This client driver allows you to use a GPIO pin as a source for PPS
[linux-2.6/next.git] / drivers / misc / sgi-xp / xpc_sn2.c
blob7d71c04fc938873fa1798dfcc0e6a6b7a043346a
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 /*
10 * Cross Partition Communication (XPC) sn2-based functions.
12 * Architecture specific implementation of common functions.
16 #include <linux/delay.h>
17 #include <linux/slab.h>
18 #include <asm/uncached.h>
19 #include <asm/sn/mspec.h>
20 #include <asm/sn/sn_sal.h>
21 #include "xpc.h"
24 * Define the number of u64s required to represent all the C-brick nasids
25 * as a bitmap. The cross-partition kernel modules deal only with
26 * C-brick nasids, thus the need for bitmaps which don't account for
27 * odd-numbered (non C-brick) nasids.
29 #define XPC_MAX_PHYSNODES_SN2 (MAX_NUMALINK_NODES / 2)
30 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
31 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
34 * Memory for XPC's amo variables is allocated by the MSPEC driver. These
35 * pages are located in the lowest granule. The lowest granule uses 4k pages
36 * for cached references and an alternate TLB handler to never provide a
37 * cacheable mapping for the entire region. This will prevent speculative
38 * reading of cached copies of our lines from being issued which will cause
39 * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
40 * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
41 * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
42 * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
43 * partitions (i.e., XPCs) consider themselves currently engaged with the
44 * local XPC and 1 amo variable to request partition deactivation.
46 #define XPC_NOTIFY_IRQ_AMOS_SN2 0
47 #define XPC_ACTIVATE_IRQ_AMOS_SN2 (XPC_NOTIFY_IRQ_AMOS_SN2 + \
48 XP_MAX_NPARTITIONS_SN2)
49 #define XPC_ENGAGED_PARTITIONS_AMO_SN2 (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
50 XP_NASID_MASK_WORDS_SN2)
51 #define XPC_DEACTIVATE_REQUEST_AMO_SN2 (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
54 * Buffer used to store a local copy of portions of a remote partition's
55 * reserved page (either its header and part_nasids mask, or its vars).
57 static void *xpc_remote_copy_buffer_base_sn2;
58 static char *xpc_remote_copy_buffer_sn2;
60 static struct xpc_vars_sn2 *xpc_vars_sn2;
61 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
63 static int
64 xpc_setup_partitions_sn2(void)
66 /* nothing needs to be done */
67 return 0;
70 static void
71 xpc_teardown_partitions_sn2(void)
73 /* nothing needs to be done */
76 /* SH_IPI_ACCESS shub register value on startup */
77 static u64 xpc_sh1_IPI_access_sn2;
78 static u64 xpc_sh2_IPI_access0_sn2;
79 static u64 xpc_sh2_IPI_access1_sn2;
80 static u64 xpc_sh2_IPI_access2_sn2;
81 static u64 xpc_sh2_IPI_access3_sn2;
84 * Change protections to allow IPI operations.
86 static void
87 xpc_allow_IPI_ops_sn2(void)
89 int node;
90 int nasid;
92 /* !!! The following should get moved into SAL. */
93 if (is_shub2()) {
94 xpc_sh2_IPI_access0_sn2 =
95 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
96 xpc_sh2_IPI_access1_sn2 =
97 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
98 xpc_sh2_IPI_access2_sn2 =
99 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
100 xpc_sh2_IPI_access3_sn2 =
101 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
103 for_each_online_node(node) {
104 nasid = cnodeid_to_nasid(node);
105 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
106 -1UL);
107 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
108 -1UL);
109 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
110 -1UL);
111 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
112 -1UL);
114 } else {
115 xpc_sh1_IPI_access_sn2 =
116 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
118 for_each_online_node(node) {
119 nasid = cnodeid_to_nasid(node);
120 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
121 -1UL);
127 * Restrict protections to disallow IPI operations.
129 static void
130 xpc_disallow_IPI_ops_sn2(void)
132 int node;
133 int nasid;
135 /* !!! The following should get moved into SAL. */
136 if (is_shub2()) {
137 for_each_online_node(node) {
138 nasid = cnodeid_to_nasid(node);
139 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
140 xpc_sh2_IPI_access0_sn2);
141 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
142 xpc_sh2_IPI_access1_sn2);
143 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
144 xpc_sh2_IPI_access2_sn2);
145 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
146 xpc_sh2_IPI_access3_sn2);
148 } else {
149 for_each_online_node(node) {
150 nasid = cnodeid_to_nasid(node);
151 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
152 xpc_sh1_IPI_access_sn2);
158 * The following set of functions are used for the sending and receiving of
159 * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
160 * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
161 * is associated with channel activity (SGI_XPC_NOTIFY).
164 static u64
165 xpc_receive_IRQ_amo_sn2(struct amo *amo)
167 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
170 static enum xp_retval
171 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
172 int vector)
174 int ret = 0;
175 unsigned long irq_flags;
177 local_irq_save(irq_flags);
179 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
180 sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
183 * We must always use the nofault function regardless of whether we
184 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
185 * didn't, we'd never know that the other partition is down and would
186 * keep sending IRQs and amos to it until the heartbeat times out.
188 ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
189 xp_nofault_PIOR_target));
191 local_irq_restore(irq_flags);
193 return (ret == 0) ? xpSuccess : xpPioReadError;
196 static struct amo *
197 xpc_init_IRQ_amo_sn2(int index)
199 struct amo *amo = xpc_vars_sn2->amos_page + index;
201 (void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */
202 return amo;
206 * Functions associated with SGI_XPC_ACTIVATE IRQ.
210 * Notify the heartbeat check thread that an activate IRQ has been received.
212 static irqreturn_t
213 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
215 unsigned long irq_flags;
217 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
218 xpc_activate_IRQ_rcvd++;
219 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
221 wake_up_interruptible(&xpc_activate_IRQ_wq);
222 return IRQ_HANDLED;
226 * Flag the appropriate amo variable and send an IRQ to the specified node.
228 static void
229 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
230 int to_nasid, int to_phys_cpuid)
232 struct amo *amos = (struct amo *)__va(amos_page_pa +
233 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
234 sizeof(struct amo)));
236 (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
237 BIT_MASK(from_nasid / 2), to_nasid,
238 to_phys_cpuid, SGI_XPC_ACTIVATE);
241 static void
242 xpc_send_local_activate_IRQ_sn2(int from_nasid)
244 unsigned long irq_flags;
245 struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
246 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
247 sizeof(struct amo)));
249 /* fake the sending and receipt of an activate IRQ from remote nasid */
250 FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
251 FETCHOP_OR, BIT_MASK(from_nasid / 2));
253 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
254 xpc_activate_IRQ_rcvd++;
255 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
257 wake_up_interruptible(&xpc_activate_IRQ_wq);
261 * Functions associated with SGI_XPC_NOTIFY IRQ.
265 * Check to see if any chctl flags were sent from the specified partition.
267 static void
268 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
270 union xpc_channel_ctl_flags chctl;
271 unsigned long irq_flags;
273 chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
274 local_chctl_amo_va);
275 if (chctl.all_flags == 0)
276 return;
278 spin_lock_irqsave(&part->chctl_lock, irq_flags);
279 part->chctl.all_flags |= chctl.all_flags;
280 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
282 dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
283 "0x%llx\n", XPC_PARTID(part), chctl.all_flags);
285 xpc_wakeup_channel_mgr(part);
289 * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
290 * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
291 * than one partition, we use an amo structure per partition to indicate
292 * whether a partition has sent an IRQ or not. If it has, then wake up the
293 * associated kthread to handle it.
295 * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
296 * running on other partitions.
298 * Noteworthy Arguments:
300 * irq - Interrupt ReQuest number. NOT USED.
302 * dev_id - partid of IRQ's potential sender.
304 static irqreturn_t
305 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
307 short partid = (short)(u64)dev_id;
308 struct xpc_partition *part = &xpc_partitions[partid];
310 DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
312 if (xpc_part_ref(part)) {
313 xpc_check_for_sent_chctl_flags_sn2(part);
315 xpc_part_deref(part);
317 return IRQ_HANDLED;
321 * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
322 * because the write to their associated amo variable completed after the IRQ
323 * was received.
325 static void
326 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
328 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
330 if (xpc_part_ref(part)) {
331 xpc_check_for_sent_chctl_flags_sn2(part);
333 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
334 XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
335 add_timer(&part_sn2->dropped_notify_IRQ_timer);
336 xpc_part_deref(part);
341 * Send a notify IRQ to the remote partition that is associated with the
342 * specified channel.
344 static void
345 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
346 char *chctl_flag_string, unsigned long *irq_flags)
348 struct xpc_partition *part = &xpc_partitions[ch->partid];
349 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
350 union xpc_channel_ctl_flags chctl = { 0 };
351 enum xp_retval ret;
353 if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
354 chctl.flags[ch->number] = chctl_flag;
355 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
356 chctl.all_flags,
357 part_sn2->notify_IRQ_nasid,
358 part_sn2->notify_IRQ_phys_cpuid,
359 SGI_XPC_NOTIFY);
360 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
361 chctl_flag_string, ch->partid, ch->number, ret);
362 if (unlikely(ret != xpSuccess)) {
363 if (irq_flags != NULL)
364 spin_unlock_irqrestore(&ch->lock, *irq_flags);
365 XPC_DEACTIVATE_PARTITION(part, ret);
366 if (irq_flags != NULL)
367 spin_lock_irqsave(&ch->lock, *irq_flags);
372 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
373 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
376 * Make it look like the remote partition, which is associated with the
377 * specified channel, sent us a notify IRQ. This faked IRQ will be handled
378 * by xpc_check_for_dropped_notify_IRQ_sn2().
380 static void
381 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
382 char *chctl_flag_string)
384 struct xpc_partition *part = &xpc_partitions[ch->partid];
385 union xpc_channel_ctl_flags chctl = { 0 };
387 chctl.flags[ch->number] = chctl_flag;
388 FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
389 variable), FETCHOP_OR, chctl.all_flags);
390 dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
391 chctl_flag_string, ch->partid, ch->number);
394 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
395 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
397 static void
398 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
399 unsigned long *irq_flags)
401 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
403 args->reason = ch->reason;
404 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
407 static void
408 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
410 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
413 static void
414 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
416 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
418 args->entry_size = ch->entry_size;
419 args->local_nentries = ch->local_nentries;
420 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
423 static void
424 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
426 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
428 args->remote_nentries = ch->remote_nentries;
429 args->local_nentries = ch->local_nentries;
430 args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
431 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
434 static void
435 xpc_send_chctl_opencomplete_sn2(struct xpc_channel *ch,
436 unsigned long *irq_flags)
438 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENCOMPLETE, irq_flags);
441 static void
442 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
444 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
447 static void
448 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
450 XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
453 static enum xp_retval
454 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
455 unsigned long msgqueue_pa)
457 ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
458 return xpSuccess;
462 * This next set of functions are used to keep track of when a partition is
463 * potentially engaged in accessing memory belonging to another partition.
466 static void
467 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
469 unsigned long irq_flags;
470 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
471 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
472 sizeof(struct amo)));
474 local_irq_save(irq_flags);
476 /* set bit corresponding to our partid in remote partition's amo */
477 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
478 BIT(sn_partition_id));
481 * We must always use the nofault function regardless of whether we
482 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
483 * didn't, we'd never know that the other partition is down and would
484 * keep sending IRQs and amos to it until the heartbeat times out.
486 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
487 variable),
488 xp_nofault_PIOR_target));
490 local_irq_restore(irq_flags);
493 static void
494 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
496 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
497 unsigned long irq_flags;
498 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
499 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
500 sizeof(struct amo)));
502 local_irq_save(irq_flags);
504 /* clear bit corresponding to our partid in remote partition's amo */
505 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
506 ~BIT(sn_partition_id));
509 * We must always use the nofault function regardless of whether we
510 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
511 * didn't, we'd never know that the other partition is down and would
512 * keep sending IRQs and amos to it until the heartbeat times out.
514 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
515 variable),
516 xp_nofault_PIOR_target));
518 local_irq_restore(irq_flags);
521 * Send activate IRQ to get other side to see that we've cleared our
522 * bit in their engaged partitions amo.
524 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
525 cnodeid_to_nasid(0),
526 part_sn2->activate_IRQ_nasid,
527 part_sn2->activate_IRQ_phys_cpuid);
530 static void
531 xpc_assume_partition_disengaged_sn2(short partid)
533 struct amo *amo = xpc_vars_sn2->amos_page +
534 XPC_ENGAGED_PARTITIONS_AMO_SN2;
536 /* clear bit(s) based on partid mask in our partition's amo */
537 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
538 ~BIT(partid));
541 static int
542 xpc_partition_engaged_sn2(short partid)
544 struct amo *amo = xpc_vars_sn2->amos_page +
545 XPC_ENGAGED_PARTITIONS_AMO_SN2;
547 /* our partition's amo variable ANDed with partid mask */
548 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
549 BIT(partid)) != 0;
552 static int
553 xpc_any_partition_engaged_sn2(void)
555 struct amo *amo = xpc_vars_sn2->amos_page +
556 XPC_ENGAGED_PARTITIONS_AMO_SN2;
558 /* our partition's amo variable */
559 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
562 /* original protection values for each node */
563 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
566 * Change protections to allow amo operations on non-Shub 1.1 systems.
568 static enum xp_retval
569 xpc_allow_amo_ops_sn2(struct amo *amos_page)
571 enum xp_retval ret = xpSuccess;
574 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
575 * collides with memory operations. On those systems we call
576 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
578 if (!enable_shub_wars_1_1())
579 ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
581 return ret;
585 * Change protections to allow amo operations on Shub 1.1 systems.
587 static void
588 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
590 int node;
591 int nasid;
593 if (!enable_shub_wars_1_1())
594 return;
596 for_each_online_node(node) {
597 nasid = cnodeid_to_nasid(node);
598 /* save current protection values */
599 xpc_prot_vec_sn2[node] =
600 (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
601 SH1_MD_DQLP_MMR_DIR_PRIVEC0));
602 /* open up everything */
603 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
604 SH1_MD_DQLP_MMR_DIR_PRIVEC0),
605 -1UL);
606 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
607 SH1_MD_DQRP_MMR_DIR_PRIVEC0),
608 -1UL);
612 static enum xp_retval
613 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
614 size_t *len)
616 s64 status;
617 enum xp_retval ret;
619 status = sn_partition_reserved_page_pa((u64)buf, cookie,
620 (u64 *)rp_pa, (u64 *)len);
621 if (status == SALRET_OK)
622 ret = xpSuccess;
623 else if (status == SALRET_MORE_PASSES)
624 ret = xpNeedMoreInfo;
625 else
626 ret = xpSalError;
628 return ret;
632 static int
633 xpc_setup_rsvd_page_sn2(struct xpc_rsvd_page *rp)
635 struct amo *amos_page;
636 int i;
637 int ret;
639 xpc_vars_sn2 = XPC_RP_VARS(rp);
641 rp->sn.sn2.vars_pa = xp_pa(xpc_vars_sn2);
643 /* vars_part array follows immediately after vars */
644 xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
645 XPC_RP_VARS_SIZE);
648 * Before clearing xpc_vars_sn2, see if a page of amos had been
649 * previously allocated. If not we'll need to allocate one and set
650 * permissions so that cross-partition amos are allowed.
652 * The allocated amo page needs MCA reporting to remain disabled after
653 * XPC has unloaded. To make this work, we keep a copy of the pointer
654 * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
655 * which is pointed to by the reserved page, and re-use that saved copy
656 * on subsequent loads of XPC. This amo page is never freed, and its
657 * memory protections are never restricted.
659 amos_page = xpc_vars_sn2->amos_page;
660 if (amos_page == NULL) {
661 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
662 if (amos_page == NULL) {
663 dev_err(xpc_part, "can't allocate page of amos\n");
664 return -ENOMEM;
668 * Open up amo-R/W to cpu. This is done on Shub 1.1 systems
669 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
671 ret = xpc_allow_amo_ops_sn2(amos_page);
672 if (ret != xpSuccess) {
673 dev_err(xpc_part, "can't allow amo operations\n");
674 uncached_free_page(__IA64_UNCACHED_OFFSET |
675 TO_PHYS((u64)amos_page), 1);
676 return -EPERM;
680 /* clear xpc_vars_sn2 */
681 memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
683 xpc_vars_sn2->version = XPC_V_VERSION;
684 xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
685 xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
686 xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
687 xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
688 xpc_vars_sn2->amos_page = amos_page; /* save for next load of XPC */
690 /* clear xpc_vars_part_sn2 */
691 memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
692 XP_MAX_NPARTITIONS_SN2);
694 /* initialize the activate IRQ related amo variables */
695 for (i = 0; i < xpc_nasid_mask_nlongs; i++)
696 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
698 /* initialize the engaged remote partitions related amo variables */
699 (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
700 (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
702 return 0;
705 static int
706 xpc_hb_allowed_sn2(short partid, void *heartbeating_to_mask)
708 return test_bit(partid, heartbeating_to_mask);
711 static void
712 xpc_allow_hb_sn2(short partid)
714 DBUG_ON(xpc_vars_sn2 == NULL);
715 set_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
718 static void
719 xpc_disallow_hb_sn2(short partid)
721 DBUG_ON(xpc_vars_sn2 == NULL);
722 clear_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
725 static void
726 xpc_disallow_all_hbs_sn2(void)
728 DBUG_ON(xpc_vars_sn2 == NULL);
729 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, xp_max_npartitions);
732 static void
733 xpc_increment_heartbeat_sn2(void)
735 xpc_vars_sn2->heartbeat++;
738 static void
739 xpc_offline_heartbeat_sn2(void)
741 xpc_increment_heartbeat_sn2();
742 xpc_vars_sn2->heartbeat_offline = 1;
745 static void
746 xpc_online_heartbeat_sn2(void)
748 xpc_increment_heartbeat_sn2();
749 xpc_vars_sn2->heartbeat_offline = 0;
752 static void
753 xpc_heartbeat_init_sn2(void)
755 DBUG_ON(xpc_vars_sn2 == NULL);
757 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
758 xpc_online_heartbeat_sn2();
761 static void
762 xpc_heartbeat_exit_sn2(void)
764 xpc_offline_heartbeat_sn2();
767 static enum xp_retval
768 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
770 struct xpc_vars_sn2 *remote_vars;
771 enum xp_retval ret;
773 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
775 /* pull the remote vars structure that contains the heartbeat */
776 ret = xp_remote_memcpy(xp_pa(remote_vars),
777 part->sn.sn2.remote_vars_pa,
778 XPC_RP_VARS_SIZE);
779 if (ret != xpSuccess)
780 return ret;
782 dev_dbg(xpc_part, "partid=%d, heartbeat=%lld, last_heartbeat=%lld, "
783 "heartbeat_offline=%lld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
784 remote_vars->heartbeat, part->last_heartbeat,
785 remote_vars->heartbeat_offline,
786 remote_vars->heartbeating_to_mask[0]);
788 if ((remote_vars->heartbeat == part->last_heartbeat &&
789 !remote_vars->heartbeat_offline) ||
790 !xpc_hb_allowed_sn2(sn_partition_id,
791 remote_vars->heartbeating_to_mask)) {
792 ret = xpNoHeartbeat;
793 } else {
794 part->last_heartbeat = remote_vars->heartbeat;
797 return ret;
801 * Get a copy of the remote partition's XPC variables from the reserved page.
803 * remote_vars points to a buffer that is cacheline aligned for BTE copies and
804 * assumed to be of size XPC_RP_VARS_SIZE.
806 static enum xp_retval
807 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
808 struct xpc_vars_sn2 *remote_vars)
810 enum xp_retval ret;
812 if (remote_vars_pa == 0)
813 return xpVarsNotSet;
815 /* pull over the cross partition variables */
816 ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
817 XPC_RP_VARS_SIZE);
818 if (ret != xpSuccess)
819 return ret;
821 if (XPC_VERSION_MAJOR(remote_vars->version) !=
822 XPC_VERSION_MAJOR(XPC_V_VERSION)) {
823 return xpBadVersion;
826 return xpSuccess;
829 static void
830 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
831 unsigned long remote_rp_pa, int nasid)
833 xpc_send_local_activate_IRQ_sn2(nasid);
836 static void
837 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
839 xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
842 static void
843 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
845 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
846 unsigned long irq_flags;
847 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
848 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
849 sizeof(struct amo)));
851 local_irq_save(irq_flags);
853 /* set bit corresponding to our partid in remote partition's amo */
854 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
855 BIT(sn_partition_id));
858 * We must always use the nofault function regardless of whether we
859 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
860 * didn't, we'd never know that the other partition is down and would
861 * keep sending IRQs and amos to it until the heartbeat times out.
863 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
864 variable),
865 xp_nofault_PIOR_target));
867 local_irq_restore(irq_flags);
870 * Send activate IRQ to get other side to see that we've set our
871 * bit in their deactivate request amo.
873 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
874 cnodeid_to_nasid(0),
875 part_sn2->activate_IRQ_nasid,
876 part_sn2->activate_IRQ_phys_cpuid);
879 static void
880 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
882 unsigned long irq_flags;
883 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
884 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
885 sizeof(struct amo)));
887 local_irq_save(irq_flags);
889 /* clear bit corresponding to our partid in remote partition's amo */
890 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
891 ~BIT(sn_partition_id));
894 * We must always use the nofault function regardless of whether we
895 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
896 * didn't, we'd never know that the other partition is down and would
897 * keep sending IRQs and amos to it until the heartbeat times out.
899 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
900 variable),
901 xp_nofault_PIOR_target));
903 local_irq_restore(irq_flags);
906 static int
907 xpc_partition_deactivation_requested_sn2(short partid)
909 struct amo *amo = xpc_vars_sn2->amos_page +
910 XPC_DEACTIVATE_REQUEST_AMO_SN2;
912 /* our partition's amo variable ANDed with partid mask */
913 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
914 BIT(partid)) != 0;
918 * Update the remote partition's info.
920 static void
921 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
922 unsigned long *remote_rp_ts_jiffies,
923 unsigned long remote_rp_pa,
924 unsigned long remote_vars_pa,
925 struct xpc_vars_sn2 *remote_vars)
927 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
929 part->remote_rp_version = remote_rp_version;
930 dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n",
931 part->remote_rp_version);
933 part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
934 dev_dbg(xpc_part, " remote_rp_ts_jiffies = 0x%016lx\n",
935 part->remote_rp_ts_jiffies);
937 part->remote_rp_pa = remote_rp_pa;
938 dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
940 part_sn2->remote_vars_pa = remote_vars_pa;
941 dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
942 part_sn2->remote_vars_pa);
944 part->last_heartbeat = remote_vars->heartbeat - 1;
945 dev_dbg(xpc_part, " last_heartbeat = 0x%016llx\n",
946 part->last_heartbeat);
948 part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
949 dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
950 part_sn2->remote_vars_part_pa);
952 part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
953 dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n",
954 part_sn2->activate_IRQ_nasid);
956 part_sn2->activate_IRQ_phys_cpuid =
957 remote_vars->activate_IRQ_phys_cpuid;
958 dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n",
959 part_sn2->activate_IRQ_phys_cpuid);
961 part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
962 dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
963 part_sn2->remote_amos_page_pa);
965 part_sn2->remote_vars_version = remote_vars->version;
966 dev_dbg(xpc_part, " remote_vars_version = 0x%x\n",
967 part_sn2->remote_vars_version);
971 * Prior code has determined the nasid which generated a activate IRQ.
972 * Inspect that nasid to determine if its partition needs to be activated
973 * or deactivated.
975 * A partition is considered "awaiting activation" if our partition
976 * flags indicate it is not active and it has a heartbeat. A
977 * partition is considered "awaiting deactivation" if our partition
978 * flags indicate it is active but it has no heartbeat or it is not
979 * sending its heartbeat to us.
981 * To determine the heartbeat, the remote nasid must have a properly
982 * initialized reserved page.
984 static void
985 xpc_identify_activate_IRQ_req_sn2(int nasid)
987 struct xpc_rsvd_page *remote_rp;
988 struct xpc_vars_sn2 *remote_vars;
989 unsigned long remote_rp_pa;
990 unsigned long remote_vars_pa;
991 int remote_rp_version;
992 int reactivate = 0;
993 unsigned long remote_rp_ts_jiffies = 0;
994 short partid;
995 struct xpc_partition *part;
996 struct xpc_partition_sn2 *part_sn2;
997 enum xp_retval ret;
999 /* pull over the reserved page structure */
1001 remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
1003 ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
1004 if (ret != xpSuccess) {
1005 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
1006 "which sent interrupt, reason=%d\n", nasid, ret);
1007 return;
1010 remote_vars_pa = remote_rp->sn.sn2.vars_pa;
1011 remote_rp_version = remote_rp->version;
1012 remote_rp_ts_jiffies = remote_rp->ts_jiffies;
1014 partid = remote_rp->SAL_partid;
1015 part = &xpc_partitions[partid];
1016 part_sn2 = &part->sn.sn2;
1018 /* pull over the cross partition variables */
1020 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
1022 ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
1023 if (ret != xpSuccess) {
1024 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
1025 "which sent interrupt, reason=%d\n", nasid, ret);
1027 XPC_DEACTIVATE_PARTITION(part, ret);
1028 return;
1031 part->activate_IRQ_rcvd++;
1033 dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
1034 "%lld:0x%lx\n", (int)nasid, (int)partid,
1035 part->activate_IRQ_rcvd,
1036 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
1038 if (xpc_partition_disengaged(part) &&
1039 part->act_state == XPC_P_AS_INACTIVE) {
1041 xpc_update_partition_info_sn2(part, remote_rp_version,
1042 &remote_rp_ts_jiffies,
1043 remote_rp_pa, remote_vars_pa,
1044 remote_vars);
1046 if (xpc_partition_deactivation_requested_sn2(partid)) {
1048 * Other side is waiting on us to deactivate even though
1049 * we already have.
1051 return;
1054 xpc_activate_partition(part);
1055 return;
1058 DBUG_ON(part->remote_rp_version == 0);
1059 DBUG_ON(part_sn2->remote_vars_version == 0);
1061 if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1063 /* the other side rebooted */
1065 DBUG_ON(xpc_partition_engaged_sn2(partid));
1066 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1068 xpc_update_partition_info_sn2(part, remote_rp_version,
1069 &remote_rp_ts_jiffies,
1070 remote_rp_pa, remote_vars_pa,
1071 remote_vars);
1072 reactivate = 1;
1075 if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1076 /* still waiting on other side to disengage from us */
1077 return;
1080 if (reactivate)
1081 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1082 else if (xpc_partition_deactivation_requested_sn2(partid))
1083 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1087 * Loop through the activation amo variables and process any bits
1088 * which are set. Each bit indicates a nasid sending a partition
1089 * activation or deactivation request.
1091 * Return #of IRQs detected.
1094 xpc_identify_activate_IRQ_sender_sn2(void)
1096 int l;
1097 int b;
1098 unsigned long nasid_mask_long;
1099 u64 nasid; /* remote nasid */
1100 int n_IRQs_detected = 0;
1101 struct amo *act_amos;
1103 act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1105 /* scan through activate amo variables looking for non-zero entries */
1106 for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1108 if (xpc_exiting)
1109 break;
1111 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1113 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1114 if (b >= BITS_PER_LONG) {
1115 /* no IRQs from nasids in this amo variable */
1116 continue;
1119 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1120 nasid_mask_long);
1123 * If this nasid has been added to the machine since
1124 * our partition was reset, this will retain the
1125 * remote nasid in our reserved pages machine mask.
1126 * This is used in the event of module reload.
1128 xpc_mach_nasids[l] |= nasid_mask_long;
1130 /* locate the nasid(s) which sent interrupts */
1132 do {
1133 n_IRQs_detected++;
1134 nasid = (l * BITS_PER_LONG + b) * 2;
1135 dev_dbg(xpc_part, "interrupt from nasid %lld\n", nasid);
1136 xpc_identify_activate_IRQ_req_sn2(nasid);
1138 b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1139 b + 1);
1140 } while (b < BITS_PER_LONG);
1142 return n_IRQs_detected;
1145 static void
1146 xpc_process_activate_IRQ_rcvd_sn2(void)
1148 unsigned long irq_flags;
1149 int n_IRQs_expected;
1150 int n_IRQs_detected;
1152 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1153 n_IRQs_expected = xpc_activate_IRQ_rcvd;
1154 xpc_activate_IRQ_rcvd = 0;
1155 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1157 n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1158 if (n_IRQs_detected < n_IRQs_expected) {
1159 /* retry once to help avoid missing amo */
1160 (void)xpc_identify_activate_IRQ_sender_sn2();
1165 * Setup the channel structures that are sn2 specific.
1167 static enum xp_retval
1168 xpc_setup_ch_structures_sn2(struct xpc_partition *part)
1170 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1171 struct xpc_channel_sn2 *ch_sn2;
1172 enum xp_retval retval;
1173 int ret;
1174 int cpuid;
1175 int ch_number;
1176 struct timer_list *timer;
1177 short partid = XPC_PARTID(part);
1179 /* allocate all the required GET/PUT values */
1181 part_sn2->local_GPs =
1182 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1183 &part_sn2->local_GPs_base);
1184 if (part_sn2->local_GPs == NULL) {
1185 dev_err(xpc_chan, "can't get memory for local get/put "
1186 "values\n");
1187 return xpNoMemory;
1190 part_sn2->remote_GPs =
1191 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1192 &part_sn2->remote_GPs_base);
1193 if (part_sn2->remote_GPs == NULL) {
1194 dev_err(xpc_chan, "can't get memory for remote get/put "
1195 "values\n");
1196 retval = xpNoMemory;
1197 goto out_1;
1200 part_sn2->remote_GPs_pa = 0;
1202 /* allocate all the required open and close args */
1204 part_sn2->local_openclose_args =
1205 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1206 GFP_KERNEL, &part_sn2->
1207 local_openclose_args_base);
1208 if (part_sn2->local_openclose_args == NULL) {
1209 dev_err(xpc_chan, "can't get memory for local connect args\n");
1210 retval = xpNoMemory;
1211 goto out_2;
1214 part_sn2->remote_openclose_args_pa = 0;
1216 part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1218 part_sn2->notify_IRQ_nasid = 0;
1219 part_sn2->notify_IRQ_phys_cpuid = 0;
1220 part_sn2->remote_chctl_amo_va = NULL;
1222 sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1223 ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1224 IRQF_SHARED, part_sn2->notify_IRQ_owner,
1225 (void *)(u64)partid);
1226 if (ret != 0) {
1227 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1228 "errno=%d\n", -ret);
1229 retval = xpLackOfResources;
1230 goto out_3;
1233 /* Setup a timer to check for dropped notify IRQs */
1234 timer = &part_sn2->dropped_notify_IRQ_timer;
1235 init_timer(timer);
1236 timer->function =
1237 (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1238 timer->data = (unsigned long)part;
1239 timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1240 add_timer(timer);
1242 for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1243 ch_sn2 = &part->channels[ch_number].sn.sn2;
1245 ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1246 ch_sn2->local_openclose_args =
1247 &part_sn2->local_openclose_args[ch_number];
1249 mutex_init(&ch_sn2->msg_to_pull_mutex);
1253 * Setup the per partition specific variables required by the
1254 * remote partition to establish channel connections with us.
1256 * The setting of the magic # indicates that these per partition
1257 * specific variables are ready to be used.
1259 xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1260 xpc_vars_part_sn2[partid].openclose_args_pa =
1261 xp_pa(part_sn2->local_openclose_args);
1262 xpc_vars_part_sn2[partid].chctl_amo_pa =
1263 xp_pa(part_sn2->local_chctl_amo_va);
1264 cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1265 xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1266 xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1267 cpu_physical_id(cpuid);
1268 xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1269 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1271 return xpSuccess;
1273 /* setup of ch structures failed */
1274 out_3:
1275 kfree(part_sn2->local_openclose_args_base);
1276 part_sn2->local_openclose_args = NULL;
1277 out_2:
1278 kfree(part_sn2->remote_GPs_base);
1279 part_sn2->remote_GPs = NULL;
1280 out_1:
1281 kfree(part_sn2->local_GPs_base);
1282 part_sn2->local_GPs = NULL;
1283 return retval;
1287 * Teardown the channel structures that are sn2 specific.
1289 static void
1290 xpc_teardown_ch_structures_sn2(struct xpc_partition *part)
1292 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1293 short partid = XPC_PARTID(part);
1296 * Indicate that the variables specific to the remote partition are no
1297 * longer available for its use.
1299 xpc_vars_part_sn2[partid].magic = 0;
1301 /* in case we've still got outstanding timers registered... */
1302 del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1303 free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1305 kfree(part_sn2->local_openclose_args_base);
1306 part_sn2->local_openclose_args = NULL;
1307 kfree(part_sn2->remote_GPs_base);
1308 part_sn2->remote_GPs = NULL;
1309 kfree(part_sn2->local_GPs_base);
1310 part_sn2->local_GPs = NULL;
1311 part_sn2->local_chctl_amo_va = NULL;
1315 * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1316 * (or multiple cachelines) from a remote partition.
1318 * src_pa must be a cacheline aligned physical address on the remote partition.
1319 * dst must be a cacheline aligned virtual address on this partition.
1320 * cnt must be cacheline sized
1322 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1323 static enum xp_retval
1324 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1325 const unsigned long src_pa, size_t cnt)
1327 enum xp_retval ret;
1329 DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1330 DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1331 DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1333 if (part->act_state == XPC_P_AS_DEACTIVATING)
1334 return part->reason;
1336 ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1337 if (ret != xpSuccess) {
1338 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1339 " ret=%d\n", XPC_PARTID(part), ret);
1341 return ret;
1345 * Pull the remote per partition specific variables from the specified
1346 * partition.
1348 static enum xp_retval
1349 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1351 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1352 u8 buffer[L1_CACHE_BYTES * 2];
1353 struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1354 (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1355 struct xpc_vars_part_sn2 *pulled_entry;
1356 unsigned long remote_entry_cacheline_pa;
1357 unsigned long remote_entry_pa;
1358 short partid = XPC_PARTID(part);
1359 enum xp_retval ret;
1361 /* pull the cacheline that contains the variables we're interested in */
1363 DBUG_ON(part_sn2->remote_vars_part_pa !=
1364 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1365 DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1367 remote_entry_pa = part_sn2->remote_vars_part_pa +
1368 sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1370 remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1372 pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1373 + (remote_entry_pa &
1374 (L1_CACHE_BYTES - 1)));
1376 ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1377 remote_entry_cacheline_pa,
1378 L1_CACHE_BYTES);
1379 if (ret != xpSuccess) {
1380 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1381 "partition %d, ret=%d\n", partid, ret);
1382 return ret;
1385 /* see if they've been set up yet */
1387 if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1388 pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1390 if (pulled_entry->magic != 0) {
1391 dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1392 "partition %d has bad magic value (=0x%llx)\n",
1393 partid, sn_partition_id, pulled_entry->magic);
1394 return xpBadMagic;
1397 /* they've not been initialized yet */
1398 return xpRetry;
1401 if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1403 /* validate the variables */
1405 if (pulled_entry->GPs_pa == 0 ||
1406 pulled_entry->openclose_args_pa == 0 ||
1407 pulled_entry->chctl_amo_pa == 0) {
1409 dev_err(xpc_chan, "partition %d's XPC vars_part for "
1410 "partition %d are not valid\n", partid,
1411 sn_partition_id);
1412 return xpInvalidAddress;
1415 /* the variables we imported look to be valid */
1417 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1418 part_sn2->remote_openclose_args_pa =
1419 pulled_entry->openclose_args_pa;
1420 part_sn2->remote_chctl_amo_va =
1421 (struct amo *)__va(pulled_entry->chctl_amo_pa);
1422 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1423 part_sn2->notify_IRQ_phys_cpuid =
1424 pulled_entry->notify_IRQ_phys_cpuid;
1426 if (part->nchannels > pulled_entry->nchannels)
1427 part->nchannels = pulled_entry->nchannels;
1429 /* let the other side know that we've pulled their variables */
1431 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1434 if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1435 return xpRetry;
1437 return xpSuccess;
1441 * Establish first contact with the remote partititon. This involves pulling
1442 * the XPC per partition variables from the remote partition and waiting for
1443 * the remote partition to pull ours.
1445 static enum xp_retval
1446 xpc_make_first_contact_sn2(struct xpc_partition *part)
1448 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1449 enum xp_retval ret;
1452 * Register the remote partition's amos with SAL so it can handle
1453 * and cleanup errors within that address range should the remote
1454 * partition go down. We don't unregister this range because it is
1455 * difficult to tell when outstanding writes to the remote partition
1456 * are finished and thus when it is safe to unregister. This should
1457 * not result in wasted space in the SAL xp_addr_region table because
1458 * we should get the same page for remote_amos_page_pa after module
1459 * reloads and system reboots.
1461 if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1462 PAGE_SIZE, 1) < 0) {
1463 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1464 "xp_addr region\n", XPC_PARTID(part));
1466 ret = xpPhysAddrRegFailed;
1467 XPC_DEACTIVATE_PARTITION(part, ret);
1468 return ret;
1472 * Send activate IRQ to get other side to activate if they've not
1473 * already begun to do so.
1475 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1476 cnodeid_to_nasid(0),
1477 part_sn2->activate_IRQ_nasid,
1478 part_sn2->activate_IRQ_phys_cpuid);
1480 while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1481 if (ret != xpRetry) {
1482 XPC_DEACTIVATE_PARTITION(part, ret);
1483 return ret;
1486 dev_dbg(xpc_part, "waiting to make first contact with "
1487 "partition %d\n", XPC_PARTID(part));
1489 /* wait a 1/4 of a second or so */
1490 (void)msleep_interruptible(250);
1492 if (part->act_state == XPC_P_AS_DEACTIVATING)
1493 return part->reason;
1496 return xpSuccess;
1500 * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1502 static u64
1503 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1505 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1506 unsigned long irq_flags;
1507 union xpc_channel_ctl_flags chctl;
1508 enum xp_retval ret;
1511 * See if there are any chctl flags to be handled.
1514 spin_lock_irqsave(&part->chctl_lock, irq_flags);
1515 chctl = part->chctl;
1516 if (chctl.all_flags != 0)
1517 part->chctl.all_flags = 0;
1519 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1521 if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1522 ret = xpc_pull_remote_cachelines_sn2(part, part->
1523 remote_openclose_args,
1524 part_sn2->
1525 remote_openclose_args_pa,
1526 XPC_OPENCLOSE_ARGS_SIZE);
1527 if (ret != xpSuccess) {
1528 XPC_DEACTIVATE_PARTITION(part, ret);
1530 dev_dbg(xpc_chan, "failed to pull openclose args from "
1531 "partition %d, ret=%d\n", XPC_PARTID(part),
1532 ret);
1534 /* don't bother processing chctl flags anymore */
1535 chctl.all_flags = 0;
1539 if (xpc_any_msg_chctl_flags_set(&chctl)) {
1540 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1541 part_sn2->remote_GPs_pa,
1542 XPC_GP_SIZE);
1543 if (ret != xpSuccess) {
1544 XPC_DEACTIVATE_PARTITION(part, ret);
1546 dev_dbg(xpc_chan, "failed to pull GPs from partition "
1547 "%d, ret=%d\n", XPC_PARTID(part), ret);
1549 /* don't bother processing chctl flags anymore */
1550 chctl.all_flags = 0;
1554 return chctl.all_flags;
1558 * Allocate the local message queue and the notify queue.
1560 static enum xp_retval
1561 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1563 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1564 unsigned long irq_flags;
1565 int nentries;
1566 size_t nbytes;
1568 for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1570 nbytes = nentries * ch->entry_size;
1571 ch_sn2->local_msgqueue =
1572 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1573 &ch_sn2->local_msgqueue_base);
1574 if (ch_sn2->local_msgqueue == NULL)
1575 continue;
1577 nbytes = nentries * sizeof(struct xpc_notify_sn2);
1578 ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1579 if (ch_sn2->notify_queue == NULL) {
1580 kfree(ch_sn2->local_msgqueue_base);
1581 ch_sn2->local_msgqueue = NULL;
1582 continue;
1585 spin_lock_irqsave(&ch->lock, irq_flags);
1586 if (nentries < ch->local_nentries) {
1587 dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1588 "partid=%d, channel=%d\n", nentries,
1589 ch->local_nentries, ch->partid, ch->number);
1591 ch->local_nentries = nentries;
1593 spin_unlock_irqrestore(&ch->lock, irq_flags);
1594 return xpSuccess;
1597 dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1598 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1599 return xpNoMemory;
1603 * Allocate the cached remote message queue.
1605 static enum xp_retval
1606 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1608 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1609 unsigned long irq_flags;
1610 int nentries;
1611 size_t nbytes;
1613 DBUG_ON(ch->remote_nentries <= 0);
1615 for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1617 nbytes = nentries * ch->entry_size;
1618 ch_sn2->remote_msgqueue =
1619 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1620 remote_msgqueue_base);
1621 if (ch_sn2->remote_msgqueue == NULL)
1622 continue;
1624 spin_lock_irqsave(&ch->lock, irq_flags);
1625 if (nentries < ch->remote_nentries) {
1626 dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1627 "partid=%d, channel=%d\n", nentries,
1628 ch->remote_nentries, ch->partid, ch->number);
1630 ch->remote_nentries = nentries;
1632 spin_unlock_irqrestore(&ch->lock, irq_flags);
1633 return xpSuccess;
1636 dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1637 "partid=%d, channel=%d\n", ch->partid, ch->number);
1638 return xpNoMemory;
1642 * Allocate message queues and other stuff associated with a channel.
1644 * Note: Assumes all of the channel sizes are filled in.
1646 static enum xp_retval
1647 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1649 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1650 enum xp_retval ret;
1652 DBUG_ON(ch->flags & XPC_C_SETUP);
1654 ret = xpc_allocate_local_msgqueue_sn2(ch);
1655 if (ret == xpSuccess) {
1657 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1658 if (ret != xpSuccess) {
1659 kfree(ch_sn2->local_msgqueue_base);
1660 ch_sn2->local_msgqueue = NULL;
1661 kfree(ch_sn2->notify_queue);
1662 ch_sn2->notify_queue = NULL;
1665 return ret;
1669 * Free up message queues and other stuff that were allocated for the specified
1670 * channel.
1672 static void
1673 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1675 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1677 DBUG_ON(!spin_is_locked(&ch->lock));
1679 ch_sn2->remote_msgqueue_pa = 0;
1681 ch_sn2->local_GP->get = 0;
1682 ch_sn2->local_GP->put = 0;
1683 ch_sn2->remote_GP.get = 0;
1684 ch_sn2->remote_GP.put = 0;
1685 ch_sn2->w_local_GP.get = 0;
1686 ch_sn2->w_local_GP.put = 0;
1687 ch_sn2->w_remote_GP.get = 0;
1688 ch_sn2->w_remote_GP.put = 0;
1689 ch_sn2->next_msg_to_pull = 0;
1691 if (ch->flags & XPC_C_SETUP) {
1692 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1693 ch->flags, ch->partid, ch->number);
1695 kfree(ch_sn2->local_msgqueue_base);
1696 ch_sn2->local_msgqueue = NULL;
1697 kfree(ch_sn2->remote_msgqueue_base);
1698 ch_sn2->remote_msgqueue = NULL;
1699 kfree(ch_sn2->notify_queue);
1700 ch_sn2->notify_queue = NULL;
1705 * Notify those who wanted to be notified upon delivery of their message.
1707 static void
1708 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1710 struct xpc_notify_sn2 *notify;
1711 u8 notify_type;
1712 s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1714 while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1716 notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1719 * See if the notify entry indicates it was associated with
1720 * a message who's sender wants to be notified. It is possible
1721 * that it is, but someone else is doing or has done the
1722 * notification.
1724 notify_type = notify->type;
1725 if (notify_type == 0 ||
1726 cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1727 continue;
1730 DBUG_ON(notify_type != XPC_N_CALL);
1732 atomic_dec(&ch->n_to_notify);
1734 if (notify->func != NULL) {
1735 dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1736 "msg_number=%lld partid=%d channel=%d\n",
1737 (void *)notify, get, ch->partid, ch->number);
1739 notify->func(reason, ch->partid, ch->number,
1740 notify->key);
1742 dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1743 " msg_number=%lld partid=%d channel=%d\n",
1744 (void *)notify, get, ch->partid, ch->number);
1749 static void
1750 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1752 xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1756 * Clear some of the msg flags in the local message queue.
1758 static inline void
1759 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1761 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1762 struct xpc_msg_sn2 *msg;
1763 s64 get;
1765 get = ch_sn2->w_remote_GP.get;
1766 do {
1767 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1768 (get % ch->local_nentries) *
1769 ch->entry_size);
1770 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1771 msg->flags = 0;
1772 } while (++get < ch_sn2->remote_GP.get);
1776 * Clear some of the msg flags in the remote message queue.
1778 static inline void
1779 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1781 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1782 struct xpc_msg_sn2 *msg;
1783 s64 put, remote_nentries = ch->remote_nentries;
1785 /* flags are zeroed when the buffer is allocated */
1786 if (ch_sn2->remote_GP.put < remote_nentries)
1787 return;
1789 put = max(ch_sn2->w_remote_GP.put, remote_nentries);
1790 do {
1791 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1792 (put % remote_nentries) *
1793 ch->entry_size);
1794 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1795 DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1796 DBUG_ON(msg->number != put - remote_nentries);
1797 msg->flags = 0;
1798 } while (++put < ch_sn2->remote_GP.put);
1801 static int
1802 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1804 return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1807 static void
1808 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1810 struct xpc_channel *ch = &part->channels[ch_number];
1811 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1812 int npayloads_sent;
1814 ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1816 /* See what, if anything, has changed for each connected channel */
1818 xpc_msgqueue_ref(ch);
1820 if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1821 ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1822 /* nothing changed since GPs were last pulled */
1823 xpc_msgqueue_deref(ch);
1824 return;
1827 if (!(ch->flags & XPC_C_CONNECTED)) {
1828 xpc_msgqueue_deref(ch);
1829 return;
1833 * First check to see if messages recently sent by us have been
1834 * received by the other side. (The remote GET value will have
1835 * changed since we last looked at it.)
1838 if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1841 * We need to notify any senders that want to be notified
1842 * that their sent messages have been received by their
1843 * intended recipients. We need to do this before updating
1844 * w_remote_GP.get so that we don't allocate the same message
1845 * queue entries prematurely (see xpc_allocate_msg()).
1847 if (atomic_read(&ch->n_to_notify) > 0) {
1849 * Notify senders that messages sent have been
1850 * received and delivered by the other side.
1852 xpc_notify_senders_sn2(ch, xpMsgDelivered,
1853 ch_sn2->remote_GP.get);
1857 * Clear msg->flags in previously sent messages, so that
1858 * they're ready for xpc_allocate_msg().
1860 xpc_clear_local_msgqueue_flags_sn2(ch);
1862 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1864 dev_dbg(xpc_chan, "w_remote_GP.get changed to %lld, partid=%d, "
1865 "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1866 ch->number);
1869 * If anyone was waiting for message queue entries to become
1870 * available, wake them up.
1872 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1873 wake_up(&ch->msg_allocate_wq);
1877 * Now check for newly sent messages by the other side. (The remote
1878 * PUT value will have changed since we last looked at it.)
1881 if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1883 * Clear msg->flags in previously received messages, so that
1884 * they're ready for xpc_get_deliverable_payload_sn2().
1886 xpc_clear_remote_msgqueue_flags_sn2(ch);
1888 smp_wmb(); /* ensure flags have been cleared before bte_copy */
1889 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1891 dev_dbg(xpc_chan, "w_remote_GP.put changed to %lld, partid=%d, "
1892 "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1893 ch->number);
1895 npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1896 if (npayloads_sent > 0) {
1897 dev_dbg(xpc_chan, "msgs waiting to be copied and "
1898 "delivered=%d, partid=%d, channel=%d\n",
1899 npayloads_sent, ch->partid, ch->number);
1901 if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1902 xpc_activate_kthreads(ch, npayloads_sent);
1906 xpc_msgqueue_deref(ch);
1909 static struct xpc_msg_sn2 *
1910 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1912 struct xpc_partition *part = &xpc_partitions[ch->partid];
1913 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1914 unsigned long remote_msg_pa;
1915 struct xpc_msg_sn2 *msg;
1916 u32 msg_index;
1917 u32 nmsgs;
1918 u64 msg_offset;
1919 enum xp_retval ret;
1921 if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1922 /* we were interrupted by a signal */
1923 return NULL;
1926 while (get >= ch_sn2->next_msg_to_pull) {
1928 /* pull as many messages as are ready and able to be pulled */
1930 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1932 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1933 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1934 if (msg_index + nmsgs > ch->remote_nentries) {
1935 /* ignore the ones that wrap the msg queue for now */
1936 nmsgs = ch->remote_nentries - msg_index;
1939 msg_offset = msg_index * ch->entry_size;
1940 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1941 msg_offset);
1942 remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1944 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1945 nmsgs * ch->entry_size);
1946 if (ret != xpSuccess) {
1948 dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1949 " msg %lld from partition %d, channel=%d, "
1950 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1951 ch->partid, ch->number, ret);
1953 XPC_DEACTIVATE_PARTITION(part, ret);
1955 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1956 return NULL;
1959 ch_sn2->next_msg_to_pull += nmsgs;
1962 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1964 /* return the message we were looking for */
1965 msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1966 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1968 return msg;
1972 * Get the next deliverable message's payload.
1974 static void *
1975 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1977 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1978 struct xpc_msg_sn2 *msg;
1979 void *payload = NULL;
1980 s64 get;
1982 do {
1983 if (ch->flags & XPC_C_DISCONNECTING)
1984 break;
1986 get = ch_sn2->w_local_GP.get;
1987 smp_rmb(); /* guarantee that .get loads before .put */
1988 if (get == ch_sn2->w_remote_GP.put)
1989 break;
1991 /* There are messages waiting to be pulled and delivered.
1992 * We need to try to secure one for ourselves. We'll do this
1993 * by trying to increment w_local_GP.get and hope that no one
1994 * else beats us to it. If they do, we'll we'll simply have
1995 * to try again for the next one.
1998 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1999 /* we got the entry referenced by get */
2001 dev_dbg(xpc_chan, "w_local_GP.get changed to %lld, "
2002 "partid=%d, channel=%d\n", get + 1,
2003 ch->partid, ch->number);
2005 /* pull the message from the remote partition */
2007 msg = xpc_pull_remote_msg_sn2(ch, get);
2009 if (msg != NULL) {
2010 DBUG_ON(msg->number != get);
2011 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2012 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2014 payload = &msg->payload;
2016 break;
2019 } while (1);
2021 return payload;
2025 * Now we actually send the messages that are ready to be sent by advancing
2026 * the local message queue's Put value and then send a chctl msgrequest to the
2027 * recipient partition.
2029 static void
2030 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2032 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2033 struct xpc_msg_sn2 *msg;
2034 s64 put = initial_put + 1;
2035 int send_msgrequest = 0;
2037 while (1) {
2039 while (1) {
2040 if (put == ch_sn2->w_local_GP.put)
2041 break;
2043 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2044 local_msgqueue + (put %
2045 ch->local_nentries) *
2046 ch->entry_size);
2048 if (!(msg->flags & XPC_M_SN2_READY))
2049 break;
2051 put++;
2054 if (put == initial_put) {
2055 /* nothing's changed */
2056 break;
2059 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2060 initial_put) {
2061 /* someone else beat us to it */
2062 DBUG_ON(ch_sn2->local_GP->put < initial_put);
2063 break;
2066 /* we just set the new value of local_GP->put */
2068 dev_dbg(xpc_chan, "local_GP->put changed to %lld, partid=%d, "
2069 "channel=%d\n", put, ch->partid, ch->number);
2071 send_msgrequest = 1;
2074 * We need to ensure that the message referenced by
2075 * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2076 * equals w_local_GP.put, so we'll go have a look.
2078 initial_put = put;
2081 if (send_msgrequest)
2082 xpc_send_chctl_msgrequest_sn2(ch);
2086 * Allocate an entry for a message from the message queue associated with the
2087 * specified channel.
2089 static enum xp_retval
2090 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2091 struct xpc_msg_sn2 **address_of_msg)
2093 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2094 struct xpc_msg_sn2 *msg;
2095 enum xp_retval ret;
2096 s64 put;
2099 * Get the next available message entry from the local message queue.
2100 * If none are available, we'll make sure that we grab the latest
2101 * GP values.
2103 ret = xpTimeout;
2105 while (1) {
2107 put = ch_sn2->w_local_GP.put;
2108 smp_rmb(); /* guarantee that .put loads before .get */
2109 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2111 /* There are available message entries. We need to try
2112 * to secure one for ourselves. We'll do this by trying
2113 * to increment w_local_GP.put as long as someone else
2114 * doesn't beat us to it. If they do, we'll have to
2115 * try again.
2117 if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2118 put) {
2119 /* we got the entry referenced by put */
2120 break;
2122 continue; /* try again */
2126 * There aren't any available msg entries at this time.
2128 * In waiting for a message entry to become available,
2129 * we set a timeout in case the other side is not sending
2130 * completion interrupts. This lets us fake a notify IRQ
2131 * that will cause the notify IRQ handler to fetch the latest
2132 * GP values as if an interrupt was sent by the other side.
2134 if (ret == xpTimeout)
2135 xpc_send_chctl_local_msgrequest_sn2(ch);
2137 if (flags & XPC_NOWAIT)
2138 return xpNoWait;
2140 ret = xpc_allocate_msg_wait(ch);
2141 if (ret != xpInterrupted && ret != xpTimeout)
2142 return ret;
2145 /* get the message's address and initialize it */
2146 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2147 (put % ch->local_nentries) *
2148 ch->entry_size);
2150 DBUG_ON(msg->flags != 0);
2151 msg->number = put;
2153 dev_dbg(xpc_chan, "w_local_GP.put changed to %lld; msg=0x%p, "
2154 "msg_number=%lld, partid=%d, channel=%d\n", put + 1,
2155 (void *)msg, msg->number, ch->partid, ch->number);
2157 *address_of_msg = msg;
2158 return xpSuccess;
2162 * Common code that does the actual sending of the message by advancing the
2163 * local message queue's Put value and sends a chctl msgrequest to the
2164 * partition the message is being sent to.
2166 static enum xp_retval
2167 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2168 u16 payload_size, u8 notify_type, xpc_notify_func func,
2169 void *key)
2171 enum xp_retval ret = xpSuccess;
2172 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2173 struct xpc_msg_sn2 *msg = msg;
2174 struct xpc_notify_sn2 *notify = notify;
2175 s64 msg_number;
2176 s64 put;
2178 DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2180 if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2181 return xpPayloadTooBig;
2183 xpc_msgqueue_ref(ch);
2185 if (ch->flags & XPC_C_DISCONNECTING) {
2186 ret = ch->reason;
2187 goto out_1;
2189 if (!(ch->flags & XPC_C_CONNECTED)) {
2190 ret = xpNotConnected;
2191 goto out_1;
2194 ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2195 if (ret != xpSuccess)
2196 goto out_1;
2198 msg_number = msg->number;
2200 if (notify_type != 0) {
2202 * Tell the remote side to send an ACK interrupt when the
2203 * message has been delivered.
2205 msg->flags |= XPC_M_SN2_INTERRUPT;
2207 atomic_inc(&ch->n_to_notify);
2209 notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2210 notify->func = func;
2211 notify->key = key;
2212 notify->type = notify_type;
2214 /* ??? Is a mb() needed here? */
2216 if (ch->flags & XPC_C_DISCONNECTING) {
2218 * An error occurred between our last error check and
2219 * this one. We will try to clear the type field from
2220 * the notify entry. If we succeed then
2221 * xpc_disconnect_channel() didn't already process
2222 * the notify entry.
2224 if (cmpxchg(&notify->type, notify_type, 0) ==
2225 notify_type) {
2226 atomic_dec(&ch->n_to_notify);
2227 ret = ch->reason;
2229 goto out_1;
2233 memcpy(&msg->payload, payload, payload_size);
2235 msg->flags |= XPC_M_SN2_READY;
2238 * The preceding store of msg->flags must occur before the following
2239 * load of local_GP->put.
2241 smp_mb();
2243 /* see if the message is next in line to be sent, if so send it */
2245 put = ch_sn2->local_GP->put;
2246 if (put == msg_number)
2247 xpc_send_msgs_sn2(ch, put);
2249 out_1:
2250 xpc_msgqueue_deref(ch);
2251 return ret;
2255 * Now we actually acknowledge the messages that have been delivered and ack'd
2256 * by advancing the cached remote message queue's Get value and if requested
2257 * send a chctl msgrequest to the message sender's partition.
2259 * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2260 * that sent the message.
2262 static void
2263 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2265 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2266 struct xpc_msg_sn2 *msg;
2267 s64 get = initial_get + 1;
2268 int send_msgrequest = 0;
2270 while (1) {
2272 while (1) {
2273 if (get == ch_sn2->w_local_GP.get)
2274 break;
2276 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2277 remote_msgqueue + (get %
2278 ch->remote_nentries) *
2279 ch->entry_size);
2281 if (!(msg->flags & XPC_M_SN2_DONE))
2282 break;
2284 msg_flags |= msg->flags;
2285 get++;
2288 if (get == initial_get) {
2289 /* nothing's changed */
2290 break;
2293 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2294 initial_get) {
2295 /* someone else beat us to it */
2296 DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2297 break;
2300 /* we just set the new value of local_GP->get */
2302 dev_dbg(xpc_chan, "local_GP->get changed to %lld, partid=%d, "
2303 "channel=%d\n", get, ch->partid, ch->number);
2305 send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2308 * We need to ensure that the message referenced by
2309 * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2310 * equals w_local_GP.get, so we'll go have a look.
2312 initial_get = get;
2315 if (send_msgrequest)
2316 xpc_send_chctl_msgrequest_sn2(ch);
2319 static void
2320 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2322 struct xpc_msg_sn2 *msg;
2323 s64 msg_number;
2324 s64 get;
2326 msg = container_of(payload, struct xpc_msg_sn2, payload);
2327 msg_number = msg->number;
2329 dev_dbg(xpc_chan, "msg=0x%p, msg_number=%lld, partid=%d, channel=%d\n",
2330 (void *)msg, msg_number, ch->partid, ch->number);
2332 DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2333 msg_number % ch->remote_nentries);
2334 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2335 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2337 msg->flags |= XPC_M_SN2_DONE;
2340 * The preceding store of msg->flags must occur before the following
2341 * load of local_GP->get.
2343 smp_mb();
2346 * See if this message is next in line to be acknowledged as having
2347 * been delivered.
2349 get = ch->sn.sn2.local_GP->get;
2350 if (get == msg_number)
2351 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2354 static struct xpc_arch_operations xpc_arch_ops_sn2 = {
2355 .setup_partitions = xpc_setup_partitions_sn2,
2356 .teardown_partitions = xpc_teardown_partitions_sn2,
2357 .process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2,
2358 .get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2,
2359 .setup_rsvd_page = xpc_setup_rsvd_page_sn2,
2361 .allow_hb = xpc_allow_hb_sn2,
2362 .disallow_hb = xpc_disallow_hb_sn2,
2363 .disallow_all_hbs = xpc_disallow_all_hbs_sn2,
2364 .increment_heartbeat = xpc_increment_heartbeat_sn2,
2365 .offline_heartbeat = xpc_offline_heartbeat_sn2,
2366 .online_heartbeat = xpc_online_heartbeat_sn2,
2367 .heartbeat_init = xpc_heartbeat_init_sn2,
2368 .heartbeat_exit = xpc_heartbeat_exit_sn2,
2369 .get_remote_heartbeat = xpc_get_remote_heartbeat_sn2,
2371 .request_partition_activation =
2372 xpc_request_partition_activation_sn2,
2373 .request_partition_reactivation =
2374 xpc_request_partition_reactivation_sn2,
2375 .request_partition_deactivation =
2376 xpc_request_partition_deactivation_sn2,
2377 .cancel_partition_deactivation_request =
2378 xpc_cancel_partition_deactivation_request_sn2,
2380 .setup_ch_structures = xpc_setup_ch_structures_sn2,
2381 .teardown_ch_structures = xpc_teardown_ch_structures_sn2,
2383 .make_first_contact = xpc_make_first_contact_sn2,
2385 .get_chctl_all_flags = xpc_get_chctl_all_flags_sn2,
2386 .send_chctl_closerequest = xpc_send_chctl_closerequest_sn2,
2387 .send_chctl_closereply = xpc_send_chctl_closereply_sn2,
2388 .send_chctl_openrequest = xpc_send_chctl_openrequest_sn2,
2389 .send_chctl_openreply = xpc_send_chctl_openreply_sn2,
2390 .send_chctl_opencomplete = xpc_send_chctl_opencomplete_sn2,
2391 .process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2,
2393 .save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2,
2395 .setup_msg_structures = xpc_setup_msg_structures_sn2,
2396 .teardown_msg_structures = xpc_teardown_msg_structures_sn2,
2398 .indicate_partition_engaged = xpc_indicate_partition_engaged_sn2,
2399 .indicate_partition_disengaged = xpc_indicate_partition_disengaged_sn2,
2400 .partition_engaged = xpc_partition_engaged_sn2,
2401 .any_partition_engaged = xpc_any_partition_engaged_sn2,
2402 .assume_partition_disengaged = xpc_assume_partition_disengaged_sn2,
2404 .n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2,
2405 .send_payload = xpc_send_payload_sn2,
2406 .get_deliverable_payload = xpc_get_deliverable_payload_sn2,
2407 .received_payload = xpc_received_payload_sn2,
2408 .notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2,
2412 xpc_init_sn2(void)
2414 int ret;
2415 size_t buf_size;
2417 xpc_arch_ops = xpc_arch_ops_sn2;
2419 if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2420 dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2421 "larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2422 return -E2BIG;
2425 buf_size = max(XPC_RP_VARS_SIZE,
2426 XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2427 xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2428 GFP_KERNEL,
2429 &xpc_remote_copy_buffer_base_sn2);
2430 if (xpc_remote_copy_buffer_sn2 == NULL) {
2431 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2432 return -ENOMEM;
2435 /* open up protections for IPI and [potentially] amo operations */
2436 xpc_allow_IPI_ops_sn2();
2437 xpc_allow_amo_ops_shub_wars_1_1_sn2();
2440 * This is safe to do before the xpc_hb_checker thread has started
2441 * because the handler releases a wait queue. If an interrupt is
2442 * received before the thread is waiting, it will not go to sleep,
2443 * but rather immediately process the interrupt.
2445 ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2446 "xpc hb", NULL);
2447 if (ret != 0) {
2448 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2449 "errno=%d\n", -ret);
2450 xpc_disallow_IPI_ops_sn2();
2451 kfree(xpc_remote_copy_buffer_base_sn2);
2453 return ret;
2456 void
2457 xpc_exit_sn2(void)
2459 free_irq(SGI_XPC_ACTIVATE, NULL);
2460 xpc_disallow_IPI_ops_sn2();
2461 kfree(xpc_remote_copy_buffer_base_sn2);