ath9k: remove unneeded calculation of minimal calibration power
[linux-2.6/next.git] / include / linux / slub_def.h
blob0249d4175bacbb9d7b2a3a86758b8dfd0807a1e7
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
4 /*
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
13 #include <linux/kmemtrace.h>
14 #include <linux/kmemleak.h>
16 enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
27 FREE_SLAB, /* Slab freed to the page allocator */
28 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
29 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
30 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
31 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
32 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
33 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
34 ORDER_FALLBACK, /* Number of times fallback was necessary */
35 NR_SLUB_STAT_ITEMS };
37 struct kmem_cache_cpu {
38 void **freelist; /* Pointer to first free per cpu object */
39 struct page *page; /* The slab from which we are allocating */
40 int node; /* The node of the page (or -1 for debug) */
41 #ifdef CONFIG_SLUB_STATS
42 unsigned stat[NR_SLUB_STAT_ITEMS];
43 #endif
46 struct kmem_cache_node {
47 spinlock_t list_lock; /* Protect partial list and nr_partial */
48 unsigned long nr_partial;
49 struct list_head partial;
50 #ifdef CONFIG_SLUB_DEBUG
51 atomic_long_t nr_slabs;
52 atomic_long_t total_objects;
53 struct list_head full;
54 #endif
58 * Word size structure that can be atomically updated or read and that
59 * contains both the order and the number of objects that a slab of the
60 * given order would contain.
62 struct kmem_cache_order_objects {
63 unsigned long x;
67 * Slab cache management.
69 struct kmem_cache {
70 struct kmem_cache_cpu *cpu_slab;
71 /* Used for retriving partial slabs etc */
72 unsigned long flags;
73 int size; /* The size of an object including meta data */
74 int objsize; /* The size of an object without meta data */
75 int offset; /* Free pointer offset. */
76 struct kmem_cache_order_objects oo;
79 * Avoid an extra cache line for UP, SMP and for the node local to
80 * struct kmem_cache.
82 struct kmem_cache_node local_node;
84 /* Allocation and freeing of slabs */
85 struct kmem_cache_order_objects max;
86 struct kmem_cache_order_objects min;
87 gfp_t allocflags; /* gfp flags to use on each alloc */
88 int refcount; /* Refcount for slab cache destroy */
89 void (*ctor)(void *);
90 int inuse; /* Offset to metadata */
91 int align; /* Alignment */
92 unsigned long min_partial;
93 const char *name; /* Name (only for display!) */
94 struct list_head list; /* List of slab caches */
95 #ifdef CONFIG_SLUB_DEBUG
96 struct kobject kobj; /* For sysfs */
97 #endif
99 #ifdef CONFIG_NUMA
101 * Defragmentation by allocating from a remote node.
103 int remote_node_defrag_ratio;
104 struct kmem_cache_node *node[MAX_NUMNODES];
105 #endif
109 * Kmalloc subsystem.
111 #if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
112 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
113 #else
114 #define KMALLOC_MIN_SIZE 8
115 #endif
117 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
120 * Maximum kmalloc object size handled by SLUB. Larger object allocations
121 * are passed through to the page allocator. The page allocator "fastpath"
122 * is relatively slow so we need this value sufficiently high so that
123 * performance critical objects are allocated through the SLUB fastpath.
125 * This should be dropped to PAGE_SIZE / 2 once the page allocator
126 * "fastpath" becomes competitive with the slab allocator fastpaths.
128 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
130 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
132 #ifdef CONFIG_ZONE_DMA
133 #define SLUB_DMA __GFP_DMA
134 /* Reserve extra caches for potential DMA use */
135 #define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT - 6)
136 #else
137 /* Disable DMA functionality */
138 #define SLUB_DMA (__force gfp_t)0
139 #define KMALLOC_CACHES SLUB_PAGE_SHIFT
140 #endif
143 * We keep the general caches in an array of slab caches that are used for
144 * 2^x bytes of allocations.
146 extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
149 * Sorry that the following has to be that ugly but some versions of GCC
150 * have trouble with constant propagation and loops.
152 static __always_inline int kmalloc_index(size_t size)
154 if (!size)
155 return 0;
157 if (size <= KMALLOC_MIN_SIZE)
158 return KMALLOC_SHIFT_LOW;
160 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
161 return 1;
162 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
163 return 2;
164 if (size <= 8) return 3;
165 if (size <= 16) return 4;
166 if (size <= 32) return 5;
167 if (size <= 64) return 6;
168 if (size <= 128) return 7;
169 if (size <= 256) return 8;
170 if (size <= 512) return 9;
171 if (size <= 1024) return 10;
172 if (size <= 2 * 1024) return 11;
173 if (size <= 4 * 1024) return 12;
175 * The following is only needed to support architectures with a larger page
176 * size than 4k.
178 if (size <= 8 * 1024) return 13;
179 if (size <= 16 * 1024) return 14;
180 if (size <= 32 * 1024) return 15;
181 if (size <= 64 * 1024) return 16;
182 if (size <= 128 * 1024) return 17;
183 if (size <= 256 * 1024) return 18;
184 if (size <= 512 * 1024) return 19;
185 if (size <= 1024 * 1024) return 20;
186 if (size <= 2 * 1024 * 1024) return 21;
187 return -1;
190 * What we really wanted to do and cannot do because of compiler issues is:
191 * int i;
192 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
193 * if (size <= (1 << i))
194 * return i;
199 * Find the slab cache for a given combination of allocation flags and size.
201 * This ought to end up with a global pointer to the right cache
202 * in kmalloc_caches.
204 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
206 int index = kmalloc_index(size);
208 if (index == 0)
209 return NULL;
211 return &kmalloc_caches[index];
214 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
215 void *__kmalloc(size_t size, gfp_t flags);
217 #ifdef CONFIG_TRACING
218 extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
219 #else
220 static __always_inline void *
221 kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
223 return kmem_cache_alloc(s, gfpflags);
225 #endif
227 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
229 unsigned int order = get_order(size);
230 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
232 kmemleak_alloc(ret, size, 1, flags);
233 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
235 return ret;
238 static __always_inline void *kmalloc(size_t size, gfp_t flags)
240 void *ret;
242 if (__builtin_constant_p(size)) {
243 if (size > SLUB_MAX_SIZE)
244 return kmalloc_large(size, flags);
246 if (!(flags & SLUB_DMA)) {
247 struct kmem_cache *s = kmalloc_slab(size);
249 if (!s)
250 return ZERO_SIZE_PTR;
252 ret = kmem_cache_alloc_notrace(s, flags);
254 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
256 return ret;
259 return __kmalloc(size, flags);
262 #ifdef CONFIG_NUMA
263 void *__kmalloc_node(size_t size, gfp_t flags, int node);
264 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
266 #ifdef CONFIG_TRACING
267 extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
268 gfp_t gfpflags,
269 int node);
270 #else
271 static __always_inline void *
272 kmem_cache_alloc_node_notrace(struct kmem_cache *s,
273 gfp_t gfpflags,
274 int node)
276 return kmem_cache_alloc_node(s, gfpflags, node);
278 #endif
280 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
282 void *ret;
284 if (__builtin_constant_p(size) &&
285 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
286 struct kmem_cache *s = kmalloc_slab(size);
288 if (!s)
289 return ZERO_SIZE_PTR;
291 ret = kmem_cache_alloc_node_notrace(s, flags, node);
293 trace_kmalloc_node(_THIS_IP_, ret,
294 size, s->size, flags, node);
296 return ret;
298 return __kmalloc_node(size, flags, node);
300 #endif
302 #endif /* _LINUX_SLUB_DEF_H */