2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
129 #include <linux/filter.h>
136 * Each address family might have different locking rules, so we have
137 * one slock key per address family:
139 static struct lock_class_key af_family_keys
[AF_MAX
];
140 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
147 static const char *const af_family_key_strings
[AF_MAX
+1] = {
148 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
158 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
160 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" ,
163 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
164 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
165 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
166 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
167 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
168 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
169 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
170 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
171 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
172 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
173 "slock-27" , "slock-28" , "slock-AF_CAN" ,
174 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
175 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
176 "slock-AF_IEEE802154", "slock-AF_CAIF" ,
179 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
180 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
181 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
182 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
183 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
184 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
185 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
186 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
187 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
188 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
189 "clock-27" , "clock-28" , "clock-AF_CAN" ,
190 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
191 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
192 "clock-AF_IEEE802154", "clock-AF_CAIF" ,
197 * sk_callback_lock locking rules are per-address-family,
198 * so split the lock classes by using a per-AF key:
200 static struct lock_class_key af_callback_keys
[AF_MAX
];
202 /* Take into consideration the size of the struct sk_buff overhead in the
203 * determination of these values, since that is non-constant across
204 * platforms. This makes socket queueing behavior and performance
205 * not depend upon such differences.
207 #define _SK_MEM_PACKETS 256
208 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
209 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
212 /* Run time adjustable parameters. */
213 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
214 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
215 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
216 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
218 /* Maximal space eaten by iovec or ancilliary data plus some space */
219 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
220 EXPORT_SYMBOL(sysctl_optmem_max
);
222 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223 int net_cls_subsys_id
= -1;
224 EXPORT_SYMBOL_GPL(net_cls_subsys_id
);
227 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
231 if (optlen
< sizeof(tv
))
233 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
235 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
239 static int warned __read_mostly
;
242 if (warned
< 10 && net_ratelimit()) {
244 printk(KERN_INFO
"sock_set_timeout: `%s' (pid %d) "
245 "tries to set negative timeout\n",
246 current
->comm
, task_pid_nr(current
));
250 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
251 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
253 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
254 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
258 static void sock_warn_obsolete_bsdism(const char *name
)
261 static char warncomm
[TASK_COMM_LEN
];
262 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
263 strcpy(warncomm
, current
->comm
);
264 printk(KERN_WARNING
"process `%s' is using obsolete "
265 "%s SO_BSDCOMPAT\n", warncomm
, name
);
270 static void sock_disable_timestamp(struct sock
*sk
, int flag
)
272 if (sock_flag(sk
, flag
)) {
273 sock_reset_flag(sk
, flag
);
274 if (!sock_flag(sk
, SOCK_TIMESTAMP
) &&
275 !sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
)) {
276 net_disable_timestamp();
282 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
287 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
289 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290 number of warnings when compiling with -W --ANK
292 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
293 (unsigned)sk
->sk_rcvbuf
) {
294 atomic_inc(&sk
->sk_drops
);
298 err
= sk_filter(sk
, skb
);
302 if (!sk_rmem_schedule(sk
, skb
->truesize
)) {
303 atomic_inc(&sk
->sk_drops
);
308 skb_set_owner_r(skb
, sk
);
310 /* Cache the SKB length before we tack it onto the receive
311 * queue. Once it is added it no longer belongs to us and
312 * may be freed by other threads of control pulling packets
317 /* we escape from rcu protected region, make sure we dont leak
322 spin_lock_irqsave(&list
->lock
, flags
);
323 skb
->dropcount
= atomic_read(&sk
->sk_drops
);
324 __skb_queue_tail(list
, skb
);
325 spin_unlock_irqrestore(&list
->lock
, flags
);
327 if (!sock_flag(sk
, SOCK_DEAD
))
328 sk
->sk_data_ready(sk
, skb_len
);
331 EXPORT_SYMBOL(sock_queue_rcv_skb
);
333 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
335 int rc
= NET_RX_SUCCESS
;
337 if (sk_filter(sk
, skb
))
338 goto discard_and_relse
;
342 if (sk_rcvqueues_full(sk
, skb
)) {
343 atomic_inc(&sk
->sk_drops
);
344 goto discard_and_relse
;
347 bh_lock_sock_nested(sk
);
350 if (!sock_owned_by_user(sk
)) {
352 * trylock + unlock semantics:
354 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
356 rc
= sk_backlog_rcv(sk
, skb
);
358 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
359 } else if (sk_add_backlog(sk
, skb
)) {
361 atomic_inc(&sk
->sk_drops
);
362 goto discard_and_relse
;
373 EXPORT_SYMBOL(sk_receive_skb
);
375 void sk_reset_txq(struct sock
*sk
)
377 sk_tx_queue_clear(sk
);
379 EXPORT_SYMBOL(sk_reset_txq
);
381 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
383 struct dst_entry
*dst
= __sk_dst_get(sk
);
385 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
386 sk_tx_queue_clear(sk
);
387 rcu_assign_pointer(sk
->sk_dst_cache
, NULL
);
394 EXPORT_SYMBOL(__sk_dst_check
);
396 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
398 struct dst_entry
*dst
= sk_dst_get(sk
);
400 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
408 EXPORT_SYMBOL(sk_dst_check
);
410 static int sock_bindtodevice(struct sock
*sk
, char __user
*optval
, int optlen
)
412 int ret
= -ENOPROTOOPT
;
413 #ifdef CONFIG_NETDEVICES
414 struct net
*net
= sock_net(sk
);
415 char devname
[IFNAMSIZ
];
420 if (!capable(CAP_NET_RAW
))
427 /* Bind this socket to a particular device like "eth0",
428 * as specified in the passed interface name. If the
429 * name is "" or the option length is zero the socket
432 if (optlen
> IFNAMSIZ
- 1)
433 optlen
= IFNAMSIZ
- 1;
434 memset(devname
, 0, sizeof(devname
));
437 if (copy_from_user(devname
, optval
, optlen
))
441 if (devname
[0] != '\0') {
442 struct net_device
*dev
;
445 dev
= dev_get_by_name_rcu(net
, devname
);
447 index
= dev
->ifindex
;
455 sk
->sk_bound_dev_if
= index
;
467 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
470 sock_set_flag(sk
, bit
);
472 sock_reset_flag(sk
, bit
);
476 * This is meant for all protocols to use and covers goings on
477 * at the socket level. Everything here is generic.
480 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
481 char __user
*optval
, unsigned int optlen
)
483 struct sock
*sk
= sock
->sk
;
490 * Options without arguments
493 if (optname
== SO_BINDTODEVICE
)
494 return sock_bindtodevice(sk
, optval
, optlen
);
496 if (optlen
< sizeof(int))
499 if (get_user(val
, (int __user
*)optval
))
502 valbool
= val
? 1 : 0;
508 if (val
&& !capable(CAP_NET_ADMIN
))
511 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
514 sk
->sk_reuse
= valbool
;
523 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
526 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
529 /* Don't error on this BSD doesn't and if you think
530 about it this is right. Otherwise apps have to
531 play 'guess the biggest size' games. RCVBUF/SNDBUF
532 are treated in BSD as hints */
534 if (val
> sysctl_wmem_max
)
535 val
= sysctl_wmem_max
;
537 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
538 if ((val
* 2) < SOCK_MIN_SNDBUF
)
539 sk
->sk_sndbuf
= SOCK_MIN_SNDBUF
;
541 sk
->sk_sndbuf
= val
* 2;
544 * Wake up sending tasks if we
547 sk
->sk_write_space(sk
);
551 if (!capable(CAP_NET_ADMIN
)) {
558 /* Don't error on this BSD doesn't and if you think
559 about it this is right. Otherwise apps have to
560 play 'guess the biggest size' games. RCVBUF/SNDBUF
561 are treated in BSD as hints */
563 if (val
> sysctl_rmem_max
)
564 val
= sysctl_rmem_max
;
566 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
568 * We double it on the way in to account for
569 * "struct sk_buff" etc. overhead. Applications
570 * assume that the SO_RCVBUF setting they make will
571 * allow that much actual data to be received on that
574 * Applications are unaware that "struct sk_buff" and
575 * other overheads allocate from the receive buffer
576 * during socket buffer allocation.
578 * And after considering the possible alternatives,
579 * returning the value we actually used in getsockopt
580 * is the most desirable behavior.
582 if ((val
* 2) < SOCK_MIN_RCVBUF
)
583 sk
->sk_rcvbuf
= SOCK_MIN_RCVBUF
;
585 sk
->sk_rcvbuf
= val
* 2;
589 if (!capable(CAP_NET_ADMIN
)) {
597 if (sk
->sk_protocol
== IPPROTO_TCP
)
598 tcp_set_keepalive(sk
, valbool
);
600 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
604 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
608 sk
->sk_no_check
= valbool
;
612 if ((val
>= 0 && val
<= 6) || capable(CAP_NET_ADMIN
))
613 sk
->sk_priority
= val
;
619 if (optlen
< sizeof(ling
)) {
620 ret
= -EINVAL
; /* 1003.1g */
623 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
628 sock_reset_flag(sk
, SOCK_LINGER
);
630 #if (BITS_PER_LONG == 32)
631 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
632 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
635 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
636 sock_set_flag(sk
, SOCK_LINGER
);
641 sock_warn_obsolete_bsdism("setsockopt");
646 set_bit(SOCK_PASSCRED
, &sock
->flags
);
648 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
654 if (optname
== SO_TIMESTAMP
)
655 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
657 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
658 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
659 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
661 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
662 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
666 case SO_TIMESTAMPING
:
667 if (val
& ~SOF_TIMESTAMPING_MASK
) {
671 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
,
672 val
& SOF_TIMESTAMPING_TX_HARDWARE
);
673 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
,
674 val
& SOF_TIMESTAMPING_TX_SOFTWARE
);
675 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
,
676 val
& SOF_TIMESTAMPING_RX_HARDWARE
);
677 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
678 sock_enable_timestamp(sk
,
679 SOCK_TIMESTAMPING_RX_SOFTWARE
);
681 sock_disable_timestamp(sk
,
682 SOCK_TIMESTAMPING_RX_SOFTWARE
);
683 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
,
684 val
& SOF_TIMESTAMPING_SOFTWARE
);
685 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
,
686 val
& SOF_TIMESTAMPING_SYS_HARDWARE
);
687 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
,
688 val
& SOF_TIMESTAMPING_RAW_HARDWARE
);
694 sk
->sk_rcvlowat
= val
? : 1;
698 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
702 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
705 case SO_ATTACH_FILTER
:
707 if (optlen
== sizeof(struct sock_fprog
)) {
708 struct sock_fprog fprog
;
711 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
714 ret
= sk_attach_filter(&fprog
, sk
);
718 case SO_DETACH_FILTER
:
719 ret
= sk_detach_filter(sk
);
724 set_bit(SOCK_PASSSEC
, &sock
->flags
);
726 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
729 if (!capable(CAP_NET_ADMIN
))
735 /* We implement the SO_SNDLOWAT etc to
736 not be settable (1003.1g 5.3) */
739 sock_set_flag(sk
, SOCK_RXQ_OVFL
);
741 sock_reset_flag(sk
, SOCK_RXQ_OVFL
);
750 EXPORT_SYMBOL(sock_setsockopt
);
753 void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
756 ucred
->pid
= pid_vnr(pid
);
757 ucred
->uid
= ucred
->gid
= -1;
759 struct user_namespace
*current_ns
= current_user_ns();
761 ucred
->uid
= user_ns_map_uid(current_ns
, cred
, cred
->euid
);
762 ucred
->gid
= user_ns_map_gid(current_ns
, cred
, cred
->egid
);
765 EXPORT_SYMBOL_GPL(cred_to_ucred
);
767 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
768 char __user
*optval
, int __user
*optlen
)
770 struct sock
*sk
= sock
->sk
;
778 int lv
= sizeof(int);
781 if (get_user(len
, optlen
))
786 memset(&v
, 0, sizeof(v
));
790 v
.val
= sock_flag(sk
, SOCK_DBG
);
794 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
798 v
.val
= !!sock_flag(sk
, SOCK_BROADCAST
);
802 v
.val
= sk
->sk_sndbuf
;
806 v
.val
= sk
->sk_rcvbuf
;
810 v
.val
= sk
->sk_reuse
;
814 v
.val
= !!sock_flag(sk
, SOCK_KEEPOPEN
);
822 v
.val
= sk
->sk_protocol
;
826 v
.val
= sk
->sk_family
;
830 v
.val
= -sock_error(sk
);
832 v
.val
= xchg(&sk
->sk_err_soft
, 0);
836 v
.val
= !!sock_flag(sk
, SOCK_URGINLINE
);
840 v
.val
= sk
->sk_no_check
;
844 v
.val
= sk
->sk_priority
;
849 v
.ling
.l_onoff
= !!sock_flag(sk
, SOCK_LINGER
);
850 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
854 sock_warn_obsolete_bsdism("getsockopt");
858 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
859 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
863 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
866 case SO_TIMESTAMPING
:
868 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
869 v
.val
|= SOF_TIMESTAMPING_TX_HARDWARE
;
870 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
871 v
.val
|= SOF_TIMESTAMPING_TX_SOFTWARE
;
872 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
))
873 v
.val
|= SOF_TIMESTAMPING_RX_HARDWARE
;
874 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
875 v
.val
|= SOF_TIMESTAMPING_RX_SOFTWARE
;
876 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
))
877 v
.val
|= SOF_TIMESTAMPING_SOFTWARE
;
878 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
))
879 v
.val
|= SOF_TIMESTAMPING_SYS_HARDWARE
;
880 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
))
881 v
.val
|= SOF_TIMESTAMPING_RAW_HARDWARE
;
885 lv
= sizeof(struct timeval
);
886 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
890 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
891 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
896 lv
= sizeof(struct timeval
);
897 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
901 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
902 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
907 v
.val
= sk
->sk_rcvlowat
;
915 v
.val
= test_bit(SOCK_PASSCRED
, &sock
->flags
) ? 1 : 0;
920 struct ucred peercred
;
921 if (len
> sizeof(peercred
))
922 len
= sizeof(peercred
);
923 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
924 if (copy_to_user(optval
, &peercred
, len
))
933 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
937 if (copy_to_user(optval
, address
, len
))
942 /* Dubious BSD thing... Probably nobody even uses it, but
943 * the UNIX standard wants it for whatever reason... -DaveM
946 v
.val
= sk
->sk_state
== TCP_LISTEN
;
950 v
.val
= test_bit(SOCK_PASSSEC
, &sock
->flags
) ? 1 : 0;
954 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
961 v
.val
= !!sock_flag(sk
, SOCK_RXQ_OVFL
);
970 if (copy_to_user(optval
, &v
, len
))
973 if (put_user(len
, optlen
))
979 * Initialize an sk_lock.
981 * (We also register the sk_lock with the lock validator.)
983 static inline void sock_lock_init(struct sock
*sk
)
985 sock_lock_init_class_and_name(sk
,
986 af_family_slock_key_strings
[sk
->sk_family
],
987 af_family_slock_keys
+ sk
->sk_family
,
988 af_family_key_strings
[sk
->sk_family
],
989 af_family_keys
+ sk
->sk_family
);
993 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994 * even temporarly, because of RCU lookups. sk_node should also be left as is.
996 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
998 #ifdef CONFIG_SECURITY_NETWORK
999 void *sptr
= nsk
->sk_security
;
1001 BUILD_BUG_ON(offsetof(struct sock
, sk_copy_start
) !=
1002 sizeof(osk
->sk_node
) + sizeof(osk
->sk_refcnt
) +
1003 sizeof(osk
->sk_tx_queue_mapping
));
1004 memcpy(&nsk
->sk_copy_start
, &osk
->sk_copy_start
,
1005 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_copy_start
));
1006 #ifdef CONFIG_SECURITY_NETWORK
1007 nsk
->sk_security
= sptr
;
1008 security_sk_clone(osk
, nsk
);
1012 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1016 struct kmem_cache
*slab
;
1020 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1023 if (priority
& __GFP_ZERO
) {
1025 * caches using SLAB_DESTROY_BY_RCU should let
1026 * sk_node.next un-modified. Special care is taken
1027 * when initializing object to zero.
1029 if (offsetof(struct sock
, sk_node
.next
) != 0)
1030 memset(sk
, 0, offsetof(struct sock
, sk_node
.next
));
1031 memset(&sk
->sk_node
.pprev
, 0,
1032 prot
->obj_size
- offsetof(struct sock
,
1037 sk
= kmalloc(prot
->obj_size
, priority
);
1040 kmemcheck_annotate_bitfield(sk
, flags
);
1042 if (security_sk_alloc(sk
, family
, priority
))
1045 if (!try_module_get(prot
->owner
))
1047 sk_tx_queue_clear(sk
);
1053 security_sk_free(sk
);
1056 kmem_cache_free(slab
, sk
);
1062 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1064 struct kmem_cache
*slab
;
1065 struct module
*owner
;
1067 owner
= prot
->owner
;
1070 security_sk_free(sk
);
1072 kmem_cache_free(slab
, sk
);
1078 #ifdef CONFIG_CGROUPS
1079 void sock_update_classid(struct sock
*sk
)
1083 rcu_read_lock(); /* doing current task, which cannot vanish. */
1084 classid
= task_cls_classid(current
);
1086 if (classid
&& classid
!= sk
->sk_classid
)
1087 sk
->sk_classid
= classid
;
1089 EXPORT_SYMBOL(sock_update_classid
);
1093 * sk_alloc - All socket objects are allocated here
1094 * @net: the applicable net namespace
1095 * @family: protocol family
1096 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1097 * @prot: struct proto associated with this new sock instance
1099 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1104 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1106 sk
->sk_family
= family
;
1108 * See comment in struct sock definition to understand
1109 * why we need sk_prot_creator -acme
1111 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1113 sock_net_set(sk
, get_net(net
));
1114 atomic_set(&sk
->sk_wmem_alloc
, 1);
1116 sock_update_classid(sk
);
1121 EXPORT_SYMBOL(sk_alloc
);
1123 static void __sk_free(struct sock
*sk
)
1125 struct sk_filter
*filter
;
1127 if (sk
->sk_destruct
)
1128 sk
->sk_destruct(sk
);
1130 filter
= rcu_dereference_check(sk
->sk_filter
,
1131 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1133 sk_filter_uncharge(sk
, filter
);
1134 rcu_assign_pointer(sk
->sk_filter
, NULL
);
1137 sock_disable_timestamp(sk
, SOCK_TIMESTAMP
);
1138 sock_disable_timestamp(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
);
1140 if (atomic_read(&sk
->sk_omem_alloc
))
1141 printk(KERN_DEBUG
"%s: optmem leakage (%d bytes) detected.\n",
1142 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1144 if (sk
->sk_peer_cred
)
1145 put_cred(sk
->sk_peer_cred
);
1146 put_pid(sk
->sk_peer_pid
);
1147 put_net(sock_net(sk
));
1148 sk_prot_free(sk
->sk_prot_creator
, sk
);
1151 void sk_free(struct sock
*sk
)
1154 * We substract one from sk_wmem_alloc and can know if
1155 * some packets are still in some tx queue.
1156 * If not null, sock_wfree() will call __sk_free(sk) later
1158 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1161 EXPORT_SYMBOL(sk_free
);
1164 * Last sock_put should drop referrence to sk->sk_net. It has already
1165 * been dropped in sk_change_net. Taking referrence to stopping namespace
1167 * Take referrence to a socket to remove it from hash _alive_ and after that
1168 * destroy it in the context of init_net.
1170 void sk_release_kernel(struct sock
*sk
)
1172 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1176 sock_release(sk
->sk_socket
);
1177 release_net(sock_net(sk
));
1178 sock_net_set(sk
, get_net(&init_net
));
1181 EXPORT_SYMBOL(sk_release_kernel
);
1183 struct sock
*sk_clone(const struct sock
*sk
, const gfp_t priority
)
1187 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1188 if (newsk
!= NULL
) {
1189 struct sk_filter
*filter
;
1191 sock_copy(newsk
, sk
);
1194 get_net(sock_net(newsk
));
1195 sk_node_init(&newsk
->sk_node
);
1196 sock_lock_init(newsk
);
1197 bh_lock_sock(newsk
);
1198 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1199 newsk
->sk_backlog
.len
= 0;
1201 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1203 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1205 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1206 atomic_set(&newsk
->sk_omem_alloc
, 0);
1207 skb_queue_head_init(&newsk
->sk_receive_queue
);
1208 skb_queue_head_init(&newsk
->sk_write_queue
);
1209 #ifdef CONFIG_NET_DMA
1210 skb_queue_head_init(&newsk
->sk_async_wait_queue
);
1213 spin_lock_init(&newsk
->sk_dst_lock
);
1214 rwlock_init(&newsk
->sk_callback_lock
);
1215 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1216 af_callback_keys
+ newsk
->sk_family
,
1217 af_family_clock_key_strings
[newsk
->sk_family
]);
1219 newsk
->sk_dst_cache
= NULL
;
1220 newsk
->sk_wmem_queued
= 0;
1221 newsk
->sk_forward_alloc
= 0;
1222 newsk
->sk_send_head
= NULL
;
1223 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1225 sock_reset_flag(newsk
, SOCK_DONE
);
1226 skb_queue_head_init(&newsk
->sk_error_queue
);
1228 filter
= newsk
->sk_filter
;
1230 sk_filter_charge(newsk
, filter
);
1232 if (unlikely(xfrm_sk_clone_policy(newsk
))) {
1233 /* It is still raw copy of parent, so invalidate
1234 * destructor and make plain sk_free() */
1235 newsk
->sk_destruct
= NULL
;
1242 newsk
->sk_priority
= 0;
1244 * Before updating sk_refcnt, we must commit prior changes to memory
1245 * (Documentation/RCU/rculist_nulls.txt for details)
1248 atomic_set(&newsk
->sk_refcnt
, 2);
1251 * Increment the counter in the same struct proto as the master
1252 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1253 * is the same as sk->sk_prot->socks, as this field was copied
1256 * This _changes_ the previous behaviour, where
1257 * tcp_create_openreq_child always was incrementing the
1258 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1259 * to be taken into account in all callers. -acme
1261 sk_refcnt_debug_inc(newsk
);
1262 sk_set_socket(newsk
, NULL
);
1263 newsk
->sk_wq
= NULL
;
1265 if (newsk
->sk_prot
->sockets_allocated
)
1266 percpu_counter_inc(newsk
->sk_prot
->sockets_allocated
);
1268 if (sock_flag(newsk
, SOCK_TIMESTAMP
) ||
1269 sock_flag(newsk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
1270 net_enable_timestamp();
1275 EXPORT_SYMBOL_GPL(sk_clone
);
1277 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1279 __sk_dst_set(sk
, dst
);
1280 sk
->sk_route_caps
= dst
->dev
->features
;
1281 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1282 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1283 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1284 if (sk_can_gso(sk
)) {
1285 if (dst
->header_len
) {
1286 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1288 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1289 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1293 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1295 void __init
sk_init(void)
1297 if (totalram_pages
<= 4096) {
1298 sysctl_wmem_max
= 32767;
1299 sysctl_rmem_max
= 32767;
1300 sysctl_wmem_default
= 32767;
1301 sysctl_rmem_default
= 32767;
1302 } else if (totalram_pages
>= 131072) {
1303 sysctl_wmem_max
= 131071;
1304 sysctl_rmem_max
= 131071;
1309 * Simple resource managers for sockets.
1314 * Write buffer destructor automatically called from kfree_skb.
1316 void sock_wfree(struct sk_buff
*skb
)
1318 struct sock
*sk
= skb
->sk
;
1319 unsigned int len
= skb
->truesize
;
1321 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1323 * Keep a reference on sk_wmem_alloc, this will be released
1324 * after sk_write_space() call
1326 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1327 sk
->sk_write_space(sk
);
1331 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1332 * could not do because of in-flight packets
1334 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1337 EXPORT_SYMBOL(sock_wfree
);
1340 * Read buffer destructor automatically called from kfree_skb.
1342 void sock_rfree(struct sk_buff
*skb
)
1344 struct sock
*sk
= skb
->sk
;
1345 unsigned int len
= skb
->truesize
;
1347 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1348 sk_mem_uncharge(sk
, len
);
1350 EXPORT_SYMBOL(sock_rfree
);
1353 int sock_i_uid(struct sock
*sk
)
1357 read_lock_bh(&sk
->sk_callback_lock
);
1358 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: 0;
1359 read_unlock_bh(&sk
->sk_callback_lock
);
1362 EXPORT_SYMBOL(sock_i_uid
);
1364 unsigned long sock_i_ino(struct sock
*sk
)
1368 read_lock_bh(&sk
->sk_callback_lock
);
1369 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1370 read_unlock_bh(&sk
->sk_callback_lock
);
1373 EXPORT_SYMBOL(sock_i_ino
);
1376 * Allocate a skb from the socket's send buffer.
1378 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1381 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1382 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1384 skb_set_owner_w(skb
, sk
);
1390 EXPORT_SYMBOL(sock_wmalloc
);
1393 * Allocate a skb from the socket's receive buffer.
1395 struct sk_buff
*sock_rmalloc(struct sock
*sk
, unsigned long size
, int force
,
1398 if (force
|| atomic_read(&sk
->sk_rmem_alloc
) < sk
->sk_rcvbuf
) {
1399 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1401 skb_set_owner_r(skb
, sk
);
1409 * Allocate a memory block from the socket's option memory buffer.
1411 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1413 if ((unsigned)size
<= sysctl_optmem_max
&&
1414 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1416 /* First do the add, to avoid the race if kmalloc
1419 atomic_add(size
, &sk
->sk_omem_alloc
);
1420 mem
= kmalloc(size
, priority
);
1423 atomic_sub(size
, &sk
->sk_omem_alloc
);
1427 EXPORT_SYMBOL(sock_kmalloc
);
1430 * Free an option memory block.
1432 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1435 atomic_sub(size
, &sk
->sk_omem_alloc
);
1437 EXPORT_SYMBOL(sock_kfree_s
);
1439 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1440 I think, these locks should be removed for datagram sockets.
1442 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1446 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1450 if (signal_pending(current
))
1452 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1453 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1454 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1456 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1460 timeo
= schedule_timeout(timeo
);
1462 finish_wait(sk_sleep(sk
), &wait
);
1468 * Generic send/receive buffer handlers
1471 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1472 unsigned long data_len
, int noblock
,
1475 struct sk_buff
*skb
;
1480 gfp_mask
= sk
->sk_allocation
;
1481 if (gfp_mask
& __GFP_WAIT
)
1482 gfp_mask
|= __GFP_REPEAT
;
1484 timeo
= sock_sndtimeo(sk
, noblock
);
1486 err
= sock_error(sk
);
1491 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1494 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1495 skb
= alloc_skb(header_len
, gfp_mask
);
1500 /* No pages, we're done... */
1504 npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
1505 skb
->truesize
+= data_len
;
1506 skb_shinfo(skb
)->nr_frags
= npages
;
1507 for (i
= 0; i
< npages
; i
++) {
1511 page
= alloc_pages(sk
->sk_allocation
, 0);
1514 skb_shinfo(skb
)->nr_frags
= i
;
1519 frag
= &skb_shinfo(skb
)->frags
[i
];
1521 frag
->page_offset
= 0;
1522 frag
->size
= (data_len
>= PAGE_SIZE
?
1525 data_len
-= PAGE_SIZE
;
1528 /* Full success... */
1534 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1535 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1539 if (signal_pending(current
))
1541 timeo
= sock_wait_for_wmem(sk
, timeo
);
1544 skb_set_owner_w(skb
, sk
);
1548 err
= sock_intr_errno(timeo
);
1553 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1555 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1556 int noblock
, int *errcode
)
1558 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
);
1560 EXPORT_SYMBOL(sock_alloc_send_skb
);
1562 static void __lock_sock(struct sock
*sk
)
1563 __releases(&sk
->sk_lock
.slock
)
1564 __acquires(&sk
->sk_lock
.slock
)
1569 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1570 TASK_UNINTERRUPTIBLE
);
1571 spin_unlock_bh(&sk
->sk_lock
.slock
);
1573 spin_lock_bh(&sk
->sk_lock
.slock
);
1574 if (!sock_owned_by_user(sk
))
1577 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1580 static void __release_sock(struct sock
*sk
)
1581 __releases(&sk
->sk_lock
.slock
)
1582 __acquires(&sk
->sk_lock
.slock
)
1584 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1587 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1591 struct sk_buff
*next
= skb
->next
;
1593 WARN_ON_ONCE(skb_dst_is_noref(skb
));
1595 sk_backlog_rcv(sk
, skb
);
1598 * We are in process context here with softirqs
1599 * disabled, use cond_resched_softirq() to preempt.
1600 * This is safe to do because we've taken the backlog
1603 cond_resched_softirq();
1606 } while (skb
!= NULL
);
1609 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1612 * Doing the zeroing here guarantee we can not loop forever
1613 * while a wild producer attempts to flood us.
1615 sk
->sk_backlog
.len
= 0;
1619 * sk_wait_data - wait for data to arrive at sk_receive_queue
1620 * @sk: sock to wait on
1621 * @timeo: for how long
1623 * Now socket state including sk->sk_err is changed only under lock,
1624 * hence we may omit checks after joining wait queue.
1625 * We check receive queue before schedule() only as optimization;
1626 * it is very likely that release_sock() added new data.
1628 int sk_wait_data(struct sock
*sk
, long *timeo
)
1633 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1634 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1635 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1636 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1637 finish_wait(sk_sleep(sk
), &wait
);
1640 EXPORT_SYMBOL(sk_wait_data
);
1643 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1645 * @size: memory size to allocate
1646 * @kind: allocation type
1648 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1649 * rmem allocation. This function assumes that protocols which have
1650 * memory_pressure use sk_wmem_queued as write buffer accounting.
1652 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
1654 struct proto
*prot
= sk
->sk_prot
;
1655 int amt
= sk_mem_pages(size
);
1658 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
1659 allocated
= atomic_add_return(amt
, prot
->memory_allocated
);
1662 if (allocated
<= prot
->sysctl_mem
[0]) {
1663 if (prot
->memory_pressure
&& *prot
->memory_pressure
)
1664 *prot
->memory_pressure
= 0;
1668 /* Under pressure. */
1669 if (allocated
> prot
->sysctl_mem
[1])
1670 if (prot
->enter_memory_pressure
)
1671 prot
->enter_memory_pressure(sk
);
1673 /* Over hard limit. */
1674 if (allocated
> prot
->sysctl_mem
[2])
1675 goto suppress_allocation
;
1677 /* guarantee minimum buffer size under pressure */
1678 if (kind
== SK_MEM_RECV
) {
1679 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
1681 } else { /* SK_MEM_SEND */
1682 if (sk
->sk_type
== SOCK_STREAM
) {
1683 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
1685 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
1686 prot
->sysctl_wmem
[0])
1690 if (prot
->memory_pressure
) {
1693 if (!*prot
->memory_pressure
)
1695 alloc
= percpu_counter_read_positive(prot
->sockets_allocated
);
1696 if (prot
->sysctl_mem
[2] > alloc
*
1697 sk_mem_pages(sk
->sk_wmem_queued
+
1698 atomic_read(&sk
->sk_rmem_alloc
) +
1699 sk
->sk_forward_alloc
))
1703 suppress_allocation
:
1705 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
1706 sk_stream_moderate_sndbuf(sk
);
1708 /* Fail only if socket is _under_ its sndbuf.
1709 * In this case we cannot block, so that we have to fail.
1711 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
1715 /* Alas. Undo changes. */
1716 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
1717 atomic_sub(amt
, prot
->memory_allocated
);
1720 EXPORT_SYMBOL(__sk_mem_schedule
);
1723 * __sk_reclaim - reclaim memory_allocated
1726 void __sk_mem_reclaim(struct sock
*sk
)
1728 struct proto
*prot
= sk
->sk_prot
;
1730 atomic_sub(sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
,
1731 prot
->memory_allocated
);
1732 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
1734 if (prot
->memory_pressure
&& *prot
->memory_pressure
&&
1735 (atomic_read(prot
->memory_allocated
) < prot
->sysctl_mem
[0]))
1736 *prot
->memory_pressure
= 0;
1738 EXPORT_SYMBOL(__sk_mem_reclaim
);
1742 * Set of default routines for initialising struct proto_ops when
1743 * the protocol does not support a particular function. In certain
1744 * cases where it makes no sense for a protocol to have a "do nothing"
1745 * function, some default processing is provided.
1748 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
1752 EXPORT_SYMBOL(sock_no_bind
);
1754 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
1759 EXPORT_SYMBOL(sock_no_connect
);
1761 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
1765 EXPORT_SYMBOL(sock_no_socketpair
);
1767 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1771 EXPORT_SYMBOL(sock_no_accept
);
1773 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
1778 EXPORT_SYMBOL(sock_no_getname
);
1780 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
1784 EXPORT_SYMBOL(sock_no_poll
);
1786 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
1790 EXPORT_SYMBOL(sock_no_ioctl
);
1792 int sock_no_listen(struct socket
*sock
, int backlog
)
1796 EXPORT_SYMBOL(sock_no_listen
);
1798 int sock_no_shutdown(struct socket
*sock
, int how
)
1802 EXPORT_SYMBOL(sock_no_shutdown
);
1804 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
1805 char __user
*optval
, unsigned int optlen
)
1809 EXPORT_SYMBOL(sock_no_setsockopt
);
1811 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
1812 char __user
*optval
, int __user
*optlen
)
1816 EXPORT_SYMBOL(sock_no_getsockopt
);
1818 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1823 EXPORT_SYMBOL(sock_no_sendmsg
);
1825 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1826 size_t len
, int flags
)
1830 EXPORT_SYMBOL(sock_no_recvmsg
);
1832 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
1834 /* Mirror missing mmap method error code */
1837 EXPORT_SYMBOL(sock_no_mmap
);
1839 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
1842 struct msghdr msg
= {.msg_flags
= flags
};
1844 char *kaddr
= kmap(page
);
1845 iov
.iov_base
= kaddr
+ offset
;
1847 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
1851 EXPORT_SYMBOL(sock_no_sendpage
);
1854 * Default Socket Callbacks
1857 static void sock_def_wakeup(struct sock
*sk
)
1859 struct socket_wq
*wq
;
1862 wq
= rcu_dereference(sk
->sk_wq
);
1863 if (wq_has_sleeper(wq
))
1864 wake_up_interruptible_all(&wq
->wait
);
1868 static void sock_def_error_report(struct sock
*sk
)
1870 struct socket_wq
*wq
;
1873 wq
= rcu_dereference(sk
->sk_wq
);
1874 if (wq_has_sleeper(wq
))
1875 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
1876 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
1880 static void sock_def_readable(struct sock
*sk
, int len
)
1882 struct socket_wq
*wq
;
1885 wq
= rcu_dereference(sk
->sk_wq
);
1886 if (wq_has_sleeper(wq
))
1887 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
|
1888 POLLRDNORM
| POLLRDBAND
);
1889 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
1893 static void sock_def_write_space(struct sock
*sk
)
1895 struct socket_wq
*wq
;
1899 /* Do not wake up a writer until he can make "significant"
1902 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
1903 wq
= rcu_dereference(sk
->sk_wq
);
1904 if (wq_has_sleeper(wq
))
1905 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
1906 POLLWRNORM
| POLLWRBAND
);
1908 /* Should agree with poll, otherwise some programs break */
1909 if (sock_writeable(sk
))
1910 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
1916 static void sock_def_destruct(struct sock
*sk
)
1918 kfree(sk
->sk_protinfo
);
1921 void sk_send_sigurg(struct sock
*sk
)
1923 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
1924 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
1925 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
1927 EXPORT_SYMBOL(sk_send_sigurg
);
1929 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
1930 unsigned long expires
)
1932 if (!mod_timer(timer
, expires
))
1935 EXPORT_SYMBOL(sk_reset_timer
);
1937 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
1939 if (timer_pending(timer
) && del_timer(timer
))
1942 EXPORT_SYMBOL(sk_stop_timer
);
1944 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
1946 skb_queue_head_init(&sk
->sk_receive_queue
);
1947 skb_queue_head_init(&sk
->sk_write_queue
);
1948 skb_queue_head_init(&sk
->sk_error_queue
);
1949 #ifdef CONFIG_NET_DMA
1950 skb_queue_head_init(&sk
->sk_async_wait_queue
);
1953 sk
->sk_send_head
= NULL
;
1955 init_timer(&sk
->sk_timer
);
1957 sk
->sk_allocation
= GFP_KERNEL
;
1958 sk
->sk_rcvbuf
= sysctl_rmem_default
;
1959 sk
->sk_sndbuf
= sysctl_wmem_default
;
1960 sk
->sk_state
= TCP_CLOSE
;
1961 sk_set_socket(sk
, sock
);
1963 sock_set_flag(sk
, SOCK_ZAPPED
);
1966 sk
->sk_type
= sock
->type
;
1967 sk
->sk_wq
= sock
->wq
;
1972 spin_lock_init(&sk
->sk_dst_lock
);
1973 rwlock_init(&sk
->sk_callback_lock
);
1974 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1975 af_callback_keys
+ sk
->sk_family
,
1976 af_family_clock_key_strings
[sk
->sk_family
]);
1978 sk
->sk_state_change
= sock_def_wakeup
;
1979 sk
->sk_data_ready
= sock_def_readable
;
1980 sk
->sk_write_space
= sock_def_write_space
;
1981 sk
->sk_error_report
= sock_def_error_report
;
1982 sk
->sk_destruct
= sock_def_destruct
;
1984 sk
->sk_sndmsg_page
= NULL
;
1985 sk
->sk_sndmsg_off
= 0;
1987 sk
->sk_peer_pid
= NULL
;
1988 sk
->sk_peer_cred
= NULL
;
1989 sk
->sk_write_pending
= 0;
1990 sk
->sk_rcvlowat
= 1;
1991 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
1992 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
1994 sk
->sk_stamp
= ktime_set(-1L, 0);
1997 * Before updating sk_refcnt, we must commit prior changes to memory
1998 * (Documentation/RCU/rculist_nulls.txt for details)
2001 atomic_set(&sk
->sk_refcnt
, 1);
2002 atomic_set(&sk
->sk_drops
, 0);
2004 EXPORT_SYMBOL(sock_init_data
);
2006 void lock_sock_nested(struct sock
*sk
, int subclass
)
2009 spin_lock_bh(&sk
->sk_lock
.slock
);
2010 if (sk
->sk_lock
.owned
)
2012 sk
->sk_lock
.owned
= 1;
2013 spin_unlock(&sk
->sk_lock
.slock
);
2015 * The sk_lock has mutex_lock() semantics here:
2017 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2020 EXPORT_SYMBOL(lock_sock_nested
);
2022 void release_sock(struct sock
*sk
)
2025 * The sk_lock has mutex_unlock() semantics:
2027 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
2029 spin_lock_bh(&sk
->sk_lock
.slock
);
2030 if (sk
->sk_backlog
.tail
)
2032 sk
->sk_lock
.owned
= 0;
2033 if (waitqueue_active(&sk
->sk_lock
.wq
))
2034 wake_up(&sk
->sk_lock
.wq
);
2035 spin_unlock_bh(&sk
->sk_lock
.slock
);
2037 EXPORT_SYMBOL(release_sock
);
2040 * lock_sock_fast - fast version of lock_sock
2043 * This version should be used for very small section, where process wont block
2044 * return false if fast path is taken
2045 * sk_lock.slock locked, owned = 0, BH disabled
2046 * return true if slow path is taken
2047 * sk_lock.slock unlocked, owned = 1, BH enabled
2049 bool lock_sock_fast(struct sock
*sk
)
2052 spin_lock_bh(&sk
->sk_lock
.slock
);
2054 if (!sk
->sk_lock
.owned
)
2056 * Note : We must disable BH
2061 sk
->sk_lock
.owned
= 1;
2062 spin_unlock(&sk
->sk_lock
.slock
);
2064 * The sk_lock has mutex_lock() semantics here:
2066 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2070 EXPORT_SYMBOL(lock_sock_fast
);
2072 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2075 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2076 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2077 tv
= ktime_to_timeval(sk
->sk_stamp
);
2078 if (tv
.tv_sec
== -1)
2080 if (tv
.tv_sec
== 0) {
2081 sk
->sk_stamp
= ktime_get_real();
2082 tv
= ktime_to_timeval(sk
->sk_stamp
);
2084 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2086 EXPORT_SYMBOL(sock_get_timestamp
);
2088 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2091 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2092 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2093 ts
= ktime_to_timespec(sk
->sk_stamp
);
2094 if (ts
.tv_sec
== -1)
2096 if (ts
.tv_sec
== 0) {
2097 sk
->sk_stamp
= ktime_get_real();
2098 ts
= ktime_to_timespec(sk
->sk_stamp
);
2100 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2102 EXPORT_SYMBOL(sock_get_timestampns
);
2104 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2106 if (!sock_flag(sk
, flag
)) {
2107 sock_set_flag(sk
, flag
);
2109 * we just set one of the two flags which require net
2110 * time stamping, but time stamping might have been on
2111 * already because of the other one
2114 flag
== SOCK_TIMESTAMP
?
2115 SOCK_TIMESTAMPING_RX_SOFTWARE
:
2117 net_enable_timestamp();
2122 * Get a socket option on an socket.
2124 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2125 * asynchronous errors should be reported by getsockopt. We assume
2126 * this means if you specify SO_ERROR (otherwise whats the point of it).
2128 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2129 char __user
*optval
, int __user
*optlen
)
2131 struct sock
*sk
= sock
->sk
;
2133 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2135 EXPORT_SYMBOL(sock_common_getsockopt
);
2137 #ifdef CONFIG_COMPAT
2138 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2139 char __user
*optval
, int __user
*optlen
)
2141 struct sock
*sk
= sock
->sk
;
2143 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2144 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2146 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2148 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2151 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
2152 struct msghdr
*msg
, size_t size
, int flags
)
2154 struct sock
*sk
= sock
->sk
;
2158 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2159 flags
& ~MSG_DONTWAIT
, &addr_len
);
2161 msg
->msg_namelen
= addr_len
;
2164 EXPORT_SYMBOL(sock_common_recvmsg
);
2167 * Set socket options on an inet socket.
2169 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2170 char __user
*optval
, unsigned int optlen
)
2172 struct sock
*sk
= sock
->sk
;
2174 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2176 EXPORT_SYMBOL(sock_common_setsockopt
);
2178 #ifdef CONFIG_COMPAT
2179 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2180 char __user
*optval
, unsigned int optlen
)
2182 struct sock
*sk
= sock
->sk
;
2184 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2185 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2187 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2189 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2192 void sk_common_release(struct sock
*sk
)
2194 if (sk
->sk_prot
->destroy
)
2195 sk
->sk_prot
->destroy(sk
);
2198 * Observation: when sock_common_release is called, processes have
2199 * no access to socket. But net still has.
2200 * Step one, detach it from networking:
2202 * A. Remove from hash tables.
2205 sk
->sk_prot
->unhash(sk
);
2208 * In this point socket cannot receive new packets, but it is possible
2209 * that some packets are in flight because some CPU runs receiver and
2210 * did hash table lookup before we unhashed socket. They will achieve
2211 * receive queue and will be purged by socket destructor.
2213 * Also we still have packets pending on receive queue and probably,
2214 * our own packets waiting in device queues. sock_destroy will drain
2215 * receive queue, but transmitted packets will delay socket destruction
2216 * until the last reference will be released.
2221 xfrm_sk_free_policy(sk
);
2223 sk_refcnt_debug_release(sk
);
2226 EXPORT_SYMBOL(sk_common_release
);
2228 static DEFINE_RWLOCK(proto_list_lock
);
2229 static LIST_HEAD(proto_list
);
2231 #ifdef CONFIG_PROC_FS
2232 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2234 int val
[PROTO_INUSE_NR
];
2237 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2239 #ifdef CONFIG_NET_NS
2240 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2242 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2244 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2246 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2248 int cpu
, idx
= prot
->inuse_idx
;
2251 for_each_possible_cpu(cpu
)
2252 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2254 return res
>= 0 ? res
: 0;
2256 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2258 static int __net_init
sock_inuse_init_net(struct net
*net
)
2260 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2261 return net
->core
.inuse
? 0 : -ENOMEM
;
2264 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2266 free_percpu(net
->core
.inuse
);
2269 static struct pernet_operations net_inuse_ops
= {
2270 .init
= sock_inuse_init_net
,
2271 .exit
= sock_inuse_exit_net
,
2274 static __init
int net_inuse_init(void)
2276 if (register_pernet_subsys(&net_inuse_ops
))
2277 panic("Cannot initialize net inuse counters");
2282 core_initcall(net_inuse_init
);
2284 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2286 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2288 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2290 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2292 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2294 int cpu
, idx
= prot
->inuse_idx
;
2297 for_each_possible_cpu(cpu
)
2298 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2300 return res
>= 0 ? res
: 0;
2302 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2305 static void assign_proto_idx(struct proto
*prot
)
2307 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2309 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2310 printk(KERN_ERR
"PROTO_INUSE_NR exhausted\n");
2314 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2317 static void release_proto_idx(struct proto
*prot
)
2319 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2320 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2323 static inline void assign_proto_idx(struct proto
*prot
)
2327 static inline void release_proto_idx(struct proto
*prot
)
2332 int proto_register(struct proto
*prot
, int alloc_slab
)
2335 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2336 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2339 if (prot
->slab
== NULL
) {
2340 printk(KERN_CRIT
"%s: Can't create sock SLAB cache!\n",
2345 if (prot
->rsk_prot
!= NULL
) {
2346 prot
->rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s", prot
->name
);
2347 if (prot
->rsk_prot
->slab_name
== NULL
)
2348 goto out_free_sock_slab
;
2350 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2351 prot
->rsk_prot
->obj_size
, 0,
2352 SLAB_HWCACHE_ALIGN
, NULL
);
2354 if (prot
->rsk_prot
->slab
== NULL
) {
2355 printk(KERN_CRIT
"%s: Can't create request sock SLAB cache!\n",
2357 goto out_free_request_sock_slab_name
;
2361 if (prot
->twsk_prot
!= NULL
) {
2362 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2364 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2365 goto out_free_request_sock_slab
;
2367 prot
->twsk_prot
->twsk_slab
=
2368 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2369 prot
->twsk_prot
->twsk_obj_size
,
2371 SLAB_HWCACHE_ALIGN
|
2374 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2375 goto out_free_timewait_sock_slab_name
;
2379 write_lock(&proto_list_lock
);
2380 list_add(&prot
->node
, &proto_list
);
2381 assign_proto_idx(prot
);
2382 write_unlock(&proto_list_lock
);
2385 out_free_timewait_sock_slab_name
:
2386 kfree(prot
->twsk_prot
->twsk_slab_name
);
2387 out_free_request_sock_slab
:
2388 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2389 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2390 prot
->rsk_prot
->slab
= NULL
;
2392 out_free_request_sock_slab_name
:
2394 kfree(prot
->rsk_prot
->slab_name
);
2396 kmem_cache_destroy(prot
->slab
);
2401 EXPORT_SYMBOL(proto_register
);
2403 void proto_unregister(struct proto
*prot
)
2405 write_lock(&proto_list_lock
);
2406 release_proto_idx(prot
);
2407 list_del(&prot
->node
);
2408 write_unlock(&proto_list_lock
);
2410 if (prot
->slab
!= NULL
) {
2411 kmem_cache_destroy(prot
->slab
);
2415 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2416 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2417 kfree(prot
->rsk_prot
->slab_name
);
2418 prot
->rsk_prot
->slab
= NULL
;
2421 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2422 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2423 kfree(prot
->twsk_prot
->twsk_slab_name
);
2424 prot
->twsk_prot
->twsk_slab
= NULL
;
2427 EXPORT_SYMBOL(proto_unregister
);
2429 #ifdef CONFIG_PROC_FS
2430 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2431 __acquires(proto_list_lock
)
2433 read_lock(&proto_list_lock
);
2434 return seq_list_start_head(&proto_list
, *pos
);
2437 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2439 return seq_list_next(v
, &proto_list
, pos
);
2442 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2443 __releases(proto_list_lock
)
2445 read_unlock(&proto_list_lock
);
2448 static char proto_method_implemented(const void *method
)
2450 return method
== NULL
? 'n' : 'y';
2453 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2455 seq_printf(seq
, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2456 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2459 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2460 proto
->memory_allocated
!= NULL
? atomic_read(proto
->memory_allocated
) : -1,
2461 proto
->memory_pressure
!= NULL
? *proto
->memory_pressure
? "yes" : "no" : "NI",
2463 proto
->slab
== NULL
? "no" : "yes",
2464 module_name(proto
->owner
),
2465 proto_method_implemented(proto
->close
),
2466 proto_method_implemented(proto
->connect
),
2467 proto_method_implemented(proto
->disconnect
),
2468 proto_method_implemented(proto
->accept
),
2469 proto_method_implemented(proto
->ioctl
),
2470 proto_method_implemented(proto
->init
),
2471 proto_method_implemented(proto
->destroy
),
2472 proto_method_implemented(proto
->shutdown
),
2473 proto_method_implemented(proto
->setsockopt
),
2474 proto_method_implemented(proto
->getsockopt
),
2475 proto_method_implemented(proto
->sendmsg
),
2476 proto_method_implemented(proto
->recvmsg
),
2477 proto_method_implemented(proto
->sendpage
),
2478 proto_method_implemented(proto
->bind
),
2479 proto_method_implemented(proto
->backlog_rcv
),
2480 proto_method_implemented(proto
->hash
),
2481 proto_method_implemented(proto
->unhash
),
2482 proto_method_implemented(proto
->get_port
),
2483 proto_method_implemented(proto
->enter_memory_pressure
));
2486 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2488 if (v
== &proto_list
)
2489 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2498 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2500 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2504 static const struct seq_operations proto_seq_ops
= {
2505 .start
= proto_seq_start
,
2506 .next
= proto_seq_next
,
2507 .stop
= proto_seq_stop
,
2508 .show
= proto_seq_show
,
2511 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2513 return seq_open_net(inode
, file
, &proto_seq_ops
,
2514 sizeof(struct seq_net_private
));
2517 static const struct file_operations proto_seq_fops
= {
2518 .owner
= THIS_MODULE
,
2519 .open
= proto_seq_open
,
2521 .llseek
= seq_lseek
,
2522 .release
= seq_release_net
,
2525 static __net_init
int proto_init_net(struct net
*net
)
2527 if (!proc_net_fops_create(net
, "protocols", S_IRUGO
, &proto_seq_fops
))
2533 static __net_exit
void proto_exit_net(struct net
*net
)
2535 proc_net_remove(net
, "protocols");
2539 static __net_initdata
struct pernet_operations proto_net_ops
= {
2540 .init
= proto_init_net
,
2541 .exit
= proto_exit_net
,
2544 static int __init
proto_init(void)
2546 return register_pernet_subsys(&proto_net_ops
);
2549 subsys_initcall(proto_init
);
2551 #endif /* PROC_FS */