HID: move reset leds quirk
[linux-2.6/next.git] / arch / mips / math-emu / cp1emu.c
blobb08fc65c13a63c5c24e50acfca5328ae3d90337c
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 * http://www.algor.co.uk
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000 MIPS Technologies, Inc.
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
24 * A complete emulator for MIPS coprocessor 1 instructions. This is
25 * required for #float(switch) or #float(trap), where it catches all
26 * COP1 instructions via the "CoProcessor Unusable" exception.
28 * More surprisingly it is also required for #float(ieee), to help out
29 * the hardware fpu at the boundaries of the IEEE-754 representation
30 * (denormalised values, infinities, underflow, etc). It is made
31 * quite nasty because emulation of some non-COP1 instructions is
32 * required, e.g. in branch delay slots.
34 * Note if you know that you won't have an fpu, then you'll get much
35 * better performance by compiling with -msoft-float!
37 #include <linux/sched.h>
38 #include <linux/debugfs.h>
40 #include <asm/inst.h>
41 #include <asm/bootinfo.h>
42 #include <asm/processor.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <asm/mipsregs.h>
46 #include <asm/fpu_emulator.h>
47 #include <asm/uaccess.h>
48 #include <asm/branch.h>
50 #include "ieee754.h"
51 #include "dsemul.h"
53 /* Strap kernel emulator for full MIPS IV emulation */
55 #ifdef __mips
56 #undef __mips
57 #endif
58 #define __mips 4
60 /* Function which emulates a floating point instruction. */
62 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
63 mips_instruction);
65 #if __mips >= 4 && __mips != 32
66 static int fpux_emu(struct pt_regs *,
67 struct mips_fpu_struct *, mips_instruction);
68 #endif
70 /* Further private data for which no space exists in mips_fpu_struct */
72 struct mips_fpu_emulator_stats fpuemustats;
74 /* Control registers */
76 #define FPCREG_RID 0 /* $0 = revision id */
77 #define FPCREG_CSR 31 /* $31 = csr */
79 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
80 static const unsigned char ieee_rm[4] = {
81 [FPU_CSR_RN] = IEEE754_RN,
82 [FPU_CSR_RZ] = IEEE754_RZ,
83 [FPU_CSR_RU] = IEEE754_RU,
84 [FPU_CSR_RD] = IEEE754_RD,
86 /* Convert IEEE library modes to Mips rounding mode (0..3). */
87 static const unsigned char mips_rm[4] = {
88 [IEEE754_RN] = FPU_CSR_RN,
89 [IEEE754_RZ] = FPU_CSR_RZ,
90 [IEEE754_RD] = FPU_CSR_RD,
91 [IEEE754_RU] = FPU_CSR_RU,
94 #if __mips >= 4
95 /* convert condition code register number to csr bit */
96 static const unsigned int fpucondbit[8] = {
97 FPU_CSR_COND0,
98 FPU_CSR_COND1,
99 FPU_CSR_COND2,
100 FPU_CSR_COND3,
101 FPU_CSR_COND4,
102 FPU_CSR_COND5,
103 FPU_CSR_COND6,
104 FPU_CSR_COND7
106 #endif
110 * Redundant with logic already in kernel/branch.c,
111 * embedded in compute_return_epc. At some point,
112 * a single subroutine should be used across both
113 * modules.
115 static int isBranchInstr(mips_instruction * i)
117 switch (MIPSInst_OPCODE(*i)) {
118 case spec_op:
119 switch (MIPSInst_FUNC(*i)) {
120 case jalr_op:
121 case jr_op:
122 return 1;
124 break;
126 case bcond_op:
127 switch (MIPSInst_RT(*i)) {
128 case bltz_op:
129 case bgez_op:
130 case bltzl_op:
131 case bgezl_op:
132 case bltzal_op:
133 case bgezal_op:
134 case bltzall_op:
135 case bgezall_op:
136 return 1;
138 break;
140 case j_op:
141 case jal_op:
142 case jalx_op:
143 case beq_op:
144 case bne_op:
145 case blez_op:
146 case bgtz_op:
147 case beql_op:
148 case bnel_op:
149 case blezl_op:
150 case bgtzl_op:
151 return 1;
153 case cop0_op:
154 case cop1_op:
155 case cop2_op:
156 case cop1x_op:
157 if (MIPSInst_RS(*i) == bc_op)
158 return 1;
159 break;
162 return 0;
166 * In the Linux kernel, we support selection of FPR format on the
167 * basis of the Status.FR bit. This does imply that, if a full 32
168 * FPRs are desired, there needs to be a flip-flop that can be written
169 * to one at that bit position. In any case, O32 MIPS ABI uses
170 * only the even FPRs (Status.FR = 0).
173 #define CP0_STATUS_FR_SUPPORT
175 #ifdef CP0_STATUS_FR_SUPPORT
176 #define FR_BIT ST0_FR
177 #else
178 #define FR_BIT 0
179 #endif
181 #define SIFROMREG(si, x) ((si) = \
182 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
183 (int)ctx->fpr[x] : \
184 (int)(ctx->fpr[x & ~1] >> 32 ))
185 #define SITOREG(si, x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
186 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
187 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
188 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
190 #define DIFROMREG(di, x) ((di) = \
191 ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
192 #define DITOREG(di, x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
193 = (di))
195 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
196 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
197 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
198 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
201 * Emulate the single floating point instruction pointed at by EPC.
202 * Two instructions if the instruction is in a branch delay slot.
205 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
207 mips_instruction ir;
208 unsigned long emulpc, contpc;
209 unsigned int cond;
211 if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
212 fpuemustats.errors++;
213 return SIGBUS;
216 /* XXX NEC Vr54xx bug workaround */
217 if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
218 xcp->cp0_cause &= ~CAUSEF_BD;
220 if (xcp->cp0_cause & CAUSEF_BD) {
222 * The instruction to be emulated is in a branch delay slot
223 * which means that we have to emulate the branch instruction
224 * BEFORE we do the cop1 instruction.
226 * This branch could be a COP1 branch, but in that case we
227 * would have had a trap for that instruction, and would not
228 * come through this route.
230 * Linux MIPS branch emulator operates on context, updating the
231 * cp0_epc.
233 emulpc = xcp->cp0_epc + 4; /* Snapshot emulation target */
235 if (__compute_return_epc(xcp)) {
236 #ifdef CP1DBG
237 printk("failed to emulate branch at %p\n",
238 (void *) (xcp->cp0_epc));
239 #endif
240 return SIGILL;
242 if (get_user(ir, (mips_instruction __user *) emulpc)) {
243 fpuemustats.errors++;
244 return SIGBUS;
246 /* __compute_return_epc() will have updated cp0_epc */
247 contpc = xcp->cp0_epc;
248 /* In order not to confuse ptrace() et al, tweak context */
249 xcp->cp0_epc = emulpc - 4;
250 } else {
251 emulpc = xcp->cp0_epc;
252 contpc = xcp->cp0_epc + 4;
255 emul:
256 fpuemustats.emulated++;
257 switch (MIPSInst_OPCODE(ir)) {
258 case ldc1_op:{
259 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
260 MIPSInst_SIMM(ir));
261 u64 val;
263 fpuemustats.loads++;
264 if (get_user(val, va)) {
265 fpuemustats.errors++;
266 return SIGBUS;
268 DITOREG(val, MIPSInst_RT(ir));
269 break;
272 case sdc1_op:{
273 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
274 MIPSInst_SIMM(ir));
275 u64 val;
277 fpuemustats.stores++;
278 DIFROMREG(val, MIPSInst_RT(ir));
279 if (put_user(val, va)) {
280 fpuemustats.errors++;
281 return SIGBUS;
283 break;
286 case lwc1_op:{
287 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
288 MIPSInst_SIMM(ir));
289 u32 val;
291 fpuemustats.loads++;
292 if (get_user(val, va)) {
293 fpuemustats.errors++;
294 return SIGBUS;
296 SITOREG(val, MIPSInst_RT(ir));
297 break;
300 case swc1_op:{
301 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
302 MIPSInst_SIMM(ir));
303 u32 val;
305 fpuemustats.stores++;
306 SIFROMREG(val, MIPSInst_RT(ir));
307 if (put_user(val, va)) {
308 fpuemustats.errors++;
309 return SIGBUS;
311 break;
314 case cop1_op:
315 switch (MIPSInst_RS(ir)) {
317 #if defined(__mips64)
318 case dmfc_op:
319 /* copregister fs -> gpr[rt] */
320 if (MIPSInst_RT(ir) != 0) {
321 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
322 MIPSInst_RD(ir));
324 break;
326 case dmtc_op:
327 /* copregister fs <- rt */
328 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
329 break;
330 #endif
332 case mfc_op:
333 /* copregister rd -> gpr[rt] */
334 if (MIPSInst_RT(ir) != 0) {
335 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
336 MIPSInst_RD(ir));
338 break;
340 case mtc_op:
341 /* copregister rd <- rt */
342 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
343 break;
345 case cfc_op:{
346 /* cop control register rd -> gpr[rt] */
347 u32 value;
349 if (ir == CP1UNDEF) {
350 return do_dsemulret(xcp);
352 if (MIPSInst_RD(ir) == FPCREG_CSR) {
353 value = ctx->fcr31;
354 value = (value & ~0x3) | mips_rm[value & 0x3];
355 #ifdef CSRTRACE
356 printk("%p gpr[%d]<-csr=%08x\n",
357 (void *) (xcp->cp0_epc),
358 MIPSInst_RT(ir), value);
359 #endif
361 else if (MIPSInst_RD(ir) == FPCREG_RID)
362 value = 0;
363 else
364 value = 0;
365 if (MIPSInst_RT(ir))
366 xcp->regs[MIPSInst_RT(ir)] = value;
367 break;
370 case ctc_op:{
371 /* copregister rd <- rt */
372 u32 value;
374 if (MIPSInst_RT(ir) == 0)
375 value = 0;
376 else
377 value = xcp->regs[MIPSInst_RT(ir)];
379 /* we only have one writable control reg
381 if (MIPSInst_RD(ir) == FPCREG_CSR) {
382 #ifdef CSRTRACE
383 printk("%p gpr[%d]->csr=%08x\n",
384 (void *) (xcp->cp0_epc),
385 MIPSInst_RT(ir), value);
386 #endif
387 value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
388 ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
389 /* convert to ieee library modes */
390 ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
392 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
393 return SIGFPE;
395 break;
398 case bc_op:{
399 int likely = 0;
401 if (xcp->cp0_cause & CAUSEF_BD)
402 return SIGILL;
404 #if __mips >= 4
405 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
406 #else
407 cond = ctx->fcr31 & FPU_CSR_COND;
408 #endif
409 switch (MIPSInst_RT(ir) & 3) {
410 case bcfl_op:
411 likely = 1;
412 case bcf_op:
413 cond = !cond;
414 break;
415 case bctl_op:
416 likely = 1;
417 case bct_op:
418 break;
419 default:
420 /* thats an illegal instruction */
421 return SIGILL;
424 xcp->cp0_cause |= CAUSEF_BD;
425 if (cond) {
426 /* branch taken: emulate dslot
427 * instruction
429 xcp->cp0_epc += 4;
430 contpc = (xcp->cp0_epc +
431 (MIPSInst_SIMM(ir) << 2));
433 if (get_user(ir,
434 (mips_instruction __user *) xcp->cp0_epc)) {
435 fpuemustats.errors++;
436 return SIGBUS;
439 switch (MIPSInst_OPCODE(ir)) {
440 case lwc1_op:
441 case swc1_op:
442 #if (__mips >= 2 || defined(__mips64))
443 case ldc1_op:
444 case sdc1_op:
445 #endif
446 case cop1_op:
447 #if __mips >= 4 && __mips != 32
448 case cop1x_op:
449 #endif
450 /* its one of ours */
451 goto emul;
452 #if __mips >= 4
453 case spec_op:
454 if (MIPSInst_FUNC(ir) == movc_op)
455 goto emul;
456 break;
457 #endif
461 * Single step the non-cp1
462 * instruction in the dslot
464 return mips_dsemul(xcp, ir, contpc);
466 else {
467 /* branch not taken */
468 if (likely) {
470 * branch likely nullifies
471 * dslot if not taken
473 xcp->cp0_epc += 4;
474 contpc += 4;
476 * else continue & execute
477 * dslot as normal insn
481 break;
484 default:
485 if (!(MIPSInst_RS(ir) & 0x10))
486 return SIGILL;
488 int sig;
490 /* a real fpu computation instruction */
491 if ((sig = fpu_emu(xcp, ctx, ir)))
492 return sig;
495 break;
497 #if __mips >= 4 && __mips != 32
498 case cop1x_op:{
499 int sig;
501 if ((sig = fpux_emu(xcp, ctx, ir)))
502 return sig;
503 break;
505 #endif
507 #if __mips >= 4
508 case spec_op:
509 if (MIPSInst_FUNC(ir) != movc_op)
510 return SIGILL;
511 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
512 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
513 xcp->regs[MIPSInst_RD(ir)] =
514 xcp->regs[MIPSInst_RS(ir)];
515 break;
516 #endif
518 default:
519 return SIGILL;
522 /* we did it !! */
523 xcp->cp0_epc = contpc;
524 xcp->cp0_cause &= ~CAUSEF_BD;
526 return 0;
530 * Conversion table from MIPS compare ops 48-63
531 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
533 static const unsigned char cmptab[8] = {
534 0, /* cmp_0 (sig) cmp_sf */
535 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
536 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
537 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
538 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
539 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
540 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
541 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
545 #if __mips >= 4 && __mips != 32
548 * Additional MIPS4 instructions
551 #define DEF3OP(name, p, f1, f2, f3) \
552 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
553 ieee754##p t) \
555 struct _ieee754_csr ieee754_csr_save; \
556 s = f1(s, t); \
557 ieee754_csr_save = ieee754_csr; \
558 s = f2(s, r); \
559 ieee754_csr_save.cx |= ieee754_csr.cx; \
560 ieee754_csr_save.sx |= ieee754_csr.sx; \
561 s = f3(s); \
562 ieee754_csr.cx |= ieee754_csr_save.cx; \
563 ieee754_csr.sx |= ieee754_csr_save.sx; \
564 return s; \
567 static ieee754dp fpemu_dp_recip(ieee754dp d)
569 return ieee754dp_div(ieee754dp_one(0), d);
572 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
574 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
577 static ieee754sp fpemu_sp_recip(ieee754sp s)
579 return ieee754sp_div(ieee754sp_one(0), s);
582 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
584 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
587 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
588 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
589 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
590 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
591 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
592 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
593 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
594 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
596 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
597 mips_instruction ir)
599 unsigned rcsr = 0; /* resulting csr */
601 fpuemustats.cp1xops++;
603 switch (MIPSInst_FMA_FFMT(ir)) {
604 case s_fmt:{ /* 0 */
606 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
607 ieee754sp fd, fr, fs, ft;
608 u32 __user *va;
609 u32 val;
611 switch (MIPSInst_FUNC(ir)) {
612 case lwxc1_op:
613 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
614 xcp->regs[MIPSInst_FT(ir)]);
616 fpuemustats.loads++;
617 if (get_user(val, va)) {
618 fpuemustats.errors++;
619 return SIGBUS;
621 SITOREG(val, MIPSInst_FD(ir));
622 break;
624 case swxc1_op:
625 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
626 xcp->regs[MIPSInst_FT(ir)]);
628 fpuemustats.stores++;
630 SIFROMREG(val, MIPSInst_FS(ir));
631 if (put_user(val, va)) {
632 fpuemustats.errors++;
633 return SIGBUS;
635 break;
637 case madd_s_op:
638 handler = fpemu_sp_madd;
639 goto scoptop;
640 case msub_s_op:
641 handler = fpemu_sp_msub;
642 goto scoptop;
643 case nmadd_s_op:
644 handler = fpemu_sp_nmadd;
645 goto scoptop;
646 case nmsub_s_op:
647 handler = fpemu_sp_nmsub;
648 goto scoptop;
650 scoptop:
651 SPFROMREG(fr, MIPSInst_FR(ir));
652 SPFROMREG(fs, MIPSInst_FS(ir));
653 SPFROMREG(ft, MIPSInst_FT(ir));
654 fd = (*handler) (fr, fs, ft);
655 SPTOREG(fd, MIPSInst_FD(ir));
657 copcsr:
658 if (ieee754_cxtest(IEEE754_INEXACT))
659 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
660 if (ieee754_cxtest(IEEE754_UNDERFLOW))
661 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
662 if (ieee754_cxtest(IEEE754_OVERFLOW))
663 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
664 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
665 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
667 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
668 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
669 /*printk ("SIGFPE: fpu csr = %08x\n",
670 ctx->fcr31); */
671 return SIGFPE;
674 break;
676 default:
677 return SIGILL;
679 break;
682 case d_fmt:{ /* 1 */
683 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
684 ieee754dp fd, fr, fs, ft;
685 u64 __user *va;
686 u64 val;
688 switch (MIPSInst_FUNC(ir)) {
689 case ldxc1_op:
690 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
691 xcp->regs[MIPSInst_FT(ir)]);
693 fpuemustats.loads++;
694 if (get_user(val, va)) {
695 fpuemustats.errors++;
696 return SIGBUS;
698 DITOREG(val, MIPSInst_FD(ir));
699 break;
701 case sdxc1_op:
702 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
703 xcp->regs[MIPSInst_FT(ir)]);
705 fpuemustats.stores++;
706 DIFROMREG(val, MIPSInst_FS(ir));
707 if (put_user(val, va)) {
708 fpuemustats.errors++;
709 return SIGBUS;
711 break;
713 case madd_d_op:
714 handler = fpemu_dp_madd;
715 goto dcoptop;
716 case msub_d_op:
717 handler = fpemu_dp_msub;
718 goto dcoptop;
719 case nmadd_d_op:
720 handler = fpemu_dp_nmadd;
721 goto dcoptop;
722 case nmsub_d_op:
723 handler = fpemu_dp_nmsub;
724 goto dcoptop;
726 dcoptop:
727 DPFROMREG(fr, MIPSInst_FR(ir));
728 DPFROMREG(fs, MIPSInst_FS(ir));
729 DPFROMREG(ft, MIPSInst_FT(ir));
730 fd = (*handler) (fr, fs, ft);
731 DPTOREG(fd, MIPSInst_FD(ir));
732 goto copcsr;
734 default:
735 return SIGILL;
737 break;
740 case 0x7: /* 7 */
741 if (MIPSInst_FUNC(ir) != pfetch_op) {
742 return SIGILL;
744 /* ignore prefx operation */
745 break;
747 default:
748 return SIGILL;
751 return 0;
753 #endif
758 * Emulate a single COP1 arithmetic instruction.
760 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
761 mips_instruction ir)
763 int rfmt; /* resulting format */
764 unsigned rcsr = 0; /* resulting csr */
765 unsigned cond;
766 union {
767 ieee754dp d;
768 ieee754sp s;
769 int w;
770 #ifdef __mips64
771 s64 l;
772 #endif
773 } rv; /* resulting value */
775 fpuemustats.cp1ops++;
776 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
777 case s_fmt:{ /* 0 */
778 union {
779 ieee754sp(*b) (ieee754sp, ieee754sp);
780 ieee754sp(*u) (ieee754sp);
781 } handler;
783 switch (MIPSInst_FUNC(ir)) {
784 /* binary ops */
785 case fadd_op:
786 handler.b = ieee754sp_add;
787 goto scopbop;
788 case fsub_op:
789 handler.b = ieee754sp_sub;
790 goto scopbop;
791 case fmul_op:
792 handler.b = ieee754sp_mul;
793 goto scopbop;
794 case fdiv_op:
795 handler.b = ieee754sp_div;
796 goto scopbop;
798 /* unary ops */
799 #if __mips >= 2 || defined(__mips64)
800 case fsqrt_op:
801 handler.u = ieee754sp_sqrt;
802 goto scopuop;
803 #endif
804 #if __mips >= 4 && __mips != 32
805 case frsqrt_op:
806 handler.u = fpemu_sp_rsqrt;
807 goto scopuop;
808 case frecip_op:
809 handler.u = fpemu_sp_recip;
810 goto scopuop;
811 #endif
812 #if __mips >= 4
813 case fmovc_op:
814 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
815 if (((ctx->fcr31 & cond) != 0) !=
816 ((MIPSInst_FT(ir) & 1) != 0))
817 return 0;
818 SPFROMREG(rv.s, MIPSInst_FS(ir));
819 break;
820 case fmovz_op:
821 if (xcp->regs[MIPSInst_FT(ir)] != 0)
822 return 0;
823 SPFROMREG(rv.s, MIPSInst_FS(ir));
824 break;
825 case fmovn_op:
826 if (xcp->regs[MIPSInst_FT(ir)] == 0)
827 return 0;
828 SPFROMREG(rv.s, MIPSInst_FS(ir));
829 break;
830 #endif
831 case fabs_op:
832 handler.u = ieee754sp_abs;
833 goto scopuop;
834 case fneg_op:
835 handler.u = ieee754sp_neg;
836 goto scopuop;
837 case fmov_op:
838 /* an easy one */
839 SPFROMREG(rv.s, MIPSInst_FS(ir));
840 goto copcsr;
842 /* binary op on handler */
843 scopbop:
845 ieee754sp fs, ft;
847 SPFROMREG(fs, MIPSInst_FS(ir));
848 SPFROMREG(ft, MIPSInst_FT(ir));
850 rv.s = (*handler.b) (fs, ft);
851 goto copcsr;
853 scopuop:
855 ieee754sp fs;
857 SPFROMREG(fs, MIPSInst_FS(ir));
858 rv.s = (*handler.u) (fs);
859 goto copcsr;
861 copcsr:
862 if (ieee754_cxtest(IEEE754_INEXACT))
863 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
864 if (ieee754_cxtest(IEEE754_UNDERFLOW))
865 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
866 if (ieee754_cxtest(IEEE754_OVERFLOW))
867 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
868 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
869 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
870 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
871 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
872 break;
874 /* unary conv ops */
875 case fcvts_op:
876 return SIGILL; /* not defined */
877 case fcvtd_op:{
878 ieee754sp fs;
880 SPFROMREG(fs, MIPSInst_FS(ir));
881 rv.d = ieee754dp_fsp(fs);
882 rfmt = d_fmt;
883 goto copcsr;
885 case fcvtw_op:{
886 ieee754sp fs;
888 SPFROMREG(fs, MIPSInst_FS(ir));
889 rv.w = ieee754sp_tint(fs);
890 rfmt = w_fmt;
891 goto copcsr;
894 #if __mips >= 2 || defined(__mips64)
895 case fround_op:
896 case ftrunc_op:
897 case fceil_op:
898 case ffloor_op:{
899 unsigned int oldrm = ieee754_csr.rm;
900 ieee754sp fs;
902 SPFROMREG(fs, MIPSInst_FS(ir));
903 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
904 rv.w = ieee754sp_tint(fs);
905 ieee754_csr.rm = oldrm;
906 rfmt = w_fmt;
907 goto copcsr;
909 #endif /* __mips >= 2 */
911 #if defined(__mips64)
912 case fcvtl_op:{
913 ieee754sp fs;
915 SPFROMREG(fs, MIPSInst_FS(ir));
916 rv.l = ieee754sp_tlong(fs);
917 rfmt = l_fmt;
918 goto copcsr;
921 case froundl_op:
922 case ftruncl_op:
923 case fceill_op:
924 case ffloorl_op:{
925 unsigned int oldrm = ieee754_csr.rm;
926 ieee754sp fs;
928 SPFROMREG(fs, MIPSInst_FS(ir));
929 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
930 rv.l = ieee754sp_tlong(fs);
931 ieee754_csr.rm = oldrm;
932 rfmt = l_fmt;
933 goto copcsr;
935 #endif /* defined(__mips64) */
937 default:
938 if (MIPSInst_FUNC(ir) >= fcmp_op) {
939 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
940 ieee754sp fs, ft;
942 SPFROMREG(fs, MIPSInst_FS(ir));
943 SPFROMREG(ft, MIPSInst_FT(ir));
944 rv.w = ieee754sp_cmp(fs, ft,
945 cmptab[cmpop & 0x7], cmpop & 0x8);
946 rfmt = -1;
947 if ((cmpop & 0x8) && ieee754_cxtest
948 (IEEE754_INVALID_OPERATION))
949 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
950 else
951 goto copcsr;
954 else {
955 return SIGILL;
957 break;
959 break;
962 case d_fmt:{
963 union {
964 ieee754dp(*b) (ieee754dp, ieee754dp);
965 ieee754dp(*u) (ieee754dp);
966 } handler;
968 switch (MIPSInst_FUNC(ir)) {
969 /* binary ops */
970 case fadd_op:
971 handler.b = ieee754dp_add;
972 goto dcopbop;
973 case fsub_op:
974 handler.b = ieee754dp_sub;
975 goto dcopbop;
976 case fmul_op:
977 handler.b = ieee754dp_mul;
978 goto dcopbop;
979 case fdiv_op:
980 handler.b = ieee754dp_div;
981 goto dcopbop;
983 /* unary ops */
984 #if __mips >= 2 || defined(__mips64)
985 case fsqrt_op:
986 handler.u = ieee754dp_sqrt;
987 goto dcopuop;
988 #endif
989 #if __mips >= 4 && __mips != 32
990 case frsqrt_op:
991 handler.u = fpemu_dp_rsqrt;
992 goto dcopuop;
993 case frecip_op:
994 handler.u = fpemu_dp_recip;
995 goto dcopuop;
996 #endif
997 #if __mips >= 4
998 case fmovc_op:
999 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1000 if (((ctx->fcr31 & cond) != 0) !=
1001 ((MIPSInst_FT(ir) & 1) != 0))
1002 return 0;
1003 DPFROMREG(rv.d, MIPSInst_FS(ir));
1004 break;
1005 case fmovz_op:
1006 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1007 return 0;
1008 DPFROMREG(rv.d, MIPSInst_FS(ir));
1009 break;
1010 case fmovn_op:
1011 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1012 return 0;
1013 DPFROMREG(rv.d, MIPSInst_FS(ir));
1014 break;
1015 #endif
1016 case fabs_op:
1017 handler.u = ieee754dp_abs;
1018 goto dcopuop;
1020 case fneg_op:
1021 handler.u = ieee754dp_neg;
1022 goto dcopuop;
1024 case fmov_op:
1025 /* an easy one */
1026 DPFROMREG(rv.d, MIPSInst_FS(ir));
1027 goto copcsr;
1029 /* binary op on handler */
1030 dcopbop:{
1031 ieee754dp fs, ft;
1033 DPFROMREG(fs, MIPSInst_FS(ir));
1034 DPFROMREG(ft, MIPSInst_FT(ir));
1036 rv.d = (*handler.b) (fs, ft);
1037 goto copcsr;
1039 dcopuop:{
1040 ieee754dp fs;
1042 DPFROMREG(fs, MIPSInst_FS(ir));
1043 rv.d = (*handler.u) (fs);
1044 goto copcsr;
1047 /* unary conv ops */
1048 case fcvts_op:{
1049 ieee754dp fs;
1051 DPFROMREG(fs, MIPSInst_FS(ir));
1052 rv.s = ieee754sp_fdp(fs);
1053 rfmt = s_fmt;
1054 goto copcsr;
1056 case fcvtd_op:
1057 return SIGILL; /* not defined */
1059 case fcvtw_op:{
1060 ieee754dp fs;
1062 DPFROMREG(fs, MIPSInst_FS(ir));
1063 rv.w = ieee754dp_tint(fs); /* wrong */
1064 rfmt = w_fmt;
1065 goto copcsr;
1068 #if __mips >= 2 || defined(__mips64)
1069 case fround_op:
1070 case ftrunc_op:
1071 case fceil_op:
1072 case ffloor_op:{
1073 unsigned int oldrm = ieee754_csr.rm;
1074 ieee754dp fs;
1076 DPFROMREG(fs, MIPSInst_FS(ir));
1077 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1078 rv.w = ieee754dp_tint(fs);
1079 ieee754_csr.rm = oldrm;
1080 rfmt = w_fmt;
1081 goto copcsr;
1083 #endif
1085 #if defined(__mips64)
1086 case fcvtl_op:{
1087 ieee754dp fs;
1089 DPFROMREG(fs, MIPSInst_FS(ir));
1090 rv.l = ieee754dp_tlong(fs);
1091 rfmt = l_fmt;
1092 goto copcsr;
1095 case froundl_op:
1096 case ftruncl_op:
1097 case fceill_op:
1098 case ffloorl_op:{
1099 unsigned int oldrm = ieee754_csr.rm;
1100 ieee754dp fs;
1102 DPFROMREG(fs, MIPSInst_FS(ir));
1103 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1104 rv.l = ieee754dp_tlong(fs);
1105 ieee754_csr.rm = oldrm;
1106 rfmt = l_fmt;
1107 goto copcsr;
1109 #endif /* __mips >= 3 */
1111 default:
1112 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1113 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1114 ieee754dp fs, ft;
1116 DPFROMREG(fs, MIPSInst_FS(ir));
1117 DPFROMREG(ft, MIPSInst_FT(ir));
1118 rv.w = ieee754dp_cmp(fs, ft,
1119 cmptab[cmpop & 0x7], cmpop & 0x8);
1120 rfmt = -1;
1121 if ((cmpop & 0x8)
1123 ieee754_cxtest
1124 (IEEE754_INVALID_OPERATION))
1125 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1126 else
1127 goto copcsr;
1130 else {
1131 return SIGILL;
1133 break;
1135 break;
1138 case w_fmt:{
1139 ieee754sp fs;
1141 switch (MIPSInst_FUNC(ir)) {
1142 case fcvts_op:
1143 /* convert word to single precision real */
1144 SPFROMREG(fs, MIPSInst_FS(ir));
1145 rv.s = ieee754sp_fint(fs.bits);
1146 rfmt = s_fmt;
1147 goto copcsr;
1148 case fcvtd_op:
1149 /* convert word to double precision real */
1150 SPFROMREG(fs, MIPSInst_FS(ir));
1151 rv.d = ieee754dp_fint(fs.bits);
1152 rfmt = d_fmt;
1153 goto copcsr;
1154 default:
1155 return SIGILL;
1157 break;
1160 #if defined(__mips64)
1161 case l_fmt:{
1162 switch (MIPSInst_FUNC(ir)) {
1163 case fcvts_op:
1164 /* convert long to single precision real */
1165 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1166 rfmt = s_fmt;
1167 goto copcsr;
1168 case fcvtd_op:
1169 /* convert long to double precision real */
1170 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1171 rfmt = d_fmt;
1172 goto copcsr;
1173 default:
1174 return SIGILL;
1176 break;
1178 #endif
1180 default:
1181 return SIGILL;
1185 * Update the fpu CSR register for this operation.
1186 * If an exception is required, generate a tidy SIGFPE exception,
1187 * without updating the result register.
1188 * Note: cause exception bits do not accumulate, they are rewritten
1189 * for each op; only the flag/sticky bits accumulate.
1191 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1192 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1193 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1194 return SIGFPE;
1198 * Now we can safely write the result back to the register file.
1200 switch (rfmt) {
1201 case -1:{
1202 #if __mips >= 4
1203 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1204 #else
1205 cond = FPU_CSR_COND;
1206 #endif
1207 if (rv.w)
1208 ctx->fcr31 |= cond;
1209 else
1210 ctx->fcr31 &= ~cond;
1211 break;
1213 case d_fmt:
1214 DPTOREG(rv.d, MIPSInst_FD(ir));
1215 break;
1216 case s_fmt:
1217 SPTOREG(rv.s, MIPSInst_FD(ir));
1218 break;
1219 case w_fmt:
1220 SITOREG(rv.w, MIPSInst_FD(ir));
1221 break;
1222 #if defined(__mips64)
1223 case l_fmt:
1224 DITOREG(rv.l, MIPSInst_FD(ir));
1225 break;
1226 #endif
1227 default:
1228 return SIGILL;
1231 return 0;
1234 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1235 int has_fpu)
1237 unsigned long oldepc, prevepc;
1238 mips_instruction insn;
1239 int sig = 0;
1241 oldepc = xcp->cp0_epc;
1242 do {
1243 prevepc = xcp->cp0_epc;
1245 if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1246 fpuemustats.errors++;
1247 return SIGBUS;
1249 if (insn == 0)
1250 xcp->cp0_epc += 4; /* skip nops */
1251 else {
1253 * The 'ieee754_csr' is an alias of
1254 * ctx->fcr31. No need to copy ctx->fcr31 to
1255 * ieee754_csr. But ieee754_csr.rm is ieee
1256 * library modes. (not mips rounding mode)
1258 /* convert to ieee library modes */
1259 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1260 sig = cop1Emulate(xcp, ctx);
1261 /* revert to mips rounding mode */
1262 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1265 if (has_fpu)
1266 break;
1267 if (sig)
1268 break;
1270 cond_resched();
1271 } while (xcp->cp0_epc > prevepc);
1273 /* SIGILL indicates a non-fpu instruction */
1274 if (sig == SIGILL && xcp->cp0_epc != oldepc)
1275 /* but if epc has advanced, then ignore it */
1276 sig = 0;
1278 return sig;
1281 #ifdef CONFIG_DEBUG_FS
1282 extern struct dentry *mips_debugfs_dir;
1283 static int __init debugfs_fpuemu(void)
1285 struct dentry *d, *dir;
1286 int i;
1287 static struct {
1288 const char *name;
1289 unsigned int *v;
1290 } vars[] __initdata = {
1291 { "emulated", &fpuemustats.emulated },
1292 { "loads", &fpuemustats.loads },
1293 { "stores", &fpuemustats.stores },
1294 { "cp1ops", &fpuemustats.cp1ops },
1295 { "cp1xops", &fpuemustats.cp1xops },
1296 { "errors", &fpuemustats.errors },
1299 if (!mips_debugfs_dir)
1300 return -ENODEV;
1301 dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1302 if (IS_ERR(dir))
1303 return PTR_ERR(dir);
1304 for (i = 0; i < ARRAY_SIZE(vars); i++) {
1305 d = debugfs_create_u32(vars[i].name, S_IRUGO, dir, vars[i].v);
1306 if (IS_ERR(d))
1307 return PTR_ERR(d);
1309 return 0;
1311 __initcall(debugfs_fpuemu);
1312 #endif