kvm tools, setup: Create private directory
[linux-2.6/next.git] / include / linux / perf_event.h
blobe0786e35f247664a8fd9838dced3a46d4f71257c
1 /*
2 * Performance events:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
26 * attr.type
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
36 PERF_TYPE_MAX, /* non-ABI */
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
44 enum perf_hw_id {
46 * Common hardware events, generalized by the kernel:
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
58 PERF_COUNT_HW_MAX, /* non-ABI */
62 * Generalized hardware cache events:
64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
65 * { read, write, prefetch } x
66 * { accesses, misses }
68 enum perf_hw_cache_id {
69 PERF_COUNT_HW_CACHE_L1D = 0,
70 PERF_COUNT_HW_CACHE_L1I = 1,
71 PERF_COUNT_HW_CACHE_LL = 2,
72 PERF_COUNT_HW_CACHE_DTLB = 3,
73 PERF_COUNT_HW_CACHE_ITLB = 4,
74 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79 enum perf_hw_cache_op_id {
80 PERF_COUNT_HW_CACHE_OP_READ = 0,
81 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
82 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
84 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87 enum perf_hw_cache_op_result_id {
88 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
89 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
91 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
95 * Special "software" events provided by the kernel, even if the hardware
96 * does not support performance events. These events measure various
97 * physical and sw events of the kernel (and allow the profiling of them as
98 * well):
100 enum perf_sw_ids {
101 PERF_COUNT_SW_CPU_CLOCK = 0,
102 PERF_COUNT_SW_TASK_CLOCK = 1,
103 PERF_COUNT_SW_PAGE_FAULTS = 2,
104 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
105 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
106 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
107 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
108 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
109 PERF_COUNT_SW_EMULATION_FAULTS = 8,
111 PERF_COUNT_SW_MAX, /* non-ABI */
115 * Bits that can be set in attr.sample_type to request information
116 * in the overflow packets.
118 enum perf_event_sample_format {
119 PERF_SAMPLE_IP = 1U << 0,
120 PERF_SAMPLE_TID = 1U << 1,
121 PERF_SAMPLE_TIME = 1U << 2,
122 PERF_SAMPLE_ADDR = 1U << 3,
123 PERF_SAMPLE_READ = 1U << 4,
124 PERF_SAMPLE_CALLCHAIN = 1U << 5,
125 PERF_SAMPLE_ID = 1U << 6,
126 PERF_SAMPLE_CPU = 1U << 7,
127 PERF_SAMPLE_PERIOD = 1U << 8,
128 PERF_SAMPLE_STREAM_ID = 1U << 9,
129 PERF_SAMPLE_RAW = 1U << 10,
131 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
135 * The format of the data returned by read() on a perf event fd,
136 * as specified by attr.read_format:
138 * struct read_format {
139 * { u64 value;
140 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
141 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
142 * { u64 id; } && PERF_FORMAT_ID
143 * } && !PERF_FORMAT_GROUP
145 * { u64 nr;
146 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
147 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
148 * { u64 value;
149 * { u64 id; } && PERF_FORMAT_ID
150 * } cntr[nr];
151 * } && PERF_FORMAT_GROUP
152 * };
154 enum perf_event_read_format {
155 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
156 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
157 PERF_FORMAT_ID = 1U << 2,
158 PERF_FORMAT_GROUP = 1U << 3,
160 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
163 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
166 * Hardware event_id to monitor via a performance monitoring event:
168 struct perf_event_attr {
171 * Major type: hardware/software/tracepoint/etc.
173 __u32 type;
176 * Size of the attr structure, for fwd/bwd compat.
178 __u32 size;
181 * Type specific configuration information.
183 __u64 config;
185 union {
186 __u64 sample_period;
187 __u64 sample_freq;
190 __u64 sample_type;
191 __u64 read_format;
193 __u64 disabled : 1, /* off by default */
194 inherit : 1, /* children inherit it */
195 pinned : 1, /* must always be on PMU */
196 exclusive : 1, /* only group on PMU */
197 exclude_user : 1, /* don't count user */
198 exclude_kernel : 1, /* ditto kernel */
199 exclude_hv : 1, /* ditto hypervisor */
200 exclude_idle : 1, /* don't count when idle */
201 mmap : 1, /* include mmap data */
202 comm : 1, /* include comm data */
203 freq : 1, /* use freq, not period */
204 inherit_stat : 1, /* per task counts */
205 enable_on_exec : 1, /* next exec enables */
206 task : 1, /* trace fork/exit */
207 watermark : 1, /* wakeup_watermark */
209 * precise_ip:
211 * 0 - SAMPLE_IP can have arbitrary skid
212 * 1 - SAMPLE_IP must have constant skid
213 * 2 - SAMPLE_IP requested to have 0 skid
214 * 3 - SAMPLE_IP must have 0 skid
216 * See also PERF_RECORD_MISC_EXACT_IP
218 precise_ip : 2, /* skid constraint */
219 mmap_data : 1, /* non-exec mmap data */
220 sample_id_all : 1, /* sample_type all events */
222 __reserved_1 : 45;
224 union {
225 __u32 wakeup_events; /* wakeup every n events */
226 __u32 wakeup_watermark; /* bytes before wakeup */
229 __u32 bp_type;
230 union {
231 __u64 bp_addr;
232 __u64 config1; /* extension of config */
234 union {
235 __u64 bp_len;
236 __u64 config2; /* extension of config1 */
241 * Ioctls that can be done on a perf event fd:
243 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
244 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
245 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
246 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
247 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
248 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
249 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
251 enum perf_event_ioc_flags {
252 PERF_IOC_FLAG_GROUP = 1U << 0,
256 * Structure of the page that can be mapped via mmap
258 struct perf_event_mmap_page {
259 __u32 version; /* version number of this structure */
260 __u32 compat_version; /* lowest version this is compat with */
263 * Bits needed to read the hw events in user-space.
265 * u32 seq;
266 * s64 count;
268 * do {
269 * seq = pc->lock;
271 * barrier()
272 * if (pc->index) {
273 * count = pmc_read(pc->index - 1);
274 * count += pc->offset;
275 * } else
276 * goto regular_read;
278 * barrier();
279 * } while (pc->lock != seq);
281 * NOTE: for obvious reason this only works on self-monitoring
282 * processes.
284 __u32 lock; /* seqlock for synchronization */
285 __u32 index; /* hardware event identifier */
286 __s64 offset; /* add to hardware event value */
287 __u64 time_enabled; /* time event active */
288 __u64 time_running; /* time event on cpu */
291 * Hole for extension of the self monitor capabilities
294 __u64 __reserved[123]; /* align to 1k */
297 * Control data for the mmap() data buffer.
299 * User-space reading the @data_head value should issue an rmb(), on
300 * SMP capable platforms, after reading this value -- see
301 * perf_event_wakeup().
303 * When the mapping is PROT_WRITE the @data_tail value should be
304 * written by userspace to reflect the last read data. In this case
305 * the kernel will not over-write unread data.
307 __u64 data_head; /* head in the data section */
308 __u64 data_tail; /* user-space written tail */
311 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
312 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
313 #define PERF_RECORD_MISC_KERNEL (1 << 0)
314 #define PERF_RECORD_MISC_USER (2 << 0)
315 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
316 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
317 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
320 * Indicates that the content of PERF_SAMPLE_IP points to
321 * the actual instruction that triggered the event. See also
322 * perf_event_attr::precise_ip.
324 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
326 * Reserve the last bit to indicate some extended misc field
328 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
330 struct perf_event_header {
331 __u32 type;
332 __u16 misc;
333 __u16 size;
336 enum perf_event_type {
339 * If perf_event_attr.sample_id_all is set then all event types will
340 * have the sample_type selected fields related to where/when
341 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
342 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
343 * the perf_event_header and the fields already present for the existing
344 * fields, i.e. at the end of the payload. That way a newer perf.data
345 * file will be supported by older perf tools, with these new optional
346 * fields being ignored.
348 * The MMAP events record the PROT_EXEC mappings so that we can
349 * correlate userspace IPs to code. They have the following structure:
351 * struct {
352 * struct perf_event_header header;
354 * u32 pid, tid;
355 * u64 addr;
356 * u64 len;
357 * u64 pgoff;
358 * char filename[];
359 * };
361 PERF_RECORD_MMAP = 1,
364 * struct {
365 * struct perf_event_header header;
366 * u64 id;
367 * u64 lost;
368 * };
370 PERF_RECORD_LOST = 2,
373 * struct {
374 * struct perf_event_header header;
376 * u32 pid, tid;
377 * char comm[];
378 * };
380 PERF_RECORD_COMM = 3,
383 * struct {
384 * struct perf_event_header header;
385 * u32 pid, ppid;
386 * u32 tid, ptid;
387 * u64 time;
388 * };
390 PERF_RECORD_EXIT = 4,
393 * struct {
394 * struct perf_event_header header;
395 * u64 time;
396 * u64 id;
397 * u64 stream_id;
398 * };
400 PERF_RECORD_THROTTLE = 5,
401 PERF_RECORD_UNTHROTTLE = 6,
404 * struct {
405 * struct perf_event_header header;
406 * u32 pid, ppid;
407 * u32 tid, ptid;
408 * u64 time;
409 * };
411 PERF_RECORD_FORK = 7,
414 * struct {
415 * struct perf_event_header header;
416 * u32 pid, tid;
418 * struct read_format values;
419 * };
421 PERF_RECORD_READ = 8,
424 * struct {
425 * struct perf_event_header header;
427 * { u64 ip; } && PERF_SAMPLE_IP
428 * { u32 pid, tid; } && PERF_SAMPLE_TID
429 * { u64 time; } && PERF_SAMPLE_TIME
430 * { u64 addr; } && PERF_SAMPLE_ADDR
431 * { u64 id; } && PERF_SAMPLE_ID
432 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
433 * { u32 cpu, res; } && PERF_SAMPLE_CPU
434 * { u64 period; } && PERF_SAMPLE_PERIOD
436 * { struct read_format values; } && PERF_SAMPLE_READ
438 * { u64 nr,
439 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
442 * # The RAW record below is opaque data wrt the ABI
444 * # That is, the ABI doesn't make any promises wrt to
445 * # the stability of its content, it may vary depending
446 * # on event, hardware, kernel version and phase of
447 * # the moon.
449 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
452 * { u32 size;
453 * char data[size];}&& PERF_SAMPLE_RAW
454 * };
456 PERF_RECORD_SAMPLE = 9,
458 PERF_RECORD_MAX, /* non-ABI */
461 enum perf_callchain_context {
462 PERF_CONTEXT_HV = (__u64)-32,
463 PERF_CONTEXT_KERNEL = (__u64)-128,
464 PERF_CONTEXT_USER = (__u64)-512,
466 PERF_CONTEXT_GUEST = (__u64)-2048,
467 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
468 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
470 PERF_CONTEXT_MAX = (__u64)-4095,
473 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
474 #define PERF_FLAG_FD_OUTPUT (1U << 1)
475 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
477 #ifdef __KERNEL__
479 * Kernel-internal data types and definitions:
482 #ifdef CONFIG_PERF_EVENTS
483 # include <linux/cgroup.h>
484 # include <asm/perf_event.h>
485 # include <asm/local64.h>
486 #endif
488 struct perf_guest_info_callbacks {
489 int (*is_in_guest)(void);
490 int (*is_user_mode)(void);
491 unsigned long (*get_guest_ip)(void);
494 #ifdef CONFIG_HAVE_HW_BREAKPOINT
495 #include <asm/hw_breakpoint.h>
496 #endif
498 #include <linux/list.h>
499 #include <linux/mutex.h>
500 #include <linux/rculist.h>
501 #include <linux/rcupdate.h>
502 #include <linux/spinlock.h>
503 #include <linux/hrtimer.h>
504 #include <linux/fs.h>
505 #include <linux/pid_namespace.h>
506 #include <linux/workqueue.h>
507 #include <linux/ftrace.h>
508 #include <linux/cpu.h>
509 #include <linux/irq_work.h>
510 #include <linux/jump_label.h>
511 #include <asm/atomic.h>
512 #include <asm/local.h>
514 #define PERF_MAX_STACK_DEPTH 255
516 struct perf_callchain_entry {
517 __u64 nr;
518 __u64 ip[PERF_MAX_STACK_DEPTH];
521 struct perf_raw_record {
522 u32 size;
523 void *data;
526 struct perf_branch_entry {
527 __u64 from;
528 __u64 to;
529 __u64 flags;
532 struct perf_branch_stack {
533 __u64 nr;
534 struct perf_branch_entry entries[0];
537 struct task_struct;
540 * struct hw_perf_event - performance event hardware details:
542 struct hw_perf_event {
543 #ifdef CONFIG_PERF_EVENTS
544 union {
545 struct { /* hardware */
546 u64 config;
547 u64 last_tag;
548 unsigned long config_base;
549 unsigned long event_base;
550 int idx;
551 int last_cpu;
552 unsigned int extra_reg;
553 u64 extra_config;
554 int extra_alloc;
556 struct { /* software */
557 struct hrtimer hrtimer;
559 #ifdef CONFIG_HAVE_HW_BREAKPOINT
560 struct { /* breakpoint */
561 struct arch_hw_breakpoint info;
562 struct list_head bp_list;
564 * Crufty hack to avoid the chicken and egg
565 * problem hw_breakpoint has with context
566 * creation and event initalization.
568 struct task_struct *bp_target;
570 #endif
572 int state;
573 local64_t prev_count;
574 u64 sample_period;
575 u64 last_period;
576 local64_t period_left;
577 u64 interrupts;
579 u64 freq_time_stamp;
580 u64 freq_count_stamp;
581 #endif
585 * hw_perf_event::state flags
587 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
588 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
589 #define PERF_HES_ARCH 0x04
591 struct perf_event;
594 * Common implementation detail of pmu::{start,commit,cancel}_txn
596 #define PERF_EVENT_TXN 0x1
599 * struct pmu - generic performance monitoring unit
601 struct pmu {
602 struct list_head entry;
604 struct device *dev;
605 char *name;
606 int type;
608 int * __percpu pmu_disable_count;
609 struct perf_cpu_context * __percpu pmu_cpu_context;
610 int task_ctx_nr;
613 * Fully disable/enable this PMU, can be used to protect from the PMI
614 * as well as for lazy/batch writing of the MSRs.
616 void (*pmu_enable) (struct pmu *pmu); /* optional */
617 void (*pmu_disable) (struct pmu *pmu); /* optional */
620 * Try and initialize the event for this PMU.
621 * Should return -ENOENT when the @event doesn't match this PMU.
623 int (*event_init) (struct perf_event *event);
625 #define PERF_EF_START 0x01 /* start the counter when adding */
626 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
627 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
630 * Adds/Removes a counter to/from the PMU, can be done inside
631 * a transaction, see the ->*_txn() methods.
633 int (*add) (struct perf_event *event, int flags);
634 void (*del) (struct perf_event *event, int flags);
637 * Starts/Stops a counter present on the PMU. The PMI handler
638 * should stop the counter when perf_event_overflow() returns
639 * !0. ->start() will be used to continue.
641 void (*start) (struct perf_event *event, int flags);
642 void (*stop) (struct perf_event *event, int flags);
645 * Updates the counter value of the event.
647 void (*read) (struct perf_event *event);
650 * Group events scheduling is treated as a transaction, add
651 * group events as a whole and perform one schedulability test.
652 * If the test fails, roll back the whole group
654 * Start the transaction, after this ->add() doesn't need to
655 * do schedulability tests.
657 void (*start_txn) (struct pmu *pmu); /* optional */
659 * If ->start_txn() disabled the ->add() schedulability test
660 * then ->commit_txn() is required to perform one. On success
661 * the transaction is closed. On error the transaction is kept
662 * open until ->cancel_txn() is called.
664 int (*commit_txn) (struct pmu *pmu); /* optional */
666 * Will cancel the transaction, assumes ->del() is called
667 * for each successful ->add() during the transaction.
669 void (*cancel_txn) (struct pmu *pmu); /* optional */
673 * enum perf_event_active_state - the states of a event
675 enum perf_event_active_state {
676 PERF_EVENT_STATE_ERROR = -2,
677 PERF_EVENT_STATE_OFF = -1,
678 PERF_EVENT_STATE_INACTIVE = 0,
679 PERF_EVENT_STATE_ACTIVE = 1,
682 struct file;
684 #define PERF_BUFFER_WRITABLE 0x01
686 struct perf_buffer {
687 atomic_t refcount;
688 struct rcu_head rcu_head;
689 #ifdef CONFIG_PERF_USE_VMALLOC
690 struct work_struct work;
691 int page_order; /* allocation order */
692 #endif
693 int nr_pages; /* nr of data pages */
694 int writable; /* are we writable */
696 atomic_t poll; /* POLL_ for wakeups */
698 local_t head; /* write position */
699 local_t nest; /* nested writers */
700 local_t events; /* event limit */
701 local_t wakeup; /* wakeup stamp */
702 local_t lost; /* nr records lost */
704 long watermark; /* wakeup watermark */
706 struct perf_event_mmap_page *user_page;
707 void *data_pages[0];
710 struct perf_sample_data;
712 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
713 struct perf_sample_data *,
714 struct pt_regs *regs);
716 enum perf_group_flag {
717 PERF_GROUP_SOFTWARE = 0x1,
720 #define SWEVENT_HLIST_BITS 8
721 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
723 struct swevent_hlist {
724 struct hlist_head heads[SWEVENT_HLIST_SIZE];
725 struct rcu_head rcu_head;
728 #define PERF_ATTACH_CONTEXT 0x01
729 #define PERF_ATTACH_GROUP 0x02
730 #define PERF_ATTACH_TASK 0x04
732 #ifdef CONFIG_CGROUP_PERF
734 * perf_cgroup_info keeps track of time_enabled for a cgroup.
735 * This is a per-cpu dynamically allocated data structure.
737 struct perf_cgroup_info {
738 u64 time;
739 u64 timestamp;
742 struct perf_cgroup {
743 struct cgroup_subsys_state css;
744 struct perf_cgroup_info *info; /* timing info, one per cpu */
746 #endif
749 * struct perf_event - performance event kernel representation:
751 struct perf_event {
752 #ifdef CONFIG_PERF_EVENTS
753 struct list_head group_entry;
754 struct list_head event_entry;
755 struct list_head sibling_list;
756 struct hlist_node hlist_entry;
757 int nr_siblings;
758 int group_flags;
759 struct perf_event *group_leader;
760 struct pmu *pmu;
762 enum perf_event_active_state state;
763 unsigned int attach_state;
764 local64_t count;
765 atomic64_t child_count;
768 * These are the total time in nanoseconds that the event
769 * has been enabled (i.e. eligible to run, and the task has
770 * been scheduled in, if this is a per-task event)
771 * and running (scheduled onto the CPU), respectively.
773 * They are computed from tstamp_enabled, tstamp_running and
774 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
776 u64 total_time_enabled;
777 u64 total_time_running;
780 * These are timestamps used for computing total_time_enabled
781 * and total_time_running when the event is in INACTIVE or
782 * ACTIVE state, measured in nanoseconds from an arbitrary point
783 * in time.
784 * tstamp_enabled: the notional time when the event was enabled
785 * tstamp_running: the notional time when the event was scheduled on
786 * tstamp_stopped: in INACTIVE state, the notional time when the
787 * event was scheduled off.
789 u64 tstamp_enabled;
790 u64 tstamp_running;
791 u64 tstamp_stopped;
794 * timestamp shadows the actual context timing but it can
795 * be safely used in NMI interrupt context. It reflects the
796 * context time as it was when the event was last scheduled in.
798 * ctx_time already accounts for ctx->timestamp. Therefore to
799 * compute ctx_time for a sample, simply add perf_clock().
801 u64 shadow_ctx_time;
803 struct perf_event_attr attr;
804 u16 header_size;
805 u16 id_header_size;
806 u16 read_size;
807 struct hw_perf_event hw;
809 struct perf_event_context *ctx;
810 struct file *filp;
813 * These accumulate total time (in nanoseconds) that children
814 * events have been enabled and running, respectively.
816 atomic64_t child_total_time_enabled;
817 atomic64_t child_total_time_running;
820 * Protect attach/detach and child_list:
822 struct mutex child_mutex;
823 struct list_head child_list;
824 struct perf_event *parent;
826 int oncpu;
827 int cpu;
829 struct list_head owner_entry;
830 struct task_struct *owner;
832 /* mmap bits */
833 struct mutex mmap_mutex;
834 atomic_t mmap_count;
835 int mmap_locked;
836 struct user_struct *mmap_user;
837 struct perf_buffer *buffer;
839 /* poll related */
840 wait_queue_head_t waitq;
841 struct fasync_struct *fasync;
843 /* delayed work for NMIs and such */
844 int pending_wakeup;
845 int pending_kill;
846 int pending_disable;
847 struct irq_work pending;
849 atomic_t event_limit;
851 void (*destroy)(struct perf_event *);
852 struct rcu_head rcu_head;
854 struct pid_namespace *ns;
855 u64 id;
857 perf_overflow_handler_t overflow_handler;
859 #ifdef CONFIG_EVENT_TRACING
860 struct ftrace_event_call *tp_event;
861 struct event_filter *filter;
862 #endif
864 #ifdef CONFIG_CGROUP_PERF
865 struct perf_cgroup *cgrp; /* cgroup event is attach to */
866 int cgrp_defer_enabled;
867 #endif
869 #endif /* CONFIG_PERF_EVENTS */
872 enum perf_event_context_type {
873 task_context,
874 cpu_context,
878 * struct perf_event_context - event context structure
880 * Used as a container for task events and CPU events as well:
882 struct perf_event_context {
883 struct pmu *pmu;
884 enum perf_event_context_type type;
886 * Protect the states of the events in the list,
887 * nr_active, and the list:
889 raw_spinlock_t lock;
891 * Protect the list of events. Locking either mutex or lock
892 * is sufficient to ensure the list doesn't change; to change
893 * the list you need to lock both the mutex and the spinlock.
895 struct mutex mutex;
897 struct list_head pinned_groups;
898 struct list_head flexible_groups;
899 struct list_head event_list;
900 int nr_events;
901 int nr_active;
902 int is_active;
903 int nr_stat;
904 int rotate_disable;
905 atomic_t refcount;
906 struct task_struct *task;
909 * Context clock, runs when context enabled.
911 u64 time;
912 u64 timestamp;
915 * These fields let us detect when two contexts have both
916 * been cloned (inherited) from a common ancestor.
918 struct perf_event_context *parent_ctx;
919 u64 parent_gen;
920 u64 generation;
921 int pin_count;
922 struct rcu_head rcu_head;
923 int nr_cgroups; /* cgroup events present */
927 * Number of contexts where an event can trigger:
928 * task, softirq, hardirq, nmi.
930 #define PERF_NR_CONTEXTS 4
933 * struct perf_event_cpu_context - per cpu event context structure
935 struct perf_cpu_context {
936 struct perf_event_context ctx;
937 struct perf_event_context *task_ctx;
938 int active_oncpu;
939 int exclusive;
940 struct list_head rotation_list;
941 int jiffies_interval;
942 struct pmu *active_pmu;
943 struct perf_cgroup *cgrp;
946 struct perf_output_handle {
947 struct perf_event *event;
948 struct perf_buffer *buffer;
949 unsigned long wakeup;
950 unsigned long size;
951 void *addr;
952 int page;
953 int nmi;
954 int sample;
957 #ifdef CONFIG_PERF_EVENTS
959 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
960 extern void perf_pmu_unregister(struct pmu *pmu);
962 extern int perf_num_counters(void);
963 extern const char *perf_pmu_name(void);
964 extern void __perf_event_task_sched_in(struct task_struct *task);
965 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
966 extern int perf_event_init_task(struct task_struct *child);
967 extern void perf_event_exit_task(struct task_struct *child);
968 extern void perf_event_free_task(struct task_struct *task);
969 extern void perf_event_delayed_put(struct task_struct *task);
970 extern void perf_event_print_debug(void);
971 extern void perf_pmu_disable(struct pmu *pmu);
972 extern void perf_pmu_enable(struct pmu *pmu);
973 extern int perf_event_task_disable(void);
974 extern int perf_event_task_enable(void);
975 extern void perf_event_update_userpage(struct perf_event *event);
976 extern int perf_event_release_kernel(struct perf_event *event);
977 extern struct perf_event *
978 perf_event_create_kernel_counter(struct perf_event_attr *attr,
979 int cpu,
980 struct task_struct *task,
981 perf_overflow_handler_t callback);
982 extern u64 perf_event_read_value(struct perf_event *event,
983 u64 *enabled, u64 *running);
985 struct perf_sample_data {
986 u64 type;
988 u64 ip;
989 struct {
990 u32 pid;
991 u32 tid;
992 } tid_entry;
993 u64 time;
994 u64 addr;
995 u64 id;
996 u64 stream_id;
997 struct {
998 u32 cpu;
999 u32 reserved;
1000 } cpu_entry;
1001 u64 period;
1002 struct perf_callchain_entry *callchain;
1003 struct perf_raw_record *raw;
1006 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1008 data->addr = addr;
1009 data->raw = NULL;
1012 extern void perf_output_sample(struct perf_output_handle *handle,
1013 struct perf_event_header *header,
1014 struct perf_sample_data *data,
1015 struct perf_event *event);
1016 extern void perf_prepare_sample(struct perf_event_header *header,
1017 struct perf_sample_data *data,
1018 struct perf_event *event,
1019 struct pt_regs *regs);
1021 extern int perf_event_overflow(struct perf_event *event, int nmi,
1022 struct perf_sample_data *data,
1023 struct pt_regs *regs);
1025 static inline bool is_sampling_event(struct perf_event *event)
1027 return event->attr.sample_period != 0;
1031 * Return 1 for a software event, 0 for a hardware event
1033 static inline int is_software_event(struct perf_event *event)
1035 return event->pmu->task_ctx_nr == perf_sw_context;
1038 extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1040 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
1042 #ifndef perf_arch_fetch_caller_regs
1043 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1044 #endif
1047 * Take a snapshot of the regs. Skip ip and frame pointer to
1048 * the nth caller. We only need a few of the regs:
1049 * - ip for PERF_SAMPLE_IP
1050 * - cs for user_mode() tests
1051 * - bp for callchains
1052 * - eflags, for future purposes, just in case
1054 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1056 memset(regs, 0, sizeof(*regs));
1058 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1061 static __always_inline void
1062 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
1064 struct pt_regs hot_regs;
1066 if (static_branch(&perf_swevent_enabled[event_id])) {
1067 if (!regs) {
1068 perf_fetch_caller_regs(&hot_regs);
1069 regs = &hot_regs;
1071 __perf_sw_event(event_id, nr, nmi, regs, addr);
1075 extern struct jump_label_key perf_sched_events;
1077 static inline void perf_event_task_sched_in(struct task_struct *task)
1079 if (static_branch(&perf_sched_events))
1080 __perf_event_task_sched_in(task);
1083 static inline void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1085 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1087 __perf_event_task_sched_out(task, next);
1090 extern void perf_event_mmap(struct vm_area_struct *vma);
1091 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1092 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1093 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1095 extern void perf_event_comm(struct task_struct *tsk);
1096 extern void perf_event_fork(struct task_struct *tsk);
1098 /* Callchains */
1099 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1101 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1102 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1104 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1106 if (entry->nr < PERF_MAX_STACK_DEPTH)
1107 entry->ip[entry->nr++] = ip;
1110 extern int sysctl_perf_event_paranoid;
1111 extern int sysctl_perf_event_mlock;
1112 extern int sysctl_perf_event_sample_rate;
1114 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1115 void __user *buffer, size_t *lenp,
1116 loff_t *ppos);
1118 static inline bool perf_paranoid_tracepoint_raw(void)
1120 return sysctl_perf_event_paranoid > -1;
1123 static inline bool perf_paranoid_cpu(void)
1125 return sysctl_perf_event_paranoid > 0;
1128 static inline bool perf_paranoid_kernel(void)
1130 return sysctl_perf_event_paranoid > 1;
1133 extern void perf_event_init(void);
1134 extern void perf_tp_event(u64 addr, u64 count, void *record,
1135 int entry_size, struct pt_regs *regs,
1136 struct hlist_head *head, int rctx);
1137 extern void perf_bp_event(struct perf_event *event, void *data);
1139 #ifndef perf_misc_flags
1140 # define perf_misc_flags(regs) \
1141 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1142 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1143 #endif
1145 extern int perf_output_begin(struct perf_output_handle *handle,
1146 struct perf_event *event, unsigned int size,
1147 int nmi, int sample);
1148 extern void perf_output_end(struct perf_output_handle *handle);
1149 extern void perf_output_copy(struct perf_output_handle *handle,
1150 const void *buf, unsigned int len);
1151 extern int perf_swevent_get_recursion_context(void);
1152 extern void perf_swevent_put_recursion_context(int rctx);
1153 extern void perf_event_enable(struct perf_event *event);
1154 extern void perf_event_disable(struct perf_event *event);
1155 extern void perf_event_task_tick(void);
1156 #else
1157 static inline void
1158 perf_event_task_sched_in(struct task_struct *task) { }
1159 static inline void
1160 perf_event_task_sched_out(struct task_struct *task,
1161 struct task_struct *next) { }
1162 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1163 static inline void perf_event_exit_task(struct task_struct *child) { }
1164 static inline void perf_event_free_task(struct task_struct *task) { }
1165 static inline void perf_event_delayed_put(struct task_struct *task) { }
1166 static inline void perf_event_print_debug(void) { }
1167 static inline int perf_event_task_disable(void) { return -EINVAL; }
1168 static inline int perf_event_task_enable(void) { return -EINVAL; }
1170 static inline void
1171 perf_sw_event(u32 event_id, u64 nr, int nmi,
1172 struct pt_regs *regs, u64 addr) { }
1173 static inline void
1174 perf_bp_event(struct perf_event *event, void *data) { }
1176 static inline int perf_register_guest_info_callbacks
1177 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1178 static inline int perf_unregister_guest_info_callbacks
1179 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1181 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1182 static inline void perf_event_comm(struct task_struct *tsk) { }
1183 static inline void perf_event_fork(struct task_struct *tsk) { }
1184 static inline void perf_event_init(void) { }
1185 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1186 static inline void perf_swevent_put_recursion_context(int rctx) { }
1187 static inline void perf_event_enable(struct perf_event *event) { }
1188 static inline void perf_event_disable(struct perf_event *event) { }
1189 static inline void perf_event_task_tick(void) { }
1190 #endif
1192 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1195 * This has to have a higher priority than migration_notifier in sched.c.
1197 #define perf_cpu_notifier(fn) \
1198 do { \
1199 static struct notifier_block fn##_nb __cpuinitdata = \
1200 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1201 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1202 (void *)(unsigned long)smp_processor_id()); \
1203 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1204 (void *)(unsigned long)smp_processor_id()); \
1205 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1206 (void *)(unsigned long)smp_processor_id()); \
1207 register_cpu_notifier(&fn##_nb); \
1208 } while (0)
1210 #endif /* __KERNEL__ */
1211 #endif /* _LINUX_PERF_EVENT_H */