2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 #include <linux/memcontrol.h>
58 #include <asm/tlbflush.h>
59 #include <asm/div64.h>
62 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
63 DEFINE_PER_CPU(int, numa_node
);
64 EXPORT_PER_CPU_SYMBOL(numa_node
);
67 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
69 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
70 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
71 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
72 * defined in <linux/topology.h>.
74 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
75 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
79 * Array of node states.
81 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
82 [N_POSSIBLE
] = NODE_MASK_ALL
,
83 [N_ONLINE
] = { { [0] = 1UL } },
85 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
87 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
89 [N_CPU
] = { { [0] = 1UL } },
92 EXPORT_SYMBOL(node_states
);
94 unsigned long totalram_pages __read_mostly
;
95 unsigned long totalreserve_pages __read_mostly
;
96 int percpu_pagelist_fraction
;
97 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
99 #ifdef CONFIG_PM_SLEEP
101 * The following functions are used by the suspend/hibernate code to temporarily
102 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
103 * while devices are suspended. To avoid races with the suspend/hibernate code,
104 * they should always be called with pm_mutex held (gfp_allowed_mask also should
105 * only be modified with pm_mutex held, unless the suspend/hibernate code is
106 * guaranteed not to run in parallel with that modification).
109 static gfp_t saved_gfp_mask
;
111 void pm_restore_gfp_mask(void)
113 WARN_ON(!mutex_is_locked(&pm_mutex
));
114 if (saved_gfp_mask
) {
115 gfp_allowed_mask
= saved_gfp_mask
;
120 void pm_restrict_gfp_mask(void)
122 WARN_ON(!mutex_is_locked(&pm_mutex
));
123 WARN_ON(saved_gfp_mask
);
124 saved_gfp_mask
= gfp_allowed_mask
;
125 gfp_allowed_mask
&= ~GFP_IOFS
;
127 #endif /* CONFIG_PM_SLEEP */
129 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
130 int pageblock_order __read_mostly
;
133 static void __free_pages_ok(struct page
*page
, unsigned int order
);
136 * results with 256, 32 in the lowmem_reserve sysctl:
137 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
138 * 1G machine -> (16M dma, 784M normal, 224M high)
139 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
140 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
141 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
143 * TBD: should special case ZONE_DMA32 machines here - in those we normally
144 * don't need any ZONE_NORMAL reservation
146 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
147 #ifdef CONFIG_ZONE_DMA
150 #ifdef CONFIG_ZONE_DMA32
153 #ifdef CONFIG_HIGHMEM
159 EXPORT_SYMBOL(totalram_pages
);
161 static char * const zone_names
[MAX_NR_ZONES
] = {
162 #ifdef CONFIG_ZONE_DMA
165 #ifdef CONFIG_ZONE_DMA32
169 #ifdef CONFIG_HIGHMEM
175 int min_free_kbytes
= 1024;
177 static unsigned long __meminitdata nr_kernel_pages
;
178 static unsigned long __meminitdata nr_all_pages
;
179 static unsigned long __meminitdata dma_reserve
;
181 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
183 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
184 * ranges of memory (RAM) that may be registered with add_active_range().
185 * Ranges passed to add_active_range() will be merged if possible
186 * so the number of times add_active_range() can be called is
187 * related to the number of nodes and the number of holes
189 #ifdef CONFIG_MAX_ACTIVE_REGIONS
190 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
191 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
193 #if MAX_NUMNODES >= 32
194 /* If there can be many nodes, allow up to 50 holes per node */
195 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
197 /* By default, allow up to 256 distinct regions */
198 #define MAX_ACTIVE_REGIONS 256
202 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
203 static int __meminitdata nr_nodemap_entries
;
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
206 static unsigned long __initdata required_kernelcore
;
207 static unsigned long __initdata required_movablecore
;
208 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 EXPORT_SYMBOL(movable_zone
);
213 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
216 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
217 int nr_online_nodes __read_mostly
= 1;
218 EXPORT_SYMBOL(nr_node_ids
);
219 EXPORT_SYMBOL(nr_online_nodes
);
222 int page_group_by_mobility_disabled __read_mostly
;
224 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
227 if (unlikely(page_group_by_mobility_disabled
))
228 migratetype
= MIGRATE_UNMOVABLE
;
230 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
231 PB_migrate
, PB_migrate_end
);
234 bool oom_killer_disabled __read_mostly
;
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
241 unsigned long pfn
= page_to_pfn(page
);
244 seq
= zone_span_seqbegin(zone
);
245 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
247 else if (pfn
< zone
->zone_start_pfn
)
249 } while (zone_span_seqretry(zone
, seq
));
254 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
256 if (!pfn_valid_within(page_to_pfn(page
)))
258 if (zone
!= page_zone(page
))
264 * Temporary debugging check for pages not lying within a given zone.
266 static int bad_range(struct zone
*zone
, struct page
*page
)
268 if (page_outside_zone_boundaries(zone
, page
))
270 if (!page_is_consistent(zone
, page
))
276 static inline int bad_range(struct zone
*zone
, struct page
*page
)
282 static void bad_page(struct page
*page
)
284 static unsigned long resume
;
285 static unsigned long nr_shown
;
286 static unsigned long nr_unshown
;
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page
)) {
290 reset_page_mapcount(page
); /* remove PageBuddy */
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
298 if (nr_shown
== 60) {
299 if (time_before(jiffies
, resume
)) {
305 "BUG: Bad page state: %lu messages suppressed\n",
312 resume
= jiffies
+ 60 * HZ
;
314 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
315 current
->comm
, page_to_pfn(page
));
320 /* Leave bad fields for debug, except PageBuddy could make trouble */
321 reset_page_mapcount(page
); /* remove PageBuddy */
322 add_taint(TAINT_BAD_PAGE
);
326 * Higher-order pages are called "compound pages". They are structured thusly:
328 * The first PAGE_SIZE page is called the "head page".
330 * The remaining PAGE_SIZE pages are called "tail pages".
332 * All pages have PG_compound set. All pages have their ->private pointing at
333 * the head page (even the head page has this).
335 * The first tail page's ->lru.next holds the address of the compound page's
336 * put_page() function. Its ->lru.prev holds the order of allocation.
337 * This usage means that zero-order pages may not be compound.
340 static void free_compound_page(struct page
*page
)
342 __free_pages_ok(page
, compound_order(page
));
345 void prep_compound_page(struct page
*page
, unsigned long order
)
348 int nr_pages
= 1 << order
;
350 set_compound_page_dtor(page
, free_compound_page
);
351 set_compound_order(page
, order
);
353 for (i
= 1; i
< nr_pages
; i
++) {
354 struct page
*p
= page
+ i
;
357 p
->first_page
= page
;
361 /* update __split_huge_page_refcount if you change this function */
362 static int destroy_compound_page(struct page
*page
, unsigned long order
)
365 int nr_pages
= 1 << order
;
368 if (unlikely(compound_order(page
) != order
) ||
369 unlikely(!PageHead(page
))) {
374 __ClearPageHead(page
);
376 for (i
= 1; i
< nr_pages
; i
++) {
377 struct page
*p
= page
+ i
;
379 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
389 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
398 for (i
= 0; i
< (1 << order
); i
++)
399 clear_highpage(page
+ i
);
402 static inline void set_page_order(struct page
*page
, int order
)
404 set_page_private(page
, order
);
405 __SetPageBuddy(page
);
408 static inline void rmv_page_order(struct page
*page
)
410 __ClearPageBuddy(page
);
411 set_page_private(page
, 0);
415 * Locate the struct page for both the matching buddy in our
416 * pair (buddy1) and the combined O(n+1) page they form (page).
418 * 1) Any buddy B1 will have an order O twin B2 which satisfies
419 * the following equation:
421 * For example, if the starting buddy (buddy2) is #8 its order
423 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
425 * 2) Any buddy B will have an order O+1 parent P which
426 * satisfies the following equation:
429 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
431 static inline unsigned long
432 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
434 return page_idx
^ (1 << order
);
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
445 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
446 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
448 * For recording page's order, we use page_private(page).
450 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
453 if (!pfn_valid_within(page_to_pfn(buddy
)))
456 if (page_zone_id(page
) != page_zone_id(buddy
))
459 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
460 VM_BUG_ON(page_count(buddy
) != 0);
467 * Freeing function for a buddy system allocator.
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
490 static inline void __free_one_page(struct page
*page
,
491 struct zone
*zone
, unsigned int order
,
494 unsigned long page_idx
;
495 unsigned long combined_idx
;
496 unsigned long uninitialized_var(buddy_idx
);
499 if (unlikely(PageCompound(page
)))
500 if (unlikely(destroy_compound_page(page
, order
)))
503 VM_BUG_ON(migratetype
== -1);
505 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
507 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
508 VM_BUG_ON(bad_range(zone
, page
));
510 while (order
< MAX_ORDER
-1) {
511 buddy_idx
= __find_buddy_index(page_idx
, order
);
512 buddy
= page
+ (buddy_idx
- page_idx
);
513 if (!page_is_buddy(page
, buddy
, order
))
516 /* Our buddy is free, merge with it and move up one order. */
517 list_del(&buddy
->lru
);
518 zone
->free_area
[order
].nr_free
--;
519 rmv_page_order(buddy
);
520 combined_idx
= buddy_idx
& page_idx
;
521 page
= page
+ (combined_idx
- page_idx
);
522 page_idx
= combined_idx
;
525 set_page_order(page
, order
);
528 * If this is not the largest possible page, check if the buddy
529 * of the next-highest order is free. If it is, it's possible
530 * that pages are being freed that will coalesce soon. In case,
531 * that is happening, add the free page to the tail of the list
532 * so it's less likely to be used soon and more likely to be merged
533 * as a higher order page
535 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
536 struct page
*higher_page
, *higher_buddy
;
537 combined_idx
= buddy_idx
& page_idx
;
538 higher_page
= page
+ (combined_idx
- page_idx
);
539 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
540 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
541 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
542 list_add_tail(&page
->lru
,
543 &zone
->free_area
[order
].free_list
[migratetype
]);
548 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
550 zone
->free_area
[order
].nr_free
++;
554 * free_page_mlock() -- clean up attempts to free and mlocked() page.
555 * Page should not be on lru, so no need to fix that up.
556 * free_pages_check() will verify...
558 static inline void free_page_mlock(struct page
*page
)
560 __dec_zone_page_state(page
, NR_MLOCK
);
561 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
564 static inline int free_pages_check(struct page
*page
)
566 if (unlikely(page_mapcount(page
) |
567 (page
->mapping
!= NULL
) |
568 (atomic_read(&page
->_count
) != 0) |
569 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
570 (mem_cgroup_bad_page_check(page
)))) {
574 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
575 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
580 * Frees a number of pages from the PCP lists
581 * Assumes all pages on list are in same zone, and of same order.
582 * count is the number of pages to free.
584 * If the zone was previously in an "all pages pinned" state then look to
585 * see if this freeing clears that state.
587 * And clear the zone's pages_scanned counter, to hold off the "all pages are
588 * pinned" detection logic.
590 static void free_pcppages_bulk(struct zone
*zone
, int count
,
591 struct per_cpu_pages
*pcp
)
597 spin_lock(&zone
->lock
);
598 zone
->all_unreclaimable
= 0;
599 zone
->pages_scanned
= 0;
603 struct list_head
*list
;
606 * Remove pages from lists in a round-robin fashion. A
607 * batch_free count is maintained that is incremented when an
608 * empty list is encountered. This is so more pages are freed
609 * off fuller lists instead of spinning excessively around empty
614 if (++migratetype
== MIGRATE_PCPTYPES
)
616 list
= &pcp
->lists
[migratetype
];
617 } while (list_empty(list
));
619 /* This is the only non-empty list. Free them all. */
620 if (batch_free
== MIGRATE_PCPTYPES
)
621 batch_free
= to_free
;
624 page
= list_entry(list
->prev
, struct page
, lru
);
625 /* must delete as __free_one_page list manipulates */
626 list_del(&page
->lru
);
627 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
628 __free_one_page(page
, zone
, 0, page_private(page
));
629 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
630 } while (--to_free
&& --batch_free
&& !list_empty(list
));
632 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
633 spin_unlock(&zone
->lock
);
636 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
639 spin_lock(&zone
->lock
);
640 zone
->all_unreclaimable
= 0;
641 zone
->pages_scanned
= 0;
643 __free_one_page(page
, zone
, order
, migratetype
);
644 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
645 spin_unlock(&zone
->lock
);
648 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
653 trace_mm_page_free_direct(page
, order
);
654 kmemcheck_free_shadow(page
, order
);
657 page
->mapping
= NULL
;
658 for (i
= 0; i
< (1 << order
); i
++)
659 bad
+= free_pages_check(page
+ i
);
663 if (!PageHighMem(page
)) {
664 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
665 debug_check_no_obj_freed(page_address(page
),
668 arch_free_page(page
, order
);
669 kernel_map_pages(page
, 1 << order
, 0);
674 static void __free_pages_ok(struct page
*page
, unsigned int order
)
677 int wasMlocked
= __TestClearPageMlocked(page
);
679 if (!free_pages_prepare(page
, order
))
682 local_irq_save(flags
);
683 if (unlikely(wasMlocked
))
684 free_page_mlock(page
);
685 __count_vm_events(PGFREE
, 1 << order
);
686 free_one_page(page_zone(page
), page
, order
,
687 get_pageblock_migratetype(page
));
688 local_irq_restore(flags
);
692 * permit the bootmem allocator to evade page validation on high-order frees
694 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
697 __ClearPageReserved(page
);
698 set_page_count(page
, 0);
699 set_page_refcounted(page
);
705 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
706 struct page
*p
= &page
[loop
];
708 if (loop
+ 1 < BITS_PER_LONG
)
710 __ClearPageReserved(p
);
711 set_page_count(p
, 0);
714 set_page_refcounted(page
);
715 __free_pages(page
, order
);
721 * The order of subdivision here is critical for the IO subsystem.
722 * Please do not alter this order without good reasons and regression
723 * testing. Specifically, as large blocks of memory are subdivided,
724 * the order in which smaller blocks are delivered depends on the order
725 * they're subdivided in this function. This is the primary factor
726 * influencing the order in which pages are delivered to the IO
727 * subsystem according to empirical testing, and this is also justified
728 * by considering the behavior of a buddy system containing a single
729 * large block of memory acted on by a series of small allocations.
730 * This behavior is a critical factor in sglist merging's success.
734 static inline void expand(struct zone
*zone
, struct page
*page
,
735 int low
, int high
, struct free_area
*area
,
738 unsigned long size
= 1 << high
;
744 VM_BUG_ON(bad_range(zone
, &page
[size
]));
745 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
747 set_page_order(&page
[size
], high
);
752 * This page is about to be returned from the page allocator
754 static inline int check_new_page(struct page
*page
)
756 if (unlikely(page_mapcount(page
) |
757 (page
->mapping
!= NULL
) |
758 (atomic_read(&page
->_count
) != 0) |
759 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
760 (mem_cgroup_bad_page_check(page
)))) {
767 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
771 for (i
= 0; i
< (1 << order
); i
++) {
772 struct page
*p
= page
+ i
;
773 if (unlikely(check_new_page(p
)))
777 set_page_private(page
, 0);
778 set_page_refcounted(page
);
780 arch_alloc_page(page
, order
);
781 kernel_map_pages(page
, 1 << order
, 1);
783 if (gfp_flags
& __GFP_ZERO
)
784 prep_zero_page(page
, order
, gfp_flags
);
786 if (order
&& (gfp_flags
& __GFP_COMP
))
787 prep_compound_page(page
, order
);
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
797 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
800 unsigned int current_order
;
801 struct free_area
* area
;
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
806 area
= &(zone
->free_area
[current_order
]);
807 if (list_empty(&area
->free_list
[migratetype
]))
810 page
= list_entry(area
->free_list
[migratetype
].next
,
812 list_del(&page
->lru
);
813 rmv_page_order(page
);
815 expand(zone
, page
, order
, current_order
, area
, migratetype
);
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
827 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
828 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
829 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
830 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
831 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
835 * Move the free pages in a range to the free lists of the requested type.
836 * Note that start_page and end_pages are not aligned on a pageblock
837 * boundary. If alignment is required, use move_freepages_block()
839 static int move_freepages(struct zone
*zone
,
840 struct page
*start_page
, struct page
*end_page
,
847 #ifndef CONFIG_HOLES_IN_ZONE
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
853 * grouping pages by mobility
855 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
858 for (page
= start_page
; page
<= end_page
;) {
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
862 if (!pfn_valid_within(page_to_pfn(page
))) {
867 if (!PageBuddy(page
)) {
872 order
= page_order(page
);
873 list_move(&page
->lru
,
874 &zone
->free_area
[order
].free_list
[migratetype
]);
876 pages_moved
+= 1 << order
;
882 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
885 unsigned long start_pfn
, end_pfn
;
886 struct page
*start_page
, *end_page
;
888 start_pfn
= page_to_pfn(page
);
889 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
890 start_page
= pfn_to_page(start_pfn
);
891 end_page
= start_page
+ pageblock_nr_pages
- 1;
892 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
894 /* Do not cross zone boundaries */
895 if (start_pfn
< zone
->zone_start_pfn
)
897 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
900 return move_freepages(zone
, start_page
, end_page
, migratetype
);
903 static void change_pageblock_range(struct page
*pageblock_page
,
904 int start_order
, int migratetype
)
906 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
908 while (nr_pageblocks
--) {
909 set_pageblock_migratetype(pageblock_page
, migratetype
);
910 pageblock_page
+= pageblock_nr_pages
;
914 /* Remove an element from the buddy allocator from the fallback list */
915 static inline struct page
*
916 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
918 struct free_area
* area
;
923 /* Find the largest possible block of pages in the other list */
924 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
926 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
927 migratetype
= fallbacks
[start_migratetype
][i
];
929 /* MIGRATE_RESERVE handled later if necessary */
930 if (migratetype
== MIGRATE_RESERVE
)
933 area
= &(zone
->free_area
[current_order
]);
934 if (list_empty(&area
->free_list
[migratetype
]))
937 page
= list_entry(area
->free_list
[migratetype
].next
,
942 * If breaking a large block of pages, move all free
943 * pages to the preferred allocation list. If falling
944 * back for a reclaimable kernel allocation, be more
945 * aggressive about taking ownership of free pages
947 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
948 start_migratetype
== MIGRATE_RECLAIMABLE
||
949 page_group_by_mobility_disabled
) {
951 pages
= move_freepages_block(zone
, page
,
954 /* Claim the whole block if over half of it is free */
955 if (pages
>= (1 << (pageblock_order
-1)) ||
956 page_group_by_mobility_disabled
)
957 set_pageblock_migratetype(page
,
960 migratetype
= start_migratetype
;
963 /* Remove the page from the freelists */
964 list_del(&page
->lru
);
965 rmv_page_order(page
);
967 /* Take ownership for orders >= pageblock_order */
968 if (current_order
>= pageblock_order
)
969 change_pageblock_range(page
, current_order
,
972 expand(zone
, page
, order
, current_order
, area
, migratetype
);
974 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
975 start_migratetype
, migratetype
);
985 * Do the hard work of removing an element from the buddy allocator.
986 * Call me with the zone->lock already held.
988 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
994 page
= __rmqueue_smallest(zone
, order
, migratetype
);
996 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
997 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1000 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1001 * is used because __rmqueue_smallest is an inline function
1002 * and we want just one call site
1005 migratetype
= MIGRATE_RESERVE
;
1010 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1015 * Obtain a specified number of elements from the buddy allocator, all under
1016 * a single hold of the lock, for efficiency. Add them to the supplied list.
1017 * Returns the number of new pages which were placed at *list.
1019 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1020 unsigned long count
, struct list_head
*list
,
1021 int migratetype
, int cold
)
1025 spin_lock(&zone
->lock
);
1026 for (i
= 0; i
< count
; ++i
) {
1027 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1028 if (unlikely(page
== NULL
))
1032 * Split buddy pages returned by expand() are received here
1033 * in physical page order. The page is added to the callers and
1034 * list and the list head then moves forward. From the callers
1035 * perspective, the linked list is ordered by page number in
1036 * some conditions. This is useful for IO devices that can
1037 * merge IO requests if the physical pages are ordered
1040 if (likely(cold
== 0))
1041 list_add(&page
->lru
, list
);
1043 list_add_tail(&page
->lru
, list
);
1044 set_page_private(page
, migratetype
);
1047 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1048 spin_unlock(&zone
->lock
);
1054 * Called from the vmstat counter updater to drain pagesets of this
1055 * currently executing processor on remote nodes after they have
1058 * Note that this function must be called with the thread pinned to
1059 * a single processor.
1061 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1063 unsigned long flags
;
1066 local_irq_save(flags
);
1067 if (pcp
->count
>= pcp
->batch
)
1068 to_drain
= pcp
->batch
;
1070 to_drain
= pcp
->count
;
1071 free_pcppages_bulk(zone
, to_drain
, pcp
);
1072 pcp
->count
-= to_drain
;
1073 local_irq_restore(flags
);
1078 * Drain pages of the indicated processor.
1080 * The processor must either be the current processor and the
1081 * thread pinned to the current processor or a processor that
1084 static void drain_pages(unsigned int cpu
)
1086 unsigned long flags
;
1089 for_each_populated_zone(zone
) {
1090 struct per_cpu_pageset
*pset
;
1091 struct per_cpu_pages
*pcp
;
1093 local_irq_save(flags
);
1094 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1098 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1101 local_irq_restore(flags
);
1106 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1108 void drain_local_pages(void *arg
)
1110 drain_pages(smp_processor_id());
1114 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1116 void drain_all_pages(void)
1118 on_each_cpu(drain_local_pages
, NULL
, 1);
1121 #ifdef CONFIG_HIBERNATION
1123 void mark_free_pages(struct zone
*zone
)
1125 unsigned long pfn
, max_zone_pfn
;
1126 unsigned long flags
;
1128 struct list_head
*curr
;
1130 if (!zone
->spanned_pages
)
1133 spin_lock_irqsave(&zone
->lock
, flags
);
1135 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1136 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1137 if (pfn_valid(pfn
)) {
1138 struct page
*page
= pfn_to_page(pfn
);
1140 if (!swsusp_page_is_forbidden(page
))
1141 swsusp_unset_page_free(page
);
1144 for_each_migratetype_order(order
, t
) {
1145 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1148 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1149 for (i
= 0; i
< (1UL << order
); i
++)
1150 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1153 spin_unlock_irqrestore(&zone
->lock
, flags
);
1155 #endif /* CONFIG_PM */
1158 * Free a 0-order page
1159 * cold == 1 ? free a cold page : free a hot page
1161 void free_hot_cold_page(struct page
*page
, int cold
)
1163 struct zone
*zone
= page_zone(page
);
1164 struct per_cpu_pages
*pcp
;
1165 unsigned long flags
;
1167 int wasMlocked
= __TestClearPageMlocked(page
);
1169 if (!free_pages_prepare(page
, 0))
1172 migratetype
= get_pageblock_migratetype(page
);
1173 set_page_private(page
, migratetype
);
1174 local_irq_save(flags
);
1175 if (unlikely(wasMlocked
))
1176 free_page_mlock(page
);
1177 __count_vm_event(PGFREE
);
1180 * We only track unmovable, reclaimable and movable on pcp lists.
1181 * Free ISOLATE pages back to the allocator because they are being
1182 * offlined but treat RESERVE as movable pages so we can get those
1183 * areas back if necessary. Otherwise, we may have to free
1184 * excessively into the page allocator
1186 if (migratetype
>= MIGRATE_PCPTYPES
) {
1187 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1188 free_one_page(zone
, page
, 0, migratetype
);
1191 migratetype
= MIGRATE_MOVABLE
;
1194 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1196 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1198 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1200 if (pcp
->count
>= pcp
->high
) {
1201 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1202 pcp
->count
-= pcp
->batch
;
1206 local_irq_restore(flags
);
1210 * split_page takes a non-compound higher-order page, and splits it into
1211 * n (1<<order) sub-pages: page[0..n]
1212 * Each sub-page must be freed individually.
1214 * Note: this is probably too low level an operation for use in drivers.
1215 * Please consult with lkml before using this in your driver.
1217 void split_page(struct page
*page
, unsigned int order
)
1221 VM_BUG_ON(PageCompound(page
));
1222 VM_BUG_ON(!page_count(page
));
1224 #ifdef CONFIG_KMEMCHECK
1226 * Split shadow pages too, because free(page[0]) would
1227 * otherwise free the whole shadow.
1229 if (kmemcheck_page_is_tracked(page
))
1230 split_page(virt_to_page(page
[0].shadow
), order
);
1233 for (i
= 1; i
< (1 << order
); i
++)
1234 set_page_refcounted(page
+ i
);
1238 * Similar to split_page except the page is already free. As this is only
1239 * being used for migration, the migratetype of the block also changes.
1240 * As this is called with interrupts disabled, the caller is responsible
1241 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1244 * Note: this is probably too low level an operation for use in drivers.
1245 * Please consult with lkml before using this in your driver.
1247 int split_free_page(struct page
*page
)
1250 unsigned long watermark
;
1253 BUG_ON(!PageBuddy(page
));
1255 zone
= page_zone(page
);
1256 order
= page_order(page
);
1258 /* Obey watermarks as if the page was being allocated */
1259 watermark
= low_wmark_pages(zone
) + (1 << order
);
1260 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1263 /* Remove page from free list */
1264 list_del(&page
->lru
);
1265 zone
->free_area
[order
].nr_free
--;
1266 rmv_page_order(page
);
1267 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1269 /* Split into individual pages */
1270 set_page_refcounted(page
);
1271 split_page(page
, order
);
1273 if (order
>= pageblock_order
- 1) {
1274 struct page
*endpage
= page
+ (1 << order
) - 1;
1275 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1276 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1283 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1284 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1289 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1292 unsigned long flags
;
1294 int cold
= !!(gfp_flags
& __GFP_COLD
);
1297 if (likely(order
== 0)) {
1298 struct per_cpu_pages
*pcp
;
1299 struct list_head
*list
;
1301 local_irq_save(flags
);
1302 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1303 list
= &pcp
->lists
[migratetype
];
1304 if (list_empty(list
)) {
1305 pcp
->count
+= rmqueue_bulk(zone
, 0,
1308 if (unlikely(list_empty(list
)))
1313 page
= list_entry(list
->prev
, struct page
, lru
);
1315 page
= list_entry(list
->next
, struct page
, lru
);
1317 list_del(&page
->lru
);
1320 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1322 * __GFP_NOFAIL is not to be used in new code.
1324 * All __GFP_NOFAIL callers should be fixed so that they
1325 * properly detect and handle allocation failures.
1327 * We most definitely don't want callers attempting to
1328 * allocate greater than order-1 page units with
1331 WARN_ON_ONCE(order
> 1);
1333 spin_lock_irqsave(&zone
->lock
, flags
);
1334 page
= __rmqueue(zone
, order
, migratetype
);
1335 spin_unlock(&zone
->lock
);
1338 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1341 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1342 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1343 local_irq_restore(flags
);
1345 VM_BUG_ON(bad_range(zone
, page
));
1346 if (prep_new_page(page
, order
, gfp_flags
))
1351 local_irq_restore(flags
);
1355 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1356 #define ALLOC_WMARK_MIN WMARK_MIN
1357 #define ALLOC_WMARK_LOW WMARK_LOW
1358 #define ALLOC_WMARK_HIGH WMARK_HIGH
1359 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1361 /* Mask to get the watermark bits */
1362 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1364 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1365 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1366 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1368 #ifdef CONFIG_FAIL_PAGE_ALLOC
1370 static struct fail_page_alloc_attr
{
1371 struct fault_attr attr
;
1373 u32 ignore_gfp_highmem
;
1374 u32 ignore_gfp_wait
;
1377 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1379 struct dentry
*ignore_gfp_highmem_file
;
1380 struct dentry
*ignore_gfp_wait_file
;
1381 struct dentry
*min_order_file
;
1383 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1385 } fail_page_alloc
= {
1386 .attr
= FAULT_ATTR_INITIALIZER
,
1387 .ignore_gfp_wait
= 1,
1388 .ignore_gfp_highmem
= 1,
1392 static int __init
setup_fail_page_alloc(char *str
)
1394 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1396 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1398 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1400 if (order
< fail_page_alloc
.min_order
)
1402 if (gfp_mask
& __GFP_NOFAIL
)
1404 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1406 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1409 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1412 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1414 static int __init
fail_page_alloc_debugfs(void)
1416 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1420 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1424 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1426 fail_page_alloc
.ignore_gfp_wait_file
=
1427 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1428 &fail_page_alloc
.ignore_gfp_wait
);
1430 fail_page_alloc
.ignore_gfp_highmem_file
=
1431 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1432 &fail_page_alloc
.ignore_gfp_highmem
);
1433 fail_page_alloc
.min_order_file
=
1434 debugfs_create_u32("min-order", mode
, dir
,
1435 &fail_page_alloc
.min_order
);
1437 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1438 !fail_page_alloc
.ignore_gfp_highmem_file
||
1439 !fail_page_alloc
.min_order_file
) {
1441 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1442 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1443 debugfs_remove(fail_page_alloc
.min_order_file
);
1444 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1450 late_initcall(fail_page_alloc_debugfs
);
1452 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1454 #else /* CONFIG_FAIL_PAGE_ALLOC */
1456 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1461 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1464 * Return true if free pages are above 'mark'. This takes into account the order
1465 * of the allocation.
1467 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1468 int classzone_idx
, int alloc_flags
, long free_pages
)
1470 /* free_pages my go negative - that's OK */
1474 free_pages
-= (1 << order
) + 1;
1475 if (alloc_flags
& ALLOC_HIGH
)
1477 if (alloc_flags
& ALLOC_HARDER
)
1480 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1482 for (o
= 0; o
< order
; o
++) {
1483 /* At the next order, this order's pages become unavailable */
1484 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1486 /* Require fewer higher order pages to be free */
1489 if (free_pages
<= min
)
1495 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1496 int classzone_idx
, int alloc_flags
)
1498 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1499 zone_page_state(z
, NR_FREE_PAGES
));
1502 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1503 int classzone_idx
, int alloc_flags
)
1505 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1507 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1508 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1510 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1516 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1517 * skip over zones that are not allowed by the cpuset, or that have
1518 * been recently (in last second) found to be nearly full. See further
1519 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1520 * that have to skip over a lot of full or unallowed zones.
1522 * If the zonelist cache is present in the passed in zonelist, then
1523 * returns a pointer to the allowed node mask (either the current
1524 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1526 * If the zonelist cache is not available for this zonelist, does
1527 * nothing and returns NULL.
1529 * If the fullzones BITMAP in the zonelist cache is stale (more than
1530 * a second since last zap'd) then we zap it out (clear its bits.)
1532 * We hold off even calling zlc_setup, until after we've checked the
1533 * first zone in the zonelist, on the theory that most allocations will
1534 * be satisfied from that first zone, so best to examine that zone as
1535 * quickly as we can.
1537 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1539 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1540 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1542 zlc
= zonelist
->zlcache_ptr
;
1546 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1547 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1548 zlc
->last_full_zap
= jiffies
;
1551 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1552 &cpuset_current_mems_allowed
:
1553 &node_states
[N_HIGH_MEMORY
];
1554 return allowednodes
;
1558 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1559 * if it is worth looking at further for free memory:
1560 * 1) Check that the zone isn't thought to be full (doesn't have its
1561 * bit set in the zonelist_cache fullzones BITMAP).
1562 * 2) Check that the zones node (obtained from the zonelist_cache
1563 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1564 * Return true (non-zero) if zone is worth looking at further, or
1565 * else return false (zero) if it is not.
1567 * This check -ignores- the distinction between various watermarks,
1568 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1569 * found to be full for any variation of these watermarks, it will
1570 * be considered full for up to one second by all requests, unless
1571 * we are so low on memory on all allowed nodes that we are forced
1572 * into the second scan of the zonelist.
1574 * In the second scan we ignore this zonelist cache and exactly
1575 * apply the watermarks to all zones, even it is slower to do so.
1576 * We are low on memory in the second scan, and should leave no stone
1577 * unturned looking for a free page.
1579 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1580 nodemask_t
*allowednodes
)
1582 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1583 int i
; /* index of *z in zonelist zones */
1584 int n
; /* node that zone *z is on */
1586 zlc
= zonelist
->zlcache_ptr
;
1590 i
= z
- zonelist
->_zonerefs
;
1593 /* This zone is worth trying if it is allowed but not full */
1594 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1598 * Given 'z' scanning a zonelist, set the corresponding bit in
1599 * zlc->fullzones, so that subsequent attempts to allocate a page
1600 * from that zone don't waste time re-examining it.
1602 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1604 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1605 int i
; /* index of *z in zonelist zones */
1607 zlc
= zonelist
->zlcache_ptr
;
1611 i
= z
- zonelist
->_zonerefs
;
1613 set_bit(i
, zlc
->fullzones
);
1616 #else /* CONFIG_NUMA */
1618 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1623 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1624 nodemask_t
*allowednodes
)
1629 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1632 #endif /* CONFIG_NUMA */
1635 * get_page_from_freelist goes through the zonelist trying to allocate
1638 static struct page
*
1639 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1640 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1641 struct zone
*preferred_zone
, int migratetype
)
1644 struct page
*page
= NULL
;
1647 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1648 int zlc_active
= 0; /* set if using zonelist_cache */
1649 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1651 classzone_idx
= zone_idx(preferred_zone
);
1654 * Scan zonelist, looking for a zone with enough free.
1655 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1657 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1658 high_zoneidx
, nodemask
) {
1659 if (NUMA_BUILD
&& zlc_active
&&
1660 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1662 if ((alloc_flags
& ALLOC_CPUSET
) &&
1663 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1666 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1667 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1671 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1672 if (zone_watermark_ok(zone
, order
, mark
,
1673 classzone_idx
, alloc_flags
))
1676 if (zone_reclaim_mode
== 0)
1677 goto this_zone_full
;
1679 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1681 case ZONE_RECLAIM_NOSCAN
:
1684 case ZONE_RECLAIM_FULL
:
1685 /* scanned but unreclaimable */
1686 goto this_zone_full
;
1688 /* did we reclaim enough */
1689 if (!zone_watermark_ok(zone
, order
, mark
,
1690 classzone_idx
, alloc_flags
))
1691 goto this_zone_full
;
1696 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1697 gfp_mask
, migratetype
);
1702 zlc_mark_zone_full(zonelist
, z
);
1704 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1706 * we do zlc_setup after the first zone is tried but only
1707 * if there are multiple nodes make it worthwhile
1709 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1715 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1716 /* Disable zlc cache for second zonelist scan */
1724 * Large machines with many possible nodes should not always dump per-node
1725 * meminfo in irq context.
1727 static inline bool should_suppress_show_mem(void)
1732 ret
= in_interrupt();
1738 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1739 unsigned long pages_reclaimed
)
1741 /* Do not loop if specifically requested */
1742 if (gfp_mask
& __GFP_NORETRY
)
1746 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1747 * means __GFP_NOFAIL, but that may not be true in other
1750 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1754 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1755 * specified, then we retry until we no longer reclaim any pages
1756 * (above), or we've reclaimed an order of pages at least as
1757 * large as the allocation's order. In both cases, if the
1758 * allocation still fails, we stop retrying.
1760 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1764 * Don't let big-order allocations loop unless the caller
1765 * explicitly requests that.
1767 if (gfp_mask
& __GFP_NOFAIL
)
1773 static inline struct page
*
1774 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1775 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1776 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1781 /* Acquire the OOM killer lock for the zones in zonelist */
1782 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1783 schedule_timeout_uninterruptible(1);
1788 * Go through the zonelist yet one more time, keep very high watermark
1789 * here, this is only to catch a parallel oom killing, we must fail if
1790 * we're still under heavy pressure.
1792 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1793 order
, zonelist
, high_zoneidx
,
1794 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1795 preferred_zone
, migratetype
);
1799 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1800 /* The OOM killer will not help higher order allocs */
1801 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1803 /* The OOM killer does not needlessly kill tasks for lowmem */
1804 if (high_zoneidx
< ZONE_NORMAL
)
1807 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1808 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1809 * The caller should handle page allocation failure by itself if
1810 * it specifies __GFP_THISNODE.
1811 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1813 if (gfp_mask
& __GFP_THISNODE
)
1816 /* Exhausted what can be done so it's blamo time */
1817 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1820 clear_zonelist_oom(zonelist
, gfp_mask
);
1824 #ifdef CONFIG_COMPACTION
1825 /* Try memory compaction for high-order allocations before reclaim */
1826 static struct page
*
1827 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1828 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1829 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1830 int migratetype
, unsigned long *did_some_progress
,
1831 bool sync_migration
)
1835 if (!order
|| compaction_deferred(preferred_zone
))
1838 current
->flags
|= PF_MEMALLOC
;
1839 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1840 nodemask
, sync_migration
);
1841 current
->flags
&= ~PF_MEMALLOC
;
1842 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1844 /* Page migration frees to the PCP lists but we want merging */
1845 drain_pages(get_cpu());
1848 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1849 order
, zonelist
, high_zoneidx
,
1850 alloc_flags
, preferred_zone
,
1853 preferred_zone
->compact_considered
= 0;
1854 preferred_zone
->compact_defer_shift
= 0;
1855 count_vm_event(COMPACTSUCCESS
);
1860 * It's bad if compaction run occurs and fails.
1861 * The most likely reason is that pages exist,
1862 * but not enough to satisfy watermarks.
1864 count_vm_event(COMPACTFAIL
);
1865 defer_compaction(preferred_zone
);
1873 static inline struct page
*
1874 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1875 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1876 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1877 int migratetype
, unsigned long *did_some_progress
,
1878 bool sync_migration
)
1882 #endif /* CONFIG_COMPACTION */
1884 /* The really slow allocator path where we enter direct reclaim */
1885 static inline struct page
*
1886 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1887 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1888 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1889 int migratetype
, unsigned long *did_some_progress
)
1891 struct page
*page
= NULL
;
1892 struct reclaim_state reclaim_state
;
1893 bool drained
= false;
1897 /* We now go into synchronous reclaim */
1898 cpuset_memory_pressure_bump();
1899 current
->flags
|= PF_MEMALLOC
;
1900 lockdep_set_current_reclaim_state(gfp_mask
);
1901 reclaim_state
.reclaimed_slab
= 0;
1902 current
->reclaim_state
= &reclaim_state
;
1904 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1906 current
->reclaim_state
= NULL
;
1907 lockdep_clear_current_reclaim_state();
1908 current
->flags
&= ~PF_MEMALLOC
;
1912 if (unlikely(!(*did_some_progress
)))
1916 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1917 zonelist
, high_zoneidx
,
1918 alloc_flags
, preferred_zone
,
1922 * If an allocation failed after direct reclaim, it could be because
1923 * pages are pinned on the per-cpu lists. Drain them and try again
1925 if (!page
&& !drained
) {
1935 * This is called in the allocator slow-path if the allocation request is of
1936 * sufficient urgency to ignore watermarks and take other desperate measures
1938 static inline struct page
*
1939 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1940 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1941 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1947 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1948 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1949 preferred_zone
, migratetype
);
1951 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1952 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
1953 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1959 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1960 enum zone_type high_zoneidx
,
1961 enum zone_type classzone_idx
)
1966 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1967 wakeup_kswapd(zone
, order
, classzone_idx
);
1971 gfp_to_alloc_flags(gfp_t gfp_mask
)
1973 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1974 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1976 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1977 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
1980 * The caller may dip into page reserves a bit more if the caller
1981 * cannot run direct reclaim, or if the caller has realtime scheduling
1982 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1983 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1985 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
1989 * Not worth trying to allocate harder for
1990 * __GFP_NOMEMALLOC even if it can't schedule.
1992 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1993 alloc_flags
|= ALLOC_HARDER
;
1995 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1996 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1998 alloc_flags
&= ~ALLOC_CPUSET
;
1999 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2000 alloc_flags
|= ALLOC_HARDER
;
2002 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2003 if (!in_interrupt() &&
2004 ((current
->flags
& PF_MEMALLOC
) ||
2005 unlikely(test_thread_flag(TIF_MEMDIE
))))
2006 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2012 static inline struct page
*
2013 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2014 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2015 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2018 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2019 struct page
*page
= NULL
;
2021 unsigned long pages_reclaimed
= 0;
2022 unsigned long did_some_progress
;
2023 bool sync_migration
= false;
2026 * In the slowpath, we sanity check order to avoid ever trying to
2027 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2028 * be using allocators in order of preference for an area that is
2031 if (order
>= MAX_ORDER
) {
2032 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2037 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2038 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2039 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2040 * using a larger set of nodes after it has established that the
2041 * allowed per node queues are empty and that nodes are
2044 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2048 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2049 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2050 zone_idx(preferred_zone
));
2053 * OK, we're below the kswapd watermark and have kicked background
2054 * reclaim. Now things get more complex, so set up alloc_flags according
2055 * to how we want to proceed.
2057 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2060 * Find the true preferred zone if the allocation is unconstrained by
2063 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2064 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2067 /* This is the last chance, in general, before the goto nopage. */
2068 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2069 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2070 preferred_zone
, migratetype
);
2075 /* Allocate without watermarks if the context allows */
2076 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2077 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2078 zonelist
, high_zoneidx
, nodemask
,
2079 preferred_zone
, migratetype
);
2084 /* Atomic allocations - we can't balance anything */
2088 /* Avoid recursion of direct reclaim */
2089 if (current
->flags
& PF_MEMALLOC
)
2092 /* Avoid allocations with no watermarks from looping endlessly */
2093 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2097 * Try direct compaction. The first pass is asynchronous. Subsequent
2098 * attempts after direct reclaim are synchronous
2100 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2101 zonelist
, high_zoneidx
,
2103 alloc_flags
, preferred_zone
,
2104 migratetype
, &did_some_progress
,
2108 sync_migration
= !(gfp_mask
& __GFP_NO_KSWAPD
);
2110 /* Try direct reclaim and then allocating */
2111 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2112 zonelist
, high_zoneidx
,
2114 alloc_flags
, preferred_zone
,
2115 migratetype
, &did_some_progress
);
2120 * If we failed to make any progress reclaiming, then we are
2121 * running out of options and have to consider going OOM
2123 if (!did_some_progress
) {
2124 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2125 if (oom_killer_disabled
)
2127 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2128 zonelist
, high_zoneidx
,
2129 nodemask
, preferred_zone
,
2134 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2136 * The oom killer is not called for high-order
2137 * allocations that may fail, so if no progress
2138 * is being made, there are no other options and
2139 * retrying is unlikely to help.
2141 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2144 * The oom killer is not called for lowmem
2145 * allocations to prevent needlessly killing
2148 if (high_zoneidx
< ZONE_NORMAL
)
2156 /* Check if we should retry the allocation */
2157 pages_reclaimed
+= did_some_progress
;
2158 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2159 /* Wait for some write requests to complete then retry */
2160 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2164 * High-order allocations do not necessarily loop after
2165 * direct reclaim and reclaim/compaction depends on compaction
2166 * being called after reclaim so call directly if necessary
2168 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2169 zonelist
, high_zoneidx
,
2171 alloc_flags
, preferred_zone
,
2172 migratetype
, &did_some_progress
,
2179 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
2180 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2183 * This documents exceptions given to allocations in certain
2184 * contexts that are allowed to allocate outside current's set
2187 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2188 if (test_thread_flag(TIF_MEMDIE
) ||
2189 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2190 filter
&= ~SHOW_MEM_FILTER_NODES
;
2191 if (in_interrupt() || !wait
)
2192 filter
&= ~SHOW_MEM_FILTER_NODES
;
2194 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2195 current
->comm
, order
, gfp_mask
);
2197 if (!should_suppress_show_mem())
2202 if (kmemcheck_enabled
)
2203 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2209 * This is the 'heart' of the zoned buddy allocator.
2212 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2213 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2215 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2216 struct zone
*preferred_zone
;
2218 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2220 gfp_mask
&= gfp_allowed_mask
;
2222 lockdep_trace_alloc(gfp_mask
);
2224 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2226 if (should_fail_alloc_page(gfp_mask
, order
))
2230 * Check the zones suitable for the gfp_mask contain at least one
2231 * valid zone. It's possible to have an empty zonelist as a result
2232 * of GFP_THISNODE and a memoryless node
2234 if (unlikely(!zonelist
->_zonerefs
->zone
))
2238 /* The preferred zone is used for statistics later */
2239 first_zones_zonelist(zonelist
, high_zoneidx
,
2240 nodemask
? : &cpuset_current_mems_allowed
,
2242 if (!preferred_zone
) {
2247 /* First allocation attempt */
2248 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2249 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2250 preferred_zone
, migratetype
);
2251 if (unlikely(!page
))
2252 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2253 zonelist
, high_zoneidx
, nodemask
,
2254 preferred_zone
, migratetype
);
2257 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2260 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2263 * Common helper functions.
2265 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2270 * __get_free_pages() returns a 32-bit address, which cannot represent
2273 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2275 page
= alloc_pages(gfp_mask
, order
);
2278 return (unsigned long) page_address(page
);
2280 EXPORT_SYMBOL(__get_free_pages
);
2282 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2284 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2286 EXPORT_SYMBOL(get_zeroed_page
);
2288 void __pagevec_free(struct pagevec
*pvec
)
2290 int i
= pagevec_count(pvec
);
2293 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2294 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2298 void __free_pages(struct page
*page
, unsigned int order
)
2300 if (put_page_testzero(page
)) {
2302 free_hot_cold_page(page
, 0);
2304 __free_pages_ok(page
, order
);
2308 EXPORT_SYMBOL(__free_pages
);
2310 void free_pages(unsigned long addr
, unsigned int order
)
2313 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2314 __free_pages(virt_to_page((void *)addr
), order
);
2318 EXPORT_SYMBOL(free_pages
);
2321 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2322 * @size: the number of bytes to allocate
2323 * @gfp_mask: GFP flags for the allocation
2325 * This function is similar to alloc_pages(), except that it allocates the
2326 * minimum number of pages to satisfy the request. alloc_pages() can only
2327 * allocate memory in power-of-two pages.
2329 * This function is also limited by MAX_ORDER.
2331 * Memory allocated by this function must be released by free_pages_exact().
2333 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2335 unsigned int order
= get_order(size
);
2338 addr
= __get_free_pages(gfp_mask
, order
);
2340 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2341 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2343 split_page(virt_to_page((void *)addr
), order
);
2344 while (used
< alloc_end
) {
2350 return (void *)addr
;
2352 EXPORT_SYMBOL(alloc_pages_exact
);
2355 * free_pages_exact - release memory allocated via alloc_pages_exact()
2356 * @virt: the value returned by alloc_pages_exact.
2357 * @size: size of allocation, same value as passed to alloc_pages_exact().
2359 * Release the memory allocated by a previous call to alloc_pages_exact.
2361 void free_pages_exact(void *virt
, size_t size
)
2363 unsigned long addr
= (unsigned long)virt
;
2364 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2366 while (addr
< end
) {
2371 EXPORT_SYMBOL(free_pages_exact
);
2373 static unsigned int nr_free_zone_pages(int offset
)
2378 /* Just pick one node, since fallback list is circular */
2379 unsigned int sum
= 0;
2381 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2383 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2384 unsigned long size
= zone
->present_pages
;
2385 unsigned long high
= high_wmark_pages(zone
);
2394 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2396 unsigned int nr_free_buffer_pages(void)
2398 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2400 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2403 * Amount of free RAM allocatable within all zones
2405 unsigned int nr_free_pagecache_pages(void)
2407 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2410 static inline void show_node(struct zone
*zone
)
2413 printk("Node %d ", zone_to_nid(zone
));
2416 void si_meminfo(struct sysinfo
*val
)
2418 val
->totalram
= totalram_pages
;
2420 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2421 val
->bufferram
= nr_blockdev_pages();
2422 val
->totalhigh
= totalhigh_pages
;
2423 val
->freehigh
= nr_free_highpages();
2424 val
->mem_unit
= PAGE_SIZE
;
2427 EXPORT_SYMBOL(si_meminfo
);
2430 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2432 pg_data_t
*pgdat
= NODE_DATA(nid
);
2434 val
->totalram
= pgdat
->node_present_pages
;
2435 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2436 #ifdef CONFIG_HIGHMEM
2437 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2438 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2444 val
->mem_unit
= PAGE_SIZE
;
2449 * Determine whether the zone's node should be displayed or not, depending on
2450 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
2452 static bool skip_free_areas_zone(unsigned int flags
, const struct zone
*zone
)
2456 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2460 ret
= !node_isset(zone
->zone_pgdat
->node_id
,
2461 cpuset_current_mems_allowed
);
2467 #define K(x) ((x) << (PAGE_SHIFT-10))
2470 * Show free area list (used inside shift_scroll-lock stuff)
2471 * We also calculate the percentage fragmentation. We do this by counting the
2472 * memory on each free list with the exception of the first item on the list.
2473 * Suppresses nodes that are not allowed by current's cpuset if
2474 * SHOW_MEM_FILTER_NODES is passed.
2476 void __show_free_areas(unsigned int filter
)
2481 for_each_populated_zone(zone
) {
2482 if (skip_free_areas_zone(filter
, zone
))
2485 printk("%s per-cpu:\n", zone
->name
);
2487 for_each_online_cpu(cpu
) {
2488 struct per_cpu_pageset
*pageset
;
2490 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2492 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2493 cpu
, pageset
->pcp
.high
,
2494 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2498 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2499 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2501 " dirty:%lu writeback:%lu unstable:%lu\n"
2502 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2503 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2504 global_page_state(NR_ACTIVE_ANON
),
2505 global_page_state(NR_INACTIVE_ANON
),
2506 global_page_state(NR_ISOLATED_ANON
),
2507 global_page_state(NR_ACTIVE_FILE
),
2508 global_page_state(NR_INACTIVE_FILE
),
2509 global_page_state(NR_ISOLATED_FILE
),
2510 global_page_state(NR_UNEVICTABLE
),
2511 global_page_state(NR_FILE_DIRTY
),
2512 global_page_state(NR_WRITEBACK
),
2513 global_page_state(NR_UNSTABLE_NFS
),
2514 global_page_state(NR_FREE_PAGES
),
2515 global_page_state(NR_SLAB_RECLAIMABLE
),
2516 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2517 global_page_state(NR_FILE_MAPPED
),
2518 global_page_state(NR_SHMEM
),
2519 global_page_state(NR_PAGETABLE
),
2520 global_page_state(NR_BOUNCE
));
2522 for_each_populated_zone(zone
) {
2525 if (skip_free_areas_zone(filter
, zone
))
2533 " active_anon:%lukB"
2534 " inactive_anon:%lukB"
2535 " active_file:%lukB"
2536 " inactive_file:%lukB"
2537 " unevictable:%lukB"
2538 " isolated(anon):%lukB"
2539 " isolated(file):%lukB"
2546 " slab_reclaimable:%lukB"
2547 " slab_unreclaimable:%lukB"
2548 " kernel_stack:%lukB"
2552 " writeback_tmp:%lukB"
2553 " pages_scanned:%lu"
2554 " all_unreclaimable? %s"
2557 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2558 K(min_wmark_pages(zone
)),
2559 K(low_wmark_pages(zone
)),
2560 K(high_wmark_pages(zone
)),
2561 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2562 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2563 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2564 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2565 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2566 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2567 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2568 K(zone
->present_pages
),
2569 K(zone_page_state(zone
, NR_MLOCK
)),
2570 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2571 K(zone_page_state(zone
, NR_WRITEBACK
)),
2572 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2573 K(zone_page_state(zone
, NR_SHMEM
)),
2574 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2575 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2576 zone_page_state(zone
, NR_KERNEL_STACK
) *
2578 K(zone_page_state(zone
, NR_PAGETABLE
)),
2579 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2580 K(zone_page_state(zone
, NR_BOUNCE
)),
2581 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2582 zone
->pages_scanned
,
2583 (zone
->all_unreclaimable
? "yes" : "no")
2585 printk("lowmem_reserve[]:");
2586 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2587 printk(" %lu", zone
->lowmem_reserve
[i
]);
2591 for_each_populated_zone(zone
) {
2592 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2594 if (skip_free_areas_zone(filter
, zone
))
2597 printk("%s: ", zone
->name
);
2599 spin_lock_irqsave(&zone
->lock
, flags
);
2600 for (order
= 0; order
< MAX_ORDER
; order
++) {
2601 nr
[order
] = zone
->free_area
[order
].nr_free
;
2602 total
+= nr
[order
] << order
;
2604 spin_unlock_irqrestore(&zone
->lock
, flags
);
2605 for (order
= 0; order
< MAX_ORDER
; order
++)
2606 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2607 printk("= %lukB\n", K(total
));
2610 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2612 show_swap_cache_info();
2615 void show_free_areas(void)
2617 __show_free_areas(0);
2620 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2622 zoneref
->zone
= zone
;
2623 zoneref
->zone_idx
= zone_idx(zone
);
2627 * Builds allocation fallback zone lists.
2629 * Add all populated zones of a node to the zonelist.
2631 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2632 int nr_zones
, enum zone_type zone_type
)
2636 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2641 zone
= pgdat
->node_zones
+ zone_type
;
2642 if (populated_zone(zone
)) {
2643 zoneref_set_zone(zone
,
2644 &zonelist
->_zonerefs
[nr_zones
++]);
2645 check_highest_zone(zone_type
);
2648 } while (zone_type
);
2655 * 0 = automatic detection of better ordering.
2656 * 1 = order by ([node] distance, -zonetype)
2657 * 2 = order by (-zonetype, [node] distance)
2659 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2660 * the same zonelist. So only NUMA can configure this param.
2662 #define ZONELIST_ORDER_DEFAULT 0
2663 #define ZONELIST_ORDER_NODE 1
2664 #define ZONELIST_ORDER_ZONE 2
2666 /* zonelist order in the kernel.
2667 * set_zonelist_order() will set this to NODE or ZONE.
2669 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2670 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2674 /* The value user specified ....changed by config */
2675 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2676 /* string for sysctl */
2677 #define NUMA_ZONELIST_ORDER_LEN 16
2678 char numa_zonelist_order
[16] = "default";
2681 * interface for configure zonelist ordering.
2682 * command line option "numa_zonelist_order"
2683 * = "[dD]efault - default, automatic configuration.
2684 * = "[nN]ode - order by node locality, then by zone within node
2685 * = "[zZ]one - order by zone, then by locality within zone
2688 static int __parse_numa_zonelist_order(char *s
)
2690 if (*s
== 'd' || *s
== 'D') {
2691 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2692 } else if (*s
== 'n' || *s
== 'N') {
2693 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2694 } else if (*s
== 'z' || *s
== 'Z') {
2695 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2698 "Ignoring invalid numa_zonelist_order value: "
2705 static __init
int setup_numa_zonelist_order(char *s
)
2712 ret
= __parse_numa_zonelist_order(s
);
2714 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2718 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2721 * sysctl handler for numa_zonelist_order
2723 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2724 void __user
*buffer
, size_t *length
,
2727 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2729 static DEFINE_MUTEX(zl_order_mutex
);
2731 mutex_lock(&zl_order_mutex
);
2733 strcpy(saved_string
, (char*)table
->data
);
2734 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2738 int oldval
= user_zonelist_order
;
2739 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2741 * bogus value. restore saved string
2743 strncpy((char*)table
->data
, saved_string
,
2744 NUMA_ZONELIST_ORDER_LEN
);
2745 user_zonelist_order
= oldval
;
2746 } else if (oldval
!= user_zonelist_order
) {
2747 mutex_lock(&zonelists_mutex
);
2748 build_all_zonelists(NULL
);
2749 mutex_unlock(&zonelists_mutex
);
2753 mutex_unlock(&zl_order_mutex
);
2758 #define MAX_NODE_LOAD (nr_online_nodes)
2759 static int node_load
[MAX_NUMNODES
];
2762 * find_next_best_node - find the next node that should appear in a given node's fallback list
2763 * @node: node whose fallback list we're appending
2764 * @used_node_mask: nodemask_t of already used nodes
2766 * We use a number of factors to determine which is the next node that should
2767 * appear on a given node's fallback list. The node should not have appeared
2768 * already in @node's fallback list, and it should be the next closest node
2769 * according to the distance array (which contains arbitrary distance values
2770 * from each node to each node in the system), and should also prefer nodes
2771 * with no CPUs, since presumably they'll have very little allocation pressure
2772 * on them otherwise.
2773 * It returns -1 if no node is found.
2775 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2778 int min_val
= INT_MAX
;
2780 const struct cpumask
*tmp
= cpumask_of_node(0);
2782 /* Use the local node if we haven't already */
2783 if (!node_isset(node
, *used_node_mask
)) {
2784 node_set(node
, *used_node_mask
);
2788 for_each_node_state(n
, N_HIGH_MEMORY
) {
2790 /* Don't want a node to appear more than once */
2791 if (node_isset(n
, *used_node_mask
))
2794 /* Use the distance array to find the distance */
2795 val
= node_distance(node
, n
);
2797 /* Penalize nodes under us ("prefer the next node") */
2800 /* Give preference to headless and unused nodes */
2801 tmp
= cpumask_of_node(n
);
2802 if (!cpumask_empty(tmp
))
2803 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2805 /* Slight preference for less loaded node */
2806 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2807 val
+= node_load
[n
];
2809 if (val
< min_val
) {
2816 node_set(best_node
, *used_node_mask
);
2823 * Build zonelists ordered by node and zones within node.
2824 * This results in maximum locality--normal zone overflows into local
2825 * DMA zone, if any--but risks exhausting DMA zone.
2827 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2830 struct zonelist
*zonelist
;
2832 zonelist
= &pgdat
->node_zonelists
[0];
2833 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2835 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2837 zonelist
->_zonerefs
[j
].zone
= NULL
;
2838 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2842 * Build gfp_thisnode zonelists
2844 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2847 struct zonelist
*zonelist
;
2849 zonelist
= &pgdat
->node_zonelists
[1];
2850 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2851 zonelist
->_zonerefs
[j
].zone
= NULL
;
2852 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2856 * Build zonelists ordered by zone and nodes within zones.
2857 * This results in conserving DMA zone[s] until all Normal memory is
2858 * exhausted, but results in overflowing to remote node while memory
2859 * may still exist in local DMA zone.
2861 static int node_order
[MAX_NUMNODES
];
2863 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2866 int zone_type
; /* needs to be signed */
2868 struct zonelist
*zonelist
;
2870 zonelist
= &pgdat
->node_zonelists
[0];
2872 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2873 for (j
= 0; j
< nr_nodes
; j
++) {
2874 node
= node_order
[j
];
2875 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2876 if (populated_zone(z
)) {
2878 &zonelist
->_zonerefs
[pos
++]);
2879 check_highest_zone(zone_type
);
2883 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2884 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2887 static int default_zonelist_order(void)
2890 unsigned long low_kmem_size
,total_size
;
2894 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2895 * If they are really small and used heavily, the system can fall
2896 * into OOM very easily.
2897 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2899 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2902 for_each_online_node(nid
) {
2903 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2904 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2905 if (populated_zone(z
)) {
2906 if (zone_type
< ZONE_NORMAL
)
2907 low_kmem_size
+= z
->present_pages
;
2908 total_size
+= z
->present_pages
;
2909 } else if (zone_type
== ZONE_NORMAL
) {
2911 * If any node has only lowmem, then node order
2912 * is preferred to allow kernel allocations
2913 * locally; otherwise, they can easily infringe
2914 * on other nodes when there is an abundance of
2915 * lowmem available to allocate from.
2917 return ZONELIST_ORDER_NODE
;
2921 if (!low_kmem_size
|| /* there are no DMA area. */
2922 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2923 return ZONELIST_ORDER_NODE
;
2925 * look into each node's config.
2926 * If there is a node whose DMA/DMA32 memory is very big area on
2927 * local memory, NODE_ORDER may be suitable.
2929 average_size
= total_size
/
2930 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2931 for_each_online_node(nid
) {
2934 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2935 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2936 if (populated_zone(z
)) {
2937 if (zone_type
< ZONE_NORMAL
)
2938 low_kmem_size
+= z
->present_pages
;
2939 total_size
+= z
->present_pages
;
2942 if (low_kmem_size
&&
2943 total_size
> average_size
&& /* ignore small node */
2944 low_kmem_size
> total_size
* 70/100)
2945 return ZONELIST_ORDER_NODE
;
2947 return ZONELIST_ORDER_ZONE
;
2950 static void set_zonelist_order(void)
2952 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2953 current_zonelist_order
= default_zonelist_order();
2955 current_zonelist_order
= user_zonelist_order
;
2958 static void build_zonelists(pg_data_t
*pgdat
)
2962 nodemask_t used_mask
;
2963 int local_node
, prev_node
;
2964 struct zonelist
*zonelist
;
2965 int order
= current_zonelist_order
;
2967 /* initialize zonelists */
2968 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2969 zonelist
= pgdat
->node_zonelists
+ i
;
2970 zonelist
->_zonerefs
[0].zone
= NULL
;
2971 zonelist
->_zonerefs
[0].zone_idx
= 0;
2974 /* NUMA-aware ordering of nodes */
2975 local_node
= pgdat
->node_id
;
2976 load
= nr_online_nodes
;
2977 prev_node
= local_node
;
2978 nodes_clear(used_mask
);
2980 memset(node_order
, 0, sizeof(node_order
));
2983 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2984 int distance
= node_distance(local_node
, node
);
2987 * If another node is sufficiently far away then it is better
2988 * to reclaim pages in a zone before going off node.
2990 if (distance
> RECLAIM_DISTANCE
)
2991 zone_reclaim_mode
= 1;
2994 * We don't want to pressure a particular node.
2995 * So adding penalty to the first node in same
2996 * distance group to make it round-robin.
2998 if (distance
!= node_distance(local_node
, prev_node
))
2999 node_load
[node
] = load
;
3003 if (order
== ZONELIST_ORDER_NODE
)
3004 build_zonelists_in_node_order(pgdat
, node
);
3006 node_order
[j
++] = node
; /* remember order */
3009 if (order
== ZONELIST_ORDER_ZONE
) {
3010 /* calculate node order -- i.e., DMA last! */
3011 build_zonelists_in_zone_order(pgdat
, j
);
3014 build_thisnode_zonelists(pgdat
);
3017 /* Construct the zonelist performance cache - see further mmzone.h */
3018 static void build_zonelist_cache(pg_data_t
*pgdat
)
3020 struct zonelist
*zonelist
;
3021 struct zonelist_cache
*zlc
;
3024 zonelist
= &pgdat
->node_zonelists
[0];
3025 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3026 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3027 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3028 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3031 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3033 * Return node id of node used for "local" allocations.
3034 * I.e., first node id of first zone in arg node's generic zonelist.
3035 * Used for initializing percpu 'numa_mem', which is used primarily
3036 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3038 int local_memory_node(int node
)
3042 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3043 gfp_zone(GFP_KERNEL
),
3050 #else /* CONFIG_NUMA */
3052 static void set_zonelist_order(void)
3054 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3057 static void build_zonelists(pg_data_t
*pgdat
)
3059 int node
, local_node
;
3061 struct zonelist
*zonelist
;
3063 local_node
= pgdat
->node_id
;
3065 zonelist
= &pgdat
->node_zonelists
[0];
3066 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3069 * Now we build the zonelist so that it contains the zones
3070 * of all the other nodes.
3071 * We don't want to pressure a particular node, so when
3072 * building the zones for node N, we make sure that the
3073 * zones coming right after the local ones are those from
3074 * node N+1 (modulo N)
3076 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3077 if (!node_online(node
))
3079 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3082 for (node
= 0; node
< local_node
; node
++) {
3083 if (!node_online(node
))
3085 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3089 zonelist
->_zonerefs
[j
].zone
= NULL
;
3090 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3093 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3094 static void build_zonelist_cache(pg_data_t
*pgdat
)
3096 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3099 #endif /* CONFIG_NUMA */
3102 * Boot pageset table. One per cpu which is going to be used for all
3103 * zones and all nodes. The parameters will be set in such a way
3104 * that an item put on a list will immediately be handed over to
3105 * the buddy list. This is safe since pageset manipulation is done
3106 * with interrupts disabled.
3108 * The boot_pagesets must be kept even after bootup is complete for
3109 * unused processors and/or zones. They do play a role for bootstrapping
3110 * hotplugged processors.
3112 * zoneinfo_show() and maybe other functions do
3113 * not check if the processor is online before following the pageset pointer.
3114 * Other parts of the kernel may not check if the zone is available.
3116 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3117 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3118 static void setup_zone_pageset(struct zone
*zone
);
3121 * Global mutex to protect against size modification of zonelists
3122 * as well as to serialize pageset setup for the new populated zone.
3124 DEFINE_MUTEX(zonelists_mutex
);
3126 /* return values int ....just for stop_machine() */
3127 static __init_refok
int __build_all_zonelists(void *data
)
3133 memset(node_load
, 0, sizeof(node_load
));
3135 for_each_online_node(nid
) {
3136 pg_data_t
*pgdat
= NODE_DATA(nid
);
3138 build_zonelists(pgdat
);
3139 build_zonelist_cache(pgdat
);
3143 * Initialize the boot_pagesets that are going to be used
3144 * for bootstrapping processors. The real pagesets for
3145 * each zone will be allocated later when the per cpu
3146 * allocator is available.
3148 * boot_pagesets are used also for bootstrapping offline
3149 * cpus if the system is already booted because the pagesets
3150 * are needed to initialize allocators on a specific cpu too.
3151 * F.e. the percpu allocator needs the page allocator which
3152 * needs the percpu allocator in order to allocate its pagesets
3153 * (a chicken-egg dilemma).
3155 for_each_possible_cpu(cpu
) {
3156 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3158 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3160 * We now know the "local memory node" for each node--
3161 * i.e., the node of the first zone in the generic zonelist.
3162 * Set up numa_mem percpu variable for on-line cpus. During
3163 * boot, only the boot cpu should be on-line; we'll init the
3164 * secondary cpus' numa_mem as they come on-line. During
3165 * node/memory hotplug, we'll fixup all on-line cpus.
3167 if (cpu_online(cpu
))
3168 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3176 * Called with zonelists_mutex held always
3177 * unless system_state == SYSTEM_BOOTING.
3179 void __ref
build_all_zonelists(void *data
)
3181 set_zonelist_order();
3183 if (system_state
== SYSTEM_BOOTING
) {
3184 __build_all_zonelists(NULL
);
3185 mminit_verify_zonelist();
3186 cpuset_init_current_mems_allowed();
3188 /* we have to stop all cpus to guarantee there is no user
3190 #ifdef CONFIG_MEMORY_HOTPLUG
3192 setup_zone_pageset((struct zone
*)data
);
3194 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3195 /* cpuset refresh routine should be here */
3197 vm_total_pages
= nr_free_pagecache_pages();
3199 * Disable grouping by mobility if the number of pages in the
3200 * system is too low to allow the mechanism to work. It would be
3201 * more accurate, but expensive to check per-zone. This check is
3202 * made on memory-hotadd so a system can start with mobility
3203 * disabled and enable it later
3205 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3206 page_group_by_mobility_disabled
= 1;
3208 page_group_by_mobility_disabled
= 0;
3210 printk("Built %i zonelists in %s order, mobility grouping %s. "
3211 "Total pages: %ld\n",
3213 zonelist_order_name
[current_zonelist_order
],
3214 page_group_by_mobility_disabled
? "off" : "on",
3217 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3222 * Helper functions to size the waitqueue hash table.
3223 * Essentially these want to choose hash table sizes sufficiently
3224 * large so that collisions trying to wait on pages are rare.
3225 * But in fact, the number of active page waitqueues on typical
3226 * systems is ridiculously low, less than 200. So this is even
3227 * conservative, even though it seems large.
3229 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3230 * waitqueues, i.e. the size of the waitq table given the number of pages.
3232 #define PAGES_PER_WAITQUEUE 256
3234 #ifndef CONFIG_MEMORY_HOTPLUG
3235 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3237 unsigned long size
= 1;
3239 pages
/= PAGES_PER_WAITQUEUE
;
3241 while (size
< pages
)
3245 * Once we have dozens or even hundreds of threads sleeping
3246 * on IO we've got bigger problems than wait queue collision.
3247 * Limit the size of the wait table to a reasonable size.
3249 size
= min(size
, 4096UL);
3251 return max(size
, 4UL);
3255 * A zone's size might be changed by hot-add, so it is not possible to determine
3256 * a suitable size for its wait_table. So we use the maximum size now.
3258 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3260 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3261 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3262 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3264 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3265 * or more by the traditional way. (See above). It equals:
3267 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3268 * ia64(16K page size) : = ( 8G + 4M)byte.
3269 * powerpc (64K page size) : = (32G +16M)byte.
3271 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3278 * This is an integer logarithm so that shifts can be used later
3279 * to extract the more random high bits from the multiplicative
3280 * hash function before the remainder is taken.
3282 static inline unsigned long wait_table_bits(unsigned long size
)
3287 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3290 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3291 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3292 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3293 * higher will lead to a bigger reserve which will get freed as contiguous
3294 * blocks as reclaim kicks in
3296 static void setup_zone_migrate_reserve(struct zone
*zone
)
3298 unsigned long start_pfn
, pfn
, end_pfn
;
3300 unsigned long block_migratetype
;
3303 /* Get the start pfn, end pfn and the number of blocks to reserve */
3304 start_pfn
= zone
->zone_start_pfn
;
3305 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3306 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3310 * Reserve blocks are generally in place to help high-order atomic
3311 * allocations that are short-lived. A min_free_kbytes value that
3312 * would result in more than 2 reserve blocks for atomic allocations
3313 * is assumed to be in place to help anti-fragmentation for the
3314 * future allocation of hugepages at runtime.
3316 reserve
= min(2, reserve
);
3318 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3319 if (!pfn_valid(pfn
))
3321 page
= pfn_to_page(pfn
);
3323 /* Watch out for overlapping nodes */
3324 if (page_to_nid(page
) != zone_to_nid(zone
))
3327 /* Blocks with reserved pages will never free, skip them. */
3328 if (PageReserved(page
))
3331 block_migratetype
= get_pageblock_migratetype(page
);
3333 /* If this block is reserved, account for it */
3334 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3339 /* Suitable for reserving if this block is movable */
3340 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3341 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3342 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3348 * If the reserve is met and this is a previous reserved block,
3351 if (block_migratetype
== MIGRATE_RESERVE
) {
3352 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3353 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3359 * Initially all pages are reserved - free ones are freed
3360 * up by free_all_bootmem() once the early boot process is
3361 * done. Non-atomic initialization, single-pass.
3363 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3364 unsigned long start_pfn
, enum memmap_context context
)
3367 unsigned long end_pfn
= start_pfn
+ size
;
3371 if (highest_memmap_pfn
< end_pfn
- 1)
3372 highest_memmap_pfn
= end_pfn
- 1;
3374 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3375 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3377 * There can be holes in boot-time mem_map[]s
3378 * handed to this function. They do not
3379 * exist on hotplugged memory.
3381 if (context
== MEMMAP_EARLY
) {
3382 if (!early_pfn_valid(pfn
))
3384 if (!early_pfn_in_nid(pfn
, nid
))
3387 page
= pfn_to_page(pfn
);
3388 set_page_links(page
, zone
, nid
, pfn
);
3389 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3390 init_page_count(page
);
3391 reset_page_mapcount(page
);
3392 SetPageReserved(page
);
3394 * Mark the block movable so that blocks are reserved for
3395 * movable at startup. This will force kernel allocations
3396 * to reserve their blocks rather than leaking throughout
3397 * the address space during boot when many long-lived
3398 * kernel allocations are made. Later some blocks near
3399 * the start are marked MIGRATE_RESERVE by
3400 * setup_zone_migrate_reserve()
3402 * bitmap is created for zone's valid pfn range. but memmap
3403 * can be created for invalid pages (for alignment)
3404 * check here not to call set_pageblock_migratetype() against
3407 if ((z
->zone_start_pfn
<= pfn
)
3408 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3409 && !(pfn
& (pageblock_nr_pages
- 1)))
3410 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3412 INIT_LIST_HEAD(&page
->lru
);
3413 #ifdef WANT_PAGE_VIRTUAL
3414 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3415 if (!is_highmem_idx(zone
))
3416 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3421 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3424 for_each_migratetype_order(order
, t
) {
3425 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3426 zone
->free_area
[order
].nr_free
= 0;
3430 #ifndef __HAVE_ARCH_MEMMAP_INIT
3431 #define memmap_init(size, nid, zone, start_pfn) \
3432 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3435 static int zone_batchsize(struct zone
*zone
)
3441 * The per-cpu-pages pools are set to around 1000th of the
3442 * size of the zone. But no more than 1/2 of a meg.
3444 * OK, so we don't know how big the cache is. So guess.
3446 batch
= zone
->present_pages
/ 1024;
3447 if (batch
* PAGE_SIZE
> 512 * 1024)
3448 batch
= (512 * 1024) / PAGE_SIZE
;
3449 batch
/= 4; /* We effectively *= 4 below */
3454 * Clamp the batch to a 2^n - 1 value. Having a power
3455 * of 2 value was found to be more likely to have
3456 * suboptimal cache aliasing properties in some cases.
3458 * For example if 2 tasks are alternately allocating
3459 * batches of pages, one task can end up with a lot
3460 * of pages of one half of the possible page colors
3461 * and the other with pages of the other colors.
3463 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3468 /* The deferral and batching of frees should be suppressed under NOMMU
3471 * The problem is that NOMMU needs to be able to allocate large chunks
3472 * of contiguous memory as there's no hardware page translation to
3473 * assemble apparent contiguous memory from discontiguous pages.
3475 * Queueing large contiguous runs of pages for batching, however,
3476 * causes the pages to actually be freed in smaller chunks. As there
3477 * can be a significant delay between the individual batches being
3478 * recycled, this leads to the once large chunks of space being
3479 * fragmented and becoming unavailable for high-order allocations.
3485 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3487 struct per_cpu_pages
*pcp
;
3490 memset(p
, 0, sizeof(*p
));
3494 pcp
->high
= 6 * batch
;
3495 pcp
->batch
= max(1UL, 1 * batch
);
3496 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3497 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3501 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3502 * to the value high for the pageset p.
3505 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3508 struct per_cpu_pages
*pcp
;
3512 pcp
->batch
= max(1UL, high
/4);
3513 if ((high
/4) > (PAGE_SHIFT
* 8))
3514 pcp
->batch
= PAGE_SHIFT
* 8;
3517 static void setup_zone_pageset(struct zone
*zone
)
3521 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3523 for_each_possible_cpu(cpu
) {
3524 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3526 setup_pageset(pcp
, zone_batchsize(zone
));
3528 if (percpu_pagelist_fraction
)
3529 setup_pagelist_highmark(pcp
,
3530 (zone
->present_pages
/
3531 percpu_pagelist_fraction
));
3536 * Allocate per cpu pagesets and initialize them.
3537 * Before this call only boot pagesets were available.
3539 void __init
setup_per_cpu_pageset(void)
3543 for_each_populated_zone(zone
)
3544 setup_zone_pageset(zone
);
3547 static noinline __init_refok
3548 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3551 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3555 * The per-page waitqueue mechanism uses hashed waitqueues
3558 zone
->wait_table_hash_nr_entries
=
3559 wait_table_hash_nr_entries(zone_size_pages
);
3560 zone
->wait_table_bits
=
3561 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3562 alloc_size
= zone
->wait_table_hash_nr_entries
3563 * sizeof(wait_queue_head_t
);
3565 if (!slab_is_available()) {
3566 zone
->wait_table
= (wait_queue_head_t
*)
3567 alloc_bootmem_node(pgdat
, alloc_size
);
3570 * This case means that a zone whose size was 0 gets new memory
3571 * via memory hot-add.
3572 * But it may be the case that a new node was hot-added. In
3573 * this case vmalloc() will not be able to use this new node's
3574 * memory - this wait_table must be initialized to use this new
3575 * node itself as well.
3576 * To use this new node's memory, further consideration will be
3579 zone
->wait_table
= vmalloc(alloc_size
);
3581 if (!zone
->wait_table
)
3584 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3585 init_waitqueue_head(zone
->wait_table
+ i
);
3590 static int __zone_pcp_update(void *data
)
3592 struct zone
*zone
= data
;
3594 unsigned long batch
= zone_batchsize(zone
), flags
;
3596 for_each_possible_cpu(cpu
) {
3597 struct per_cpu_pageset
*pset
;
3598 struct per_cpu_pages
*pcp
;
3600 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3603 local_irq_save(flags
);
3604 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3605 setup_pageset(pset
, batch
);
3606 local_irq_restore(flags
);
3611 void zone_pcp_update(struct zone
*zone
)
3613 stop_machine(__zone_pcp_update
, zone
, NULL
);
3616 static __meminit
void zone_pcp_init(struct zone
*zone
)
3619 * per cpu subsystem is not up at this point. The following code
3620 * relies on the ability of the linker to provide the
3621 * offset of a (static) per cpu variable into the per cpu area.
3623 zone
->pageset
= &boot_pageset
;
3625 if (zone
->present_pages
)
3626 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3627 zone
->name
, zone
->present_pages
,
3628 zone_batchsize(zone
));
3631 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3632 unsigned long zone_start_pfn
,
3634 enum memmap_context context
)
3636 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3638 ret
= zone_wait_table_init(zone
, size
);
3641 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3643 zone
->zone_start_pfn
= zone_start_pfn
;
3645 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3646 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3648 (unsigned long)zone_idx(zone
),
3649 zone_start_pfn
, (zone_start_pfn
+ size
));
3651 zone_init_free_lists(zone
);
3656 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3658 * Basic iterator support. Return the first range of PFNs for a node
3659 * Note: nid == MAX_NUMNODES returns first region regardless of node
3661 static int __meminit
first_active_region_index_in_nid(int nid
)
3665 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3666 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3673 * Basic iterator support. Return the next active range of PFNs for a node
3674 * Note: nid == MAX_NUMNODES returns next region regardless of node
3676 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3678 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3679 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3685 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3687 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3688 * Architectures may implement their own version but if add_active_range()
3689 * was used and there are no special requirements, this is a convenient
3692 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3696 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3697 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3698 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3700 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3701 return early_node_map
[i
].nid
;
3703 /* This is a memory hole */
3706 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3708 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3712 nid
= __early_pfn_to_nid(pfn
);
3715 /* just returns 0 */
3719 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3720 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3724 nid
= __early_pfn_to_nid(pfn
);
3725 if (nid
>= 0 && nid
!= node
)
3731 /* Basic iterator support to walk early_node_map[] */
3732 #define for_each_active_range_index_in_nid(i, nid) \
3733 for (i = first_active_region_index_in_nid(nid); i != -1; \
3734 i = next_active_region_index_in_nid(i, nid))
3737 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3738 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3739 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3741 * If an architecture guarantees that all ranges registered with
3742 * add_active_ranges() contain no holes and may be freed, this
3743 * this function may be used instead of calling free_bootmem() manually.
3745 void __init
free_bootmem_with_active_regions(int nid
,
3746 unsigned long max_low_pfn
)
3750 for_each_active_range_index_in_nid(i
, nid
) {
3751 unsigned long size_pages
= 0;
3752 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3754 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3757 if (end_pfn
> max_low_pfn
)
3758 end_pfn
= max_low_pfn
;
3760 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3761 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3762 PFN_PHYS(early_node_map
[i
].start_pfn
),
3763 size_pages
<< PAGE_SHIFT
);
3767 #ifdef CONFIG_HAVE_MEMBLOCK
3769 * Basic iterator support. Return the last range of PFNs for a node
3770 * Note: nid == MAX_NUMNODES returns last region regardless of node
3772 static int __meminit
last_active_region_index_in_nid(int nid
)
3776 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3777 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3784 * Basic iterator support. Return the previous active range of PFNs for a node
3785 * Note: nid == MAX_NUMNODES returns next region regardless of node
3787 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3789 for (index
= index
- 1; index
>= 0; index
--)
3790 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3796 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3797 for (i = last_active_region_index_in_nid(nid); i != -1; \
3798 i = previous_active_region_index_in_nid(i, nid))
3800 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3801 u64 goal
, u64 limit
)
3805 /* Need to go over early_node_map to find out good range for node */
3806 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3808 u64 ei_start
, ei_last
;
3809 u64 final_start
, final_end
;
3811 ei_last
= early_node_map
[i
].end_pfn
;
3812 ei_last
<<= PAGE_SHIFT
;
3813 ei_start
= early_node_map
[i
].start_pfn
;
3814 ei_start
<<= PAGE_SHIFT
;
3816 final_start
= max(ei_start
, goal
);
3817 final_end
= min(ei_last
, limit
);
3819 if (final_start
>= final_end
)
3822 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3824 if (addr
== MEMBLOCK_ERROR
)
3830 return MEMBLOCK_ERROR
;
3834 int __init
add_from_early_node_map(struct range
*range
, int az
,
3835 int nr_range
, int nid
)
3840 /* need to go over early_node_map to find out good range for node */
3841 for_each_active_range_index_in_nid(i
, nid
) {
3842 start
= early_node_map
[i
].start_pfn
;
3843 end
= early_node_map
[i
].end_pfn
;
3844 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3849 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3854 for_each_active_range_index_in_nid(i
, nid
) {
3855 ret
= work_fn(early_node_map
[i
].start_pfn
,
3856 early_node_map
[i
].end_pfn
, data
);
3862 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3863 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3865 * If an architecture guarantees that all ranges registered with
3866 * add_active_ranges() contain no holes and may be freed, this
3867 * function may be used instead of calling memory_present() manually.
3869 void __init
sparse_memory_present_with_active_regions(int nid
)
3873 for_each_active_range_index_in_nid(i
, nid
)
3874 memory_present(early_node_map
[i
].nid
,
3875 early_node_map
[i
].start_pfn
,
3876 early_node_map
[i
].end_pfn
);
3880 * get_pfn_range_for_nid - Return the start and end page frames for a node
3881 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3882 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3883 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3885 * It returns the start and end page frame of a node based on information
3886 * provided by an arch calling add_active_range(). If called for a node
3887 * with no available memory, a warning is printed and the start and end
3890 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3891 unsigned long *start_pfn
, unsigned long *end_pfn
)
3897 for_each_active_range_index_in_nid(i
, nid
) {
3898 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3899 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3902 if (*start_pfn
== -1UL)
3907 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3908 * assumption is made that zones within a node are ordered in monotonic
3909 * increasing memory addresses so that the "highest" populated zone is used
3911 static void __init
find_usable_zone_for_movable(void)
3914 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3915 if (zone_index
== ZONE_MOVABLE
)
3918 if (arch_zone_highest_possible_pfn
[zone_index
] >
3919 arch_zone_lowest_possible_pfn
[zone_index
])
3923 VM_BUG_ON(zone_index
== -1);
3924 movable_zone
= zone_index
;
3928 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3929 * because it is sized independent of architecture. Unlike the other zones,
3930 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3931 * in each node depending on the size of each node and how evenly kernelcore
3932 * is distributed. This helper function adjusts the zone ranges
3933 * provided by the architecture for a given node by using the end of the
3934 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3935 * zones within a node are in order of monotonic increases memory addresses
3937 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3938 unsigned long zone_type
,
3939 unsigned long node_start_pfn
,
3940 unsigned long node_end_pfn
,
3941 unsigned long *zone_start_pfn
,
3942 unsigned long *zone_end_pfn
)
3944 /* Only adjust if ZONE_MOVABLE is on this node */
3945 if (zone_movable_pfn
[nid
]) {
3946 /* Size ZONE_MOVABLE */
3947 if (zone_type
== ZONE_MOVABLE
) {
3948 *zone_start_pfn
= zone_movable_pfn
[nid
];
3949 *zone_end_pfn
= min(node_end_pfn
,
3950 arch_zone_highest_possible_pfn
[movable_zone
]);
3952 /* Adjust for ZONE_MOVABLE starting within this range */
3953 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3954 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3955 *zone_end_pfn
= zone_movable_pfn
[nid
];
3957 /* Check if this whole range is within ZONE_MOVABLE */
3958 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3959 *zone_start_pfn
= *zone_end_pfn
;
3964 * Return the number of pages a zone spans in a node, including holes
3965 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3967 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3968 unsigned long zone_type
,
3969 unsigned long *ignored
)
3971 unsigned long node_start_pfn
, node_end_pfn
;
3972 unsigned long zone_start_pfn
, zone_end_pfn
;
3974 /* Get the start and end of the node and zone */
3975 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3976 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3977 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3978 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3979 node_start_pfn
, node_end_pfn
,
3980 &zone_start_pfn
, &zone_end_pfn
);
3982 /* Check that this node has pages within the zone's required range */
3983 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3986 /* Move the zone boundaries inside the node if necessary */
3987 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3988 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3990 /* Return the spanned pages */
3991 return zone_end_pfn
- zone_start_pfn
;
3995 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3996 * then all holes in the requested range will be accounted for.
3998 unsigned long __meminit
__absent_pages_in_range(int nid
,
3999 unsigned long range_start_pfn
,
4000 unsigned long range_end_pfn
)
4003 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
4004 unsigned long start_pfn
;
4006 /* Find the end_pfn of the first active range of pfns in the node */
4007 i
= first_active_region_index_in_nid(nid
);
4011 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4013 /* Account for ranges before physical memory on this node */
4014 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
4015 hole_pages
= prev_end_pfn
- range_start_pfn
;
4017 /* Find all holes for the zone within the node */
4018 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
4020 /* No need to continue if prev_end_pfn is outside the zone */
4021 if (prev_end_pfn
>= range_end_pfn
)
4024 /* Make sure the end of the zone is not within the hole */
4025 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4026 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
4028 /* Update the hole size cound and move on */
4029 if (start_pfn
> range_start_pfn
) {
4030 BUG_ON(prev_end_pfn
> start_pfn
);
4031 hole_pages
+= start_pfn
- prev_end_pfn
;
4033 prev_end_pfn
= early_node_map
[i
].end_pfn
;
4036 /* Account for ranges past physical memory on this node */
4037 if (range_end_pfn
> prev_end_pfn
)
4038 hole_pages
+= range_end_pfn
-
4039 max(range_start_pfn
, prev_end_pfn
);
4045 * absent_pages_in_range - Return number of page frames in holes within a range
4046 * @start_pfn: The start PFN to start searching for holes
4047 * @end_pfn: The end PFN to stop searching for holes
4049 * It returns the number of pages frames in memory holes within a range.
4051 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4052 unsigned long end_pfn
)
4054 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4057 /* Return the number of page frames in holes in a zone on a node */
4058 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4059 unsigned long zone_type
,
4060 unsigned long *ignored
)
4062 unsigned long node_start_pfn
, node_end_pfn
;
4063 unsigned long zone_start_pfn
, zone_end_pfn
;
4065 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4066 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4068 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4071 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4072 node_start_pfn
, node_end_pfn
,
4073 &zone_start_pfn
, &zone_end_pfn
);
4074 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4078 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4079 unsigned long zone_type
,
4080 unsigned long *zones_size
)
4082 return zones_size
[zone_type
];
4085 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4086 unsigned long zone_type
,
4087 unsigned long *zholes_size
)
4092 return zholes_size
[zone_type
];
4097 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4098 unsigned long *zones_size
, unsigned long *zholes_size
)
4100 unsigned long realtotalpages
, totalpages
= 0;
4103 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4104 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4106 pgdat
->node_spanned_pages
= totalpages
;
4108 realtotalpages
= totalpages
;
4109 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4111 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4113 pgdat
->node_present_pages
= realtotalpages
;
4114 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4118 #ifndef CONFIG_SPARSEMEM
4120 * Calculate the size of the zone->blockflags rounded to an unsigned long
4121 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4122 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4123 * round what is now in bits to nearest long in bits, then return it in
4126 static unsigned long __init
usemap_size(unsigned long zonesize
)
4128 unsigned long usemapsize
;
4130 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4131 usemapsize
= usemapsize
>> pageblock_order
;
4132 usemapsize
*= NR_PAGEBLOCK_BITS
;
4133 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4135 return usemapsize
/ 8;
4138 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4139 struct zone
*zone
, unsigned long zonesize
)
4141 unsigned long usemapsize
= usemap_size(zonesize
);
4142 zone
->pageblock_flags
= NULL
;
4144 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
4147 static inline void setup_usemap(struct pglist_data
*pgdat
,
4148 struct zone
*zone
, unsigned long zonesize
) {}
4149 #endif /* CONFIG_SPARSEMEM */
4151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4153 /* Return a sensible default order for the pageblock size. */
4154 static inline int pageblock_default_order(void)
4156 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4157 return HUGETLB_PAGE_ORDER
;
4162 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4163 static inline void __init
set_pageblock_order(unsigned int order
)
4165 /* Check that pageblock_nr_pages has not already been setup */
4166 if (pageblock_order
)
4170 * Assume the largest contiguous order of interest is a huge page.
4171 * This value may be variable depending on boot parameters on IA64
4173 pageblock_order
= order
;
4175 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4178 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4179 * and pageblock_default_order() are unused as pageblock_order is set
4180 * at compile-time. See include/linux/pageblock-flags.h for the values of
4181 * pageblock_order based on the kernel config
4183 static inline int pageblock_default_order(unsigned int order
)
4187 #define set_pageblock_order(x) do {} while (0)
4189 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4192 * Set up the zone data structures:
4193 * - mark all pages reserved
4194 * - mark all memory queues empty
4195 * - clear the memory bitmaps
4197 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4198 unsigned long *zones_size
, unsigned long *zholes_size
)
4201 int nid
= pgdat
->node_id
;
4202 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4205 pgdat_resize_init(pgdat
);
4206 pgdat
->nr_zones
= 0;
4207 init_waitqueue_head(&pgdat
->kswapd_wait
);
4208 pgdat
->kswapd_max_order
= 0;
4209 pgdat_page_cgroup_init(pgdat
);
4211 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4212 struct zone
*zone
= pgdat
->node_zones
+ j
;
4213 unsigned long size
, realsize
, memmap_pages
;
4216 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4217 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4221 * Adjust realsize so that it accounts for how much memory
4222 * is used by this zone for memmap. This affects the watermark
4223 * and per-cpu initialisations
4226 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4227 if (realsize
>= memmap_pages
) {
4228 realsize
-= memmap_pages
;
4231 " %s zone: %lu pages used for memmap\n",
4232 zone_names
[j
], memmap_pages
);
4235 " %s zone: %lu pages exceeds realsize %lu\n",
4236 zone_names
[j
], memmap_pages
, realsize
);
4238 /* Account for reserved pages */
4239 if (j
== 0 && realsize
> dma_reserve
) {
4240 realsize
-= dma_reserve
;
4241 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4242 zone_names
[0], dma_reserve
);
4245 if (!is_highmem_idx(j
))
4246 nr_kernel_pages
+= realsize
;
4247 nr_all_pages
+= realsize
;
4249 zone
->spanned_pages
= size
;
4250 zone
->present_pages
= realsize
;
4253 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4255 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4257 zone
->name
= zone_names
[j
];
4258 spin_lock_init(&zone
->lock
);
4259 spin_lock_init(&zone
->lru_lock
);
4260 zone_seqlock_init(zone
);
4261 zone
->zone_pgdat
= pgdat
;
4263 zone_pcp_init(zone
);
4265 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4266 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
4268 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4269 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4270 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4271 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4272 zap_zone_vm_stats(zone
);
4277 set_pageblock_order(pageblock_default_order());
4278 setup_usemap(pgdat
, zone
, size
);
4279 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4280 size
, MEMMAP_EARLY
);
4282 memmap_init(size
, nid
, j
, zone_start_pfn
);
4283 zone_start_pfn
+= size
;
4287 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4289 /* Skip empty nodes */
4290 if (!pgdat
->node_spanned_pages
)
4293 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4294 /* ia64 gets its own node_mem_map, before this, without bootmem */
4295 if (!pgdat
->node_mem_map
) {
4296 unsigned long size
, start
, end
;
4300 * The zone's endpoints aren't required to be MAX_ORDER
4301 * aligned but the node_mem_map endpoints must be in order
4302 * for the buddy allocator to function correctly.
4304 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4305 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4306 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4307 size
= (end
- start
) * sizeof(struct page
);
4308 map
= alloc_remap(pgdat
->node_id
, size
);
4310 map
= alloc_bootmem_node(pgdat
, size
);
4311 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4313 #ifndef CONFIG_NEED_MULTIPLE_NODES
4315 * With no DISCONTIG, the global mem_map is just set as node 0's
4317 if (pgdat
== NODE_DATA(0)) {
4318 mem_map
= NODE_DATA(0)->node_mem_map
;
4319 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4320 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4321 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4322 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4325 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4328 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4329 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4331 pg_data_t
*pgdat
= NODE_DATA(nid
);
4333 pgdat
->node_id
= nid
;
4334 pgdat
->node_start_pfn
= node_start_pfn
;
4335 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4337 alloc_node_mem_map(pgdat
);
4338 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4339 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4340 nid
, (unsigned long)pgdat
,
4341 (unsigned long)pgdat
->node_mem_map
);
4344 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4347 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4349 #if MAX_NUMNODES > 1
4351 * Figure out the number of possible node ids.
4353 static void __init
setup_nr_node_ids(void)
4356 unsigned int highest
= 0;
4358 for_each_node_mask(node
, node_possible_map
)
4360 nr_node_ids
= highest
+ 1;
4363 static inline void setup_nr_node_ids(void)
4369 * add_active_range - Register a range of PFNs backed by physical memory
4370 * @nid: The node ID the range resides on
4371 * @start_pfn: The start PFN of the available physical memory
4372 * @end_pfn: The end PFN of the available physical memory
4374 * These ranges are stored in an early_node_map[] and later used by
4375 * free_area_init_nodes() to calculate zone sizes and holes. If the
4376 * range spans a memory hole, it is up to the architecture to ensure
4377 * the memory is not freed by the bootmem allocator. If possible
4378 * the range being registered will be merged with existing ranges.
4380 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4381 unsigned long end_pfn
)
4385 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4386 "Entering add_active_range(%d, %#lx, %#lx) "
4387 "%d entries of %d used\n",
4388 nid
, start_pfn
, end_pfn
,
4389 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4391 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4393 /* Merge with existing active regions if possible */
4394 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4395 if (early_node_map
[i
].nid
!= nid
)
4398 /* Skip if an existing region covers this new one */
4399 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4400 end_pfn
<= early_node_map
[i
].end_pfn
)
4403 /* Merge forward if suitable */
4404 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4405 end_pfn
> early_node_map
[i
].end_pfn
) {
4406 early_node_map
[i
].end_pfn
= end_pfn
;
4410 /* Merge backward if suitable */
4411 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4412 end_pfn
>= early_node_map
[i
].start_pfn
) {
4413 early_node_map
[i
].start_pfn
= start_pfn
;
4418 /* Check that early_node_map is large enough */
4419 if (i
>= MAX_ACTIVE_REGIONS
) {
4420 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4421 MAX_ACTIVE_REGIONS
);
4425 early_node_map
[i
].nid
= nid
;
4426 early_node_map
[i
].start_pfn
= start_pfn
;
4427 early_node_map
[i
].end_pfn
= end_pfn
;
4428 nr_nodemap_entries
= i
+ 1;
4432 * remove_active_range - Shrink an existing registered range of PFNs
4433 * @nid: The node id the range is on that should be shrunk
4434 * @start_pfn: The new PFN of the range
4435 * @end_pfn: The new PFN of the range
4437 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4438 * The map is kept near the end physical page range that has already been
4439 * registered. This function allows an arch to shrink an existing registered
4442 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4443 unsigned long end_pfn
)
4448 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4449 nid
, start_pfn
, end_pfn
);
4451 /* Find the old active region end and shrink */
4452 for_each_active_range_index_in_nid(i
, nid
) {
4453 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4454 early_node_map
[i
].end_pfn
<= end_pfn
) {
4456 early_node_map
[i
].start_pfn
= 0;
4457 early_node_map
[i
].end_pfn
= 0;
4461 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4462 early_node_map
[i
].end_pfn
> start_pfn
) {
4463 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4464 early_node_map
[i
].end_pfn
= start_pfn
;
4465 if (temp_end_pfn
> end_pfn
)
4466 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4469 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4470 early_node_map
[i
].end_pfn
> end_pfn
&&
4471 early_node_map
[i
].start_pfn
< end_pfn
) {
4472 early_node_map
[i
].start_pfn
= end_pfn
;
4480 /* remove the blank ones */
4481 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4482 if (early_node_map
[i
].nid
!= nid
)
4484 if (early_node_map
[i
].end_pfn
)
4486 /* we found it, get rid of it */
4487 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4488 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4489 sizeof(early_node_map
[j
]));
4490 j
= nr_nodemap_entries
- 1;
4491 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4492 nr_nodemap_entries
--;
4497 * remove_all_active_ranges - Remove all currently registered regions
4499 * During discovery, it may be found that a table like SRAT is invalid
4500 * and an alternative discovery method must be used. This function removes
4501 * all currently registered regions.
4503 void __init
remove_all_active_ranges(void)
4505 memset(early_node_map
, 0, sizeof(early_node_map
));
4506 nr_nodemap_entries
= 0;
4509 /* Compare two active node_active_regions */
4510 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4512 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4513 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4515 /* Done this way to avoid overflows */
4516 if (arange
->start_pfn
> brange
->start_pfn
)
4518 if (arange
->start_pfn
< brange
->start_pfn
)
4524 /* sort the node_map by start_pfn */
4525 void __init
sort_node_map(void)
4527 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4528 sizeof(struct node_active_region
),
4529 cmp_node_active_region
, NULL
);
4532 /* Find the lowest pfn for a node */
4533 static unsigned long __init
find_min_pfn_for_node(int nid
)
4536 unsigned long min_pfn
= ULONG_MAX
;
4538 /* Assuming a sorted map, the first range found has the starting pfn */
4539 for_each_active_range_index_in_nid(i
, nid
)
4540 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4542 if (min_pfn
== ULONG_MAX
) {
4544 "Could not find start_pfn for node %d\n", nid
);
4552 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4554 * It returns the minimum PFN based on information provided via
4555 * add_active_range().
4557 unsigned long __init
find_min_pfn_with_active_regions(void)
4559 return find_min_pfn_for_node(MAX_NUMNODES
);
4563 * early_calculate_totalpages()
4564 * Sum pages in active regions for movable zone.
4565 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4567 static unsigned long __init
early_calculate_totalpages(void)
4570 unsigned long totalpages
= 0;
4572 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4573 unsigned long pages
= early_node_map
[i
].end_pfn
-
4574 early_node_map
[i
].start_pfn
;
4575 totalpages
+= pages
;
4577 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4583 * Find the PFN the Movable zone begins in each node. Kernel memory
4584 * is spread evenly between nodes as long as the nodes have enough
4585 * memory. When they don't, some nodes will have more kernelcore than
4588 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4591 unsigned long usable_startpfn
;
4592 unsigned long kernelcore_node
, kernelcore_remaining
;
4593 /* save the state before borrow the nodemask */
4594 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4595 unsigned long totalpages
= early_calculate_totalpages();
4596 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4599 * If movablecore was specified, calculate what size of
4600 * kernelcore that corresponds so that memory usable for
4601 * any allocation type is evenly spread. If both kernelcore
4602 * and movablecore are specified, then the value of kernelcore
4603 * will be used for required_kernelcore if it's greater than
4604 * what movablecore would have allowed.
4606 if (required_movablecore
) {
4607 unsigned long corepages
;
4610 * Round-up so that ZONE_MOVABLE is at least as large as what
4611 * was requested by the user
4613 required_movablecore
=
4614 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4615 corepages
= totalpages
- required_movablecore
;
4617 required_kernelcore
= max(required_kernelcore
, corepages
);
4620 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4621 if (!required_kernelcore
)
4624 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4625 find_usable_zone_for_movable();
4626 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4629 /* Spread kernelcore memory as evenly as possible throughout nodes */
4630 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4631 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4633 * Recalculate kernelcore_node if the division per node
4634 * now exceeds what is necessary to satisfy the requested
4635 * amount of memory for the kernel
4637 if (required_kernelcore
< kernelcore_node
)
4638 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4641 * As the map is walked, we track how much memory is usable
4642 * by the kernel using kernelcore_remaining. When it is
4643 * 0, the rest of the node is usable by ZONE_MOVABLE
4645 kernelcore_remaining
= kernelcore_node
;
4647 /* Go through each range of PFNs within this node */
4648 for_each_active_range_index_in_nid(i
, nid
) {
4649 unsigned long start_pfn
, end_pfn
;
4650 unsigned long size_pages
;
4652 start_pfn
= max(early_node_map
[i
].start_pfn
,
4653 zone_movable_pfn
[nid
]);
4654 end_pfn
= early_node_map
[i
].end_pfn
;
4655 if (start_pfn
>= end_pfn
)
4658 /* Account for what is only usable for kernelcore */
4659 if (start_pfn
< usable_startpfn
) {
4660 unsigned long kernel_pages
;
4661 kernel_pages
= min(end_pfn
, usable_startpfn
)
4664 kernelcore_remaining
-= min(kernel_pages
,
4665 kernelcore_remaining
);
4666 required_kernelcore
-= min(kernel_pages
,
4667 required_kernelcore
);
4669 /* Continue if range is now fully accounted */
4670 if (end_pfn
<= usable_startpfn
) {
4673 * Push zone_movable_pfn to the end so
4674 * that if we have to rebalance
4675 * kernelcore across nodes, we will
4676 * not double account here
4678 zone_movable_pfn
[nid
] = end_pfn
;
4681 start_pfn
= usable_startpfn
;
4685 * The usable PFN range for ZONE_MOVABLE is from
4686 * start_pfn->end_pfn. Calculate size_pages as the
4687 * number of pages used as kernelcore
4689 size_pages
= end_pfn
- start_pfn
;
4690 if (size_pages
> kernelcore_remaining
)
4691 size_pages
= kernelcore_remaining
;
4692 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4695 * Some kernelcore has been met, update counts and
4696 * break if the kernelcore for this node has been
4699 required_kernelcore
-= min(required_kernelcore
,
4701 kernelcore_remaining
-= size_pages
;
4702 if (!kernelcore_remaining
)
4708 * If there is still required_kernelcore, we do another pass with one
4709 * less node in the count. This will push zone_movable_pfn[nid] further
4710 * along on the nodes that still have memory until kernelcore is
4714 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4717 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4718 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4719 zone_movable_pfn
[nid
] =
4720 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4723 /* restore the node_state */
4724 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4727 /* Any regular memory on that node ? */
4728 static void check_for_regular_memory(pg_data_t
*pgdat
)
4730 #ifdef CONFIG_HIGHMEM
4731 enum zone_type zone_type
;
4733 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4734 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4735 if (zone
->present_pages
)
4736 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4742 * free_area_init_nodes - Initialise all pg_data_t and zone data
4743 * @max_zone_pfn: an array of max PFNs for each zone
4745 * This will call free_area_init_node() for each active node in the system.
4746 * Using the page ranges provided by add_active_range(), the size of each
4747 * zone in each node and their holes is calculated. If the maximum PFN
4748 * between two adjacent zones match, it is assumed that the zone is empty.
4749 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4750 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4751 * starts where the previous one ended. For example, ZONE_DMA32 starts
4752 * at arch_max_dma_pfn.
4754 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4759 /* Sort early_node_map as initialisation assumes it is sorted */
4762 /* Record where the zone boundaries are */
4763 memset(arch_zone_lowest_possible_pfn
, 0,
4764 sizeof(arch_zone_lowest_possible_pfn
));
4765 memset(arch_zone_highest_possible_pfn
, 0,
4766 sizeof(arch_zone_highest_possible_pfn
));
4767 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4768 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4769 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4770 if (i
== ZONE_MOVABLE
)
4772 arch_zone_lowest_possible_pfn
[i
] =
4773 arch_zone_highest_possible_pfn
[i
-1];
4774 arch_zone_highest_possible_pfn
[i
] =
4775 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4777 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4778 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4780 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4781 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4782 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4784 /* Print out the zone ranges */
4785 printk("Zone PFN ranges:\n");
4786 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4787 if (i
== ZONE_MOVABLE
)
4789 printk(" %-8s ", zone_names
[i
]);
4790 if (arch_zone_lowest_possible_pfn
[i
] ==
4791 arch_zone_highest_possible_pfn
[i
])
4794 printk("%0#10lx -> %0#10lx\n",
4795 arch_zone_lowest_possible_pfn
[i
],
4796 arch_zone_highest_possible_pfn
[i
]);
4799 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4800 printk("Movable zone start PFN for each node\n");
4801 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4802 if (zone_movable_pfn
[i
])
4803 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4806 /* Print out the early_node_map[] */
4807 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4808 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4809 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4810 early_node_map
[i
].start_pfn
,
4811 early_node_map
[i
].end_pfn
);
4813 /* Initialise every node */
4814 mminit_verify_pageflags_layout();
4815 setup_nr_node_ids();
4816 for_each_online_node(nid
) {
4817 pg_data_t
*pgdat
= NODE_DATA(nid
);
4818 free_area_init_node(nid
, NULL
,
4819 find_min_pfn_for_node(nid
), NULL
);
4821 /* Any memory on that node */
4822 if (pgdat
->node_present_pages
)
4823 node_set_state(nid
, N_HIGH_MEMORY
);
4824 check_for_regular_memory(pgdat
);
4828 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4830 unsigned long long coremem
;
4834 coremem
= memparse(p
, &p
);
4835 *core
= coremem
>> PAGE_SHIFT
;
4837 /* Paranoid check that UL is enough for the coremem value */
4838 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4844 * kernelcore=size sets the amount of memory for use for allocations that
4845 * cannot be reclaimed or migrated.
4847 static int __init
cmdline_parse_kernelcore(char *p
)
4849 return cmdline_parse_core(p
, &required_kernelcore
);
4853 * movablecore=size sets the amount of memory for use for allocations that
4854 * can be reclaimed or migrated.
4856 static int __init
cmdline_parse_movablecore(char *p
)
4858 return cmdline_parse_core(p
, &required_movablecore
);
4861 early_param("kernelcore", cmdline_parse_kernelcore
);
4862 early_param("movablecore", cmdline_parse_movablecore
);
4864 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4867 * set_dma_reserve - set the specified number of pages reserved in the first zone
4868 * @new_dma_reserve: The number of pages to mark reserved
4870 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4871 * In the DMA zone, a significant percentage may be consumed by kernel image
4872 * and other unfreeable allocations which can skew the watermarks badly. This
4873 * function may optionally be used to account for unfreeable pages in the
4874 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4875 * smaller per-cpu batchsize.
4877 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4879 dma_reserve
= new_dma_reserve
;
4882 void __init
free_area_init(unsigned long *zones_size
)
4884 free_area_init_node(0, zones_size
,
4885 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4888 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4889 unsigned long action
, void *hcpu
)
4891 int cpu
= (unsigned long)hcpu
;
4893 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4897 * Spill the event counters of the dead processor
4898 * into the current processors event counters.
4899 * This artificially elevates the count of the current
4902 vm_events_fold_cpu(cpu
);
4905 * Zero the differential counters of the dead processor
4906 * so that the vm statistics are consistent.
4908 * This is only okay since the processor is dead and cannot
4909 * race with what we are doing.
4911 refresh_cpu_vm_stats(cpu
);
4916 void __init
page_alloc_init(void)
4918 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4922 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4923 * or min_free_kbytes changes.
4925 static void calculate_totalreserve_pages(void)
4927 struct pglist_data
*pgdat
;
4928 unsigned long reserve_pages
= 0;
4929 enum zone_type i
, j
;
4931 for_each_online_pgdat(pgdat
) {
4932 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4933 struct zone
*zone
= pgdat
->node_zones
+ i
;
4934 unsigned long max
= 0;
4936 /* Find valid and maximum lowmem_reserve in the zone */
4937 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4938 if (zone
->lowmem_reserve
[j
] > max
)
4939 max
= zone
->lowmem_reserve
[j
];
4942 /* we treat the high watermark as reserved pages. */
4943 max
+= high_wmark_pages(zone
);
4945 if (max
> zone
->present_pages
)
4946 max
= zone
->present_pages
;
4947 reserve_pages
+= max
;
4950 totalreserve_pages
= reserve_pages
;
4954 * setup_per_zone_lowmem_reserve - called whenever
4955 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4956 * has a correct pages reserved value, so an adequate number of
4957 * pages are left in the zone after a successful __alloc_pages().
4959 static void setup_per_zone_lowmem_reserve(void)
4961 struct pglist_data
*pgdat
;
4962 enum zone_type j
, idx
;
4964 for_each_online_pgdat(pgdat
) {
4965 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4966 struct zone
*zone
= pgdat
->node_zones
+ j
;
4967 unsigned long present_pages
= zone
->present_pages
;
4969 zone
->lowmem_reserve
[j
] = 0;
4973 struct zone
*lower_zone
;
4977 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4978 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4980 lower_zone
= pgdat
->node_zones
+ idx
;
4981 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4982 sysctl_lowmem_reserve_ratio
[idx
];
4983 present_pages
+= lower_zone
->present_pages
;
4988 /* update totalreserve_pages */
4989 calculate_totalreserve_pages();
4993 * setup_per_zone_wmarks - called when min_free_kbytes changes
4994 * or when memory is hot-{added|removed}
4996 * Ensures that the watermark[min,low,high] values for each zone are set
4997 * correctly with respect to min_free_kbytes.
4999 void setup_per_zone_wmarks(void)
5001 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5002 unsigned long lowmem_pages
= 0;
5004 unsigned long flags
;
5006 /* Calculate total number of !ZONE_HIGHMEM pages */
5007 for_each_zone(zone
) {
5008 if (!is_highmem(zone
))
5009 lowmem_pages
+= zone
->present_pages
;
5012 for_each_zone(zone
) {
5015 spin_lock_irqsave(&zone
->lock
, flags
);
5016 tmp
= (u64
)pages_min
* zone
->present_pages
;
5017 do_div(tmp
, lowmem_pages
);
5018 if (is_highmem(zone
)) {
5020 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5021 * need highmem pages, so cap pages_min to a small
5024 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5025 * deltas controls asynch page reclaim, and so should
5026 * not be capped for highmem.
5030 min_pages
= zone
->present_pages
/ 1024;
5031 if (min_pages
< SWAP_CLUSTER_MAX
)
5032 min_pages
= SWAP_CLUSTER_MAX
;
5033 if (min_pages
> 128)
5035 zone
->watermark
[WMARK_MIN
] = min_pages
;
5038 * If it's a lowmem zone, reserve a number of pages
5039 * proportionate to the zone's size.
5041 zone
->watermark
[WMARK_MIN
] = tmp
;
5044 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5045 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5046 setup_zone_migrate_reserve(zone
);
5047 spin_unlock_irqrestore(&zone
->lock
, flags
);
5050 /* update totalreserve_pages */
5051 calculate_totalreserve_pages();
5055 * The inactive anon list should be small enough that the VM never has to
5056 * do too much work, but large enough that each inactive page has a chance
5057 * to be referenced again before it is swapped out.
5059 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5060 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5061 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5062 * the anonymous pages are kept on the inactive list.
5065 * memory ratio inactive anon
5066 * -------------------------------------
5075 void calculate_zone_inactive_ratio(struct zone
*zone
)
5077 unsigned int gb
, ratio
;
5079 /* Zone size in gigabytes */
5080 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5082 ratio
= int_sqrt(10 * gb
);
5086 zone
->inactive_ratio
= ratio
;
5089 static void __init
setup_per_zone_inactive_ratio(void)
5094 calculate_zone_inactive_ratio(zone
);
5098 * Initialise min_free_kbytes.
5100 * For small machines we want it small (128k min). For large machines
5101 * we want it large (64MB max). But it is not linear, because network
5102 * bandwidth does not increase linearly with machine size. We use
5104 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5105 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5121 static int __init
init_per_zone_wmark_min(void)
5123 unsigned long lowmem_kbytes
;
5125 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5127 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5128 if (min_free_kbytes
< 128)
5129 min_free_kbytes
= 128;
5130 if (min_free_kbytes
> 65536)
5131 min_free_kbytes
= 65536;
5132 setup_per_zone_wmarks();
5133 setup_per_zone_lowmem_reserve();
5134 setup_per_zone_inactive_ratio();
5137 module_init(init_per_zone_wmark_min
)
5140 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5141 * that we can call two helper functions whenever min_free_kbytes
5144 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5145 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5147 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5149 setup_per_zone_wmarks();
5154 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5155 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5160 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5165 zone
->min_unmapped_pages
= (zone
->present_pages
*
5166 sysctl_min_unmapped_ratio
) / 100;
5170 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5171 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5176 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5181 zone
->min_slab_pages
= (zone
->present_pages
*
5182 sysctl_min_slab_ratio
) / 100;
5188 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5189 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5190 * whenever sysctl_lowmem_reserve_ratio changes.
5192 * The reserve ratio obviously has absolutely no relation with the
5193 * minimum watermarks. The lowmem reserve ratio can only make sense
5194 * if in function of the boot time zone sizes.
5196 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5197 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5199 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5200 setup_per_zone_lowmem_reserve();
5205 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5206 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5207 * can have before it gets flushed back to buddy allocator.
5210 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5211 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5217 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5218 if (!write
|| (ret
== -EINVAL
))
5220 for_each_populated_zone(zone
) {
5221 for_each_possible_cpu(cpu
) {
5223 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5224 setup_pagelist_highmark(
5225 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5231 int hashdist
= HASHDIST_DEFAULT
;
5234 static int __init
set_hashdist(char *str
)
5238 hashdist
= simple_strtoul(str
, &str
, 0);
5241 __setup("hashdist=", set_hashdist
);
5245 * allocate a large system hash table from bootmem
5246 * - it is assumed that the hash table must contain an exact power-of-2
5247 * quantity of entries
5248 * - limit is the number of hash buckets, not the total allocation size
5250 void *__init
alloc_large_system_hash(const char *tablename
,
5251 unsigned long bucketsize
,
5252 unsigned long numentries
,
5255 unsigned int *_hash_shift
,
5256 unsigned int *_hash_mask
,
5257 unsigned long limit
)
5259 unsigned long long max
= limit
;
5260 unsigned long log2qty
, size
;
5263 /* allow the kernel cmdline to have a say */
5265 /* round applicable memory size up to nearest megabyte */
5266 numentries
= nr_kernel_pages
;
5267 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5268 numentries
>>= 20 - PAGE_SHIFT
;
5269 numentries
<<= 20 - PAGE_SHIFT
;
5271 /* limit to 1 bucket per 2^scale bytes of low memory */
5272 if (scale
> PAGE_SHIFT
)
5273 numentries
>>= (scale
- PAGE_SHIFT
);
5275 numentries
<<= (PAGE_SHIFT
- scale
);
5277 /* Make sure we've got at least a 0-order allocation.. */
5278 if (unlikely(flags
& HASH_SMALL
)) {
5279 /* Makes no sense without HASH_EARLY */
5280 WARN_ON(!(flags
& HASH_EARLY
));
5281 if (!(numentries
>> *_hash_shift
)) {
5282 numentries
= 1UL << *_hash_shift
;
5283 BUG_ON(!numentries
);
5285 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5286 numentries
= PAGE_SIZE
/ bucketsize
;
5288 numentries
= roundup_pow_of_two(numentries
);
5290 /* limit allocation size to 1/16 total memory by default */
5292 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5293 do_div(max
, bucketsize
);
5296 if (numentries
> max
)
5299 log2qty
= ilog2(numentries
);
5302 size
= bucketsize
<< log2qty
;
5303 if (flags
& HASH_EARLY
)
5304 table
= alloc_bootmem_nopanic(size
);
5306 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5309 * If bucketsize is not a power-of-two, we may free
5310 * some pages at the end of hash table which
5311 * alloc_pages_exact() automatically does
5313 if (get_order(size
) < MAX_ORDER
) {
5314 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5315 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5318 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5321 panic("Failed to allocate %s hash table\n", tablename
);
5323 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5326 ilog2(size
) - PAGE_SHIFT
,
5330 *_hash_shift
= log2qty
;
5332 *_hash_mask
= (1 << log2qty
) - 1;
5337 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5338 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5341 #ifdef CONFIG_SPARSEMEM
5342 return __pfn_to_section(pfn
)->pageblock_flags
;
5344 return zone
->pageblock_flags
;
5345 #endif /* CONFIG_SPARSEMEM */
5348 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5350 #ifdef CONFIG_SPARSEMEM
5351 pfn
&= (PAGES_PER_SECTION
-1);
5352 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5354 pfn
= pfn
- zone
->zone_start_pfn
;
5355 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5356 #endif /* CONFIG_SPARSEMEM */
5360 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5361 * @page: The page within the block of interest
5362 * @start_bitidx: The first bit of interest to retrieve
5363 * @end_bitidx: The last bit of interest
5364 * returns pageblock_bits flags
5366 unsigned long get_pageblock_flags_group(struct page
*page
,
5367 int start_bitidx
, int end_bitidx
)
5370 unsigned long *bitmap
;
5371 unsigned long pfn
, bitidx
;
5372 unsigned long flags
= 0;
5373 unsigned long value
= 1;
5375 zone
= page_zone(page
);
5376 pfn
= page_to_pfn(page
);
5377 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5378 bitidx
= pfn_to_bitidx(zone
, pfn
);
5380 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5381 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5388 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5389 * @page: The page within the block of interest
5390 * @start_bitidx: The first bit of interest
5391 * @end_bitidx: The last bit of interest
5392 * @flags: The flags to set
5394 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5395 int start_bitidx
, int end_bitidx
)
5398 unsigned long *bitmap
;
5399 unsigned long pfn
, bitidx
;
5400 unsigned long value
= 1;
5402 zone
= page_zone(page
);
5403 pfn
= page_to_pfn(page
);
5404 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5405 bitidx
= pfn_to_bitidx(zone
, pfn
);
5406 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5407 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5409 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5411 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5413 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5417 * This is designed as sub function...plz see page_isolation.c also.
5418 * set/clear page block's type to be ISOLATE.
5419 * page allocater never alloc memory from ISOLATE block.
5423 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5425 unsigned long pfn
, iter
, found
;
5427 * For avoiding noise data, lru_add_drain_all() should be called
5428 * If ZONE_MOVABLE, the zone never contains immobile pages
5430 if (zone_idx(zone
) == ZONE_MOVABLE
)
5433 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5436 pfn
= page_to_pfn(page
);
5437 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5438 unsigned long check
= pfn
+ iter
;
5440 if (!pfn_valid_within(check
))
5443 page
= pfn_to_page(check
);
5444 if (!page_count(page
)) {
5445 if (PageBuddy(page
))
5446 iter
+= (1 << page_order(page
)) - 1;
5452 * If there are RECLAIMABLE pages, we need to check it.
5453 * But now, memory offline itself doesn't call shrink_slab()
5454 * and it still to be fixed.
5457 * If the page is not RAM, page_count()should be 0.
5458 * we don't need more check. This is an _used_ not-movable page.
5460 * The problematic thing here is PG_reserved pages. PG_reserved
5461 * is set to both of a memory hole page and a _used_ kernel
5470 bool is_pageblock_removable_nolock(struct page
*page
)
5472 struct zone
*zone
= page_zone(page
);
5473 return __count_immobile_pages(zone
, page
, 0);
5476 int set_migratetype_isolate(struct page
*page
)
5479 unsigned long flags
, pfn
;
5480 struct memory_isolate_notify arg
;
5485 zone
= page_zone(page
);
5486 zone_idx
= zone_idx(zone
);
5488 spin_lock_irqsave(&zone
->lock
, flags
);
5490 pfn
= page_to_pfn(page
);
5491 arg
.start_pfn
= pfn
;
5492 arg
.nr_pages
= pageblock_nr_pages
;
5493 arg
.pages_found
= 0;
5496 * It may be possible to isolate a pageblock even if the
5497 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5498 * notifier chain is used by balloon drivers to return the
5499 * number of pages in a range that are held by the balloon
5500 * driver to shrink memory. If all the pages are accounted for
5501 * by balloons, are free, or on the LRU, isolation can continue.
5502 * Later, for example, when memory hotplug notifier runs, these
5503 * pages reported as "can be isolated" should be isolated(freed)
5504 * by the balloon driver through the memory notifier chain.
5506 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5507 notifier_ret
= notifier_to_errno(notifier_ret
);
5511 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5512 * We just check MOVABLE pages.
5514 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5518 * immobile means "not-on-lru" paes. If immobile is larger than
5519 * removable-by-driver pages reported by notifier, we'll fail.
5524 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5525 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5528 spin_unlock_irqrestore(&zone
->lock
, flags
);
5534 void unset_migratetype_isolate(struct page
*page
)
5537 unsigned long flags
;
5538 zone
= page_zone(page
);
5539 spin_lock_irqsave(&zone
->lock
, flags
);
5540 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5542 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5543 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5545 spin_unlock_irqrestore(&zone
->lock
, flags
);
5548 #ifdef CONFIG_MEMORY_HOTREMOVE
5550 * All pages in the range must be isolated before calling this.
5553 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5559 unsigned long flags
;
5560 /* find the first valid pfn */
5561 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5566 zone
= page_zone(pfn_to_page(pfn
));
5567 spin_lock_irqsave(&zone
->lock
, flags
);
5569 while (pfn
< end_pfn
) {
5570 if (!pfn_valid(pfn
)) {
5574 page
= pfn_to_page(pfn
);
5575 BUG_ON(page_count(page
));
5576 BUG_ON(!PageBuddy(page
));
5577 order
= page_order(page
);
5578 #ifdef CONFIG_DEBUG_VM
5579 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5580 pfn
, 1 << order
, end_pfn
);
5582 list_del(&page
->lru
);
5583 rmv_page_order(page
);
5584 zone
->free_area
[order
].nr_free
--;
5585 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5587 for (i
= 0; i
< (1 << order
); i
++)
5588 SetPageReserved((page
+i
));
5589 pfn
+= (1 << order
);
5591 spin_unlock_irqrestore(&zone
->lock
, flags
);
5595 #ifdef CONFIG_MEMORY_FAILURE
5596 bool is_free_buddy_page(struct page
*page
)
5598 struct zone
*zone
= page_zone(page
);
5599 unsigned long pfn
= page_to_pfn(page
);
5600 unsigned long flags
;
5603 spin_lock_irqsave(&zone
->lock
, flags
);
5604 for (order
= 0; order
< MAX_ORDER
; order
++) {
5605 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5607 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5610 spin_unlock_irqrestore(&zone
->lock
, flags
);
5612 return order
< MAX_ORDER
;
5616 static struct trace_print_flags pageflag_names
[] = {
5617 {1UL << PG_locked
, "locked" },
5618 {1UL << PG_error
, "error" },
5619 {1UL << PG_referenced
, "referenced" },
5620 {1UL << PG_uptodate
, "uptodate" },
5621 {1UL << PG_dirty
, "dirty" },
5622 {1UL << PG_lru
, "lru" },
5623 {1UL << PG_active
, "active" },
5624 {1UL << PG_slab
, "slab" },
5625 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5626 {1UL << PG_arch_1
, "arch_1" },
5627 {1UL << PG_reserved
, "reserved" },
5628 {1UL << PG_private
, "private" },
5629 {1UL << PG_private_2
, "private_2" },
5630 {1UL << PG_writeback
, "writeback" },
5631 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5632 {1UL << PG_head
, "head" },
5633 {1UL << PG_tail
, "tail" },
5635 {1UL << PG_compound
, "compound" },
5637 {1UL << PG_swapcache
, "swapcache" },
5638 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5639 {1UL << PG_reclaim
, "reclaim" },
5640 {1UL << PG_swapbacked
, "swapbacked" },
5641 {1UL << PG_unevictable
, "unevictable" },
5643 {1UL << PG_mlocked
, "mlocked" },
5645 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5646 {1UL << PG_uncached
, "uncached" },
5648 #ifdef CONFIG_MEMORY_FAILURE
5649 {1UL << PG_hwpoison
, "hwpoison" },
5654 static void dump_page_flags(unsigned long flags
)
5656 const char *delim
= "";
5660 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5662 /* remove zone id */
5663 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5665 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5667 mask
= pageflag_names
[i
].mask
;
5668 if ((flags
& mask
) != mask
)
5672 printk("%s%s", delim
, pageflag_names
[i
].name
);
5676 /* check for left over flags */
5678 printk("%s%#lx", delim
, flags
);
5683 void dump_page(struct page
*page
)
5686 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5687 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5688 page
->mapping
, page
->index
);
5689 dump_page_flags(page
->flags
);
5690 mem_cgroup_print_bad_page(page
);