2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
46 #include "cxgb3_offload.h"
48 #include "iwch_provider.h"
51 static char *states
[] = {
68 module_param(peer2peer
, int, 0644);
69 MODULE_PARM_DESC(peer2peer
, "Support peer2peer ULPs (default=0)");
71 static int ep_timeout_secs
= 60;
72 module_param(ep_timeout_secs
, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs
, "CM Endpoint operation timeout "
74 "in seconds (default=60)");
76 static int mpa_rev
= 1;
77 module_param(mpa_rev
, int, 0644);
78 MODULE_PARM_DESC(mpa_rev
, "MPA Revision, 0 supports amso1100, "
79 "1 is spec compliant. (default=1)");
81 static int markers_enabled
= 0;
82 module_param(markers_enabled
, int, 0644);
83 MODULE_PARM_DESC(markers_enabled
, "Enable MPA MARKERS (default(0)=disabled)");
85 static int crc_enabled
= 1;
86 module_param(crc_enabled
, int, 0644);
87 MODULE_PARM_DESC(crc_enabled
, "Enable MPA CRC (default(1)=enabled)");
89 static int rcv_win
= 256 * 1024;
90 module_param(rcv_win
, int, 0644);
91 MODULE_PARM_DESC(rcv_win
, "TCP receive window in bytes (default=256)");
93 static int snd_win
= 32 * 1024;
94 module_param(snd_win
, int, 0644);
95 MODULE_PARM_DESC(snd_win
, "TCP send window in bytes (default=32KB)");
97 static unsigned int nocong
= 0;
98 module_param(nocong
, uint
, 0644);
99 MODULE_PARM_DESC(nocong
, "Turn off congestion control (default=0)");
101 static unsigned int cong_flavor
= 1;
102 module_param(cong_flavor
, uint
, 0644);
103 MODULE_PARM_DESC(cong_flavor
, "TCP Congestion control flavor (default=1)");
105 static struct workqueue_struct
*workq
;
107 static struct sk_buff_head rxq
;
109 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
);
110 static void ep_timeout(unsigned long arg
);
111 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
);
113 static void start_ep_timer(struct iwch_ep
*ep
)
115 PDBG("%s ep %p\n", __func__
, ep
);
116 if (timer_pending(&ep
->timer
)) {
117 PDBG("%s stopped / restarted timer ep %p\n", __func__
, ep
);
118 del_timer_sync(&ep
->timer
);
121 ep
->timer
.expires
= jiffies
+ ep_timeout_secs
* HZ
;
122 ep
->timer
.data
= (unsigned long)ep
;
123 ep
->timer
.function
= ep_timeout
;
124 add_timer(&ep
->timer
);
127 static void stop_ep_timer(struct iwch_ep
*ep
)
129 PDBG("%s ep %p\n", __func__
, ep
);
130 if (!timer_pending(&ep
->timer
)) {
131 printk(KERN_ERR
"%s timer stopped when its not running! ep %p state %u\n",
132 __func__
, ep
, ep
->com
.state
);
136 del_timer_sync(&ep
->timer
);
140 static int iwch_l2t_send(struct t3cdev
*tdev
, struct sk_buff
*skb
, struct l2t_entry
*l2e
)
143 struct cxio_rdev
*rdev
;
145 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
146 if (cxio_fatal_error(rdev
)) {
150 error
= l2t_send(tdev
, skb
, l2e
);
156 int iwch_cxgb3_ofld_send(struct t3cdev
*tdev
, struct sk_buff
*skb
)
159 struct cxio_rdev
*rdev
;
161 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
162 if (cxio_fatal_error(rdev
)) {
166 error
= cxgb3_ofld_send(tdev
, skb
);
172 static void release_tid(struct t3cdev
*tdev
, u32 hwtid
, struct sk_buff
*skb
)
174 struct cpl_tid_release
*req
;
176 skb
= get_skb(skb
, sizeof *req
, GFP_KERNEL
);
179 req
= (struct cpl_tid_release
*) skb_put(skb
, sizeof(*req
));
180 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
181 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE
, hwtid
));
182 skb
->priority
= CPL_PRIORITY_SETUP
;
183 iwch_cxgb3_ofld_send(tdev
, skb
);
187 int iwch_quiesce_tid(struct iwch_ep
*ep
)
189 struct cpl_set_tcb_field
*req
;
190 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
194 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
195 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
196 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
197 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
200 req
->word
= htons(W_TCB_RX_QUIESCE
);
201 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
202 req
->val
= cpu_to_be64(1 << S_TCB_RX_QUIESCE
);
204 skb
->priority
= CPL_PRIORITY_DATA
;
205 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
208 int iwch_resume_tid(struct iwch_ep
*ep
)
210 struct cpl_set_tcb_field
*req
;
211 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
215 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
216 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
217 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
218 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
221 req
->word
= htons(W_TCB_RX_QUIESCE
);
222 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
225 skb
->priority
= CPL_PRIORITY_DATA
;
226 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
229 static void set_emss(struct iwch_ep
*ep
, u16 opt
)
231 PDBG("%s ep %p opt %u\n", __func__
, ep
, opt
);
232 ep
->emss
= T3C_DATA(ep
->com
.tdev
)->mtus
[G_TCPOPT_MSS(opt
)] - 40;
233 if (G_TCPOPT_TSTAMP(opt
))
237 PDBG("emss=%d\n", ep
->emss
);
240 static enum iwch_ep_state
state_read(struct iwch_ep_common
*epc
)
243 enum iwch_ep_state state
;
245 spin_lock_irqsave(&epc
->lock
, flags
);
247 spin_unlock_irqrestore(&epc
->lock
, flags
);
251 static void __state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
256 static void state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
260 spin_lock_irqsave(&epc
->lock
, flags
);
261 PDBG("%s - %s -> %s\n", __func__
, states
[epc
->state
], states
[new]);
262 __state_set(epc
, new);
263 spin_unlock_irqrestore(&epc
->lock
, flags
);
267 static void *alloc_ep(int size
, gfp_t gfp
)
269 struct iwch_ep_common
*epc
;
271 epc
= kzalloc(size
, gfp
);
273 kref_init(&epc
->kref
);
274 spin_lock_init(&epc
->lock
);
275 init_waitqueue_head(&epc
->waitq
);
277 PDBG("%s alloc ep %p\n", __func__
, epc
);
281 void __free_ep(struct kref
*kref
)
284 ep
= container_of(container_of(kref
, struct iwch_ep_common
, kref
),
285 struct iwch_ep
, com
);
286 PDBG("%s ep %p state %s\n", __func__
, ep
, states
[state_read(&ep
->com
)]);
287 if (test_bit(RELEASE_RESOURCES
, &ep
->com
.flags
)) {
288 cxgb3_remove_tid(ep
->com
.tdev
, (void *)ep
, ep
->hwtid
);
289 dst_release(ep
->dst
);
290 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
295 static void release_ep_resources(struct iwch_ep
*ep
)
297 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
298 set_bit(RELEASE_RESOURCES
, &ep
->com
.flags
);
302 static int status2errno(int status
)
307 case CPL_ERR_CONN_RESET
:
309 case CPL_ERR_ARP_MISS
:
310 return -EHOSTUNREACH
;
311 case CPL_ERR_CONN_TIMEDOUT
:
313 case CPL_ERR_TCAM_FULL
:
315 case CPL_ERR_CONN_EXIST
:
323 * Try and reuse skbs already allocated...
325 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
)
327 if (skb
&& !skb_is_nonlinear(skb
) && !skb_cloned(skb
)) {
331 skb
= alloc_skb(len
, gfp
);
336 static struct rtable
*find_route(struct t3cdev
*dev
, __be32 local_ip
,
337 __be32 peer_ip
, __be16 local_port
,
338 __be16 peer_port
, u8 tos
)
343 rt
= ip_route_output_ports(&init_net
, &fl4
, NULL
, peer_ip
, local_ip
,
344 peer_port
, local_port
, IPPROTO_TCP
,
351 static unsigned int find_best_mtu(const struct t3c_data
*d
, unsigned short mtu
)
355 while (i
< d
->nmtus
- 1 && d
->mtus
[i
+ 1] <= mtu
)
360 static void arp_failure_discard(struct t3cdev
*dev
, struct sk_buff
*skb
)
362 PDBG("%s t3cdev %p\n", __func__
, dev
);
367 * Handle an ARP failure for an active open.
369 static void act_open_req_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
371 printk(KERN_ERR MOD
"ARP failure duing connect\n");
376 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
379 static void abort_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
381 struct cpl_abort_req
*req
= cplhdr(skb
);
383 PDBG("%s t3cdev %p\n", __func__
, dev
);
384 req
->cmd
= CPL_ABORT_NO_RST
;
385 iwch_cxgb3_ofld_send(dev
, skb
);
388 static int send_halfclose(struct iwch_ep
*ep
, gfp_t gfp
)
390 struct cpl_close_con_req
*req
;
393 PDBG("%s ep %p\n", __func__
, ep
);
394 skb
= get_skb(NULL
, sizeof(*req
), gfp
);
396 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __func__
);
399 skb
->priority
= CPL_PRIORITY_DATA
;
400 set_arp_failure_handler(skb
, arp_failure_discard
);
401 req
= (struct cpl_close_con_req
*) skb_put(skb
, sizeof(*req
));
402 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON
));
403 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
404 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ
, ep
->hwtid
));
405 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
408 static int send_abort(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
410 struct cpl_abort_req
*req
;
412 PDBG("%s ep %p\n", __func__
, ep
);
413 skb
= get_skb(skb
, sizeof(*req
), gfp
);
415 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
419 skb
->priority
= CPL_PRIORITY_DATA
;
420 set_arp_failure_handler(skb
, abort_arp_failure
);
421 req
= (struct cpl_abort_req
*) skb_put(skb
, sizeof(*req
));
422 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ
));
423 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
424 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ
, ep
->hwtid
));
425 req
->cmd
= CPL_ABORT_SEND_RST
;
426 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
429 static int send_connect(struct iwch_ep
*ep
)
431 struct cpl_act_open_req
*req
;
433 u32 opt0h
, opt0l
, opt2
;
434 unsigned int mtu_idx
;
437 PDBG("%s ep %p\n", __func__
, ep
);
439 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
441 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
445 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
446 wscale
= compute_wscale(rcv_win
);
451 V_WND_SCALE(wscale
) |
453 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
454 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
455 opt2
= F_RX_COALESCE_VALID
| V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
456 V_CONG_CONTROL_FLAVOR(cong_flavor
);
457 skb
->priority
= CPL_PRIORITY_SETUP
;
458 set_arp_failure_handler(skb
, act_open_req_arp_failure
);
460 req
= (struct cpl_act_open_req
*) skb_put(skb
, sizeof(*req
));
461 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
462 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ
, ep
->atid
));
463 req
->local_port
= ep
->com
.local_addr
.sin_port
;
464 req
->peer_port
= ep
->com
.remote_addr
.sin_port
;
465 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
466 req
->peer_ip
= ep
->com
.remote_addr
.sin_addr
.s_addr
;
467 req
->opt0h
= htonl(opt0h
);
468 req
->opt0l
= htonl(opt0l
);
470 req
->opt2
= htonl(opt2
);
471 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
474 static void send_mpa_req(struct iwch_ep
*ep
, struct sk_buff
*skb
)
477 struct tx_data_wr
*req
;
478 struct mpa_message
*mpa
;
481 PDBG("%s ep %p pd_len %d\n", __func__
, ep
, ep
->plen
);
483 BUG_ON(skb_cloned(skb
));
485 mpalen
= sizeof(*mpa
) + ep
->plen
;
486 if (skb
->data
+ mpalen
+ sizeof(*req
) > skb_end_pointer(skb
)) {
488 skb
=alloc_skb(mpalen
+ sizeof(*req
), GFP_KERNEL
);
490 connect_reply_upcall(ep
, -ENOMEM
);
495 skb_reserve(skb
, sizeof(*req
));
496 skb_put(skb
, mpalen
);
497 skb
->priority
= CPL_PRIORITY_DATA
;
498 mpa
= (struct mpa_message
*) skb
->data
;
499 memset(mpa
, 0, sizeof(*mpa
));
500 memcpy(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
));
501 mpa
->flags
= (crc_enabled
? MPA_CRC
: 0) |
502 (markers_enabled
? MPA_MARKERS
: 0);
503 mpa
->private_data_size
= htons(ep
->plen
);
504 mpa
->revision
= mpa_rev
;
507 memcpy(mpa
->private_data
, ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
510 * Reference the mpa skb. This ensures the data area
511 * will remain in memory until the hw acks the tx.
512 * Function tx_ack() will deref it.
515 set_arp_failure_handler(skb
, arp_failure_discard
);
516 skb_reset_transport_header(skb
);
518 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
519 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
520 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
521 req
->len
= htonl(len
);
522 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
523 V_TX_SNDBUF(snd_win
>>15));
524 req
->flags
= htonl(F_TX_INIT
);
525 req
->sndseq
= htonl(ep
->snd_seq
);
528 iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
530 state_set(&ep
->com
, MPA_REQ_SENT
);
534 static int send_mpa_reject(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
537 struct tx_data_wr
*req
;
538 struct mpa_message
*mpa
;
541 PDBG("%s ep %p plen %d\n", __func__
, ep
, plen
);
543 mpalen
= sizeof(*mpa
) + plen
;
545 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
547 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
550 skb_reserve(skb
, sizeof(*req
));
551 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
552 memset(mpa
, 0, sizeof(*mpa
));
553 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
554 mpa
->flags
= MPA_REJECT
;
555 mpa
->revision
= mpa_rev
;
556 mpa
->private_data_size
= htons(plen
);
558 memcpy(mpa
->private_data
, pdata
, plen
);
561 * Reference the mpa skb again. This ensures the data area
562 * will remain in memory until the hw acks the tx.
563 * Function tx_ack() will deref it.
566 skb
->priority
= CPL_PRIORITY_DATA
;
567 set_arp_failure_handler(skb
, arp_failure_discard
);
568 skb_reset_transport_header(skb
);
569 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
570 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
571 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
572 req
->len
= htonl(mpalen
);
573 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
574 V_TX_SNDBUF(snd_win
>>15));
575 req
->flags
= htonl(F_TX_INIT
);
576 req
->sndseq
= htonl(ep
->snd_seq
);
579 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
582 static int send_mpa_reply(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
585 struct tx_data_wr
*req
;
586 struct mpa_message
*mpa
;
590 PDBG("%s ep %p plen %d\n", __func__
, ep
, plen
);
592 mpalen
= sizeof(*mpa
) + plen
;
594 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
596 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
599 skb
->priority
= CPL_PRIORITY_DATA
;
600 skb_reserve(skb
, sizeof(*req
));
601 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
602 memset(mpa
, 0, sizeof(*mpa
));
603 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
604 mpa
->flags
= (ep
->mpa_attr
.crc_enabled
? MPA_CRC
: 0) |
605 (markers_enabled
? MPA_MARKERS
: 0);
606 mpa
->revision
= mpa_rev
;
607 mpa
->private_data_size
= htons(plen
);
609 memcpy(mpa
->private_data
, pdata
, plen
);
612 * Reference the mpa skb. This ensures the data area
613 * will remain in memory until the hw acks the tx.
614 * Function tx_ack() will deref it.
617 set_arp_failure_handler(skb
, arp_failure_discard
);
618 skb_reset_transport_header(skb
);
620 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
621 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
622 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
623 req
->len
= htonl(len
);
624 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
625 V_TX_SNDBUF(snd_win
>>15));
626 req
->flags
= htonl(F_TX_INIT
);
627 req
->sndseq
= htonl(ep
->snd_seq
);
629 state_set(&ep
->com
, MPA_REP_SENT
);
630 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
633 static int act_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
635 struct iwch_ep
*ep
= ctx
;
636 struct cpl_act_establish
*req
= cplhdr(skb
);
637 unsigned int tid
= GET_TID(req
);
639 PDBG("%s ep %p tid %d\n", __func__
, ep
, tid
);
641 dst_confirm(ep
->dst
);
643 /* setup the hwtid for this connection */
645 cxgb3_insert_tid(ep
->com
.tdev
, &t3c_client
, ep
, tid
);
647 ep
->snd_seq
= ntohl(req
->snd_isn
);
648 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
650 set_emss(ep
, ntohs(req
->tcp_opt
));
652 /* dealloc the atid */
653 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
655 /* start MPA negotiation */
656 send_mpa_req(ep
, skb
);
661 static void abort_connection(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
663 PDBG("%s ep %p\n", __FILE__
, ep
);
664 state_set(&ep
->com
, ABORTING
);
665 send_abort(ep
, skb
, gfp
);
668 static void close_complete_upcall(struct iwch_ep
*ep
)
670 struct iw_cm_event event
;
672 PDBG("%s ep %p\n", __func__
, ep
);
673 memset(&event
, 0, sizeof(event
));
674 event
.event
= IW_CM_EVENT_CLOSE
;
676 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
677 ep
, ep
->com
.cm_id
, ep
->hwtid
);
678 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
679 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
680 ep
->com
.cm_id
= NULL
;
685 static void peer_close_upcall(struct iwch_ep
*ep
)
687 struct iw_cm_event event
;
689 PDBG("%s ep %p\n", __func__
, ep
);
690 memset(&event
, 0, sizeof(event
));
691 event
.event
= IW_CM_EVENT_DISCONNECT
;
693 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
694 ep
, ep
->com
.cm_id
, ep
->hwtid
);
695 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
699 static void peer_abort_upcall(struct iwch_ep
*ep
)
701 struct iw_cm_event event
;
703 PDBG("%s ep %p\n", __func__
, ep
);
704 memset(&event
, 0, sizeof(event
));
705 event
.event
= IW_CM_EVENT_CLOSE
;
706 event
.status
= -ECONNRESET
;
708 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep
,
709 ep
->com
.cm_id
, ep
->hwtid
);
710 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
711 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
712 ep
->com
.cm_id
= NULL
;
717 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
)
719 struct iw_cm_event event
;
721 PDBG("%s ep %p status %d\n", __func__
, ep
, status
);
722 memset(&event
, 0, sizeof(event
));
723 event
.event
= IW_CM_EVENT_CONNECT_REPLY
;
724 event
.status
= status
;
725 event
.local_addr
= ep
->com
.local_addr
;
726 event
.remote_addr
= ep
->com
.remote_addr
;
728 if ((status
== 0) || (status
== -ECONNREFUSED
)) {
729 event
.private_data_len
= ep
->plen
;
730 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
733 PDBG("%s ep %p tid %d status %d\n", __func__
, ep
,
735 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
738 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
739 ep
->com
.cm_id
= NULL
;
744 static void connect_request_upcall(struct iwch_ep
*ep
)
746 struct iw_cm_event event
;
748 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
749 memset(&event
, 0, sizeof(event
));
750 event
.event
= IW_CM_EVENT_CONNECT_REQUEST
;
751 event
.local_addr
= ep
->com
.local_addr
;
752 event
.remote_addr
= ep
->com
.remote_addr
;
753 event
.private_data_len
= ep
->plen
;
754 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
755 event
.provider_data
= ep
;
756 if (state_read(&ep
->parent_ep
->com
) != DEAD
) {
758 ep
->parent_ep
->com
.cm_id
->event_handler(
759 ep
->parent_ep
->com
.cm_id
,
762 put_ep(&ep
->parent_ep
->com
);
763 ep
->parent_ep
= NULL
;
766 static void established_upcall(struct iwch_ep
*ep
)
768 struct iw_cm_event event
;
770 PDBG("%s ep %p\n", __func__
, ep
);
771 memset(&event
, 0, sizeof(event
));
772 event
.event
= IW_CM_EVENT_ESTABLISHED
;
774 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
775 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
779 static int update_rx_credits(struct iwch_ep
*ep
, u32 credits
)
781 struct cpl_rx_data_ack
*req
;
784 PDBG("%s ep %p credits %u\n", __func__
, ep
, credits
);
785 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
787 printk(KERN_ERR MOD
"update_rx_credits - cannot alloc skb!\n");
791 req
= (struct cpl_rx_data_ack
*) skb_put(skb
, sizeof(*req
));
792 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
793 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK
, ep
->hwtid
));
794 req
->credit_dack
= htonl(V_RX_CREDITS(credits
) | V_RX_FORCE_ACK(1));
795 skb
->priority
= CPL_PRIORITY_ACK
;
796 iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
800 static void process_mpa_reply(struct iwch_ep
*ep
, struct sk_buff
*skb
)
802 struct mpa_message
*mpa
;
804 struct iwch_qp_attributes attrs
;
805 enum iwch_qp_attr_mask mask
;
808 PDBG("%s ep %p\n", __func__
, ep
);
811 * Stop mpa timer. If it expired, then the state has
812 * changed and we bail since ep_timeout already aborted
816 if (state_read(&ep
->com
) != MPA_REQ_SENT
)
820 * If we get more than the supported amount of private data
821 * then we must fail this connection.
823 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
829 * copy the new data into our accumulation buffer.
831 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
833 ep
->mpa_pkt_len
+= skb
->len
;
836 * if we don't even have the mpa message, then bail.
838 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
840 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
842 /* Validate MPA header. */
843 if (mpa
->revision
!= mpa_rev
) {
847 if (memcmp(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
))) {
852 plen
= ntohs(mpa
->private_data_size
);
855 * Fail if there's too much private data.
857 if (plen
> MPA_MAX_PRIVATE_DATA
) {
863 * If plen does not account for pkt size
865 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
870 ep
->plen
= (u8
) plen
;
873 * If we don't have all the pdata yet, then bail.
874 * We'll continue process when more data arrives.
876 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
879 if (mpa
->flags
& MPA_REJECT
) {
885 * If we get here we have accumulated the entire mpa
886 * start reply message including private data. And
887 * the MPA header is valid.
889 state_set(&ep
->com
, FPDU_MODE
);
890 ep
->mpa_attr
.initiator
= 1;
891 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
892 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
893 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
894 ep
->mpa_attr
.version
= mpa_rev
;
895 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
896 "xmit_marker_enabled=%d, version=%d\n", __func__
,
897 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
898 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
900 attrs
.mpa_attr
= ep
->mpa_attr
;
901 attrs
.max_ird
= ep
->ird
;
902 attrs
.max_ord
= ep
->ord
;
903 attrs
.llp_stream_handle
= ep
;
904 attrs
.next_state
= IWCH_QP_STATE_RTS
;
906 mask
= IWCH_QP_ATTR_NEXT_STATE
|
907 IWCH_QP_ATTR_LLP_STREAM_HANDLE
| IWCH_QP_ATTR_MPA_ATTR
|
908 IWCH_QP_ATTR_MAX_IRD
| IWCH_QP_ATTR_MAX_ORD
;
910 /* bind QP and TID with INIT_WR */
911 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
912 ep
->com
.qp
, mask
, &attrs
, 1);
916 if (peer2peer
&& iwch_rqes_posted(ep
->com
.qp
) == 0) {
917 iwch_post_zb_read(ep
);
922 abort_connection(ep
, skb
, GFP_KERNEL
);
924 connect_reply_upcall(ep
, err
);
928 static void process_mpa_request(struct iwch_ep
*ep
, struct sk_buff
*skb
)
930 struct mpa_message
*mpa
;
933 PDBG("%s ep %p\n", __func__
, ep
);
936 * Stop mpa timer. If it expired, then the state has
937 * changed and we bail since ep_timeout already aborted
941 if (state_read(&ep
->com
) != MPA_REQ_WAIT
)
945 * If we get more than the supported amount of private data
946 * then we must fail this connection.
948 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
949 abort_connection(ep
, skb
, GFP_KERNEL
);
953 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
956 * Copy the new data into our accumulation buffer.
958 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
960 ep
->mpa_pkt_len
+= skb
->len
;
963 * If we don't even have the mpa message, then bail.
964 * We'll continue process when more data arrives.
966 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
968 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
969 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
972 * Validate MPA Header.
974 if (mpa
->revision
!= mpa_rev
) {
975 abort_connection(ep
, skb
, GFP_KERNEL
);
979 if (memcmp(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
))) {
980 abort_connection(ep
, skb
, GFP_KERNEL
);
984 plen
= ntohs(mpa
->private_data_size
);
987 * Fail if there's too much private data.
989 if (plen
> MPA_MAX_PRIVATE_DATA
) {
990 abort_connection(ep
, skb
, GFP_KERNEL
);
995 * If plen does not account for pkt size
997 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
998 abort_connection(ep
, skb
, GFP_KERNEL
);
1001 ep
->plen
= (u8
) plen
;
1004 * If we don't have all the pdata yet, then bail.
1006 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
1010 * If we get here we have accumulated the entire mpa
1011 * start reply message including private data.
1013 ep
->mpa_attr
.initiator
= 0;
1014 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
1015 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
1016 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1017 ep
->mpa_attr
.version
= mpa_rev
;
1018 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1019 "xmit_marker_enabled=%d, version=%d\n", __func__
,
1020 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
1021 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
1023 state_set(&ep
->com
, MPA_REQ_RCVD
);
1026 connect_request_upcall(ep
);
1030 static int rx_data(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1032 struct iwch_ep
*ep
= ctx
;
1033 struct cpl_rx_data
*hdr
= cplhdr(skb
);
1034 unsigned int dlen
= ntohs(hdr
->len
);
1036 PDBG("%s ep %p dlen %u\n", __func__
, ep
, dlen
);
1038 skb_pull(skb
, sizeof(*hdr
));
1039 skb_trim(skb
, dlen
);
1041 ep
->rcv_seq
+= dlen
;
1042 BUG_ON(ep
->rcv_seq
!= (ntohl(hdr
->seq
) + dlen
));
1044 switch (state_read(&ep
->com
)) {
1046 process_mpa_reply(ep
, skb
);
1049 process_mpa_request(ep
, skb
);
1054 printk(KERN_ERR MOD
"%s Unexpected streaming data."
1055 " ep %p state %d tid %d\n",
1056 __func__
, ep
, state_read(&ep
->com
), ep
->hwtid
);
1059 * The ep will timeout and inform the ULP of the failure.
1065 /* update RX credits */
1066 update_rx_credits(ep
, dlen
);
1068 return CPL_RET_BUF_DONE
;
1072 * Upcall from the adapter indicating data has been transmitted.
1073 * For us its just the single MPA request or reply. We can now free
1074 * the skb holding the mpa message.
1076 static int tx_ack(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1078 struct iwch_ep
*ep
= ctx
;
1079 struct cpl_wr_ack
*hdr
= cplhdr(skb
);
1080 unsigned int credits
= ntohs(hdr
->credits
);
1081 unsigned long flags
;
1084 PDBG("%s ep %p credits %u\n", __func__
, ep
, credits
);
1087 PDBG("%s 0 credit ack ep %p state %u\n",
1088 __func__
, ep
, state_read(&ep
->com
));
1089 return CPL_RET_BUF_DONE
;
1092 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1093 BUG_ON(credits
!= 1);
1094 dst_confirm(ep
->dst
);
1096 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1097 __func__
, ep
, ep
->com
.state
);
1098 if (ep
->mpa_attr
.initiator
) {
1099 PDBG("%s initiator ep %p state %u\n",
1100 __func__
, ep
, ep
->com
.state
);
1101 if (peer2peer
&& ep
->com
.state
== FPDU_MODE
)
1104 PDBG("%s responder ep %p state %u\n",
1105 __func__
, ep
, ep
->com
.state
);
1106 if (ep
->com
.state
== MPA_REQ_RCVD
) {
1107 ep
->com
.rpl_done
= 1;
1108 wake_up(&ep
->com
.waitq
);
1112 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1113 __func__
, ep
, ep
->com
.state
);
1114 kfree_skb(ep
->mpa_skb
);
1117 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1119 iwch_post_zb_read(ep
);
1120 return CPL_RET_BUF_DONE
;
1123 static int abort_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1125 struct iwch_ep
*ep
= ctx
;
1126 unsigned long flags
;
1129 PDBG("%s ep %p\n", __func__
, ep
);
1133 * We get 2 abort replies from the HW. The first one must
1134 * be ignored except for scribbling that we need one more.
1136 if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS
, &ep
->com
.flags
)) {
1137 return CPL_RET_BUF_DONE
;
1140 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1141 switch (ep
->com
.state
) {
1143 close_complete_upcall(ep
);
1144 __state_set(&ep
->com
, DEAD
);
1148 printk(KERN_ERR
"%s ep %p state %d\n",
1149 __func__
, ep
, ep
->com
.state
);
1152 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1155 release_ep_resources(ep
);
1156 return CPL_RET_BUF_DONE
;
1160 * Return whether a failed active open has allocated a TID
1162 static inline int act_open_has_tid(int status
)
1164 return status
!= CPL_ERR_TCAM_FULL
&& status
!= CPL_ERR_CONN_EXIST
&&
1165 status
!= CPL_ERR_ARP_MISS
;
1168 static int act_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1170 struct iwch_ep
*ep
= ctx
;
1171 struct cpl_act_open_rpl
*rpl
= cplhdr(skb
);
1173 PDBG("%s ep %p status %u errno %d\n", __func__
, ep
, rpl
->status
,
1174 status2errno(rpl
->status
));
1175 connect_reply_upcall(ep
, status2errno(rpl
->status
));
1176 state_set(&ep
->com
, DEAD
);
1177 if (ep
->com
.tdev
->type
!= T3A
&& act_open_has_tid(rpl
->status
))
1178 release_tid(ep
->com
.tdev
, GET_TID(rpl
), NULL
);
1179 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1180 dst_release(ep
->dst
);
1181 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
1183 return CPL_RET_BUF_DONE
;
1186 static int listen_start(struct iwch_listen_ep
*ep
)
1188 struct sk_buff
*skb
;
1189 struct cpl_pass_open_req
*req
;
1191 PDBG("%s ep %p\n", __func__
, ep
);
1192 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1194 printk(KERN_ERR MOD
"t3c_listen_start failed to alloc skb!\n");
1198 req
= (struct cpl_pass_open_req
*) skb_put(skb
, sizeof(*req
));
1199 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1200 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ
, ep
->stid
));
1201 req
->local_port
= ep
->com
.local_addr
.sin_port
;
1202 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
1205 req
->peer_netmask
= 0;
1206 req
->opt0h
= htonl(F_DELACK
| F_TCAM_BYPASS
);
1207 req
->opt0l
= htonl(V_RCV_BUFSIZ(rcv_win
>>10));
1208 req
->opt1
= htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK
));
1211 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
1214 static int pass_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1216 struct iwch_listen_ep
*ep
= ctx
;
1217 struct cpl_pass_open_rpl
*rpl
= cplhdr(skb
);
1219 PDBG("%s ep %p status %d error %d\n", __func__
, ep
,
1220 rpl
->status
, status2errno(rpl
->status
));
1221 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1222 ep
->com
.rpl_done
= 1;
1223 wake_up(&ep
->com
.waitq
);
1225 return CPL_RET_BUF_DONE
;
1228 static int listen_stop(struct iwch_listen_ep
*ep
)
1230 struct sk_buff
*skb
;
1231 struct cpl_close_listserv_req
*req
;
1233 PDBG("%s ep %p\n", __func__
, ep
);
1234 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1236 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __func__
);
1239 req
= (struct cpl_close_listserv_req
*) skb_put(skb
, sizeof(*req
));
1240 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1242 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ
, ep
->stid
));
1244 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
1247 static int close_listsrv_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
,
1250 struct iwch_listen_ep
*ep
= ctx
;
1251 struct cpl_close_listserv_rpl
*rpl
= cplhdr(skb
);
1253 PDBG("%s ep %p\n", __func__
, ep
);
1254 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1255 ep
->com
.rpl_done
= 1;
1256 wake_up(&ep
->com
.waitq
);
1257 return CPL_RET_BUF_DONE
;
1260 static void accept_cr(struct iwch_ep
*ep
, __be32 peer_ip
, struct sk_buff
*skb
)
1262 struct cpl_pass_accept_rpl
*rpl
;
1263 unsigned int mtu_idx
;
1264 u32 opt0h
, opt0l
, opt2
;
1267 PDBG("%s ep %p\n", __func__
, ep
);
1268 BUG_ON(skb_cloned(skb
));
1269 skb_trim(skb
, sizeof(*rpl
));
1271 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
1272 wscale
= compute_wscale(rcv_win
);
1273 opt0h
= V_NAGLE(0) |
1277 V_WND_SCALE(wscale
) |
1278 V_MSS_IDX(mtu_idx
) |
1279 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
1280 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
1281 opt2
= F_RX_COALESCE_VALID
| V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1282 V_CONG_CONTROL_FLAVOR(cong_flavor
);
1285 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1286 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
, ep
->hwtid
));
1287 rpl
->peer_ip
= peer_ip
;
1288 rpl
->opt0h
= htonl(opt0h
);
1289 rpl
->opt0l_status
= htonl(opt0l
| CPL_PASS_OPEN_ACCEPT
);
1290 rpl
->opt2
= htonl(opt2
);
1291 rpl
->rsvd
= rpl
->opt2
; /* workaround for HW bug */
1292 skb
->priority
= CPL_PRIORITY_SETUP
;
1293 iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
1298 static void reject_cr(struct t3cdev
*tdev
, u32 hwtid
, __be32 peer_ip
,
1299 struct sk_buff
*skb
)
1301 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__
, tdev
, hwtid
,
1303 BUG_ON(skb_cloned(skb
));
1304 skb_trim(skb
, sizeof(struct cpl_tid_release
));
1307 if (tdev
->type
!= T3A
)
1308 release_tid(tdev
, hwtid
, skb
);
1310 struct cpl_pass_accept_rpl
*rpl
;
1313 skb
->priority
= CPL_PRIORITY_SETUP
;
1314 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1315 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
,
1317 rpl
->peer_ip
= peer_ip
;
1318 rpl
->opt0h
= htonl(F_TCAM_BYPASS
);
1319 rpl
->opt0l_status
= htonl(CPL_PASS_OPEN_REJECT
);
1321 rpl
->rsvd
= rpl
->opt2
;
1322 iwch_cxgb3_ofld_send(tdev
, skb
);
1326 static int pass_accept_req(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1328 struct iwch_ep
*child_ep
, *parent_ep
= ctx
;
1329 struct cpl_pass_accept_req
*req
= cplhdr(skb
);
1330 unsigned int hwtid
= GET_TID(req
);
1331 struct neighbour
*neigh
;
1332 struct dst_entry
*dst
;
1333 struct l2t_entry
*l2t
;
1337 PDBG("%s parent ep %p tid %u\n", __func__
, parent_ep
, hwtid
);
1339 if (state_read(&parent_ep
->com
) != LISTEN
) {
1340 printk(KERN_ERR
"%s - listening ep not in LISTEN\n",
1346 * Find the netdev for this connection request.
1348 tim
.mac_addr
= req
->dst_mac
;
1349 tim
.vlan_tag
= ntohs(req
->vlan_tag
);
1350 if (tdev
->ctl(tdev
, GET_IFF_FROM_MAC
, &tim
) < 0 || !tim
.dev
) {
1351 printk(KERN_ERR
"%s bad dst mac %pM\n",
1352 __func__
, req
->dst_mac
);
1356 /* Find output route */
1357 rt
= find_route(tdev
,
1361 req
->peer_port
, G_PASS_OPEN_TOS(ntohl(req
->tos_tid
)));
1363 printk(KERN_ERR MOD
"%s - failed to find dst entry!\n",
1368 neigh
= dst_get_neighbour(dst
);
1369 l2t
= t3_l2t_get(tdev
, neigh
, neigh
->dev
);
1371 printk(KERN_ERR MOD
"%s - failed to allocate l2t entry!\n",
1376 child_ep
= alloc_ep(sizeof(*child_ep
), GFP_KERNEL
);
1378 printk(KERN_ERR MOD
"%s - failed to allocate ep entry!\n",
1380 l2t_release(L2DATA(tdev
), l2t
);
1384 state_set(&child_ep
->com
, CONNECTING
);
1385 child_ep
->com
.tdev
= tdev
;
1386 child_ep
->com
.cm_id
= NULL
;
1387 child_ep
->com
.local_addr
.sin_family
= PF_INET
;
1388 child_ep
->com
.local_addr
.sin_port
= req
->local_port
;
1389 child_ep
->com
.local_addr
.sin_addr
.s_addr
= req
->local_ip
;
1390 child_ep
->com
.remote_addr
.sin_family
= PF_INET
;
1391 child_ep
->com
.remote_addr
.sin_port
= req
->peer_port
;
1392 child_ep
->com
.remote_addr
.sin_addr
.s_addr
= req
->peer_ip
;
1393 get_ep(&parent_ep
->com
);
1394 child_ep
->parent_ep
= parent_ep
;
1395 child_ep
->tos
= G_PASS_OPEN_TOS(ntohl(req
->tos_tid
));
1396 child_ep
->l2t
= l2t
;
1397 child_ep
->dst
= dst
;
1398 child_ep
->hwtid
= hwtid
;
1399 init_timer(&child_ep
->timer
);
1400 cxgb3_insert_tid(tdev
, &t3c_client
, child_ep
, hwtid
);
1401 accept_cr(child_ep
, req
->peer_ip
, skb
);
1404 reject_cr(tdev
, hwtid
, req
->peer_ip
, skb
);
1406 return CPL_RET_BUF_DONE
;
1409 static int pass_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1411 struct iwch_ep
*ep
= ctx
;
1412 struct cpl_pass_establish
*req
= cplhdr(skb
);
1414 PDBG("%s ep %p\n", __func__
, ep
);
1415 ep
->snd_seq
= ntohl(req
->snd_isn
);
1416 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
1418 set_emss(ep
, ntohs(req
->tcp_opt
));
1420 dst_confirm(ep
->dst
);
1421 state_set(&ep
->com
, MPA_REQ_WAIT
);
1424 return CPL_RET_BUF_DONE
;
1427 static int peer_close(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1429 struct iwch_ep
*ep
= ctx
;
1430 struct iwch_qp_attributes attrs
;
1431 unsigned long flags
;
1435 PDBG("%s ep %p\n", __func__
, ep
);
1436 dst_confirm(ep
->dst
);
1438 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1439 switch (ep
->com
.state
) {
1441 __state_set(&ep
->com
, CLOSING
);
1444 __state_set(&ep
->com
, CLOSING
);
1445 connect_reply_upcall(ep
, -ECONNRESET
);
1450 * We're gonna mark this puppy DEAD, but keep
1451 * the reference on it until the ULP accepts or
1452 * rejects the CR. Also wake up anyone waiting
1453 * in rdma connection migration (see iwch_accept_cr()).
1455 __state_set(&ep
->com
, CLOSING
);
1456 ep
->com
.rpl_done
= 1;
1457 ep
->com
.rpl_err
= -ECONNRESET
;
1458 PDBG("waking up ep %p\n", ep
);
1459 wake_up(&ep
->com
.waitq
);
1462 __state_set(&ep
->com
, CLOSING
);
1463 ep
->com
.rpl_done
= 1;
1464 ep
->com
.rpl_err
= -ECONNRESET
;
1465 PDBG("waking up ep %p\n", ep
);
1466 wake_up(&ep
->com
.waitq
);
1470 __state_set(&ep
->com
, CLOSING
);
1471 attrs
.next_state
= IWCH_QP_STATE_CLOSING
;
1472 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1473 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1474 peer_close_upcall(ep
);
1480 __state_set(&ep
->com
, MORIBUND
);
1485 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1486 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1487 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1488 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1490 close_complete_upcall(ep
);
1491 __state_set(&ep
->com
, DEAD
);
1501 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1503 iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1505 release_ep_resources(ep
);
1506 return CPL_RET_BUF_DONE
;
1510 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1512 static int is_neg_adv_abort(unsigned int status
)
1514 return status
== CPL_ERR_RTX_NEG_ADVICE
||
1515 status
== CPL_ERR_PERSIST_NEG_ADVICE
;
1518 static int peer_abort(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1520 struct cpl_abort_req_rss
*req
= cplhdr(skb
);
1521 struct iwch_ep
*ep
= ctx
;
1522 struct cpl_abort_rpl
*rpl
;
1523 struct sk_buff
*rpl_skb
;
1524 struct iwch_qp_attributes attrs
;
1527 unsigned long flags
;
1529 if (is_neg_adv_abort(req
->status
)) {
1530 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__
, ep
,
1532 t3_l2t_send_event(ep
->com
.tdev
, ep
->l2t
);
1533 return CPL_RET_BUF_DONE
;
1537 * We get 2 peer aborts from the HW. The first one must
1538 * be ignored except for scribbling that we need one more.
1540 if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS
, &ep
->com
.flags
)) {
1541 return CPL_RET_BUF_DONE
;
1544 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1545 PDBG("%s ep %p state %u\n", __func__
, ep
, ep
->com
.state
);
1546 switch (ep
->com
.state
) {
1554 connect_reply_upcall(ep
, -ECONNRESET
);
1557 ep
->com
.rpl_done
= 1;
1558 ep
->com
.rpl_err
= -ECONNRESET
;
1559 PDBG("waking up ep %p\n", ep
);
1560 wake_up(&ep
->com
.waitq
);
1565 * We're gonna mark this puppy DEAD, but keep
1566 * the reference on it until the ULP accepts or
1567 * rejects the CR. Also wake up anyone waiting
1568 * in rdma connection migration (see iwch_accept_cr()).
1570 ep
->com
.rpl_done
= 1;
1571 ep
->com
.rpl_err
= -ECONNRESET
;
1572 PDBG("waking up ep %p\n", ep
);
1573 wake_up(&ep
->com
.waitq
);
1580 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1581 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1582 ret
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1583 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1587 "%s - qp <- error failed!\n",
1590 peer_abort_upcall(ep
);
1595 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__
);
1596 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1597 return CPL_RET_BUF_DONE
;
1602 dst_confirm(ep
->dst
);
1603 if (ep
->com
.state
!= ABORTING
) {
1604 __state_set(&ep
->com
, DEAD
);
1607 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1609 rpl_skb
= get_skb(skb
, sizeof(*rpl
), GFP_KERNEL
);
1611 printk(KERN_ERR MOD
"%s - cannot allocate skb!\n",
1616 rpl_skb
->priority
= CPL_PRIORITY_DATA
;
1617 rpl
= (struct cpl_abort_rpl
*) skb_put(rpl_skb
, sizeof(*rpl
));
1618 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL
));
1619 rpl
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
1620 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL
, ep
->hwtid
));
1621 rpl
->cmd
= CPL_ABORT_NO_RST
;
1622 iwch_cxgb3_ofld_send(ep
->com
.tdev
, rpl_skb
);
1625 release_ep_resources(ep
);
1626 return CPL_RET_BUF_DONE
;
1629 static int close_con_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1631 struct iwch_ep
*ep
= ctx
;
1632 struct iwch_qp_attributes attrs
;
1633 unsigned long flags
;
1636 PDBG("%s ep %p\n", __func__
, ep
);
1639 /* The cm_id may be null if we failed to connect */
1640 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1641 switch (ep
->com
.state
) {
1643 __state_set(&ep
->com
, MORIBUND
);
1647 if ((ep
->com
.cm_id
) && (ep
->com
.qp
)) {
1648 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1649 iwch_modify_qp(ep
->com
.qp
->rhp
,
1651 IWCH_QP_ATTR_NEXT_STATE
,
1654 close_complete_upcall(ep
);
1655 __state_set(&ep
->com
, DEAD
);
1665 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1667 release_ep_resources(ep
);
1668 return CPL_RET_BUF_DONE
;
1672 * T3A does 3 things when a TERM is received:
1673 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1674 * 2) generate an async event on the QP with the TERMINATE opcode
1675 * 3) post a TERMINATE opcde cqe into the associated CQ.
1677 * For (1), we save the message in the qp for later consumer consumption.
1678 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1679 * For (3), we toss the CQE in cxio_poll_cq().
1681 * terminate() handles case (1)...
1683 static int terminate(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1685 struct iwch_ep
*ep
= ctx
;
1687 if (state_read(&ep
->com
) != FPDU_MODE
)
1688 return CPL_RET_BUF_DONE
;
1690 PDBG("%s ep %p\n", __func__
, ep
);
1691 skb_pull(skb
, sizeof(struct cpl_rdma_terminate
));
1692 PDBG("%s saving %d bytes of term msg\n", __func__
, skb
->len
);
1693 skb_copy_from_linear_data(skb
, ep
->com
.qp
->attr
.terminate_buffer
,
1695 ep
->com
.qp
->attr
.terminate_msg_len
= skb
->len
;
1696 ep
->com
.qp
->attr
.is_terminate_local
= 0;
1697 return CPL_RET_BUF_DONE
;
1700 static int ec_status(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1702 struct cpl_rdma_ec_status
*rep
= cplhdr(skb
);
1703 struct iwch_ep
*ep
= ctx
;
1705 PDBG("%s ep %p tid %u status %d\n", __func__
, ep
, ep
->hwtid
,
1708 struct iwch_qp_attributes attrs
;
1710 printk(KERN_ERR MOD
"%s BAD CLOSE - Aborting tid %u\n",
1711 __func__
, ep
->hwtid
);
1713 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1714 iwch_modify_qp(ep
->com
.qp
->rhp
,
1715 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1717 abort_connection(ep
, NULL
, GFP_KERNEL
);
1719 return CPL_RET_BUF_DONE
;
1722 static void ep_timeout(unsigned long arg
)
1724 struct iwch_ep
*ep
= (struct iwch_ep
*)arg
;
1725 struct iwch_qp_attributes attrs
;
1726 unsigned long flags
;
1729 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1730 PDBG("%s ep %p tid %u state %d\n", __func__
, ep
, ep
->hwtid
,
1732 switch (ep
->com
.state
) {
1734 __state_set(&ep
->com
, ABORTING
);
1735 connect_reply_upcall(ep
, -ETIMEDOUT
);
1738 __state_set(&ep
->com
, ABORTING
);
1742 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1743 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1744 iwch_modify_qp(ep
->com
.qp
->rhp
,
1745 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1748 __state_set(&ep
->com
, ABORTING
);
1751 printk(KERN_ERR
"%s unexpected state ep %p state %u\n",
1752 __func__
, ep
, ep
->com
.state
);
1756 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1758 abort_connection(ep
, NULL
, GFP_ATOMIC
);
1762 int iwch_reject_cr(struct iw_cm_id
*cm_id
, const void *pdata
, u8 pdata_len
)
1765 struct iwch_ep
*ep
= to_ep(cm_id
);
1766 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1768 if (state_read(&ep
->com
) == DEAD
) {
1772 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1774 abort_connection(ep
, NULL
, GFP_KERNEL
);
1776 err
= send_mpa_reject(ep
, pdata
, pdata_len
);
1777 err
= iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1783 int iwch_accept_cr(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1786 struct iwch_qp_attributes attrs
;
1787 enum iwch_qp_attr_mask mask
;
1788 struct iwch_ep
*ep
= to_ep(cm_id
);
1789 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1790 struct iwch_qp
*qp
= get_qhp(h
, conn_param
->qpn
);
1792 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1793 if (state_read(&ep
->com
) == DEAD
) {
1798 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1801 if ((conn_param
->ord
> qp
->rhp
->attr
.max_rdma_read_qp_depth
) ||
1802 (conn_param
->ird
> qp
->rhp
->attr
.max_rdma_reads_per_qp
)) {
1803 abort_connection(ep
, NULL
, GFP_KERNEL
);
1808 cm_id
->add_ref(cm_id
);
1809 ep
->com
.cm_id
= cm_id
;
1812 ep
->ird
= conn_param
->ird
;
1813 ep
->ord
= conn_param
->ord
;
1815 if (peer2peer
&& ep
->ird
== 0)
1818 PDBG("%s %d ird %d ord %d\n", __func__
, __LINE__
, ep
->ird
, ep
->ord
);
1820 /* bind QP to EP and move to RTS */
1821 attrs
.mpa_attr
= ep
->mpa_attr
;
1822 attrs
.max_ird
= ep
->ird
;
1823 attrs
.max_ord
= ep
->ord
;
1824 attrs
.llp_stream_handle
= ep
;
1825 attrs
.next_state
= IWCH_QP_STATE_RTS
;
1827 /* bind QP and TID with INIT_WR */
1828 mask
= IWCH_QP_ATTR_NEXT_STATE
|
1829 IWCH_QP_ATTR_LLP_STREAM_HANDLE
|
1830 IWCH_QP_ATTR_MPA_ATTR
|
1831 IWCH_QP_ATTR_MAX_IRD
|
1832 IWCH_QP_ATTR_MAX_ORD
;
1834 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1835 ep
->com
.qp
, mask
, &attrs
, 1);
1839 /* if needed, wait for wr_ack */
1840 if (iwch_rqes_posted(qp
)) {
1841 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
1842 err
= ep
->com
.rpl_err
;
1847 err
= send_mpa_reply(ep
, conn_param
->private_data
,
1848 conn_param
->private_data_len
);
1853 state_set(&ep
->com
, FPDU_MODE
);
1854 established_upcall(ep
);
1858 ep
->com
.cm_id
= NULL
;
1860 cm_id
->rem_ref(cm_id
);
1866 static int is_loopback_dst(struct iw_cm_id
*cm_id
)
1868 struct net_device
*dev
;
1870 dev
= ip_dev_find(&init_net
, cm_id
->remote_addr
.sin_addr
.s_addr
);
1877 int iwch_connect(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1879 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1880 struct neighbour
*neigh
;
1885 if (is_loopback_dst(cm_id
)) {
1890 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
1892 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
1896 init_timer(&ep
->timer
);
1897 ep
->plen
= conn_param
->private_data_len
;
1899 memcpy(ep
->mpa_pkt
+ sizeof(struct mpa_message
),
1900 conn_param
->private_data
, ep
->plen
);
1901 ep
->ird
= conn_param
->ird
;
1902 ep
->ord
= conn_param
->ord
;
1904 if (peer2peer
&& ep
->ord
== 0)
1907 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
1909 cm_id
->add_ref(cm_id
);
1910 ep
->com
.cm_id
= cm_id
;
1911 ep
->com
.qp
= get_qhp(h
, conn_param
->qpn
);
1912 BUG_ON(!ep
->com
.qp
);
1913 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__
, conn_param
->qpn
,
1917 * Allocate an active TID to initiate a TCP connection.
1919 ep
->atid
= cxgb3_alloc_atid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
1920 if (ep
->atid
== -1) {
1921 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
1927 rt
= find_route(h
->rdev
.t3cdev_p
,
1928 cm_id
->local_addr
.sin_addr
.s_addr
,
1929 cm_id
->remote_addr
.sin_addr
.s_addr
,
1930 cm_id
->local_addr
.sin_port
,
1931 cm_id
->remote_addr
.sin_port
, IPTOS_LOWDELAY
);
1933 printk(KERN_ERR MOD
"%s - cannot find route.\n", __func__
);
1934 err
= -EHOSTUNREACH
;
1939 neigh
= dst_get_neighbour(ep
->dst
);
1941 /* get a l2t entry */
1942 ep
->l2t
= t3_l2t_get(ep
->com
.tdev
, neigh
, neigh
->dev
);
1944 printk(KERN_ERR MOD
"%s - cannot alloc l2e.\n", __func__
);
1949 state_set(&ep
->com
, CONNECTING
);
1950 ep
->tos
= IPTOS_LOWDELAY
;
1951 ep
->com
.local_addr
= cm_id
->local_addr
;
1952 ep
->com
.remote_addr
= cm_id
->remote_addr
;
1954 /* send connect request to rnic */
1955 err
= send_connect(ep
);
1959 l2t_release(L2DATA(h
->rdev
.t3cdev_p
), ep
->l2t
);
1961 dst_release(ep
->dst
);
1963 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1965 cm_id
->rem_ref(cm_id
);
1971 int iwch_create_listen(struct iw_cm_id
*cm_id
, int backlog
)
1974 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1975 struct iwch_listen_ep
*ep
;
1980 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
1982 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
1986 PDBG("%s ep %p\n", __func__
, ep
);
1987 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
1988 cm_id
->add_ref(cm_id
);
1989 ep
->com
.cm_id
= cm_id
;
1990 ep
->backlog
= backlog
;
1991 ep
->com
.local_addr
= cm_id
->local_addr
;
1994 * Allocate a server TID.
1996 ep
->stid
= cxgb3_alloc_stid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
1997 if (ep
->stid
== -1) {
1998 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
2003 state_set(&ep
->com
, LISTEN
);
2004 err
= listen_start(ep
);
2008 /* wait for pass_open_rpl */
2009 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
2010 err
= ep
->com
.rpl_err
;
2012 cm_id
->provider_data
= ep
;
2016 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
2018 cm_id
->rem_ref(cm_id
);
2025 int iwch_destroy_listen(struct iw_cm_id
*cm_id
)
2028 struct iwch_listen_ep
*ep
= to_listen_ep(cm_id
);
2030 PDBG("%s ep %p\n", __func__
, ep
);
2033 state_set(&ep
->com
, DEAD
);
2034 ep
->com
.rpl_done
= 0;
2035 ep
->com
.rpl_err
= 0;
2036 err
= listen_stop(ep
);
2039 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
2040 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
2042 err
= ep
->com
.rpl_err
;
2043 cm_id
->rem_ref(cm_id
);
2048 int iwch_ep_disconnect(struct iwch_ep
*ep
, int abrupt
, gfp_t gfp
)
2051 unsigned long flags
;
2054 struct t3cdev
*tdev
;
2055 struct cxio_rdev
*rdev
;
2057 spin_lock_irqsave(&ep
->com
.lock
, flags
);
2059 PDBG("%s ep %p state %s, abrupt %d\n", __func__
, ep
,
2060 states
[ep
->com
.state
], abrupt
);
2062 tdev
= (struct t3cdev
*)ep
->com
.tdev
;
2063 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
2064 if (cxio_fatal_error(rdev
)) {
2066 close_complete_upcall(ep
);
2067 ep
->com
.state
= DEAD
;
2069 switch (ep
->com
.state
) {
2077 ep
->com
.state
= ABORTING
;
2079 ep
->com
.state
= CLOSING
;
2082 set_bit(CLOSE_SENT
, &ep
->com
.flags
);
2085 if (!test_and_set_bit(CLOSE_SENT
, &ep
->com
.flags
)) {
2089 ep
->com
.state
= ABORTING
;
2091 ep
->com
.state
= MORIBUND
;
2097 PDBG("%s ignoring disconnect ep %p state %u\n",
2098 __func__
, ep
, ep
->com
.state
);
2105 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
2108 ret
= send_abort(ep
, NULL
, gfp
);
2110 ret
= send_halfclose(ep
, gfp
);
2115 release_ep_resources(ep
);
2119 int iwch_ep_redirect(void *ctx
, struct dst_entry
*old
, struct dst_entry
*new,
2120 struct l2t_entry
*l2t
)
2122 struct iwch_ep
*ep
= ctx
;
2127 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__
, ep
, new,
2130 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
2138 * All the CM events are handled on a work queue to have a safe context.
2139 * These are the real handlers that are called from the work queue.
2141 static const cxgb3_cpl_handler_func work_handlers
[NUM_CPL_CMDS
] = {
2142 [CPL_ACT_ESTABLISH
] = act_establish
,
2143 [CPL_ACT_OPEN_RPL
] = act_open_rpl
,
2144 [CPL_RX_DATA
] = rx_data
,
2145 [CPL_TX_DMA_ACK
] = tx_ack
,
2146 [CPL_ABORT_RPL_RSS
] = abort_rpl
,
2147 [CPL_ABORT_RPL
] = abort_rpl
,
2148 [CPL_PASS_OPEN_RPL
] = pass_open_rpl
,
2149 [CPL_CLOSE_LISTSRV_RPL
] = close_listsrv_rpl
,
2150 [CPL_PASS_ACCEPT_REQ
] = pass_accept_req
,
2151 [CPL_PASS_ESTABLISH
] = pass_establish
,
2152 [CPL_PEER_CLOSE
] = peer_close
,
2153 [CPL_ABORT_REQ_RSS
] = peer_abort
,
2154 [CPL_CLOSE_CON_RPL
] = close_con_rpl
,
2155 [CPL_RDMA_TERMINATE
] = terminate
,
2156 [CPL_RDMA_EC_STATUS
] = ec_status
,
2159 static void process_work(struct work_struct
*work
)
2161 struct sk_buff
*skb
= NULL
;
2163 struct t3cdev
*tdev
;
2166 while ((skb
= skb_dequeue(&rxq
))) {
2167 ep
= *((void **) (skb
->cb
));
2168 tdev
= *((struct t3cdev
**) (skb
->cb
+ sizeof(void *)));
2169 ret
= work_handlers
[G_OPCODE(ntohl((__force __be32
)skb
->csum
))](tdev
, skb
, ep
);
2170 if (ret
& CPL_RET_BUF_DONE
)
2174 * ep was referenced in sched(), and is freed here.
2176 put_ep((struct iwch_ep_common
*)ep
);
2180 static DECLARE_WORK(skb_work
, process_work
);
2182 static int sched(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2184 struct iwch_ep_common
*epc
= ctx
;
2189 * Save ctx and tdev in the skb->cb area.
2191 *((void **) skb
->cb
) = ctx
;
2192 *((struct t3cdev
**) (skb
->cb
+ sizeof(void *))) = tdev
;
2195 * Queue the skb and schedule the worker thread.
2197 skb_queue_tail(&rxq
, skb
);
2198 queue_work(workq
, &skb_work
);
2202 static int set_tcb_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2204 struct cpl_set_tcb_rpl
*rpl
= cplhdr(skb
);
2206 if (rpl
->status
!= CPL_ERR_NONE
) {
2207 printk(KERN_ERR MOD
"Unexpected SET_TCB_RPL status %u "
2208 "for tid %u\n", rpl
->status
, GET_TID(rpl
));
2210 return CPL_RET_BUF_DONE
;
2214 * All upcalls from the T3 Core go to sched() to schedule the
2215 * processing on a work queue.
2217 cxgb3_cpl_handler_func t3c_handlers
[NUM_CPL_CMDS
] = {
2218 [CPL_ACT_ESTABLISH
] = sched
,
2219 [CPL_ACT_OPEN_RPL
] = sched
,
2220 [CPL_RX_DATA
] = sched
,
2221 [CPL_TX_DMA_ACK
] = sched
,
2222 [CPL_ABORT_RPL_RSS
] = sched
,
2223 [CPL_ABORT_RPL
] = sched
,
2224 [CPL_PASS_OPEN_RPL
] = sched
,
2225 [CPL_CLOSE_LISTSRV_RPL
] = sched
,
2226 [CPL_PASS_ACCEPT_REQ
] = sched
,
2227 [CPL_PASS_ESTABLISH
] = sched
,
2228 [CPL_PEER_CLOSE
] = sched
,
2229 [CPL_CLOSE_CON_RPL
] = sched
,
2230 [CPL_ABORT_REQ_RSS
] = sched
,
2231 [CPL_RDMA_TERMINATE
] = sched
,
2232 [CPL_RDMA_EC_STATUS
] = sched
,
2233 [CPL_SET_TCB_RPL
] = set_tcb_rpl
,
2236 int __init
iwch_cm_init(void)
2238 skb_queue_head_init(&rxq
);
2240 workq
= create_singlethread_workqueue("iw_cxgb3");
2247 void __exit
iwch_cm_term(void)
2249 flush_workqueue(workq
);
2250 destroy_workqueue(workq
);