2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/nmi.h>
33 #include <linux/gfp.h>
35 #include <asm/processor.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
42 #include <asm/fixmap.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
52 #include <asm/cacheflush.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
57 static int __init
parse_direct_gbpages_off(char *arg
)
62 early_param("nogbpages", parse_direct_gbpages_off
);
64 static int __init
parse_direct_gbpages_on(char *arg
)
69 early_param("gbpages", parse_direct_gbpages_on
);
72 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73 * physical space so we can cache the place of the first one and move
74 * around without checking the pgd every time.
77 pteval_t __supported_pte_mask __read_mostly
= ~_PAGE_IOMAP
;
78 EXPORT_SYMBOL_GPL(__supported_pte_mask
);
80 int force_personality32
;
84 * Control non executable heap for 32bit processes.
85 * To control the stack too use noexec=off
87 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88 * off PROT_READ implies PROT_EXEC
90 static int __init
nonx32_setup(char *str
)
92 if (!strcmp(str
, "on"))
93 force_personality32
&= ~READ_IMPLIES_EXEC
;
94 else if (!strcmp(str
, "off"))
95 force_personality32
|= READ_IMPLIES_EXEC
;
98 __setup("noexec32=", nonx32_setup
);
101 * When memory was added/removed make sure all the processes MM have
102 * suitable PGD entries in the local PGD level page.
104 void sync_global_pgds(unsigned long start
, unsigned long end
)
106 unsigned long address
;
108 for (address
= start
; address
<= end
; address
+= PGDIR_SIZE
) {
109 const pgd_t
*pgd_ref
= pgd_offset_k(address
);
112 if (pgd_none(*pgd_ref
))
115 spin_lock(&pgd_lock
);
116 list_for_each_entry(page
, &pgd_list
, lru
) {
118 spinlock_t
*pgt_lock
;
120 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
121 /* the pgt_lock only for Xen */
122 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
126 set_pgd(pgd
, *pgd_ref
);
128 BUG_ON(pgd_page_vaddr(*pgd
)
129 != pgd_page_vaddr(*pgd_ref
));
131 spin_unlock(pgt_lock
);
133 spin_unlock(&pgd_lock
);
138 * NOTE: This function is marked __ref because it calls __init function
139 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
141 static __ref
void *spp_getpage(void)
146 ptr
= (void *) get_zeroed_page(GFP_ATOMIC
| __GFP_NOTRACK
);
148 ptr
= alloc_bootmem_pages(PAGE_SIZE
);
150 if (!ptr
|| ((unsigned long)ptr
& ~PAGE_MASK
)) {
151 panic("set_pte_phys: cannot allocate page data %s\n",
152 after_bootmem
? "after bootmem" : "");
155 pr_debug("spp_getpage %p\n", ptr
);
160 static pud_t
*fill_pud(pgd_t
*pgd
, unsigned long vaddr
)
162 if (pgd_none(*pgd
)) {
163 pud_t
*pud
= (pud_t
*)spp_getpage();
164 pgd_populate(&init_mm
, pgd
, pud
);
165 if (pud
!= pud_offset(pgd
, 0))
166 printk(KERN_ERR
"PAGETABLE BUG #00! %p <-> %p\n",
167 pud
, pud_offset(pgd
, 0));
169 return pud_offset(pgd
, vaddr
);
172 static pmd_t
*fill_pmd(pud_t
*pud
, unsigned long vaddr
)
174 if (pud_none(*pud
)) {
175 pmd_t
*pmd
= (pmd_t
*) spp_getpage();
176 pud_populate(&init_mm
, pud
, pmd
);
177 if (pmd
!= pmd_offset(pud
, 0))
178 printk(KERN_ERR
"PAGETABLE BUG #01! %p <-> %p\n",
179 pmd
, pmd_offset(pud
, 0));
181 return pmd_offset(pud
, vaddr
);
184 static pte_t
*fill_pte(pmd_t
*pmd
, unsigned long vaddr
)
186 if (pmd_none(*pmd
)) {
187 pte_t
*pte
= (pte_t
*) spp_getpage();
188 pmd_populate_kernel(&init_mm
, pmd
, pte
);
189 if (pte
!= pte_offset_kernel(pmd
, 0))
190 printk(KERN_ERR
"PAGETABLE BUG #02!\n");
192 return pte_offset_kernel(pmd
, vaddr
);
195 void set_pte_vaddr_pud(pud_t
*pud_page
, unsigned long vaddr
, pte_t new_pte
)
201 pud
= pud_page
+ pud_index(vaddr
);
202 pmd
= fill_pmd(pud
, vaddr
);
203 pte
= fill_pte(pmd
, vaddr
);
205 set_pte(pte
, new_pte
);
208 * It's enough to flush this one mapping.
209 * (PGE mappings get flushed as well)
211 __flush_tlb_one(vaddr
);
214 void set_pte_vaddr(unsigned long vaddr
, pte_t pteval
)
219 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr
, native_pte_val(pteval
));
221 pgd
= pgd_offset_k(vaddr
);
222 if (pgd_none(*pgd
)) {
224 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
227 pud_page
= (pud_t
*)pgd_page_vaddr(*pgd
);
228 set_pte_vaddr_pud(pud_page
, vaddr
, pteval
);
231 pmd_t
* __init
populate_extra_pmd(unsigned long vaddr
)
236 pgd
= pgd_offset_k(vaddr
);
237 pud
= fill_pud(pgd
, vaddr
);
238 return fill_pmd(pud
, vaddr
);
241 pte_t
* __init
populate_extra_pte(unsigned long vaddr
)
245 pmd
= populate_extra_pmd(vaddr
);
246 return fill_pte(pmd
, vaddr
);
250 * Create large page table mappings for a range of physical addresses.
252 static void __init
__init_extra_mapping(unsigned long phys
, unsigned long size
,
259 BUG_ON((phys
& ~PMD_MASK
) || (size
& ~PMD_MASK
));
260 for (; size
; phys
+= PMD_SIZE
, size
-= PMD_SIZE
) {
261 pgd
= pgd_offset_k((unsigned long)__va(phys
));
262 if (pgd_none(*pgd
)) {
263 pud
= (pud_t
*) spp_getpage();
264 set_pgd(pgd
, __pgd(__pa(pud
) | _KERNPG_TABLE
|
267 pud
= pud_offset(pgd
, (unsigned long)__va(phys
));
268 if (pud_none(*pud
)) {
269 pmd
= (pmd_t
*) spp_getpage();
270 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
|
273 pmd
= pmd_offset(pud
, phys
);
274 BUG_ON(!pmd_none(*pmd
));
275 set_pmd(pmd
, __pmd(phys
| pgprot_val(prot
)));
279 void __init
init_extra_mapping_wb(unsigned long phys
, unsigned long size
)
281 __init_extra_mapping(phys
, size
, PAGE_KERNEL_LARGE
);
284 void __init
init_extra_mapping_uc(unsigned long phys
, unsigned long size
)
286 __init_extra_mapping(phys
, size
, PAGE_KERNEL_LARGE_NOCACHE
);
290 * The head.S code sets up the kernel high mapping:
292 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
294 * phys_addr holds the negative offset to the kernel, which is added
295 * to the compile time generated pmds. This results in invalid pmds up
296 * to the point where we hit the physaddr 0 mapping.
298 * We limit the mappings to the region from _text to _brk_end. _brk_end
299 * is rounded up to the 2MB boundary. This catches the invalid pmds as
300 * well, as they are located before _text:
302 void __init
cleanup_highmap(void)
304 unsigned long vaddr
= __START_KERNEL_map
;
305 unsigned long vaddr_end
= __START_KERNEL_map
+ (max_pfn_mapped
<< PAGE_SHIFT
);
306 unsigned long end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
307 pmd_t
*pmd
= level2_kernel_pgt
;
309 for (; vaddr
+ PMD_SIZE
- 1 < vaddr_end
; pmd
++, vaddr
+= PMD_SIZE
) {
312 if (vaddr
< (unsigned long) _text
|| vaddr
> end
)
313 set_pmd(pmd
, __pmd(0));
317 static __ref
void *alloc_low_page(unsigned long *phys
)
319 unsigned long pfn
= pgt_buf_end
++;
323 adr
= (void *)get_zeroed_page(GFP_ATOMIC
| __GFP_NOTRACK
);
329 if (pfn
>= pgt_buf_top
)
330 panic("alloc_low_page: ran out of memory");
332 adr
= early_memremap(pfn
* PAGE_SIZE
, PAGE_SIZE
);
334 *phys
= pfn
* PAGE_SIZE
;
338 static __ref
void *map_low_page(void *virt
)
341 unsigned long phys
, left
;
347 left
= phys
& (PAGE_SIZE
- 1);
348 adr
= early_memremap(phys
& PAGE_MASK
, PAGE_SIZE
);
349 adr
= (void *)(((unsigned long)adr
) | left
);
354 static __ref
void unmap_low_page(void *adr
)
359 early_iounmap((void *)((unsigned long)adr
& PAGE_MASK
), PAGE_SIZE
);
362 static unsigned long __meminit
363 phys_pte_init(pte_t
*pte_page
, unsigned long addr
, unsigned long end
,
367 unsigned long last_map_addr
= end
;
370 pte_t
*pte
= pte_page
+ pte_index(addr
);
372 for(i
= pte_index(addr
); i
< PTRS_PER_PTE
; i
++, addr
+= PAGE_SIZE
, pte
++) {
375 if (!after_bootmem
) {
376 for(; i
< PTRS_PER_PTE
; i
++, pte
++)
377 set_pte(pte
, __pte(0));
383 * We will re-use the existing mapping.
384 * Xen for example has some special requirements, like mapping
385 * pagetable pages as RO. So assume someone who pre-setup
386 * these mappings are more intelligent.
394 printk(" pte=%p addr=%lx pte=%016lx\n",
395 pte
, addr
, pfn_pte(addr
>> PAGE_SHIFT
, PAGE_KERNEL
).pte
);
397 set_pte(pte
, pfn_pte(addr
>> PAGE_SHIFT
, prot
));
398 last_map_addr
= (addr
& PAGE_MASK
) + PAGE_SIZE
;
401 update_page_count(PG_LEVEL_4K
, pages
);
403 return last_map_addr
;
406 static unsigned long __meminit
407 phys_pmd_init(pmd_t
*pmd_page
, unsigned long address
, unsigned long end
,
408 unsigned long page_size_mask
, pgprot_t prot
)
410 unsigned long pages
= 0;
411 unsigned long last_map_addr
= end
;
413 int i
= pmd_index(address
);
415 for (; i
< PTRS_PER_PMD
; i
++, address
+= PMD_SIZE
) {
416 unsigned long pte_phys
;
417 pmd_t
*pmd
= pmd_page
+ pmd_index(address
);
419 pgprot_t new_prot
= prot
;
421 if (address
>= end
) {
422 if (!after_bootmem
) {
423 for (; i
< PTRS_PER_PMD
; i
++, pmd
++)
424 set_pmd(pmd
, __pmd(0));
430 if (!pmd_large(*pmd
)) {
431 spin_lock(&init_mm
.page_table_lock
);
432 pte
= map_low_page((pte_t
*)pmd_page_vaddr(*pmd
));
433 last_map_addr
= phys_pte_init(pte
, address
,
436 spin_unlock(&init_mm
.page_table_lock
);
440 * If we are ok with PG_LEVEL_2M mapping, then we will
441 * use the existing mapping,
443 * Otherwise, we will split the large page mapping but
444 * use the same existing protection bits except for
445 * large page, so that we don't violate Intel's TLB
446 * Application note (317080) which says, while changing
447 * the page sizes, new and old translations should
448 * not differ with respect to page frame and
451 if (page_size_mask
& (1 << PG_LEVEL_2M
)) {
455 new_prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pmd
));
458 if (page_size_mask
& (1<<PG_LEVEL_2M
)) {
460 spin_lock(&init_mm
.page_table_lock
);
461 set_pte((pte_t
*)pmd
,
462 pfn_pte(address
>> PAGE_SHIFT
,
463 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
464 spin_unlock(&init_mm
.page_table_lock
);
465 last_map_addr
= (address
& PMD_MASK
) + PMD_SIZE
;
469 pte
= alloc_low_page(&pte_phys
);
470 last_map_addr
= phys_pte_init(pte
, address
, end
, new_prot
);
473 spin_lock(&init_mm
.page_table_lock
);
474 pmd_populate_kernel(&init_mm
, pmd
, __va(pte_phys
));
475 spin_unlock(&init_mm
.page_table_lock
);
477 update_page_count(PG_LEVEL_2M
, pages
);
478 return last_map_addr
;
481 static unsigned long __meminit
482 phys_pud_init(pud_t
*pud_page
, unsigned long addr
, unsigned long end
,
483 unsigned long page_size_mask
)
485 unsigned long pages
= 0;
486 unsigned long last_map_addr
= end
;
487 int i
= pud_index(addr
);
489 for (; i
< PTRS_PER_PUD
; i
++, addr
= (addr
& PUD_MASK
) + PUD_SIZE
) {
490 unsigned long pmd_phys
;
491 pud_t
*pud
= pud_page
+ pud_index(addr
);
493 pgprot_t prot
= PAGE_KERNEL
;
498 if (!after_bootmem
&&
499 !e820_any_mapped(addr
, addr
+PUD_SIZE
, 0)) {
500 set_pud(pud
, __pud(0));
505 if (!pud_large(*pud
)) {
506 pmd
= map_low_page(pmd_offset(pud
, 0));
507 last_map_addr
= phys_pmd_init(pmd
, addr
, end
,
508 page_size_mask
, prot
);
514 * If we are ok with PG_LEVEL_1G mapping, then we will
515 * use the existing mapping.
517 * Otherwise, we will split the gbpage mapping but use
518 * the same existing protection bits except for large
519 * page, so that we don't violate Intel's TLB
520 * Application note (317080) which says, while changing
521 * the page sizes, new and old translations should
522 * not differ with respect to page frame and
525 if (page_size_mask
& (1 << PG_LEVEL_1G
)) {
529 prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pud
));
532 if (page_size_mask
& (1<<PG_LEVEL_1G
)) {
534 spin_lock(&init_mm
.page_table_lock
);
535 set_pte((pte_t
*)pud
,
536 pfn_pte(addr
>> PAGE_SHIFT
, PAGE_KERNEL_LARGE
));
537 spin_unlock(&init_mm
.page_table_lock
);
538 last_map_addr
= (addr
& PUD_MASK
) + PUD_SIZE
;
542 pmd
= alloc_low_page(&pmd_phys
);
543 last_map_addr
= phys_pmd_init(pmd
, addr
, end
, page_size_mask
,
547 spin_lock(&init_mm
.page_table_lock
);
548 pud_populate(&init_mm
, pud
, __va(pmd_phys
));
549 spin_unlock(&init_mm
.page_table_lock
);
553 update_page_count(PG_LEVEL_1G
, pages
);
555 return last_map_addr
;
558 unsigned long __meminit
559 kernel_physical_mapping_init(unsigned long start
,
561 unsigned long page_size_mask
)
563 bool pgd_changed
= false;
564 unsigned long next
, last_map_addr
= end
;
567 start
= (unsigned long)__va(start
);
568 end
= (unsigned long)__va(end
);
571 for (; start
< end
; start
= next
) {
572 pgd_t
*pgd
= pgd_offset_k(start
);
573 unsigned long pud_phys
;
576 next
= (start
+ PGDIR_SIZE
) & PGDIR_MASK
;
581 pud
= map_low_page((pud_t
*)pgd_page_vaddr(*pgd
));
582 last_map_addr
= phys_pud_init(pud
, __pa(start
),
583 __pa(end
), page_size_mask
);
588 pud
= alloc_low_page(&pud_phys
);
589 last_map_addr
= phys_pud_init(pud
, __pa(start
), __pa(next
),
593 spin_lock(&init_mm
.page_table_lock
);
594 pgd_populate(&init_mm
, pgd
, __va(pud_phys
));
595 spin_unlock(&init_mm
.page_table_lock
);
600 sync_global_pgds(addr
, end
);
604 return last_map_addr
;
608 void __init
initmem_init(void)
610 memblock_x86_register_active_regions(0, 0, max_pfn
);
614 void __init
paging_init(void)
616 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
618 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
619 #ifdef CONFIG_ZONE_DMA
620 max_zone_pfns
[ZONE_DMA
] = MAX_DMA_PFN
;
622 max_zone_pfns
[ZONE_DMA32
] = MAX_DMA32_PFN
;
623 max_zone_pfns
[ZONE_NORMAL
] = max_pfn
;
625 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
629 * clear the default setting with node 0
630 * note: don't use nodes_clear here, that is really clearing when
631 * numa support is not compiled in, and later node_set_state
632 * will not set it back.
634 node_clear_state(0, N_NORMAL_MEMORY
);
636 free_area_init_nodes(max_zone_pfns
);
640 * Memory hotplug specific functions
642 #ifdef CONFIG_MEMORY_HOTPLUG
644 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
647 static void update_end_of_memory_vars(u64 start
, u64 size
)
649 unsigned long end_pfn
= PFN_UP(start
+ size
);
651 if (end_pfn
> max_pfn
) {
653 max_low_pfn
= end_pfn
;
654 high_memory
= (void *)__va(max_pfn
* PAGE_SIZE
- 1) + 1;
659 * Memory is added always to NORMAL zone. This means you will never get
660 * additional DMA/DMA32 memory.
662 int arch_add_memory(int nid
, u64 start
, u64 size
)
664 struct pglist_data
*pgdat
= NODE_DATA(nid
);
665 struct zone
*zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
666 unsigned long last_mapped_pfn
, start_pfn
= start
>> PAGE_SHIFT
;
667 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
670 last_mapped_pfn
= init_memory_mapping(start
, start
+ size
);
671 if (last_mapped_pfn
> max_pfn_mapped
)
672 max_pfn_mapped
= last_mapped_pfn
;
674 ret
= __add_pages(nid
, zone
, start_pfn
, nr_pages
);
677 /* update max_pfn, max_low_pfn and high_memory */
678 update_end_of_memory_vars(start
, size
);
682 EXPORT_SYMBOL_GPL(arch_add_memory
);
684 #endif /* CONFIG_MEMORY_HOTPLUG */
686 static struct kcore_list kcore_vsyscall
;
688 void __init
mem_init(void)
690 long codesize
, reservedpages
, datasize
, initsize
;
691 unsigned long absent_pages
;
695 /* clear_bss() already clear the empty_zero_page */
699 /* this will put all low memory onto the freelists */
701 totalram_pages
= numa_free_all_bootmem();
703 totalram_pages
= free_all_bootmem();
706 absent_pages
= absent_pages_in_range(0, max_pfn
);
707 reservedpages
= max_pfn
- totalram_pages
- absent_pages
;
710 codesize
= (unsigned long) &_etext
- (unsigned long) &_text
;
711 datasize
= (unsigned long) &_edata
- (unsigned long) &_etext
;
712 initsize
= (unsigned long) &__init_end
- (unsigned long) &__init_begin
;
714 /* Register memory areas for /proc/kcore */
715 kclist_add(&kcore_vsyscall
, (void *)VSYSCALL_START
,
716 VSYSCALL_END
- VSYSCALL_START
, KCORE_OTHER
);
718 printk(KERN_INFO
"Memory: %luk/%luk available (%ldk kernel code, "
719 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
720 nr_free_pages() << (PAGE_SHIFT
-10),
721 max_pfn
<< (PAGE_SHIFT
-10),
723 absent_pages
<< (PAGE_SHIFT
-10),
724 reservedpages
<< (PAGE_SHIFT
-10),
729 #ifdef CONFIG_DEBUG_RODATA
730 const int rodata_test_data
= 0xC3;
731 EXPORT_SYMBOL_GPL(rodata_test_data
);
733 int kernel_set_to_readonly
;
735 void set_kernel_text_rw(void)
737 unsigned long start
= PFN_ALIGN(_text
);
738 unsigned long end
= PFN_ALIGN(__stop___ex_table
);
740 if (!kernel_set_to_readonly
)
743 pr_debug("Set kernel text: %lx - %lx for read write\n",
747 * Make the kernel identity mapping for text RW. Kernel text
748 * mapping will always be RO. Refer to the comment in
749 * static_protections() in pageattr.c
751 set_memory_rw(start
, (end
- start
) >> PAGE_SHIFT
);
754 void set_kernel_text_ro(void)
756 unsigned long start
= PFN_ALIGN(_text
);
757 unsigned long end
= PFN_ALIGN(__stop___ex_table
);
759 if (!kernel_set_to_readonly
)
762 pr_debug("Set kernel text: %lx - %lx for read only\n",
766 * Set the kernel identity mapping for text RO.
768 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
771 void mark_rodata_ro(void)
773 unsigned long start
= PFN_ALIGN(_text
);
774 unsigned long rodata_start
=
775 ((unsigned long)__start_rodata
+ PAGE_SIZE
- 1) & PAGE_MASK
;
776 unsigned long end
= (unsigned long) &__end_rodata_hpage_align
;
777 unsigned long text_end
= PAGE_ALIGN((unsigned long) &__stop___ex_table
);
778 unsigned long rodata_end
= PAGE_ALIGN((unsigned long) &__end_rodata
);
779 unsigned long data_start
= (unsigned long) &_sdata
;
781 printk(KERN_INFO
"Write protecting the kernel read-only data: %luk\n",
782 (end
- start
) >> 10);
783 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
785 kernel_set_to_readonly
= 1;
788 * The rodata section (but not the kernel text!) should also be
791 set_memory_nx(rodata_start
, (end
- rodata_start
) >> PAGE_SHIFT
);
795 #ifdef CONFIG_CPA_DEBUG
796 printk(KERN_INFO
"Testing CPA: undo %lx-%lx\n", start
, end
);
797 set_memory_rw(start
, (end
-start
) >> PAGE_SHIFT
);
799 printk(KERN_INFO
"Testing CPA: again\n");
800 set_memory_ro(start
, (end
-start
) >> PAGE_SHIFT
);
803 free_init_pages("unused kernel memory",
804 (unsigned long) page_address(virt_to_page(text_end
)),
806 page_address(virt_to_page(rodata_start
)));
807 free_init_pages("unused kernel memory",
808 (unsigned long) page_address(virt_to_page(rodata_end
)),
809 (unsigned long) page_address(virt_to_page(data_start
)));
814 int kern_addr_valid(unsigned long addr
)
816 unsigned long above
= ((long)addr
) >> __VIRTUAL_MASK_SHIFT
;
822 if (above
!= 0 && above
!= -1UL)
825 pgd
= pgd_offset_k(addr
);
829 pud
= pud_offset(pgd
, addr
);
833 pmd
= pmd_offset(pud
, addr
);
838 return pfn_valid(pmd_pfn(*pmd
));
840 pte
= pte_offset_kernel(pmd
, addr
);
844 return pfn_valid(pte_pfn(*pte
));
848 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
849 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
850 * not need special handling anymore:
852 static struct vm_area_struct gate_vma
= {
853 .vm_start
= VSYSCALL_START
,
854 .vm_end
= VSYSCALL_START
+ (VSYSCALL_MAPPED_PAGES
* PAGE_SIZE
),
855 .vm_page_prot
= PAGE_READONLY_EXEC
,
856 .vm_flags
= VM_READ
| VM_EXEC
859 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
861 #ifdef CONFIG_IA32_EMULATION
862 if (!mm
|| mm
->context
.ia32_compat
)
868 int in_gate_area(struct mm_struct
*mm
, unsigned long addr
)
870 struct vm_area_struct
*vma
= get_gate_vma(mm
);
875 return (addr
>= vma
->vm_start
) && (addr
< vma
->vm_end
);
879 * Use this when you have no reliable mm, typically from interrupt
880 * context. It is less reliable than using a task's mm and may give
883 int in_gate_area_no_mm(unsigned long addr
)
885 return (addr
>= VSYSCALL_START
) && (addr
< VSYSCALL_END
);
888 const char *arch_vma_name(struct vm_area_struct
*vma
)
890 if (vma
->vm_mm
&& vma
->vm_start
== (long)vma
->vm_mm
->context
.vdso
)
892 if (vma
== &gate_vma
)
898 #define MIN_MEMORY_BLOCK_SIZE (1 << SECTION_SIZE_BITS)
900 unsigned long memory_block_size_bytes(void)
902 if (is_uv_system()) {
903 printk(KERN_INFO
"UV: memory block size 2GB\n");
904 return 2UL * 1024 * 1024 * 1024;
906 return MIN_MEMORY_BLOCK_SIZE
;
910 #ifdef CONFIG_SPARSEMEM_VMEMMAP
912 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
914 static long __meminitdata addr_start
, addr_end
;
915 static void __meminitdata
*p_start
, *p_end
;
916 static int __meminitdata node_start
;
919 vmemmap_populate(struct page
*start_page
, unsigned long size
, int node
)
921 unsigned long addr
= (unsigned long)start_page
;
922 unsigned long end
= (unsigned long)(start_page
+ size
);
928 for (; addr
< end
; addr
= next
) {
931 pgd
= vmemmap_pgd_populate(addr
, node
);
935 pud
= vmemmap_pud_populate(pgd
, addr
, node
);
940 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
941 pmd
= vmemmap_pmd_populate(pud
, addr
, node
);
946 p
= vmemmap_pte_populate(pmd
, addr
, node
);
951 addr_end
= addr
+ PAGE_SIZE
;
952 p_end
= p
+ PAGE_SIZE
;
954 next
= pmd_addr_end(addr
, end
);
956 pmd
= pmd_offset(pud
, addr
);
957 if (pmd_none(*pmd
)) {
960 p
= vmemmap_alloc_block_buf(PMD_SIZE
, node
);
964 entry
= pfn_pte(__pa(p
) >> PAGE_SHIFT
,
966 set_pmd(pmd
, __pmd(pte_val(entry
)));
968 /* check to see if we have contiguous blocks */
969 if (p_end
!= p
|| node_start
!= node
) {
971 printk(KERN_DEBUG
" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
972 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);
978 addr_end
= addr
+ PMD_SIZE
;
979 p_end
= p
+ PMD_SIZE
;
981 vmemmap_verify((pte_t
*)pmd
, node
, addr
, next
);
985 sync_global_pgds((unsigned long)start_page
, end
);
989 void __meminit
vmemmap_populate_print_last(void)
992 printk(KERN_DEBUG
" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
993 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);