->ee_len = cpu_to_le16(b2 - b1);
1694 ret = 1;
1696 out:
1697 return ret;
1701 * ext4_ext_insert_extent:
1702 * tries to merge requsted extent into the existing extent or
1703 * inserts requested extent as new one into the tree,
1704 * creating new leaf in the no-space case.
1706 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1707 struct ext4_ext_path *path,
1708 struct ext4_extent *newext, int flag)
1710 struct ext4_extent_header *eh;
1711 struct ext4_extent *ex, *fex;
1712 struct ext4_extent *nearex; /* nearest extent */
1713 struct ext4_ext_path *npath = NULL;
1714 int depth, len, err;
1715 ext4_lblk_t next;
1716 unsigned uninitialized = 0;
1717 int flags = 0;
1719 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1720 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1721 return -EIO;
1723 depth = ext_depth(inode);
1724 ex = path[depth].p_ext;
1725 if (unlikely(path[depth].p_hdr == NULL)) {
1726 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1727 return -EIO;
1730 /* try to insert block into found extent and return */
1731 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1732 && ext4_can_extents_be_merged(inode, ex, newext)) {
1733 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1734 ext4_ext_is_uninitialized(newext),
1735 ext4_ext_get_actual_len(newext),
1736 le32_to_cpu(ex->ee_block),
1737 ext4_ext_is_uninitialized(ex),
1738 ext4_ext_get_actual_len(ex),
1739 ext4_ext_pblock(ex));
1740 err = ext4_ext_get_access(handle, inode, path + depth);
1741 if (err)
1742 return err;
1745 * ext4_can_extents_be_merged should have checked that either
1746 * both extents are uninitialized, or both aren't. Thus we
1747 * need to check only one of them here.
1749 if (ext4_ext_is_uninitialized(ex))
1750 uninitialized = 1;
1751 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1752 + ext4_ext_get_actual_len(newext));
1753 if (uninitialized)
1754 ext4_ext_mark_uninitialized(ex);
1755 eh = path[depth].p_hdr;
1756 nearex = ex;
1757 goto merge;
1760 repeat:
1761 depth = ext_depth(inode);
1762 eh = path[depth].p_hdr;
1763 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1764 goto has_space;
1766 /* probably next leaf has space for us? */
1767 fex = EXT_LAST_EXTENT(eh);
1768 next = ext4_ext_next_leaf_block(inode, path);
1769 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1770 && next != EXT_MAX_BLOCKS) {
1771 ext_debug("next leaf block - %d\n", next);
1772 BUG_ON(npath != NULL);
1773 npath = ext4_ext_find_extent(inode, next, NULL);
1774 if (IS_ERR(npath))
1775 return PTR_ERR(npath);
1776 BUG_ON(npath->p_depth != path->p_depth);
1777 eh = npath[depth].p_hdr;
1778 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1779 ext_debug("next leaf isn't full(%d)\n",
1780 le16_to_cpu(eh->eh_entries));
1781 path = npath;
1782 goto repeat;
1784 ext_debug("next leaf has no free space(%d,%d)\n",
1785 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1789 * There is no free space in the found leaf.
1790 * We're gonna add a new leaf in the tree.
1792 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1793 flags = EXT4_MB_USE_ROOT_BLOCKS;
1794 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1795 if (err)
1796 goto cleanup;
1797 depth = ext_depth(inode);
1798 eh = path[depth].p_hdr;
1800 has_space:
1801 nearex = path[depth].p_ext;
1803 err = ext4_ext_get_access(handle, inode, path + depth);
1804 if (err)
1805 goto cleanup;
1807 if (!nearex) {
1808 /* there is no extent in this leaf, create first one */
1809 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1810 le32_to_cpu(newext->ee_block),
1811 ext4_ext_pblock(newext),
1812 ext4_ext_is_uninitialized(newext),
1813 ext4_ext_get_actual_len(newext));
1814 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1815 } else if (le32_to_cpu(newext->ee_block)
1816 > le32_to_cpu(nearex->ee_block)) {
1817 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1818 if (nearex != EXT_LAST_EXTENT(eh)) {
1819 len = EXT_MAX_EXTENT(eh) - nearex;
1820 len = (len - 1) * sizeof(struct ext4_extent);
1821 len = len < 0 ? 0 : len;
1822 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1823 "move %d from 0x%p to 0x%p\n",
1824 le32_to_cpu(newext->ee_block),
1825 ext4_ext_pblock(newext),
1826 ext4_ext_is_uninitialized(newext),
1827 ext4_ext_get_actual_len(newext),
1828 nearex, len, nearex + 1, nearex + 2);
1829 memmove(nearex + 2, nearex + 1, len);
1831 path[depth].p_ext = nearex + 1;
1832 } else {
1833 BUG_ON(newext->ee_block == nearex->ee_block);
1834 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1835 len = len < 0 ? 0 : len;
1836 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1837 "move %d from 0x%p to 0x%p\n",
1838 le32_to_cpu(newext->ee_block),
1839 ext4_ext_pblock(newext),
1840 ext4_ext_is_uninitialized(newext),
1841 ext4_ext_get_actual_len(newext),
1842 nearex, len, nearex + 1, nearex + 2);
1843 memmove(nearex + 1, nearex, len);
1844 path[depth].p_ext = nearex;
1847 le16_add_cpu(&eh->eh_entries, 1);
1848 nearex = path[depth].p_ext;
1849 nearex->ee_block = newext->ee_block;
1850 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1851 nearex->ee_len = newext->ee_len;
1853 merge:
1854 /* try to merge extents to the right */
1855 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1856 ext4_ext_try_to_merge(inode, path, nearex);
1858 /* try to merge extents to the left */
1860 /* time to correct all indexes above */
1861 err = ext4_ext_correct_indexes(handle, inode, path);
1862 if (err)
1863 goto cleanup;
1865 err = ext4_ext_dirty(handle, inode, path + depth);
1867 cleanup:
1868 if (npath) {
1869 ext4_ext_drop_refs(npath);
1870 kfree(npath);
1872 ext4_ext_invalidate_cache(inode);
1873 return err;
1876 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1877 ext4_lblk_t num, ext_prepare_callback func,
1878 void *cbdata)
1880 struct ext4_ext_path *path = NULL;
1881 struct ext4_ext_cache cbex;
1882 struct ext4_extent *ex;
1883 ext4_lblk_t next, start = 0, end = 0;
1884 ext4_lblk_t last = block + num;
1885 int depth, exists, err = 0;
1887 BUG_ON(func == NULL);
1888 BUG_ON(inode == NULL);
1890 while (block < last && block != EXT_MAX_BLOCKS) {
1891 num = last - block;
1892 /* find extent for this block */
1893 down_read(&EXT4_I(inode)->i_data_sem);
1894 path = ext4_ext_find_extent(inode, block, path);
1895 up_read(&EXT4_I(inode)->i_data_sem);
1896 if (IS_ERR(path)) {
1897 err = PTR_ERR(path);
1898 path = NULL;
1899 break;
1902 depth = ext_depth(inode);
1903 if (unlikely(path[depth].p_hdr == NULL)) {
1904 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1905 err = -EIO;
1906 break;
1908 ex = path[depth].p_ext;
1909 next = ext4_ext_next_allocated_block(path);
1911 exists = 0;
1912 if (!ex) {
1913 /* there is no extent yet, so try to allocate
1914 * all requested space */
1915 start = block;
1916 end = block + num;
1917 } else if (le32_to_cpu(ex->ee_block) > block) {
1918 /* need to allocate space before found extent */
1919 start = block;
1920 end = le32_to_cpu(ex->ee_block);
1921 if (block + num < end)
1922 end = block + num;
1923 } else if (block >= le32_to_cpu(ex->ee_block)
1924 + ext4_ext_get_actual_len(ex)) {
1925 /* need to allocate space after found extent */
1926 start = block;
1927 end = block + num;
1928 if (end >= next)
1929 end = next;
1930 } else if (block >= le32_to_cpu(ex->ee_block)) {
1932 * some part of requested space is covered
1933 * by found extent
1935 start = block;
1936 end = le32_to_cpu(ex->ee_block)
1937 + ext4_ext_get_actual_len(ex);
1938 if (block + num < end)
1939 end = block + num;
1940 exists = 1;
1941 } else {
1942 BUG();
1944 BUG_ON(end <= start);
1946 if (!exists) {
1947 cbex.ec_block = start;
1948 cbex.ec_len = end - start;
1949 cbex.ec_start = 0;
1950 } else {
1951 cbex.ec_block = le32_to_cpu(ex->ee_block);
1952 cbex.ec_len = ext4_ext_get_actual_len(ex);
1953 cbex.ec_start = ext4_ext_pblock(ex);
1956 if (unlikely(cbex.ec_len == 0)) {
1957 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1958 err = -EIO;
1959 break;
1961 err = func(inode, next, &cbex, ex, cbdata);
1962 ext4_ext_drop_refs(path);
1964 if (err < 0)
1965 break;
1967 if (err == EXT_REPEAT)
1968 continue;
1969 else if (err == EXT_BREAK) {
1970 err = 0;
1971 break;
1974 if (ext_depth(inode) != depth) {
1975 /* depth was changed. we have to realloc path */
1976 kfree(path);
1977 path = NULL;
1980 block = cbex.ec_block + cbex.ec_len;
1983 if (path) {
1984 ext4_ext_drop_refs(path);
1985 kfree(path);
1988 return err;
1991 static void
1992 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1993 __u32 len, ext4_fsblk_t start)
1995 struct ext4_ext_cache *cex;
1996 BUG_ON(len == 0);
1997 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1998 cex = &EXT4_I(inode)->i_cached_extent;
1999 cex->ec_block = block;
2000 cex->ec_len = len;
2001 cex->ec_start = start;
2002 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2006 * ext4_ext_put_gap_in_cache:
2007 * calculate boundaries of the gap that the requested block fits into
2008 * and cache this gap
2010 static void
2011 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2012 ext4_lblk_t block)
2014 int depth = ext_depth(inode);
2015 unsigned long len;
2016 ext4_lblk_t lblock;
2017 struct ext4_extent *ex;
2019 ex = path[depth].p_ext;
2020 if (ex == NULL) {
2021 /* there is no extent yet, so gap is [0;-] */
2022 lblock = 0;
2023 len = EXT_MAX_BLOCKS;
2024 ext_debug("cache gap(whole file):");
2025 } else if (block < le32_to_cpu(ex->ee_block)) {
2026 lblock = block;
2027 len = le32_to_cpu(ex->ee_block) - block;
2028 ext_debug("cache gap(before): %u [%u:%u]",
2029 block,
2030 le32_to_cpu(ex->ee_block),
2031 ext4_ext_get_actual_len(ex));
2032 } else if (block >= le32_to_cpu(ex->ee_block)
2033 + ext4_ext_get_actual_len(ex)) {
2034 ext4_lblk_t next;
2035 lblock = le32_to_cpu(ex->ee_block)
2036 + ext4_ext_get_actual_len(ex);
2038 next = ext4_ext_next_allocated_block(path);
2039 ext_debug("cache gap(after): [%u:%u] %u",
2040 le32_to_cpu(ex->ee_block),
2041 ext4_ext_get_actual_len(ex),
2042 block);
2043 BUG_ON(next == lblock);
2044 len = next - lblock;
2045 } else {
2046 lblock = len = 0;
2047 BUG();
2050 ext_debug(" -> %u:%lu\n", lblock, len);
2051 ext4_ext_put_in_cache(inode, lblock, len, 0);
2055 * ext4_ext_in_cache()
2056 * Checks to see if the given block is in the cache.
2057 * If it is, the cached extent is stored in the given
2058 * cache extent pointer. If the cached extent is a hole,
2059 * this routine should be used instead of
2060 * ext4_ext_in_cache if the calling function needs to
2061 * know the size of the hole.
2063 * @inode: The files inode
2064 * @block: The block to look for in the cache
2065 * @ex: Pointer where the cached extent will be stored
2066 * if it contains block
2068 * Return 0 if cache is invalid; 1 if the cache is valid
2070 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2071 struct ext4_ext_cache *ex){
2072 struct ext4_ext_cache *cex;
2073 struct ext4_sb_info *sbi;
2074 int ret = 0;
2077 * We borrow i_block_reservation_lock to protect i_cached_extent
2079 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2080 cex = &EXT4_I(inode)->i_cached_extent;
2081 sbi = EXT4_SB(inode->i_sb);
2083 /* has cache valid data? */
2084 if (cex->ec_len == 0)
2085 goto errout;
2087 if (in_range(block, cex->ec_block, cex->ec_len)) {
2088 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2089 ext_debug("%u cached by %u:%u:%llu\n",
2090 block,
2091 cex->ec_block, cex->ec_len, cex->ec_start);
2092 ret = 1;
2094 errout:
2095 if (!ret)
2096 sbi->extent_cache_misses++;
2097 else
2098 sbi->extent_cache_hits++;
2099 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2100 return ret;
2104 * ext4_ext_in_cache()
2105 * Checks to see if the given block is in the cache.
2106 * If it is, the cached extent is stored in the given
2107 * extent pointer.
2109 * @inode: The files inode
2110 * @block: The block to look for in the cache
2111 * @ex: Pointer where the cached extent will be stored
2112 * if it contains block
2114 * Return 0 if cache is invalid; 1 if the cache is valid
2116 static int
2117 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2118 struct ext4_extent *ex)
2120 struct ext4_ext_cache cex;
2121 int ret = 0;
2123 if (ext4_ext_check_cache(inode, block, &cex)) {
2124 ex->ee_block = cpu_to_le32(cex.ec_block);
2125 ext4_ext_store_pblock(ex, cex.ec_start);
2126 ex->ee_len = cpu_to_le16(cex.ec_len);
2127 ret = 1;
2130 return ret;
2135 * ext4_ext_rm_idx:
2136 * removes index from the index block.
2137 * It's used in truncate case only, thus all requests are for
2138 * last index in the block only.
2140 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2141 struct ext4_ext_path *path)
2143 int err;
2144 ext4_fsblk_t leaf;
2146 /* free index block */
2147 path--;
2148 leaf = ext4_idx_pblock(path->p_idx);
2149 if (unlikely(path->p_hdr->eh_entries == 0)) {
2150 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2151 return -EIO;
2153 err = ext4_ext_get_access(handle, inode, path);
2154 if (err)
2155 return err;
2156 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2157 err = ext4_ext_dirty(handle, inode, path);
2158 if (err)
2159 return err;
2160 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2161 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2162 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2163 return err;
2167 * ext4_ext_calc_credits_for_single_extent:
2168 * This routine returns max. credits that needed to insert an extent
2169 * to the extent tree.
2170 * When pass the actual path, the caller should calculate credits
2171 * under i_data_sem.
2173 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2174 struct ext4_ext_path *path)
2176 if (path) {
2177 int depth = ext_depth(inode);
2178 int ret = 0;
2180 /* probably there is space in leaf? */
2181 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2182 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2185 * There are some space in the leaf tree, no
2186 * need to account for leaf block credit
2188 * bitmaps and block group descriptor blocks
2189 * and other metadat blocks still need to be
2190 * accounted.
2192 /* 1 bitmap, 1 block group descriptor */
2193 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2194 return ret;
2198 return ext4_chunk_trans_blocks(inode, nrblocks);
2202 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2204 * if nrblocks are fit in a single extent (chunk flag is 1), then
2205 * in the worse case, each tree level index/leaf need to be changed
2206 * if the tree split due to insert a new extent, then the old tree
2207 * index/leaf need to be updated too
2209 * If the nrblocks are discontiguous, they could cause
2210 * the whole tree split more than once, but this is really rare.
2212 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2214 int index;
2215 int depth = ext_depth(inode);
2217 if (chunk)
2218 index = depth * 2;
2219 else
2220 index = depth * 3;
2222 return index;
2225 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2226 struct ext4_extent *ex,
2227 ext4_lblk_t from, ext4_lblk_t to)
2229 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2230 int flags = EXT4_FREE_BLOCKS_FORGET;
2232 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2233 flags |= EXT4_FREE_BLOCKS_METADATA;
2234 #ifdef EXTENTS_STATS
2236 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2237 spin_lock(&sbi->s_ext_stats_lock);
2238 sbi->s_ext_blocks += ee_len;
2239 sbi->s_ext_extents++;
2240 if (ee_len < sbi->s_ext_min)
2241 sbi->s_ext_min = ee_len;
2242 if (ee_len > sbi->s_ext_max)
2243 sbi->s_ext_max = ee_len;
2244 if (ext_depth(inode) > sbi->s_depth_max)
2245 sbi->s_depth_max = ext_depth(inode);
2246 spin_unlock(&sbi->s_ext_stats_lock);
2248 #endif
2249 if (from >= le32_to_cpu(ex->ee_block)
2250 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2251 /* tail removal */
2252 ext4_lblk_t num;
2253 ext4_fsblk_t start;
2255 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2256 start = ext4_ext_pblock(ex) + ee_len - num;
2257 ext_debug("free last %u blocks starting %llu\n", num, start);
2258 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2259 } else if (from == le32_to_cpu(ex->ee_block)
2260 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2261 /* head removal */
2262 ext4_lblk_t num;
2263 ext4_fsblk_t start;
2265 num = to - from;
2266 start = ext4_ext_pblock(ex);
2268 ext_debug("free first %u blocks starting %llu\n", num, start);
2269 ext4_free_blocks(handle, inode, 0, start, num, flags);
2271 } else {
2272 printk(KERN_INFO "strange request: removal(2) "
2273 "%u-%u from %u:%u\n",
2274 from, to, le32_to_cpu(ex->ee_block), ee_len);
2276 return 0;
2281 * ext4_ext_rm_leaf() Removes the extents associated with the
2282 * blocks appearing between "start" and "end", and splits the extents
2283 * if "start" and "end" appear in the same extent
2285 * @handle: The journal handle
2286 * @inode: The files inode
2287 * @path: The path to the leaf
2288 * @start: The first block to remove
2289 * @end: The last block to remove
2291 static int
2292 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2293 struct ext4_ext_path *path, ext4_lblk_t start,
2294 ext4_lblk_t end)
2296 int err = 0, correct_index = 0;
2297 int depth = ext_depth(inode), credits;
2298 struct ext4_extent_header *eh;
2299 ext4_lblk_t a, b, block;
2300 unsigned num;
2301 ext4_lblk_t ex_ee_block;
2302 unsigned short ex_ee_len;
2303 unsigned uninitialized = 0;
2304 struct ext4_extent *ex;
2305 struct ext4_map_blocks map;
2307 /* the header must be checked already in ext4_ext_remove_space() */
2308 ext_debug("truncate since %u in leaf\n", start);
2309 if (!path[depth].p_hdr)
2310 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2311 eh = path[depth].p_hdr;
2312 if (unlikely(path[depth].p_hdr == NULL)) {
2313 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2314 return -EIO;
2316 /* find where to start removing */
2317 ex = EXT_LAST_EXTENT(eh);
2319 ex_ee_block = le32_to_cpu(ex->ee_block);
2320 ex_ee_len = ext4_ext_get_actual_len(ex);
2322 while (ex >= EXT_FIRST_EXTENT(eh) &&
2323 ex_ee_block + ex_ee_len > start) {
2325 if (ext4_ext_is_uninitialized(ex))
2326 uninitialized = 1;
2327 else
2328 uninitialized = 0;
2330 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2331 uninitialized, ex_ee_len);
2332 path[depth].p_ext = ex;
2334 a = ex_ee_block > start ? ex_ee_block : start;
2335 b = ex_ee_block+ex_ee_len - 1 < end ?
2336 ex_ee_block+ex_ee_len - 1 : end;
2338 ext_debug(" border %u:%u\n", a, b);
2340 /* If this extent is beyond the end of the hole, skip it */
2341 if (end <= ex_ee_block) {
2342 ex--;
2343 ex_ee_block = le32_to_cpu(ex->ee_block);
2344 ex_ee_len = ext4_ext_get_actual_len(ex);
2345 continue;
2346 } else if (a != ex_ee_block &&
2347 b != ex_ee_block + ex_ee_len - 1) {
2349 * If this is a truncate, then this condition should
2350 * never happen because at least one of the end points
2351 * needs to be on the edge of the extent.
2353 if (end == EXT_MAX_BLOCKS - 1) {
2354 ext_debug(" bad truncate %u:%u\n",
2355 start, end);
2356 block = 0;
2357 num = 0;
2358 err = -EIO;
2359 goto out;
2362 * else this is a hole punch, so the extent needs to
2363 * be split since neither edge of the hole is on the
2364 * extent edge
2366 else{
2367 map.m_pblk = ext4_ext_pblock(ex);
2368 map.m_lblk = ex_ee_block;
2369 map.m_len = b - ex_ee_block;
2371 err = ext4_split_extent(handle,
2372 inode, path, &map, 0,
2373 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2374 EXT4_GET_BLOCKS_PRE_IO);
2376 if (err < 0)
2377 goto out;
2379 ex_ee_len = ext4_ext_get_actual_len(ex);
2381 b = ex_ee_block+ex_ee_len - 1 < end ?
2382 ex_ee_block+ex_ee_len - 1 : end;
2384 /* Then remove tail of this extent */
2385 block = ex_ee_block;
2386 num = a - block;
2388 } else if (a != ex_ee_block) {
2389 /* remove tail of the extent */
2390 block = ex_ee_block;
2391 num = a - block;
2392 } else if (b != ex_ee_block + ex_ee_len - 1) {
2393 /* remove head of the extent */
2394 block = b;
2395 num = ex_ee_block + ex_ee_len - b;
2398 * If this is a truncate, this condition
2399 * should never happen
2401 if (end == EXT_MAX_BLOCKS - 1) {
2402 ext_debug(" bad truncate %u:%u\n",
2403 start, end);
2404 err = -EIO;
2405 goto out;
2407 } else {
2408 /* remove whole extent: excellent! */
2409 block = ex_ee_block;
2410 num = 0;
2411 if (a != ex_ee_block) {
2412 ext_debug(" bad truncate %u:%u\n",
2413 start, end);
2414 err = -EIO;
2415 goto out;
2418 if (b != ex_ee_block + ex_ee_len - 1) {
2419 ext_debug(" bad truncate %u:%u\n",
2420 start, end);
2421 err = -EIO;
2422 goto out;
2427 * 3 for leaf, sb, and inode plus 2 (bmap and group
2428 * descriptor) for each block group; assume two block
2429 * groups plus ex_ee_len/blocks_per_block_group for
2430 * the worst case
2432 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2433 if (ex == EXT_FIRST_EXTENT(eh)) {
2434 correct_index = 1;
2435 credits += (ext_depth(inode)) + 1;
2437 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2439 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2440 if (err)
2441 goto out;
2443 err = ext4_ext_get_access(handle, inode, path + depth);
2444 if (err)
2445 goto out;
2447 err = ext4_remove_blocks(handle, inode, ex, a, b);
2448 if (err)
2449 goto out;
2451 if (num == 0) {
2452 /* this extent is removed; mark slot entirely unused */
2453 ext4_ext_store_pblock(ex, 0);
2454 } else if (block != ex_ee_block) {
2456 * If this was a head removal, then we need to update
2457 * the physical block since it is now at a different
2458 * location
2460 ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2463 ex->ee_block = cpu_to_le32(block);
2464 ex->ee_len = cpu_to_le16(num);
2466 * Do not mark uninitialized if all the blocks in the
2467 * extent have been removed.
2469 if (uninitialized && num)
2470 ext4_ext_mark_uninitialized(ex);
2472 err = ext4_ext_dirty(handle, inode, path + depth);
2473 if (err)
2474 goto out;
2477 * If the extent was completely released,
2478 * we need to remove it from the leaf
2480 if (num == 0) {
2481 if (end != EXT_MAX_BLOCKS - 1) {
2483 * For hole punching, we need to scoot all the
2484 * extents up when an extent is removed so that
2485 * we dont have blank extents in the middle
2487 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2488 sizeof(struct ext4_extent));
2490 /* Now get rid of the one at the end */
2491 memset(EXT_LAST_EXTENT(eh), 0,
2492 sizeof(struct ext4_extent));
2494 le16_add_cpu(&eh->eh_entries, -1);
2497 ext_debug("new extent: %u:%u:%llu\n", block, num,
2498 ext4_ext_pblock(ex));
2499 ex--;
2500 ex_ee_block = le32_to_cpu(ex->ee_block);
2501 ex_ee_len = ext4_ext_get_actual_len(ex);
2504 if (correct_index && eh->eh_entries)
2505 err = ext4_ext_correct_indexes(handle, inode, path);
2507 /* if this leaf is free, then we should
2508 * remove it from index block above */
2509 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2510 err = ext4_ext_rm_idx(handle, inode, path + depth);
2512 out:
2513 return err;
2517 * ext4_ext_more_to_rm:
2518 * returns 1 if current index has to be freed (even partial)
2520 static int
2521 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2523 BUG_ON(path->p_idx == NULL);
2525 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2526 return 0;
2529 * if truncate on deeper level happened, it wasn't partial,
2530 * so we have to consider current index for truncation
2532 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2533 return 0;
2534 return 1;
2537 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2538 ext4_lblk_t end)
2540 struct super_block *sb = inode->i_sb;
2541 int depth = ext_depth(inode);
2542 struct ext4_ext_path *path;
2543 handle_t *handle;
2544 int i, err;
2546 ext_debug("truncate since %u\n", start);
2548 /* probably first extent we're gonna free will be last in block */
2549 handle = ext4_journal_start(inode, depth + 1);
2550 if (IS_ERR(handle))
2551 return PTR_ERR(handle);
2553 again:
2554 ext4_ext_invalidate_cache(inode);
2557 * We start scanning from right side, freeing all the blocks
2558 * after i_size and walking into the tree depth-wise.
2560 depth = ext_depth(inode);
2561 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2562 if (path == NULL) {
2563 ext4_journal_stop(handle);
2564 return -ENOMEM;
2566 path[0].p_depth = depth;
2567 path[0].p_hdr = ext_inode_hdr(inode);
2568 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2569 err = -EIO;
2570 goto out;
2572 i = err = 0;
2574 while (i >= 0 && err == 0) {
2575 if (i == depth) {
2576 /* this is leaf block */
2577 err = ext4_ext_rm_leaf(handle, inode, path,
2578 start, end);
2579 /* root level has p_bh == NULL, brelse() eats this */
2580 brelse(path[i].p_bh);
2581 path[i].p_bh = NULL;
2582 i--;
2583 continue;
2586 /* this is index block */
2587 if (!path[i].p_hdr) {
2588 ext_debug("initialize header\n");
2589 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2592 if (!path[i].p_idx) {
2593 /* this level hasn't been touched yet */
2594 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2595 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2596 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2597 path[i].p_hdr,
2598 le16_to_cpu(path[i].p_hdr->eh_entries));
2599 } else {
2600 /* we were already here, see at next index */
2601 path[i].p_idx--;
2604 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2605 i, EXT_FIRST_INDEX(path[i].p_hdr),
2606 path[i].p_idx);
2607 if (ext4_ext_more_to_rm(path + i)) {
2608 struct buffer_head *bh;
2609 /* go to the next level */
2610 ext_debug("move to level %d (block %llu)\n",
2611 i + 1, ext4_idx_pblock(path[i].p_idx));
2612 memset(path + i + 1, 0, sizeof(*path));
2613 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2614 if (!bh) {
2615 /* should we reset i_size? */
2616 err = -EIO;
2617 break;
2619 if (WARN_ON(i + 1 > depth)) {
2620 err = -EIO;
2621 break;
2623 if (ext4_ext_check(inode, ext_block_hdr(bh),
2624 depth - i - 1)) {
2625 err = -EIO;
2626 break;
2628 path[i + 1].p_bh = bh;
2630 /* save actual number of indexes since this
2631 * number is changed at the next iteration */
2632 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2633 i++;
2634 } else {
2635 /* we finished processing this index, go up */
2636 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2637 /* index is empty, remove it;
2638 * handle must be already prepared by the
2639 * truncatei_leaf() */
2640 err = ext4_ext_rm_idx(handle, inode, path + i);
2642 /* root level has p_bh == NULL, brelse() eats this */
2643 brelse(path[i].p_bh);
2644 path[i].p_bh = NULL;
2645 i--;
2646 ext_debug("return to level %d\n", i);
2650 /* TODO: flexible tree reduction should be here */
2651 if (path->p_hdr->eh_entries == 0) {
2653 * truncate to zero freed all the tree,
2654 * so we need to correct eh_depth
2656 err = ext4_ext_get_access(handle, inode, path);
2657 if (err == 0) {
2658 ext_inode_hdr(inode)->eh_depth = 0;
2659 ext_inode_hdr(inode)->eh_max =
2660 cpu_to_le16(ext4_ext_space_root(inode, 0));
2661 err = ext4_ext_dirty(handle, inode, path);
2664 out:
2665 ext4_ext_drop_refs(path);
2666 kfree(path);
2667 if (err == -EAGAIN)
2668 goto again;
2669 ext4_journal_stop(handle);
2671 return err;
2675 * called at mount time
2677 void ext4_ext_init(struct super_block *sb)
2680 * possible initialization would be here
2683 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2684 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2685 printk(KERN_INFO "EXT4-fs: file extents enabled");
2686 #ifdef AGGRESSIVE_TEST
2687 printk(", aggressive tests");
2688 #endif
2689 #ifdef CHECK_BINSEARCH
2690 printk(", check binsearch");
2691 #endif
2692 #ifdef EXTENTS_STATS
2693 printk(", stats");
2694 #endif
2695 printk("\n");
2696 #endif
2697 #ifdef EXTENTS_STATS
2698 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2699 EXT4_SB(sb)->s_ext_min = 1 << 30;
2700 EXT4_SB(sb)->s_ext_max = 0;
2701 #endif
2706 * called at umount time
2708 void ext4_ext_release(struct super_block *sb)
2710 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2711 return;
2713 #ifdef EXTENTS_STATS
2714 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2715 struct ext4_sb_info *sbi = EXT4_SB(sb);
2716 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2717 sbi->s_ext_blocks, sbi->s_ext_extents,
2718 sbi->s_ext_blocks / sbi->s_ext_extents);
2719 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2720 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2722 #endif
2725 /* FIXME!! we need to try to merge to left or right after zero-out */
2726 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2728 ext4_fsblk_t ee_pblock;
2729 unsigned int ee_len;
2730 int ret;
2732 ee_len = ext4_ext_get_actual_len(ex);
2733 ee_pblock = ext4_ext_pblock(ex);
2735 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2736 if (ret > 0)
2737 ret = 0;
2739 return ret;
2743 * used by extent splitting.
2745 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2746 due to ENOSPC */
2747 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2748 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2751 * ext4_split_extent_at() splits an extent at given block.
2753 * @handle: the journal handle
2754 * @inode: the file inode
2755 * @path: the path to the extent
2756 * @split: the logical block where the extent is splitted.
2757 * @split_flags: indicates if the extent could be zeroout if split fails, and
2758 * the states(init or uninit) of new extents.
2759 * @flags: flags used to insert new extent to extent tree.
2762 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2763 * of which are deterimined by split_flag.
2765 * There are two cases:
2766 * a> the extent are splitted into two extent.
2767 * b> split is not needed, and just mark the extent.
2769 * return 0 on success.
2771 static int ext4_split_extent_at(handle_t *handle,
2772 struct inode *inode,
2773 struct ext4_ext_path *path,
2774 ext4_lblk_t split,
2775 int split_flag,
2776 int flags)
2778 ext4_fsblk_t newblock;
2779 ext4_lblk_t ee_block;
2780 struct ext4_extent *ex, newex, orig_ex;
2781 struct ext4_extent *ex2 = NULL;
2782 unsigned int ee_len, depth;
2783 int err = 0;
2785 ext_debug("ext4_split_extents_at: inode %lu, logical"
2786 "block %llu\n", inode->i_ino, (unsigned long long)split);
2788 ext4_ext_show_leaf(inode, path);
2790 depth = ext_depth(inode);
2791 ex = path[depth].p_ext;
2792 ee_block = le32_to_cpu(ex->ee_block);
2793 ee_len = ext4_ext_get_actual_len(ex);
2794 newblock = split - ee_block + ext4_ext_pblock(ex);
2796 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2798 err = ext4_ext_get_access(handle, inode, path + depth);
2799 if (err)
2800 goto out;
2802 if (split == ee_block) {
2804 * case b: block @split is the block that the extent begins with
2805 * then we just change the state of the extent, and splitting
2806 * is not needed.
2808 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2809 ext4_ext_mark_uninitialized(ex);
2810 else
2811 ext4_ext_mark_initialized(ex);
2813 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2814 ext4_ext_try_to_merge(inode, path, ex);
2816 err = ext4_ext_dirty(handle, inode, path + depth);
2817 goto out;
2820 /* case a */
2821 memcpy(&orig_ex, ex, sizeof(orig_ex));
2822 ex->ee_len = cpu_to_le16(split - ee_block);
2823 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2824 ext4_ext_mark_uninitialized(ex);
2827 * path may lead to new leaf, not to original leaf any more
2828 * after ext4_ext_insert_extent() returns,
2830 err = ext4_ext_dirty(handle, inode, path + depth);
2831 if (err)
2832 goto fix_extent_len;
2834 ex2 = &newex;
2835 ex2->ee_block = cpu_to_le32(split);
2836 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2837 ext4_ext_store_pblock(ex2, newblock);
2838 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2839 ext4_ext_mark_uninitialized(ex2);
2841 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2842 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2843 err = ext4_ext_zeroout(inode, &orig_ex);
2844 if (err)
2845 goto fix_extent_len;
2846 /* update the extent length and mark as initialized */
2847 ex->ee_len = cpu_to_le32(ee_len);
2848 ext4_ext_try_to_merge(inode, path, ex);
2849 err = ext4_ext_dirty(handle, inode, path + depth);
2850 goto out;
2851 } else if (err)
2852 goto fix_extent_len;
2854 out:
2855 ext4_ext_show_leaf(inode, path);
2856 return err;
2858 fix_extent_len:
2859 ex->ee_len = orig_ex.ee_len;
2860 ext4_ext_dirty(handle, inode, path + depth);
2861 return err;
2865 * ext4_split_extents() splits an extent and mark extent which is covered
2866 * by @map as split_flags indicates
2868 * It may result in splitting the extent into multiple extents (upto three)
2869 * There are three possibilities:
2870 * a> There is no split required
2871 * b> Splits in two extents: Split is happening at either end of the extent
2872 * c> Splits in three extents: Somone is splitting in middle of the extent
2875 static int ext4_split_extent(handle_t *handle,
2876 struct inode *inode,
2877 struct ext4_ext_path *path,
2878 struct ext4_map_blocks *map,
2879 int split_flag,
2880 int flags)
2882 ext4_lblk_t ee_block;
2883 struct ext4_extent *ex;
2884 unsigned int ee_len, depth;
2885 int err = 0;
2886 int uninitialized;
2887 int split_flag1, flags1;
2889 depth = ext_depth(inode);
2890 ex = path[depth].p_ext;
2891 ee_block = le32_to_cpu(ex->ee_block);
2892 ee_len = ext4_ext_get_actual_len(ex);
2893 uninitialized = ext4_ext_is_uninitialized(ex);
2895 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2896 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2897 EXT4_EXT_MAY_ZEROOUT : 0;
2898 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2899 if (uninitialized)
2900 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2901 EXT4_EXT_MARK_UNINIT2;
2902 err = ext4_split_extent_at(handle, inode, path,
2903 map->m_lblk + map->m_len, split_flag1, flags1);
2904 if (err)
2905 goto out;
2908 ext4_ext_drop_refs(path);
2909 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2910 if (IS_ERR(path))
2911 return PTR_ERR(path);
2913 if (map->m_lblk >= ee_block) {
2914 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2915 EXT4_EXT_MAY_ZEROOUT : 0;
2916 if (uninitialized)
2917 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2918 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2919 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2920 err = ext4_split_extent_at(handle, inode, path,
2921 map->m_lblk, split_flag1, flags);
2922 if (err)
2923 goto out;
2926 ext4_ext_show_leaf(inode, path);
2927 out:
2928 return err ? err : map->m_len;
2931 #define EXT4_EXT_ZERO_LEN 7
2933 * This function is called by ext4_ext_map_blocks() if someone tries to write
2934 * to an uninitialized extent. It may result in splitting the uninitialized
2935 * extent into multiple extents (up to three - one initialized and two
2936 * uninitialized).
2937 * There are three possibilities:
2938 * a> There is no split required: Entire extent should be initialized
2939 * b> Splits in two extents: Write is happening at either end of the extent
2940 * c> Splits in three extents: Somone is writing in middle of the extent
2942 static int ext4_ext_convert_to_initialized(handle_t *handle,
2943 struct inode *inode,
2944 struct ext4_map_blocks *map,
2945 struct ext4_ext_path *path)
2947 struct ext4_map_blocks split_map;
2948 struct ext4_extent zero_ex;
2949 struct ext4_extent *ex;
2950 ext4_lblk_t ee_block, eof_block;
2951 unsigned int allocated, ee_len, depth;
2952 int err = 0;
2953 int split_flag = 0;
2955 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2956 "block %llu, max_blocks %u\n", inode->i_ino,
2957 (unsigned long long)map->m_lblk, map->m_len);
2959 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2960 inode->i_sb->s_blocksize_bits;
2961 if (eof_block < map->m_lblk + map->m_len)
2962 eof_block = map->m_lblk + map->m_len;
2964 depth = ext_depth(inode);
2965 ex = path[depth].p_ext;
2966 ee_block = le32_to_cpu(ex->ee_block);
2967 ee_len = ext4_ext_get_actual_len(ex);
2968 allocated = ee_len - (map->m_lblk - ee_block);
2970 WARN_ON(map->m_lblk < ee_block);
2972 * It is safe to convert extent to initialized via explicit
2973 * zeroout only if extent is fully insde i_size or new_size.
2975 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2977 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2978 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2979 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2980 err = ext4_ext_zeroout(inode, ex);
2981 if (err)
2982 goto out;
2984 err = ext4_ext_get_access(handle, inode, path + depth);
2985 if (err)
2986 goto out;
2987 ext4_ext_mark_initialized(ex);
2988 ext4_ext_try_to_merge(inode, path, ex);
2989 err = ext4_ext_dirty(handle, inode, path + depth);
2990 goto out;
2994 * four cases:
2995 * 1. split the extent into three extents.
2996 * 2. split the extent into two extents, zeroout the first half.
2997 * 3. split the extent into two extents, zeroout the second half.
2998 * 4. split the extent into two extents with out zeroout.
3000 split_map.m_lblk = map->m_lblk;
3001 split_map.m_len = map->m_len;
3003 if (allocated > map->m_len) {
3004 if (allocated <= EXT4_EXT_ZERO_LEN &&
3005 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3006 /* case 3 */
3007 zero_ex.ee_block =
3008 cpu_to_le32(map->m_lblk);
3009 zero_ex.ee_len = cpu_to_le16(allocated);
3010 ext4_ext_store_pblock(&zero_ex,
3011 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3012 err = ext4_ext_zeroout(inode, &zero_ex);
3013 if (err)
3014 goto out;
3015 split_map.m_lblk = map->m_lblk;
3016 split_map.m_len = allocated;
3017 } else if ((map->m_lblk - ee_block + map->m_len <
3018 EXT4_EXT_ZERO_LEN) &&
3019 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3020 /* case 2 */
3021 if (map->m_lblk != ee_block) {
3022 zero_ex.ee_block = ex->ee_block;
3023 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3024 ee_block);
3025 ext4_ext_store_pblock(&zero_ex,
3026 ext4_ext_pblock(ex));
3027 err = ext4_ext_zeroout(inode, &zero_ex);
3028 if (err)
3029 goto out;
3032 split_map.m_lblk = ee_block;
3033 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3034 allocated = map->m_len;
3038 allocated = ext4_split_extent(handle, inode, path,
3039 &split_map, split_flag, 0);
3040 if (allocated < 0)
3041 err = allocated;
3043 out:
3044 return err ? err : allocated;
3048 * This function is called by ext4_ext_map_blocks() from
3049 * ext4_get_blocks_dio_write() when DIO to write
3050 * to an uninitialized extent.
3052 * Writing to an uninitialized extent may result in splitting the uninitialized
3053 * extent into multiple /initialized uninitialized extents (up to three)
3054 * There are three possibilities:
3055 * a> There is no split required: Entire extent should be uninitialized
3056 * b> Splits in two extents: Write is happening at either end of the extent
3057 * c> Splits in three extents: Somone is writing in middle of the extent
3059 * One of more index blocks maybe needed if the extent tree grow after
3060 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3061 * complete, we need to split the uninitialized extent before DIO submit
3062 * the IO. The uninitialized extent called at this time will be split
3063 * into three uninitialized extent(at most). After IO complete, the part
3064 * being filled will be convert to initialized by the end_io callback function
3065 * via ext4_convert_unwritten_extents().
3067 * Returns the size of uninitialized extent to be written on success.
3069 static int ext4_split_unwritten_extents(handle_t *handle,
3070 struct inode *inode,
3071 struct ext4_map_blocks *map,
3072 struct ext4_ext_path *path,
3073 int flags)
3075 ext4_lblk_t eof_block;
3076 ext4_lblk_t ee_block;
3077 struct ext4_extent *ex;
3078 unsigned int ee_len;
3079 int split_flag = 0, depth;
3081 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3082 "block %llu, max_blocks %u\n", inode->i_ino,
3083 (unsigned long long)map->m_lblk, map->m_len);
3085 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3086 inode->i_sb->s_blocksize_bits;
3087 if (eof_block < map->m_lblk + map->m_len)
3088 eof_block = map->m_lblk + map->m_len;
3090 * It is safe to convert extent to initialized via explicit
3091 * zeroout only if extent is fully insde i_size or new_size.
3093 depth = ext_depth(inode);
3094 ex = path[depth].p_ext;
3095 ee_block = le32_to_cpu(ex->ee_block);
3096 ee_len = ext4_ext_get_actual_len(ex);
3098 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3099 split_flag |= EXT4_EXT_MARK_UNINIT2;
3101 flags |= EXT4_GET_BLOCKS_PRE_IO;
3102 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3105 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3106 struct inode *inode,
3107 struct ext4_ext_path *path)
3109 struct ext4_extent *ex;
3110 struct ext4_extent_header *eh;
3111 int depth;
3112 int err = 0;
3114 depth = ext_depth(inode);
3115 eh = path[depth].p_hdr;
3116 ex = path[depth].p_ext;
3118 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3119 "block %llu, max_blocks %u\n", inode->i_ino,
3120 (unsigned long long)le32_to_cpu(ex->ee_block),
3121 ext4_ext_get_actual_len(ex));
3123 err = ext4_ext_get_access(handle, inode, path + depth);
3124 if (err)
3125 goto out;
3126 /* first mark the extent as initialized */
3127 ext4_ext_mark_initialized(ex);
3129 /* note: ext4_ext_correct_indexes() isn't needed here because
3130 * borders are not changed
3132 ext4_ext_try_to_merge(inode, path, ex);
3134 /* Mark modified extent as dirty */
3135 err = ext4_ext_dirty(handle, inode, path + depth);
3136 out:
3137 ext4_ext_show_leaf(inode, path);
3138 return err;
3141 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3142 sector_t block, int count)
3144 int i;
3145 for (i = 0; i < count; i++)
3146 unmap_underlying_metadata(bdev, block + i);
3150 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3152 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3153 ext4_lblk_t lblk,
3154 struct ext4_ext_path *path,
3155 unsigned int len)
3157 int i, depth;
3158 struct ext4_extent_header *eh;
3159 struct ext4_extent *last_ex;
3161 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3162 return 0;
3164 depth = ext_depth(inode);
3165 eh = path[depth].p_hdr;
3167 if (unlikely(!eh->eh_entries)) {
3168 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3169 "EOFBLOCKS_FL set");
3170 return -EIO;
3172 last_ex = EXT_LAST_EXTENT(eh);
3174 * We should clear the EOFBLOCKS_FL flag if we are writing the
3175 * last block in the last extent in the file. We test this by
3176 * first checking to see if the caller to
3177 * ext4_ext_get_blocks() was interested in the last block (or
3178 * a block beyond the last block) in the current extent. If
3179 * this turns out to be false, we can bail out from this
3180 * function immediately.
3182 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3183 ext4_ext_get_actual_len(last_ex))
3184 return 0;
3186 * If the caller does appear to be planning to write at or
3187 * beyond the end of the current extent, we then test to see
3188 * if the current extent is the last extent in the file, by
3189 * checking to make sure it was reached via the rightmost node
3190 * at each level of the tree.
3192 for (i = depth-1; i >= 0; i--)
3193 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3194 return 0;
3195 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3196 return ext4_mark_inode_dirty(handle, inode);
3199 static int
3200 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3201 struct ext4_map_blocks *map,
3202 struct ext4_ext_path *path, int flags,
3203 unsigned int allocated, ext4_fsblk_t newblock)
3205 int ret = 0;
3206 int err = 0;
3207 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3209 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3210 "block %llu, max_blocks %u, flags %d, allocated %u",
3211 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3212 flags, allocated);
3213 ext4_ext_show_leaf(inode, path);
3215 /* get_block() before submit the IO, split the extent */
3216 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3217 ret = ext4_split_unwritten_extents(handle, inode, map,
3218 path, flags);
3220 * Flag the inode(non aio case) or end_io struct (aio case)
3221 * that this IO needs to conversion to written when IO is
3222 * completed
3224 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3225 io->flag = EXT4_IO_END_UNWRITTEN;
3226 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3227 } else
3228 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3229 if (ext4_should_dioread_nolock(inode))
3230 map->m_flags |= EXT4_MAP_UNINIT;
3231 goto out;
3233 /* IO end_io complete, convert the filled extent to written */
3234 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3235 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3236 path);
3237 if (ret >= 0) {
3238 ext4_update_inode_fsync_trans(handle, inode, 1);
3239 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3240 path, map->m_len);
3241 } else
3242 err = ret;
3243 goto out2;
3245 /* buffered IO case */
3247 * repeat fallocate creation request
3248 * we already have an unwritten extent
3250 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3251 goto map_out;
3253 /* buffered READ or buffered write_begin() lookup */
3254 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3256 * We have blocks reserved already. We
3257 * return allocated blocks so that delalloc
3258 * won't do block reservation for us. But
3259 * the buffer head will be unmapped so that
3260 * a read from the block returns 0s.
3262 map->m_flags |= EXT4_MAP_UNWRITTEN;
3263 goto out1;
3266 /* buffered write, writepage time, convert*/
3267 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3268 if (ret >= 0) {
3269 ext4_update_inode_fsync_trans(handle, inode, 1);
3270 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3271 map->m_len);
3272 if (err < 0)
3273 goto out2;
3276 out:
3277 if (ret <= 0) {
3278 err = ret;
3279 goto out2;
3280 } else
3281 allocated = ret;
3282 map->m_flags |= EXT4_MAP_NEW;
3284 * if we allocated more blocks than requested
3285 * we need to make sure we unmap the extra block
3286 * allocated. The actual needed block will get
3287 * unmapped later when we find the buffer_head marked
3288 * new.
3290 if (allocated > map->m_len) {
3291 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3292 newblock + map->m_len,
3293 allocated - map->m_len);
3294 allocated = map->m_len;
3298 * If we have done fallocate with the offset that is already
3299 * delayed allocated, we would have block reservation
3300 * and quota reservation done in the delayed write path.
3301 * But fallocate would have already updated quota and block
3302 * count for this offset. So cancel these reservation
3304 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3305 ext4_da_update_reserve_space(inode, allocated, 0);
3307 map_out:
3308 map->m_flags |= EXT4_MAP_MAPPED;
3309 out1:
3310 if (allocated > map->m_len)
3311 allocated = map->m_len;
3312 ext4_ext_show_leaf(inode, path);
3313 map->m_pblk = newblock;
3314 map->m_len = allocated;
3315 out2:
3316 if (path) {
3317 ext4_ext_drop_refs(path);
3318 kfree(path);
3320 return err ? err : allocated;
3324 * Block allocation/map/preallocation routine for extents based files
3327 * Need to be called with
3328 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3329 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3331 * return > 0, number of of blocks already mapped/allocated
3332 * if create == 0 and these are pre-allocated blocks
3333 * buffer head is unmapped
3334 * otherwise blocks are mapped
3336 * return = 0, if plain look up failed (blocks have not been allocated)
3337 * buffer head is unmapped
3339 * return < 0, error case.
3341 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3342 struct ext4_map_blocks *map, int flags)
3344 struct ext4_ext_path *path = NULL;
3345 struct ext4_extent newex, *ex;
3346 ext4_fsblk_t newblock = 0;
3347 int err = 0, depth, ret;
3348 unsigned int allocated = 0;
3349 unsigned int punched_out = 0;
3350 unsigned int result = 0;
3351 struct ext4_allocation_request ar;
3352 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3353 struct ext4_map_blocks punch_map;
3355 ext_debug("blocks %u/%u requested for inode %lu\n",
3356 map->m_lblk, map->m_len, inode->i_ino);
3357 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3359 /* check in cache */
3360 if (ext4_ext_in_cache(inode, map->m_lblk, &newex) &&
3361 ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0)) {
3362 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3363 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3365 * block isn't allocated yet and
3366 * user doesn't want to allocate it
3368 goto out2;
3370 /* we should allocate requested block */
3371 } else {
3372 /* block is already allocated */
3373 newblock = map->m_lblk
3374 - le32_to_cpu(newex.ee_block)
3375 + ext4_ext_pblock(&newex);
3376 /* number of remaining blocks in the extent */
3377 allocated = ext4_ext_get_actual_len(&newex) -
3378 (map->m_lblk - le32_to_cpu(newex.ee_block));
3379 goto out;
3383 /* find extent for this block */
3384 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3385 if (IS_ERR(path)) {
3386 err = PTR_ERR(path);
3387 path = NULL;
3388 goto out2;
3391 depth = ext_depth(inode);
3394 * consistent leaf must not be empty;
3395 * this situation is possible, though, _during_ tree modification;
3396 * this is why assert can't be put in ext4_ext_find_extent()
3398 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3399 EXT4_ERROR_INODE(inode, "bad extent address "
3400 "lblock: %lu, depth: %d pblock %lld",
3401 (unsigned long) map->m_lblk, depth,
3402 path[depth].p_block);
3403 err = -EIO;
3404 goto out2;
3407 ex = path[depth].p_ext;
3408 if (ex) {
3409 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3410 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3411 unsigned short ee_len;
3414 * Uninitialized extents are treated as holes, except that
3415 * we split out initialized portions during a write.
3417 ee_len = ext4_ext_get_actual_len(ex);
3418 /* if found extent covers block, simply return it */
3419 if (in_range(map->m_lblk, ee_block, ee_len)) {
3420 newblock = map->m_lblk - ee_block + ee_start;
3421 /* number of remaining blocks in the extent */
3422 allocated = ee_len - (map->m_lblk - ee_block);
3423 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3424 ee_block, ee_len, newblock);
3426 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3428 * Do not put uninitialized extent
3429 * in the cache
3431 if (!ext4_ext_is_uninitialized(ex)) {
3432 ext4_ext_put_in_cache(inode, ee_block,
3433 ee_len, ee_start);
3434 goto out;
3436 ret = ext4_ext_handle_uninitialized_extents(
3437 handle, inode, map, path, flags,
3438 allocated, newblock);
3439 return ret;
3443 * Punch out the map length, but only to the
3444 * end of the extent
3446 punched_out = allocated < map->m_len ?
3447 allocated : map->m_len;
3450 * Sense extents need to be converted to
3451 * uninitialized, they must fit in an
3452 * uninitialized extent
3454 if (punched_out > EXT_UNINIT_MAX_LEN)
3455 punched_out = EXT_UNINIT_MAX_LEN;
3457 punch_map.m_lblk = map->m_lblk;
3458 punch_map.m_pblk = newblock;
3459 punch_map.m_len = punched_out;
3460 punch_map.m_flags = 0;
3462 /* Check to see if the extent needs to be split */
3463 if (punch_map.m_len != ee_len ||
3464 punch_map.m_lblk != ee_block) {
3466 ret = ext4_split_extent(handle, inode,
3467 path, &punch_map, 0,
3468 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3469 EXT4_GET_BLOCKS_PRE_IO);
3471 if (ret < 0) {
3472 err = ret;
3473 goto out2;
3476 * find extent for the block at
3477 * the start of the hole
3479 ext4_ext_drop_refs(path);
3480 kfree(path);
3482 path = ext4_ext_find_extent(inode,
3483 map->m_lblk, NULL);
3484 if (IS_ERR(path)) {
3485 err = PTR_ERR(path);
3486 path = NULL;
3487 goto out2;
3490 depth = ext_depth(inode);
3491 ex = path[depth].p_ext;
3492 ee_len = ext4_ext_get_actual_len(ex);
3493 ee_block = le32_to_cpu(ex->ee_block);
3494 ee_start = ext4_ext_pblock(ex);
3498 ext4_ext_mark_uninitialized(ex);
3500 err = ext4_ext_remove_space(inode, map->m_lblk,
3501 map->m_lblk + punched_out);
3503 goto out2;
3508 * requested block isn't allocated yet;
3509 * we couldn't try to create block if create flag is zero
3511 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3513 * put just found gap into cache to speed up
3514 * subsequent requests
3516 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3517 goto out2;
3520 * Okay, we need to do block allocation.
3523 /* find neighbour allocated blocks */
3524 ar.lleft = map->m_lblk;
3525 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3526 if (err)
3527 goto out2;
3528 ar.lright = map->m_lblk;
3529 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3530 if (err)
3531 goto out2;
3534 * See if request is beyond maximum number of blocks we can have in
3535 * a single extent. For an initialized extent this limit is
3536 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3537 * EXT_UNINIT_MAX_LEN.
3539 if (map->m_len > EXT_INIT_MAX_LEN &&
3540 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3541 map->m_len = EXT_INIT_MAX_LEN;
3542 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3543 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3544 map->m_len = EXT_UNINIT_MAX_LEN;
3546 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3547 newex.ee_block = cpu_to_le32(map->m_lblk);
3548 newex.ee_len = cpu_to_le16(map->m_len);
3549 err = ext4_ext_check_overlap(inode, &newex, path);
3550 if (err)
3551 allocated = ext4_ext_get_actual_len(&newex);
3552 else
3553 allocated = map->m_len;
3555 /* allocate new block */
3556 ar.inode = inode;
3557 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3558 ar.logical = map->m_lblk;
3559 ar.len = allocated;
3560 if (S_ISREG(inode->i_mode))
3561 ar.flags = EXT4_MB_HINT_DATA;
3562 else
3563 /* disable in-core preallocation for non-regular files */
3564 ar.flags = 0;
3565 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3566 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3567 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3568 if (!newblock)
3569 goto out2;
3570 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3571 ar.goal, newblock, allocated);
3573 /* try to insert new extent into found leaf and return */
3574 ext4_ext_store_pblock(&newex, newblock);
3575 newex.ee_len = cpu_to_le16(ar.len);
3576 /* Mark uninitialized */
3577 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3578 ext4_ext_mark_uninitialized(&newex);
3580 * io_end structure was created for every IO write to an
3581 * uninitialized extent. To avoid unnecessary conversion,
3582 * here we flag the IO that really needs the conversion.
3583 * For non asycn direct IO case, flag the inode state
3584 * that we need to perform conversion when IO is done.
3586 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3587 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3588 io->flag = EXT4_IO_END_UNWRITTEN;
3589 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3590 } else
3591 ext4_set_inode_state(inode,
3592 EXT4_STATE_DIO_UNWRITTEN);
3594 if (ext4_should_dioread_nolock(inode))
3595 map->m_flags |= EXT4_MAP_UNINIT;
3598 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3599 if (err)
3600 goto out2;
3602 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3603 if (err) {
3604 /* free data blocks we just allocated */
3605 /* not a good idea to call discard here directly,
3606 * but otherwise we'd need to call it every free() */
3607 ext4_discard_preallocations(inode);
3608 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3609 ext4_ext_get_actual_len(&newex), 0);
3610 goto out2;
3613 /* previous routine could use block we allocated */
3614 newblock = ext4_ext_pblock(&newex);
3615 allocated = ext4_ext_get_actual_len(&newex);
3616 if (allocated > map->m_len)
3617 allocated = map->m_len;
3618 map->m_flags |= EXT4_MAP_NEW;
3621 * Update reserved blocks/metadata blocks after successful
3622 * block allocation which had been deferred till now.
3624 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3625 ext4_da_update_reserve_space(inode, allocated, 1);
3628 * Cache the extent and update transaction to commit on fdatasync only
3629 * when it is _not_ an uninitialized extent.
3631 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3632 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3633 ext4_update_inode_fsync_trans(handle, inode, 1);
3634 } else
3635 ext4_update_inode_fsync_trans(handle, inode, 0);
3636 out:
3637 if (allocated > map->m_len)
3638 allocated = map->m_len;
3639 ext4_ext_show_leaf(inode, path);
3640 map->m_flags |= EXT4_MAP_MAPPED;
3641 map->m_pblk = newblock;
3642 map->m_len = allocated;
3643 out2:
3644 if (path) {
3645 ext4_ext_drop_refs(path);
3646 kfree(path);
3648 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3649 newblock, map->m_len, err ? err : allocated);
3651 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3652 punched_out : allocated;
3654 return err ? err : result;
3657 void ext4_ext_truncate(struct inode *inode)
3659 struct address_space *mapping = inode->i_mapping;
3660 struct super_block *sb = inode->i_sb;
3661 ext4_lblk_t last_block;
3662 handle_t *handle;
3663 int err = 0;
3666 * finish any pending end_io work so we won't run the risk of
3667 * converting any truncated blocks to initialized later
3669 ext4_flush_completed_IO(inode);
3672 * probably first extent we're gonna free will be last in block
3674 err = ext4_writepage_trans_blocks(inode);
3675 handle = ext4_journal_start(inode, err);
3676 if (IS_ERR(handle))
3677 return;
3679 if (inode->i_size & (sb->s_blocksize - 1))
3680 ext4_block_truncate_page(handle, mapping, inode->i_size);
3682 if (ext4_orphan_add(handle, inode))
3683 goto out_stop;
3685 down_write(&EXT4_I(inode)->i_data_sem);
3686 ext4_ext_invalidate_cache(inode);
3688 ext4_discard_preallocations(inode);
3691 * TODO: optimization is possible here.
3692 * Probably we need not scan at all,
3693 * because page truncation is enough.
3696 /* we have to know where to truncate from in crash case */
3697 EXT4_I(inode)->i_disksize = inode->i_size;
3698 ext4_mark_inode_dirty(handle, inode);
3700 last_block = (inode->i_size + sb->s_blocksize - 1)
3701 >> EXT4_BLOCK_SIZE_BITS(sb);
3702 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
3704 /* In a multi-transaction truncate, we only make the final
3705 * transaction synchronous.
3707 if (IS_SYNC(inode))
3708 ext4_handle_sync(handle);
3710 up_write(&EXT4_I(inode)->i_data_sem);
3712 out_stop:
3714 * If this was a simple ftruncate() and the file will remain alive,
3715 * then we need to clear up the orphan record which we created above.
3716 * However, if this was a real unlink then we were called by
3717 * ext4_delete_inode(), and we allow that function to clean up the
3718 * orphan info for us.
3720 if (inode->i_nlink)
3721 ext4_orphan_del(handle, inode);
3723 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3724 ext4_mark_inode_dirty(handle, inode);
3725 ext4_journal_stop(handle);
3728 static void ext4_falloc_update_inode(struct inode *inode,
3729 int mode, loff_t new_size, int update_ctime)
3731 struct timespec now;
3733 if (update_ctime) {
3734 now = current_fs_time(inode->i_sb);
3735 if (!timespec_equal(&inode->i_ctime, &now))
3736 inode->i_ctime = now;
3739 * Update only when preallocation was requested beyond
3740 * the file size.
3742 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3743 if (new_size > i_size_read(inode))
3744 i_size_write(inode, new_size);
3745 if (new_size > EXT4_I(inode)->i_disksize)
3746 ext4_update_i_disksize(inode, new_size);
3747 } else {
3749 * Mark that we allocate beyond EOF so the subsequent truncate
3750 * can proceed even if the new size is the same as i_size.
3752 if (new_size > i_size_read(inode))
3753 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3759 * preallocate space for a file. This implements ext4's fallocate file
3760 * operation, which gets called from sys_fallocate system call.
3761 * For block-mapped files, posix_fallocate should fall back to the method
3762 * of writing zeroes to the required new blocks (the same behavior which is
3763 * expected for file systems which do not support fallocate() system call).
3765 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3767 struct inode *inode = file->f_path.dentry->d_inode;
3768 handle_t *handle;
3769 loff_t new_size;
3770 unsigned int max_blocks;
3771 int ret = 0;
3772 int ret2 = 0;
3773 int retries = 0;
3774 struct ext4_map_blocks map;
3775 unsigned int credits, blkbits = inode->i_blkbits;
3778 * currently supporting (pre)allocate mode for extent-based
3779 * files _only_
3781 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3782 return -EOPNOTSUPP;
3784 /* Return error if mode is not supported */
3785 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3786 return -EOPNOTSUPP;
3788 if (mode & FALLOC_FL_PUNCH_HOLE)
3789 return ext4_punch_hole(file, offset, len);
3791 trace_ext4_fallocate_enter(inode, offset, len, mode);
3792 map.m_lblk = offset >> blkbits;
3794 * We can't just convert len to max_blocks because
3795 * If blocksize = 4096 offset = 3072 and len = 2048
3797 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3798 - map.m_lblk;
3800 * credits to insert 1 extent into extent tree
3802 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3803 mutex_lock(&inode->i_mutex);
3804 ret = inode_newsize_ok(inode, (len + offset));
3805 if (ret) {
3806 mutex_unlock(&inode->i_mutex);
3807 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3808 return ret;
3810 retry:
3811 while (ret >= 0 && ret < max_blocks) {
3812 map.m_lblk = map.m_lblk + ret;
3813 map.m_len = max_blocks = max_blocks - ret;
3814 handle = ext4_journal_start(inode, credits);
3815 if (IS_ERR(handle)) {
3816 ret = PTR_ERR(handle);
3817 break;
3819 ret = ext4_map_blocks(handle, inode, &map,
3820 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3821 EXT4_GET_BLOCKS_NO_NORMALIZE);
3822 if (ret <= 0) {
3823 #ifdef EXT4FS_DEBUG
3824 WARN_ON(ret <= 0);
3825 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3826 "returned error inode#%lu, block=%u, "
3827 "max_blocks=%u", __func__,
3828 inode->i_ino, map.m_lblk, max_blocks);
3829 #endif
3830 ext4_mark_inode_dirty(handle, inode);
3831 ret2 = ext4_journal_stop(handle);
3832 break;
3834 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3835 blkbits) >> blkbits))
3836 new_size = offset + len;
3837 else
3838 new_size = (map.m_lblk + ret) << blkbits;
3840 ext4_falloc_update_inode(inode, mode, new_size,
3841 (map.m_flags & EXT4_MAP_NEW));
3842 ext4_mark_inode_dirty(handle, inode);
3843 ret2 = ext4_journal_stop(handle);
3844 if (ret2)
3845 break;
3847 if (ret == -ENOSPC &&
3848 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3849 ret = 0;
3850 goto retry;
3852 mutex_unlock(&inode->i_mutex);
3853 trace_ext4_fallocate_exit(inode, offset, max_blocks,
3854 ret > 0 ? ret2 : ret);
3855 return ret > 0 ? ret2 : ret;
3859 * This function convert a range of blocks to written extents
3860 * The caller of this function will pass the start offset and the size.
3861 * all unwritten extents within this range will be converted to
3862 * written extents.
3864 * This function is called from the direct IO end io call back
3865 * function, to convert the fallocated extents after IO is completed.
3866 * Returns 0 on success.
3868 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3869 ssize_t len)
3871 handle_t *handle;
3872 unsigned int max_blocks;
3873 int ret = 0;
3874 int ret2 = 0;
3875 struct ext4_map_blocks map;
3876 unsigned int credits, blkbits = inode->i_blkbits;
3878 map.m_lblk = offset >> blkbits;
3880 * We can't just convert len to max_blocks because
3881 * If blocksize = 4096 offset = 3072 and len = 2048
3883 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3884 map.m_lblk);
3886 * credits to insert 1 extent into extent tree
3888 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3889 while (ret >= 0 && ret < max_blocks) {
3890 map.m_lblk += ret;
3891 map.m_len = (max_blocks -= ret);
3892 handle = ext4_journal_start(inode, credits);
3893 if (IS_ERR(handle)) {
3894 ret = PTR_ERR(handle);
3895 break;
3897 ret = ext4_map_blocks(handle, inode, &map,
3898 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3899 if (ret <= 0) {
3900 WARN_ON(ret <= 0);
3901 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3902 "returned error inode#%lu, block=%u, "
3903 "max_blocks=%u", __func__,
3904 inode->i_ino, map.m_lblk, map.m_len);
3906 ext4_mark_inode_dirty(handle, inode);
3907 ret2 = ext4_journal_stop(handle);
3908 if (ret <= 0 || ret2 )
3909 break;
3911 return ret > 0 ? ret2 : ret;
3915 * Callback function called for each extent to gather FIEMAP information.
3917 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3918 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3919 void *data)
3921 __u64 logical;
3922 __u64 physical;
3923 __u64 length;
3924 __u32 flags = 0;
3925 int ret = 0;
3926 struct fiemap_extent_info *fieinfo = data;
3927 unsigned char blksize_bits;
3929 blksize_bits = inode->i_sb->s_blocksize_bits;
3930 logical = (__u64)newex->ec_block << blksize_bits;
3932 if (newex->ec_start == 0) {
3934 * No extent in extent-tree contains block @newex->ec_start,
3935 * then the block may stay in 1)a hole or 2)delayed-extent.
3937 * Holes or delayed-extents are processed as follows.
3938 * 1. lookup dirty pages with specified range in pagecache.
3939 * If no page is got, then there is no delayed-extent and
3940 * return with EXT_CONTINUE.
3941 * 2. find the 1st mapped buffer,
3942 * 3. check if the mapped buffer is both in the request range
3943 * and a delayed buffer. If not, there is no delayed-extent,
3944 * then return.
3945 * 4. a delayed-extent is found, the extent will be collected.
3947 ext4_lblk_t end = 0;
3948 pgoff_t last_offset;
3949 pgoff_t offset;
3950 pgoff_t index;
3951 pgoff_t start_index = 0;
3952 struct page **pages = NULL;
3953 struct buffer_head *bh = NULL;
3954 struct buffer_head *head = NULL;
3955 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3957 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3958 if (pages == NULL)
3959 return -ENOMEM;
3961 offset = logical >> PAGE_SHIFT;
3962 repeat:
3963 last_offset = offset;
3964 head = NULL;
3965 ret = find_get_pages_tag(inode->i_mapping, &offset,
3966 PAGECACHE_TAG_DIRTY, nr_pages, pages);
3968 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3969 /* First time, try to find a mapped buffer. */
3970 if (ret == 0) {
3971 out:
3972 for (index = 0; index < ret; index++)
3973 page_cache_release(pages[index]);
3974 /* just a hole. */
3975 kfree(pages);
3976 return EXT_CONTINUE;
3978 index = 0;
3980 next_page:
3981 /* Try to find the 1st mapped buffer. */
3982 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3983 blksize_bits;
3984 if (!page_has_buffers(pages[index]))
3985 goto out;
3986 head = page_buffers(pages[index]);
3987 if (!head)
3988 goto out;
3990 index++;
3991 bh = head;
3992 do {
3993 if (end >= newex->ec_block +
3994 newex->ec_len)
3995 /* The buffer is out of
3996 * the request range.
3998 goto out;
4000 if (buffer_mapped(bh) &&
4001 end >= newex->ec_block) {
4002 start_index = index - 1;
4003 /* get the 1st mapped buffer. */
4004 goto found_mapped_buffer;
4007 bh = bh->b_this_page;
4008 end++;
4009 } while (bh != head);
4011 /* No mapped buffer in the range found in this page,
4012 * We need to look up next page.
4014 if (index >= ret) {
4015 /* There is no page left, but we need to limit
4016 * newex->ec_len.
4018 newex->ec_len = end - newex->ec_block;
4019 goto out;
4021 goto next_page;
4022 } else {
4023 /*Find contiguous delayed buffers. */
4024 if (ret > 0 && pages[0]->index == last_offset)
4025 head = page_buffers(pages[0]);
4026 bh = head;
4027 index = 1;
4028 start_index = 0;
4031 found_mapped_buffer:
4032 if (bh != NULL && buffer_delay(bh)) {
4033 /* 1st or contiguous delayed buffer found. */
4034 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4036 * 1st delayed buffer found, record
4037 * the start of extent.
4039 flags |= FIEMAP_EXTENT_DELALLOC;
4040 newex->ec_block = end;
4041 logical = (__u64)end << blksize_bits;
4043 /* Find contiguous delayed buffers. */
4044 do {
4045 if (!buffer_delay(bh))
4046 goto found_delayed_extent;
4047 bh = bh->b_this_page;
4048 end++;
4049 } while (bh != head);
4051 for (; index < ret; index++) {
4052 if (!page_has_buffers(pages[index])) {
4053 bh = NULL;
4054 break;
4056 head = page_buffers(pages[index]);
4057 if (!head) {
4058 bh = NULL;
4059 break;
4062 if (pages[index]->index !=
4063 pages[start_index]->index + index
4064 - start_index) {
4065 /* Blocks are not contiguous. */
4066 bh = NULL;
4067 break;
4069 bh = head;
4070 do {
4071 if (!buffer_delay(bh))
4072 /* Delayed-extent ends. */
4073 goto found_delayed_extent;
4074 bh = bh->b_this_page;
4075 end++;
4076 } while (bh != head);
4078 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4079 /* a hole found. */
4080 goto out;
4082 found_delayed_extent:
4083 newex->ec_len = min(end - newex->ec_block,
4084 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4085 if (ret == nr_pages && bh != NULL &&
4086 newex->ec_len < EXT_INIT_MAX_LEN &&
4087 buffer_delay(bh)) {
4088 /* Have not collected an extent and continue. */
4089 for (index = 0; index < ret; index++)
4090 page_cache_release(pages[index]);
4091 goto repeat;
4094 for (index = 0; index < ret; index++)
4095 page_cache_release(pages[index]);
4096 kfree(pages);
4099 physical = (__u64)newex->ec_start << blksize_bits;
4100 length = (__u64)newex->ec_len << blksize_bits;
4102 if (ex && ext4_ext_is_uninitialized(ex))
4103 flags |= FIEMAP_EXTENT_UNWRITTEN;
4105 if (next == EXT_MAX_BLOCKS)
4106 flags |= FIEMAP_EXTENT_LAST;
4108 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4109 length, flags);
4110 if (ret < 0)
4111 return ret;
4112 if (ret == 1)
4113 return EXT_BREAK;
4114 return EXT_CONTINUE;
4117 /* fiemap flags we can handle specified here */
4118 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4120 static int ext4_xattr_fiemap(struct inode *inode,
4121 struct fiemap_extent_info *fieinfo)
4123 __u64 physical = 0;
4124 __u64 length;
4125 __u32 flags = FIEMAP_EXTENT_LAST;
4126 int blockbits = inode->i_sb->s_blocksize_bits;
4127 int error = 0;
4129 /* in-inode? */
4130 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4131 struct ext4_iloc iloc;
4132 int offset; /* offset of xattr in inode */
4134 error = ext4_get_inode_loc(inode, &iloc);
4135 if (error)
4136 return error;
4137 physical = iloc.bh->b_blocknr << blockbits;
4138 offset = EXT4_GOOD_OLD_INODE_SIZE +
4139 EXT4_I(inode)->i_extra_isize;
4140 physical += offset;
4141 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4142 flags |= FIEMAP_EXTENT_DATA_INLINE;
4143 brelse(iloc.bh);
4144 } else { /* external block */
4145 physical = EXT4_I(inode)->i_file_acl << blockbits;
4146 length = inode->i_sb->s_blocksize;
4149 if (physical)
4150 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4151 length, flags);
4152 return (error < 0 ? error : 0);
4156 * ext4_ext_punch_hole
4158 * Punches a hole of "length" bytes in a file starting
4159 * at byte "offset"
4161 * @inode: The inode of the file to punch a hole in
4162 * @offset: The starting byte offset of the hole
4163 * @length: The length of the hole
4165 * Returns the number of blocks removed or negative on err
4167 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4169 struct inode *inode = file->f_path.dentry->d_inode;
4170 struct super_block *sb = inode->i_sb;
4171 struct ext4_ext_cache cache_ex;
4172 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4173 struct address_space *mapping = inode->i_mapping;
4174 struct ext4_map_blocks map;
4175 handle_t *handle;
4176 loff_t first_block_offset, last_block_offset, block_len;
4177 loff_t first_page, last_page, first_page_offset, last_page_offset;
4178 int ret, credits, blocks_released, err = 0;
4180 first_block = (offset + sb->s_blocksize - 1) >>
4181 EXT4_BLOCK_SIZE_BITS(sb);
4182 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4184 first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4185 last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
4187 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4188 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4190 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4191 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4194 * Write out all dirty pages to avoid race conditions
4195 * Then release them.
4197 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4198 err = filemap_write_and_wait_range(mapping,
4199 first_page_offset == 0 ? 0 : first_page_offset-1,
4200 last_page_offset);
4202 if (err)
4203 return err;
4206 /* Now release the pages */
4207 if (last_page_offset > first_page_offset) {
4208 truncate_inode_pages_range(mapping, first_page_offset,
4209 last_page_offset-1);
4212 /* finish any pending end_io work */
4213 ext4_flush_completed_IO(inode);
4215 credits = ext4_writepage_trans_blocks(inode);
4216 handle = ext4_journal_start(inode, credits);
4217 if (IS_ERR(handle))
4218 return PTR_ERR(handle);
4220 err = ext4_orphan_add(handle, inode);
4221 if (err)
4222 goto out;
4225 * Now we need to zero out the un block aligned data.
4226 * If the file is smaller than a block, just
4227 * zero out the middle
4229 if (first_block > last_block)
4230 ext4_block_zero_page_range(handle, mapping, offset, length);
4231 else {
4232 /* zero out the head of the hole before the first block */
4233 block_len = first_block_offset - offset;
4234 if (block_len > 0)
4235 ext4_block_zero_page_range(handle, mapping,
4236 offset, block_len);
4238 /* zero out the tail of the hole after the last block */
4239 block_len = offset + length - last_block_offset;
4240 if (block_len > 0) {
4241 ext4_block_zero_page_range(handle, mapping,
4242 last_block_offset, block_len);
4246 /* If there are no blocks to remove, return now */
4247 if (first_block >= last_block)
4248 goto out;
4250 down_write(&EXT4_I(inode)->i_data_sem);
4251 ext4_ext_invalidate_cache(inode);
4252 ext4_discard_preallocations(inode);
4255 * Loop over all the blocks and identify blocks
4256 * that need to be punched out
4258 iblock = first_block;
4259 blocks_released = 0;
4260 while (iblock < last_block) {
4261 max_blocks = last_block - iblock;
4262 num_blocks = 1;
4263 memset(&map, 0, sizeof(map));
4264 map.m_lblk = iblock;
4265 map.m_len = max_blocks;
4266 ret = ext4_ext_map_blocks(handle, inode, &map,
4267 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4269 if (ret > 0) {
4270 blocks_released += ret;
4271 num_blocks = ret;
4272 } else if (ret == 0) {
4274 * If map blocks could not find the block,
4275 * then it is in a hole. If the hole was
4276 * not already cached, then map blocks should
4277 * put it in the cache. So we can get the hole
4278 * out of the cache
4280 memset(&cache_ex, 0, sizeof(cache_ex));
4281 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4282 !cache_ex.ec_start) {
4284 /* The hole is cached */
4285 num_blocks = cache_ex.ec_block +
4286 cache_ex.ec_len - iblock;
4288 } else {
4289 /* The block could not be identified */
4290 err = -EIO;
4291 break;
4293 } else {
4294 /* Map blocks error */
4295 err = ret;
4296 break;
4299 if (num_blocks == 0) {
4300 /* This condition should never happen */
4301 ext_debug("Block lookup failed");
4302 err = -EIO;
4303 break;
4306 iblock += num_blocks;
4309 if (blocks_released > 0) {
4310 ext4_ext_invalidate_cache(inode);
4311 ext4_discard_preallocations(inode);
4314 if (IS_SYNC(inode))
4315 ext4_handle_sync(handle);
4317 up_write(&EXT4_I(inode)->i_data_sem);
4319 out:
4320 ext4_orphan_del(handle, inode);
4321 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4322 ext4_mark_inode_dirty(handle, inode);
4323 ext4_journal_stop(handle);
4324 return err;
4326 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4327 __u64 start, __u64 len)
4329 ext4_lblk_t start_blk;
4330 int error = 0;
4332 /* fallback to generic here if not in extents fmt */
4333 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4334 return generic_block_fiemap(inode, fieinfo, start, len,
4335 ext4_get_block);
4337 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4338 return -EBADR;
4340 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4341 error = ext4_xattr_fiemap(inode, fieinfo);
4342 } else {
4343 ext4_lblk_t len_blks;
4344 __u64 last_blk;
4346 start_blk = start >> inode->i_sb->s_blocksize_bits;
4347 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4348 if (last_blk >= EXT_MAX_BLOCKS)
4349 last_blk = EXT_MAX_BLOCKS-1;
4350 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4353 * Walk the extent tree gathering extent information.
4354 * ext4_ext_fiemap_cb will push extents back to user.
4356 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4357 ext4_ext_fiemap_cb, fieinfo);
4360 return error;