This client driver allows you to use a GPIO pin as a source for PPS
[linux-2.6/next.git] / drivers / regulator / core.c
blob9a33fe2021b6bb081277ef253a1a4d9972792fb6
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #define pr_fmt(fmt) "%s: " fmt, __func__
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/regulator.h>
35 #include "dummy.h"
37 #define rdev_crit(rdev, fmt, ...) \
38 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_err(rdev, fmt, ...) \
40 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_warn(rdev, fmt, ...) \
42 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_info(rdev, fmt, ...) \
44 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_dbg(rdev, fmt, ...) \
46 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 static DEFINE_MUTEX(regulator_list_mutex);
49 static LIST_HEAD(regulator_list);
50 static LIST_HEAD(regulator_map_list);
51 static bool has_full_constraints;
52 static bool board_wants_dummy_regulator;
54 #ifdef CONFIG_DEBUG_FS
55 static struct dentry *debugfs_root;
56 #endif
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
71 * struct regulator
73 * One for each consumer device.
75 struct regulator {
76 struct device *dev;
77 struct list_head list;
78 int uA_load;
79 int min_uV;
80 int max_uV;
81 char *supply_name;
82 struct device_attribute dev_attr;
83 struct regulator_dev *rdev;
84 #ifdef CONFIG_DEBUG_FS
85 struct dentry *debugfs;
86 #endif
89 static int _regulator_is_enabled(struct regulator_dev *rdev);
90 static int _regulator_disable(struct regulator_dev *rdev);
91 static int _regulator_get_voltage(struct regulator_dev *rdev);
92 static int _regulator_get_current_limit(struct regulator_dev *rdev);
93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94 static void _notifier_call_chain(struct regulator_dev *rdev,
95 unsigned long event, void *data);
96 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 int min_uV, int max_uV);
98 static struct regulator *create_regulator(struct regulator_dev *rdev,
99 struct device *dev,
100 const char *supply_name);
102 static const char *rdev_get_name(struct regulator_dev *rdev)
104 if (rdev->constraints && rdev->constraints->name)
105 return rdev->constraints->name;
106 else if (rdev->desc->name)
107 return rdev->desc->name;
108 else
109 return "";
112 /* gets the regulator for a given consumer device */
113 static struct regulator *get_device_regulator(struct device *dev)
115 struct regulator *regulator = NULL;
116 struct regulator_dev *rdev;
118 mutex_lock(&regulator_list_mutex);
119 list_for_each_entry(rdev, &regulator_list, list) {
120 mutex_lock(&rdev->mutex);
121 list_for_each_entry(regulator, &rdev->consumer_list, list) {
122 if (regulator->dev == dev) {
123 mutex_unlock(&rdev->mutex);
124 mutex_unlock(&regulator_list_mutex);
125 return regulator;
128 mutex_unlock(&rdev->mutex);
130 mutex_unlock(&regulator_list_mutex);
131 return NULL;
134 /* Platform voltage constraint check */
135 static int regulator_check_voltage(struct regulator_dev *rdev,
136 int *min_uV, int *max_uV)
138 BUG_ON(*min_uV > *max_uV);
140 if (!rdev->constraints) {
141 rdev_err(rdev, "no constraints\n");
142 return -ENODEV;
144 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145 rdev_err(rdev, "operation not allowed\n");
146 return -EPERM;
149 if (*max_uV > rdev->constraints->max_uV)
150 *max_uV = rdev->constraints->max_uV;
151 if (*min_uV < rdev->constraints->min_uV)
152 *min_uV = rdev->constraints->min_uV;
154 if (*min_uV > *max_uV) {
155 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
156 *min_uV, *max_uV);
157 return -EINVAL;
160 return 0;
163 /* Make sure we select a voltage that suits the needs of all
164 * regulator consumers
166 static int regulator_check_consumers(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
169 struct regulator *regulator;
171 list_for_each_entry(regulator, &rdev->consumer_list, list) {
173 * Assume consumers that didn't say anything are OK
174 * with anything in the constraint range.
176 if (!regulator->min_uV && !regulator->max_uV)
177 continue;
179 if (*max_uV > regulator->max_uV)
180 *max_uV = regulator->max_uV;
181 if (*min_uV < regulator->min_uV)
182 *min_uV = regulator->min_uV;
185 if (*min_uV > *max_uV)
186 return -EINVAL;
188 return 0;
191 /* current constraint check */
192 static int regulator_check_current_limit(struct regulator_dev *rdev,
193 int *min_uA, int *max_uA)
195 BUG_ON(*min_uA > *max_uA);
197 if (!rdev->constraints) {
198 rdev_err(rdev, "no constraints\n");
199 return -ENODEV;
201 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
202 rdev_err(rdev, "operation not allowed\n");
203 return -EPERM;
206 if (*max_uA > rdev->constraints->max_uA)
207 *max_uA = rdev->constraints->max_uA;
208 if (*min_uA < rdev->constraints->min_uA)
209 *min_uA = rdev->constraints->min_uA;
211 if (*min_uA > *max_uA) {
212 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
213 *min_uA, *max_uA);
214 return -EINVAL;
217 return 0;
220 /* operating mode constraint check */
221 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
223 switch (*mode) {
224 case REGULATOR_MODE_FAST:
225 case REGULATOR_MODE_NORMAL:
226 case REGULATOR_MODE_IDLE:
227 case REGULATOR_MODE_STANDBY:
228 break;
229 default:
230 rdev_err(rdev, "invalid mode %x specified\n", *mode);
231 return -EINVAL;
234 if (!rdev->constraints) {
235 rdev_err(rdev, "no constraints\n");
236 return -ENODEV;
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
239 rdev_err(rdev, "operation not allowed\n");
240 return -EPERM;
243 /* The modes are bitmasks, the most power hungry modes having
244 * the lowest values. If the requested mode isn't supported
245 * try higher modes. */
246 while (*mode) {
247 if (rdev->constraints->valid_modes_mask & *mode)
248 return 0;
249 *mode /= 2;
252 return -EINVAL;
255 /* dynamic regulator mode switching constraint check */
256 static int regulator_check_drms(struct regulator_dev *rdev)
258 if (!rdev->constraints) {
259 rdev_err(rdev, "no constraints\n");
260 return -ENODEV;
262 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
263 rdev_err(rdev, "operation not allowed\n");
264 return -EPERM;
266 return 0;
269 static ssize_t device_requested_uA_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
272 struct regulator *regulator;
274 regulator = get_device_regulator(dev);
275 if (regulator == NULL)
276 return 0;
278 return sprintf(buf, "%d\n", regulator->uA_load);
281 static ssize_t regulator_uV_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
284 struct regulator_dev *rdev = dev_get_drvdata(dev);
285 ssize_t ret;
287 mutex_lock(&rdev->mutex);
288 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
289 mutex_unlock(&rdev->mutex);
291 return ret;
293 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
295 static ssize_t regulator_uA_show(struct device *dev,
296 struct device_attribute *attr, char *buf)
298 struct regulator_dev *rdev = dev_get_drvdata(dev);
300 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
302 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
304 static ssize_t regulator_name_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
309 return sprintf(buf, "%s\n", rdev_get_name(rdev));
312 static ssize_t regulator_print_opmode(char *buf, int mode)
314 switch (mode) {
315 case REGULATOR_MODE_FAST:
316 return sprintf(buf, "fast\n");
317 case REGULATOR_MODE_NORMAL:
318 return sprintf(buf, "normal\n");
319 case REGULATOR_MODE_IDLE:
320 return sprintf(buf, "idle\n");
321 case REGULATOR_MODE_STANDBY:
322 return sprintf(buf, "standby\n");
324 return sprintf(buf, "unknown\n");
327 static ssize_t regulator_opmode_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
332 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
334 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
336 static ssize_t regulator_print_state(char *buf, int state)
338 if (state > 0)
339 return sprintf(buf, "enabled\n");
340 else if (state == 0)
341 return sprintf(buf, "disabled\n");
342 else
343 return sprintf(buf, "unknown\n");
346 static ssize_t regulator_state_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
349 struct regulator_dev *rdev = dev_get_drvdata(dev);
350 ssize_t ret;
352 mutex_lock(&rdev->mutex);
353 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
354 mutex_unlock(&rdev->mutex);
356 return ret;
358 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
360 static ssize_t regulator_status_show(struct device *dev,
361 struct device_attribute *attr, char *buf)
363 struct regulator_dev *rdev = dev_get_drvdata(dev);
364 int status;
365 char *label;
367 status = rdev->desc->ops->get_status(rdev);
368 if (status < 0)
369 return status;
371 switch (status) {
372 case REGULATOR_STATUS_OFF:
373 label = "off";
374 break;
375 case REGULATOR_STATUS_ON:
376 label = "on";
377 break;
378 case REGULATOR_STATUS_ERROR:
379 label = "error";
380 break;
381 case REGULATOR_STATUS_FAST:
382 label = "fast";
383 break;
384 case REGULATOR_STATUS_NORMAL:
385 label = "normal";
386 break;
387 case REGULATOR_STATUS_IDLE:
388 label = "idle";
389 break;
390 case REGULATOR_STATUS_STANDBY:
391 label = "standby";
392 break;
393 default:
394 return -ERANGE;
397 return sprintf(buf, "%s\n", label);
399 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
401 static ssize_t regulator_min_uA_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
404 struct regulator_dev *rdev = dev_get_drvdata(dev);
406 if (!rdev->constraints)
407 return sprintf(buf, "constraint not defined\n");
409 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
411 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
413 static ssize_t regulator_max_uA_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
416 struct regulator_dev *rdev = dev_get_drvdata(dev);
418 if (!rdev->constraints)
419 return sprintf(buf, "constraint not defined\n");
421 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
423 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
425 static ssize_t regulator_min_uV_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
428 struct regulator_dev *rdev = dev_get_drvdata(dev);
430 if (!rdev->constraints)
431 return sprintf(buf, "constraint not defined\n");
433 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
435 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
437 static ssize_t regulator_max_uV_show(struct device *dev,
438 struct device_attribute *attr, char *buf)
440 struct regulator_dev *rdev = dev_get_drvdata(dev);
442 if (!rdev->constraints)
443 return sprintf(buf, "constraint not defined\n");
445 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
447 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
449 static ssize_t regulator_total_uA_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
452 struct regulator_dev *rdev = dev_get_drvdata(dev);
453 struct regulator *regulator;
454 int uA = 0;
456 mutex_lock(&rdev->mutex);
457 list_for_each_entry(regulator, &rdev->consumer_list, list)
458 uA += regulator->uA_load;
459 mutex_unlock(&rdev->mutex);
460 return sprintf(buf, "%d\n", uA);
462 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
464 static ssize_t regulator_num_users_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
467 struct regulator_dev *rdev = dev_get_drvdata(dev);
468 return sprintf(buf, "%d\n", rdev->use_count);
471 static ssize_t regulator_type_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
474 struct regulator_dev *rdev = dev_get_drvdata(dev);
476 switch (rdev->desc->type) {
477 case REGULATOR_VOLTAGE:
478 return sprintf(buf, "voltage\n");
479 case REGULATOR_CURRENT:
480 return sprintf(buf, "current\n");
482 return sprintf(buf, "unknown\n");
485 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
486 struct device_attribute *attr, char *buf)
488 struct regulator_dev *rdev = dev_get_drvdata(dev);
490 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
492 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
493 regulator_suspend_mem_uV_show, NULL);
495 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
496 struct device_attribute *attr, char *buf)
498 struct regulator_dev *rdev = dev_get_drvdata(dev);
500 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
502 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
503 regulator_suspend_disk_uV_show, NULL);
505 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
506 struct device_attribute *attr, char *buf)
508 struct regulator_dev *rdev = dev_get_drvdata(dev);
510 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
512 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
513 regulator_suspend_standby_uV_show, NULL);
515 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
518 struct regulator_dev *rdev = dev_get_drvdata(dev);
520 return regulator_print_opmode(buf,
521 rdev->constraints->state_mem.mode);
523 static DEVICE_ATTR(suspend_mem_mode, 0444,
524 regulator_suspend_mem_mode_show, NULL);
526 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
531 return regulator_print_opmode(buf,
532 rdev->constraints->state_disk.mode);
534 static DEVICE_ATTR(suspend_disk_mode, 0444,
535 regulator_suspend_disk_mode_show, NULL);
537 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
542 return regulator_print_opmode(buf,
543 rdev->constraints->state_standby.mode);
545 static DEVICE_ATTR(suspend_standby_mode, 0444,
546 regulator_suspend_standby_mode_show, NULL);
548 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
553 return regulator_print_state(buf,
554 rdev->constraints->state_mem.enabled);
556 static DEVICE_ATTR(suspend_mem_state, 0444,
557 regulator_suspend_mem_state_show, NULL);
559 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
564 return regulator_print_state(buf,
565 rdev->constraints->state_disk.enabled);
567 static DEVICE_ATTR(suspend_disk_state, 0444,
568 regulator_suspend_disk_state_show, NULL);
570 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 return regulator_print_state(buf,
576 rdev->constraints->state_standby.enabled);
578 static DEVICE_ATTR(suspend_standby_state, 0444,
579 regulator_suspend_standby_state_show, NULL);
583 * These are the only attributes are present for all regulators.
584 * Other attributes are a function of regulator functionality.
586 static struct device_attribute regulator_dev_attrs[] = {
587 __ATTR(name, 0444, regulator_name_show, NULL),
588 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
589 __ATTR(type, 0444, regulator_type_show, NULL),
590 __ATTR_NULL,
593 static void regulator_dev_release(struct device *dev)
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 kfree(rdev);
599 static struct class regulator_class = {
600 .name = "regulator",
601 .dev_release = regulator_dev_release,
602 .dev_attrs = regulator_dev_attrs,
605 /* Calculate the new optimum regulator operating mode based on the new total
606 * consumer load. All locks held by caller */
607 static void drms_uA_update(struct regulator_dev *rdev)
609 struct regulator *sibling;
610 int current_uA = 0, output_uV, input_uV, err;
611 unsigned int mode;
613 err = regulator_check_drms(rdev);
614 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
615 (!rdev->desc->ops->get_voltage &&
616 !rdev->desc->ops->get_voltage_sel) ||
617 !rdev->desc->ops->set_mode)
618 return;
620 /* get output voltage */
621 output_uV = _regulator_get_voltage(rdev);
622 if (output_uV <= 0)
623 return;
625 /* get input voltage */
626 input_uV = 0;
627 if (rdev->supply)
628 input_uV = _regulator_get_voltage(rdev);
629 if (input_uV <= 0)
630 input_uV = rdev->constraints->input_uV;
631 if (input_uV <= 0)
632 return;
634 /* calc total requested load */
635 list_for_each_entry(sibling, &rdev->consumer_list, list)
636 current_uA += sibling->uA_load;
638 /* now get the optimum mode for our new total regulator load */
639 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
640 output_uV, current_uA);
642 /* check the new mode is allowed */
643 err = regulator_mode_constrain(rdev, &mode);
644 if (err == 0)
645 rdev->desc->ops->set_mode(rdev, mode);
648 static int suspend_set_state(struct regulator_dev *rdev,
649 struct regulator_state *rstate)
651 int ret = 0;
652 bool can_set_state;
654 can_set_state = rdev->desc->ops->set_suspend_enable &&
655 rdev->desc->ops->set_suspend_disable;
657 /* If we have no suspend mode configration don't set anything;
658 * only warn if the driver actually makes the suspend mode
659 * configurable.
661 if (!rstate->enabled && !rstate->disabled) {
662 if (can_set_state)
663 rdev_warn(rdev, "No configuration\n");
664 return 0;
667 if (rstate->enabled && rstate->disabled) {
668 rdev_err(rdev, "invalid configuration\n");
669 return -EINVAL;
672 if (!can_set_state) {
673 rdev_err(rdev, "no way to set suspend state\n");
674 return -EINVAL;
677 if (rstate->enabled)
678 ret = rdev->desc->ops->set_suspend_enable(rdev);
679 else
680 ret = rdev->desc->ops->set_suspend_disable(rdev);
681 if (ret < 0) {
682 rdev_err(rdev, "failed to enabled/disable\n");
683 return ret;
686 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
687 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
688 if (ret < 0) {
689 rdev_err(rdev, "failed to set voltage\n");
690 return ret;
694 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
695 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
696 if (ret < 0) {
697 rdev_err(rdev, "failed to set mode\n");
698 return ret;
701 return ret;
704 /* locks held by caller */
705 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
707 if (!rdev->constraints)
708 return -EINVAL;
710 switch (state) {
711 case PM_SUSPEND_STANDBY:
712 return suspend_set_state(rdev,
713 &rdev->constraints->state_standby);
714 case PM_SUSPEND_MEM:
715 return suspend_set_state(rdev,
716 &rdev->constraints->state_mem);
717 case PM_SUSPEND_MAX:
718 return suspend_set_state(rdev,
719 &rdev->constraints->state_disk);
720 default:
721 return -EINVAL;
725 static void print_constraints(struct regulator_dev *rdev)
727 struct regulation_constraints *constraints = rdev->constraints;
728 char buf[80] = "";
729 int count = 0;
730 int ret;
732 if (constraints->min_uV && constraints->max_uV) {
733 if (constraints->min_uV == constraints->max_uV)
734 count += sprintf(buf + count, "%d mV ",
735 constraints->min_uV / 1000);
736 else
737 count += sprintf(buf + count, "%d <--> %d mV ",
738 constraints->min_uV / 1000,
739 constraints->max_uV / 1000);
742 if (!constraints->min_uV ||
743 constraints->min_uV != constraints->max_uV) {
744 ret = _regulator_get_voltage(rdev);
745 if (ret > 0)
746 count += sprintf(buf + count, "at %d mV ", ret / 1000);
749 if (constraints->uV_offset)
750 count += sprintf(buf, "%dmV offset ",
751 constraints->uV_offset / 1000);
753 if (constraints->min_uA && constraints->max_uA) {
754 if (constraints->min_uA == constraints->max_uA)
755 count += sprintf(buf + count, "%d mA ",
756 constraints->min_uA / 1000);
757 else
758 count += sprintf(buf + count, "%d <--> %d mA ",
759 constraints->min_uA / 1000,
760 constraints->max_uA / 1000);
763 if (!constraints->min_uA ||
764 constraints->min_uA != constraints->max_uA) {
765 ret = _regulator_get_current_limit(rdev);
766 if (ret > 0)
767 count += sprintf(buf + count, "at %d mA ", ret / 1000);
770 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
771 count += sprintf(buf + count, "fast ");
772 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
773 count += sprintf(buf + count, "normal ");
774 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
775 count += sprintf(buf + count, "idle ");
776 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
777 count += sprintf(buf + count, "standby");
779 rdev_info(rdev, "%s\n", buf);
782 static int machine_constraints_voltage(struct regulator_dev *rdev,
783 struct regulation_constraints *constraints)
785 struct regulator_ops *ops = rdev->desc->ops;
786 int ret;
788 /* do we need to apply the constraint voltage */
789 if (rdev->constraints->apply_uV &&
790 rdev->constraints->min_uV == rdev->constraints->max_uV) {
791 ret = _regulator_do_set_voltage(rdev,
792 rdev->constraints->min_uV,
793 rdev->constraints->max_uV);
794 if (ret < 0) {
795 rdev_err(rdev, "failed to apply %duV constraint\n",
796 rdev->constraints->min_uV);
797 return ret;
801 /* constrain machine-level voltage specs to fit
802 * the actual range supported by this regulator.
804 if (ops->list_voltage && rdev->desc->n_voltages) {
805 int count = rdev->desc->n_voltages;
806 int i;
807 int min_uV = INT_MAX;
808 int max_uV = INT_MIN;
809 int cmin = constraints->min_uV;
810 int cmax = constraints->max_uV;
812 /* it's safe to autoconfigure fixed-voltage supplies
813 and the constraints are used by list_voltage. */
814 if (count == 1 && !cmin) {
815 cmin = 1;
816 cmax = INT_MAX;
817 constraints->min_uV = cmin;
818 constraints->max_uV = cmax;
821 /* voltage constraints are optional */
822 if ((cmin == 0) && (cmax == 0))
823 return 0;
825 /* else require explicit machine-level constraints */
826 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
827 rdev_err(rdev, "invalid voltage constraints\n");
828 return -EINVAL;
831 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832 for (i = 0; i < count; i++) {
833 int value;
835 value = ops->list_voltage(rdev, i);
836 if (value <= 0)
837 continue;
839 /* maybe adjust [min_uV..max_uV] */
840 if (value >= cmin && value < min_uV)
841 min_uV = value;
842 if (value <= cmax && value > max_uV)
843 max_uV = value;
846 /* final: [min_uV..max_uV] valid iff constraints valid */
847 if (max_uV < min_uV) {
848 rdev_err(rdev, "unsupportable voltage constraints\n");
849 return -EINVAL;
852 /* use regulator's subset of machine constraints */
853 if (constraints->min_uV < min_uV) {
854 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
855 constraints->min_uV, min_uV);
856 constraints->min_uV = min_uV;
858 if (constraints->max_uV > max_uV) {
859 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
860 constraints->max_uV, max_uV);
861 constraints->max_uV = max_uV;
865 return 0;
869 * set_machine_constraints - sets regulator constraints
870 * @rdev: regulator source
871 * @constraints: constraints to apply
873 * Allows platform initialisation code to define and constrain
874 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
875 * Constraints *must* be set by platform code in order for some
876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
877 * set_mode.
879 static int set_machine_constraints(struct regulator_dev *rdev,
880 const struct regulation_constraints *constraints)
882 int ret = 0;
883 struct regulator_ops *ops = rdev->desc->ops;
885 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
886 GFP_KERNEL);
887 if (!rdev->constraints)
888 return -ENOMEM;
890 ret = machine_constraints_voltage(rdev, rdev->constraints);
891 if (ret != 0)
892 goto out;
894 /* do we need to setup our suspend state */
895 if (constraints->initial_state) {
896 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
897 if (ret < 0) {
898 rdev_err(rdev, "failed to set suspend state\n");
899 goto out;
903 if (constraints->initial_mode) {
904 if (!ops->set_mode) {
905 rdev_err(rdev, "no set_mode operation\n");
906 ret = -EINVAL;
907 goto out;
910 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
911 if (ret < 0) {
912 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
913 goto out;
917 /* If the constraints say the regulator should be on at this point
918 * and we have control then make sure it is enabled.
920 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
921 ops->enable) {
922 ret = ops->enable(rdev);
923 if (ret < 0) {
924 rdev_err(rdev, "failed to enable\n");
925 goto out;
929 print_constraints(rdev);
930 return 0;
931 out:
932 kfree(rdev->constraints);
933 rdev->constraints = NULL;
934 return ret;
938 * set_supply - set regulator supply regulator
939 * @rdev: regulator name
940 * @supply_rdev: supply regulator name
942 * Called by platform initialisation code to set the supply regulator for this
943 * regulator. This ensures that a regulators supply will also be enabled by the
944 * core if it's child is enabled.
946 static int set_supply(struct regulator_dev *rdev,
947 struct regulator_dev *supply_rdev)
949 int err;
951 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
953 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
954 if (IS_ERR(rdev->supply)) {
955 err = PTR_ERR(rdev->supply);
956 rdev->supply = NULL;
957 return err;
960 return 0;
964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
965 * @rdev: regulator source
966 * @consumer_dev: device the supply applies to
967 * @consumer_dev_name: dev_name() string for device supply applies to
968 * @supply: symbolic name for supply
970 * Allows platform initialisation code to map physical regulator
971 * sources to symbolic names for supplies for use by devices. Devices
972 * should use these symbolic names to request regulators, avoiding the
973 * need to provide board-specific regulator names as platform data.
975 * Only one of consumer_dev and consumer_dev_name may be specified.
977 static int set_consumer_device_supply(struct regulator_dev *rdev,
978 struct device *consumer_dev, const char *consumer_dev_name,
979 const char *supply)
981 struct regulator_map *node;
982 int has_dev;
984 if (consumer_dev && consumer_dev_name)
985 return -EINVAL;
987 if (!consumer_dev_name && consumer_dev)
988 consumer_dev_name = dev_name(consumer_dev);
990 if (supply == NULL)
991 return -EINVAL;
993 if (consumer_dev_name != NULL)
994 has_dev = 1;
995 else
996 has_dev = 0;
998 list_for_each_entry(node, &regulator_map_list, list) {
999 if (node->dev_name && consumer_dev_name) {
1000 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001 continue;
1002 } else if (node->dev_name || consumer_dev_name) {
1003 continue;
1006 if (strcmp(node->supply, supply) != 0)
1007 continue;
1009 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010 dev_name(&node->regulator->dev),
1011 node->regulator->desc->name,
1012 supply,
1013 dev_name(&rdev->dev), rdev_get_name(rdev));
1014 return -EBUSY;
1017 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018 if (node == NULL)
1019 return -ENOMEM;
1021 node->regulator = rdev;
1022 node->supply = supply;
1024 if (has_dev) {
1025 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026 if (node->dev_name == NULL) {
1027 kfree(node);
1028 return -ENOMEM;
1032 list_add(&node->list, &regulator_map_list);
1033 return 0;
1036 static void unset_regulator_supplies(struct regulator_dev *rdev)
1038 struct regulator_map *node, *n;
1040 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041 if (rdev == node->regulator) {
1042 list_del(&node->list);
1043 kfree(node->dev_name);
1044 kfree(node);
1049 #define REG_STR_SIZE 64
1051 static struct regulator *create_regulator(struct regulator_dev *rdev,
1052 struct device *dev,
1053 const char *supply_name)
1055 struct regulator *regulator;
1056 char buf[REG_STR_SIZE];
1057 int err, size;
1059 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060 if (regulator == NULL)
1061 return NULL;
1063 mutex_lock(&rdev->mutex);
1064 regulator->rdev = rdev;
1065 list_add(&regulator->list, &rdev->consumer_list);
1067 if (dev) {
1068 /* create a 'requested_microamps_name' sysfs entry */
1069 size = scnprintf(buf, REG_STR_SIZE,
1070 "microamps_requested_%s-%s",
1071 dev_name(dev), supply_name);
1072 if (size >= REG_STR_SIZE)
1073 goto overflow_err;
1075 regulator->dev = dev;
1076 sysfs_attr_init(&regulator->dev_attr.attr);
1077 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078 if (regulator->dev_attr.attr.name == NULL)
1079 goto attr_name_err;
1081 regulator->dev_attr.attr.mode = 0444;
1082 regulator->dev_attr.show = device_requested_uA_show;
1083 err = device_create_file(dev, &regulator->dev_attr);
1084 if (err < 0) {
1085 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086 goto attr_name_err;
1089 /* also add a link to the device sysfs entry */
1090 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091 dev->kobj.name, supply_name);
1092 if (size >= REG_STR_SIZE)
1093 goto attr_err;
1095 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096 if (regulator->supply_name == NULL)
1097 goto attr_err;
1099 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100 buf);
1101 if (err) {
1102 rdev_warn(rdev, "could not add device link %s err %d\n",
1103 dev->kobj.name, err);
1104 goto link_name_err;
1106 } else {
1107 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108 if (regulator->supply_name == NULL)
1109 goto attr_err;
1112 #ifdef CONFIG_DEBUG_FS
1113 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114 rdev->debugfs);
1115 if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116 rdev_warn(rdev, "Failed to create debugfs directory\n");
1117 regulator->debugfs = NULL;
1118 } else {
1119 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120 &regulator->uA_load);
1121 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122 &regulator->min_uV);
1123 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124 &regulator->max_uV);
1126 #endif
1128 mutex_unlock(&rdev->mutex);
1129 return regulator;
1130 link_name_err:
1131 kfree(regulator->supply_name);
1132 attr_err:
1133 device_remove_file(regulator->dev, &regulator->dev_attr);
1134 attr_name_err:
1135 kfree(regulator->dev_attr.attr.name);
1136 overflow_err:
1137 list_del(&regulator->list);
1138 kfree(regulator);
1139 mutex_unlock(&rdev->mutex);
1140 return NULL;
1143 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1145 if (!rdev->desc->ops->enable_time)
1146 return 0;
1147 return rdev->desc->ops->enable_time(rdev);
1150 /* Internal regulator request function */
1151 static struct regulator *_regulator_get(struct device *dev, const char *id,
1152 int exclusive)
1154 struct regulator_dev *rdev;
1155 struct regulator_map *map;
1156 struct regulator *regulator = ERR_PTR(-ENODEV);
1157 const char *devname = NULL;
1158 int ret;
1160 if (id == NULL) {
1161 pr_err("get() with no identifier\n");
1162 return regulator;
1165 if (dev)
1166 devname = dev_name(dev);
1168 mutex_lock(&regulator_list_mutex);
1170 list_for_each_entry(map, &regulator_map_list, list) {
1171 /* If the mapping has a device set up it must match */
1172 if (map->dev_name &&
1173 (!devname || strcmp(map->dev_name, devname)))
1174 continue;
1176 if (strcmp(map->supply, id) == 0) {
1177 rdev = map->regulator;
1178 goto found;
1182 if (board_wants_dummy_regulator) {
1183 rdev = dummy_regulator_rdev;
1184 goto found;
1187 #ifdef CONFIG_REGULATOR_DUMMY
1188 if (!devname)
1189 devname = "deviceless";
1191 /* If the board didn't flag that it was fully constrained then
1192 * substitute in a dummy regulator so consumers can continue.
1194 if (!has_full_constraints) {
1195 pr_warn("%s supply %s not found, using dummy regulator\n",
1196 devname, id);
1197 rdev = dummy_regulator_rdev;
1198 goto found;
1200 #endif
1202 mutex_unlock(&regulator_list_mutex);
1203 return regulator;
1205 found:
1206 if (rdev->exclusive) {
1207 regulator = ERR_PTR(-EPERM);
1208 goto out;
1211 if (exclusive && rdev->open_count) {
1212 regulator = ERR_PTR(-EBUSY);
1213 goto out;
1216 if (!try_module_get(rdev->owner))
1217 goto out;
1219 regulator = create_regulator(rdev, dev, id);
1220 if (regulator == NULL) {
1221 regulator = ERR_PTR(-ENOMEM);
1222 module_put(rdev->owner);
1225 rdev->open_count++;
1226 if (exclusive) {
1227 rdev->exclusive = 1;
1229 ret = _regulator_is_enabled(rdev);
1230 if (ret > 0)
1231 rdev->use_count = 1;
1232 else
1233 rdev->use_count = 0;
1236 out:
1237 mutex_unlock(&regulator_list_mutex);
1239 return regulator;
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged. It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1255 struct regulator *regulator_get(struct device *dev, const char *id)
1257 return _regulator_get(dev, id, 0);
1259 EXPORT_SYMBOL_GPL(regulator_get);
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno. Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged. It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1282 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1284 return _regulator_get(dev, id, 1);
1286 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
1296 void regulator_put(struct regulator *regulator)
1298 struct regulator_dev *rdev;
1300 if (regulator == NULL || IS_ERR(regulator))
1301 return;
1303 mutex_lock(&regulator_list_mutex);
1304 rdev = regulator->rdev;
1306 #ifdef CONFIG_DEBUG_FS
1307 debugfs_remove_recursive(regulator->debugfs);
1308 #endif
1310 /* remove any sysfs entries */
1311 if (regulator->dev) {
1312 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313 device_remove_file(regulator->dev, &regulator->dev_attr);
1314 kfree(regulator->dev_attr.attr.name);
1316 kfree(regulator->supply_name);
1317 list_del(&regulator->list);
1318 kfree(regulator);
1320 rdev->open_count--;
1321 rdev->exclusive = 0;
1323 module_put(rdev->owner);
1324 mutex_unlock(&regulator_list_mutex);
1326 EXPORT_SYMBOL_GPL(regulator_put);
1328 static int _regulator_can_change_status(struct regulator_dev *rdev)
1330 if (!rdev->constraints)
1331 return 0;
1333 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334 return 1;
1335 else
1336 return 0;
1339 /* locks held by regulator_enable() */
1340 static int _regulator_enable(struct regulator_dev *rdev)
1342 int ret, delay;
1344 /* check voltage and requested load before enabling */
1345 if (rdev->constraints &&
1346 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347 drms_uA_update(rdev);
1349 if (rdev->use_count == 0) {
1350 /* The regulator may on if it's not switchable or left on */
1351 ret = _regulator_is_enabled(rdev);
1352 if (ret == -EINVAL || ret == 0) {
1353 if (!_regulator_can_change_status(rdev))
1354 return -EPERM;
1356 if (!rdev->desc->ops->enable)
1357 return -EINVAL;
1359 /* Query before enabling in case configuration
1360 * dependent. */
1361 ret = _regulator_get_enable_time(rdev);
1362 if (ret >= 0) {
1363 delay = ret;
1364 } else {
1365 rdev_warn(rdev, "enable_time() failed: %d\n",
1366 ret);
1367 delay = 0;
1370 trace_regulator_enable(rdev_get_name(rdev));
1372 /* Allow the regulator to ramp; it would be useful
1373 * to extend this for bulk operations so that the
1374 * regulators can ramp together. */
1375 ret = rdev->desc->ops->enable(rdev);
1376 if (ret < 0)
1377 return ret;
1379 trace_regulator_enable_delay(rdev_get_name(rdev));
1381 if (delay >= 1000) {
1382 mdelay(delay / 1000);
1383 udelay(delay % 1000);
1384 } else if (delay) {
1385 udelay(delay);
1388 trace_regulator_enable_complete(rdev_get_name(rdev));
1390 } else if (ret < 0) {
1391 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392 return ret;
1394 /* Fallthrough on positive return values - already enabled */
1397 rdev->use_count++;
1399 return 0;
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value. Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1413 int regulator_enable(struct regulator *regulator)
1415 struct regulator_dev *rdev = regulator->rdev;
1416 int ret = 0;
1418 if (rdev->supply) {
1419 ret = regulator_enable(rdev->supply);
1420 if (ret != 0)
1421 return ret;
1424 mutex_lock(&rdev->mutex);
1425 ret = _regulator_enable(rdev);
1426 mutex_unlock(&rdev->mutex);
1428 if (ret != 0)
1429 regulator_disable(rdev->supply);
1431 return ret;
1433 EXPORT_SYMBOL_GPL(regulator_enable);
1435 /* locks held by regulator_disable() */
1436 static int _regulator_disable(struct regulator_dev *rdev)
1438 int ret = 0;
1440 if (WARN(rdev->use_count <= 0,
1441 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442 return -EIO;
1444 /* are we the last user and permitted to disable ? */
1445 if (rdev->use_count == 1 &&
1446 (rdev->constraints && !rdev->constraints->always_on)) {
1448 /* we are last user */
1449 if (_regulator_can_change_status(rdev) &&
1450 rdev->desc->ops->disable) {
1451 trace_regulator_disable(rdev_get_name(rdev));
1453 ret = rdev->desc->ops->disable(rdev);
1454 if (ret < 0) {
1455 rdev_err(rdev, "failed to disable\n");
1456 return ret;
1459 trace_regulator_disable_complete(rdev_get_name(rdev));
1461 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462 NULL);
1465 rdev->use_count = 0;
1466 } else if (rdev->use_count > 1) {
1468 if (rdev->constraints &&
1469 (rdev->constraints->valid_ops_mask &
1470 REGULATOR_CHANGE_DRMS))
1471 drms_uA_update(rdev);
1473 rdev->use_count--;
1476 return ret;
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1483 * Disable the regulator output voltage or current. Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1491 int regulator_disable(struct regulator *regulator)
1493 struct regulator_dev *rdev = regulator->rdev;
1494 int ret = 0;
1496 mutex_lock(&rdev->mutex);
1497 ret = _regulator_disable(rdev);
1498 mutex_unlock(&rdev->mutex);
1500 if (ret == 0 && rdev->supply)
1501 regulator_disable(rdev->supply);
1503 return ret;
1505 EXPORT_SYMBOL_GPL(regulator_disable);
1507 /* locks held by regulator_force_disable() */
1508 static int _regulator_force_disable(struct regulator_dev *rdev)
1510 int ret = 0;
1512 /* force disable */
1513 if (rdev->desc->ops->disable) {
1514 /* ah well, who wants to live forever... */
1515 ret = rdev->desc->ops->disable(rdev);
1516 if (ret < 0) {
1517 rdev_err(rdev, "failed to force disable\n");
1518 return ret;
1520 /* notify other consumers that power has been forced off */
1521 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522 REGULATOR_EVENT_DISABLE, NULL);
1525 return ret;
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1537 int regulator_force_disable(struct regulator *regulator)
1539 struct regulator_dev *rdev = regulator->rdev;
1540 int ret;
1542 mutex_lock(&rdev->mutex);
1543 regulator->uA_load = 0;
1544 ret = _regulator_force_disable(regulator->rdev);
1545 mutex_unlock(&rdev->mutex);
1547 if (rdev->supply)
1548 while (rdev->open_count--)
1549 regulator_disable(rdev->supply);
1551 return ret;
1553 EXPORT_SYMBOL_GPL(regulator_force_disable);
1555 static int _regulator_is_enabled(struct regulator_dev *rdev)
1557 /* If we don't know then assume that the regulator is always on */
1558 if (!rdev->desc->ops->is_enabled)
1559 return 1;
1561 return rdev->desc->ops->is_enabled(rdev);
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1576 int regulator_is_enabled(struct regulator *regulator)
1578 int ret;
1580 mutex_lock(&regulator->rdev->mutex);
1581 ret = _regulator_is_enabled(regulator->rdev);
1582 mutex_unlock(&regulator->rdev->mutex);
1584 return ret;
1586 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1592 * Returns number of selectors, or negative errno. Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1596 int regulator_count_voltages(struct regulator *regulator)
1598 struct regulator_dev *rdev = regulator->rdev;
1600 return rdev->desc->n_voltages ? : -EINVAL;
1602 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1614 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1616 struct regulator_dev *rdev = regulator->rdev;
1617 struct regulator_ops *ops = rdev->desc->ops;
1618 int ret;
1620 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621 return -EINVAL;
1623 mutex_lock(&rdev->mutex);
1624 ret = ops->list_voltage(rdev, selector);
1625 mutex_unlock(&rdev->mutex);
1627 if (ret > 0) {
1628 if (ret < rdev->constraints->min_uV)
1629 ret = 0;
1630 else if (ret > rdev->constraints->max_uV)
1631 ret = 0;
1634 return ret;
1636 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1645 * Returns a boolean or a negative error code.
1647 int regulator_is_supported_voltage(struct regulator *regulator,
1648 int min_uV, int max_uV)
1650 int i, voltages, ret;
1652 ret = regulator_count_voltages(regulator);
1653 if (ret < 0)
1654 return ret;
1655 voltages = ret;
1657 for (i = 0; i < voltages; i++) {
1658 ret = regulator_list_voltage(regulator, i);
1660 if (ret >= min_uV && ret <= max_uV)
1661 return 1;
1664 return 0;
1667 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668 int min_uV, int max_uV)
1670 int ret;
1671 int delay = 0;
1672 unsigned int selector;
1674 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1676 min_uV += rdev->constraints->uV_offset;
1677 max_uV += rdev->constraints->uV_offset;
1679 if (rdev->desc->ops->set_voltage) {
1680 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681 &selector);
1683 if (rdev->desc->ops->list_voltage)
1684 selector = rdev->desc->ops->list_voltage(rdev,
1685 selector);
1686 else
1687 selector = -1;
1688 } else if (rdev->desc->ops->set_voltage_sel) {
1689 int best_val = INT_MAX;
1690 int i;
1692 selector = 0;
1694 /* Find the smallest voltage that falls within the specified
1695 * range.
1697 for (i = 0; i < rdev->desc->n_voltages; i++) {
1698 ret = rdev->desc->ops->list_voltage(rdev, i);
1699 if (ret < 0)
1700 continue;
1702 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703 best_val = ret;
1704 selector = i;
1709 * If we can't obtain the old selector there is not enough
1710 * info to call set_voltage_time_sel().
1712 if (rdev->desc->ops->set_voltage_time_sel &&
1713 rdev->desc->ops->get_voltage_sel) {
1714 unsigned int old_selector = 0;
1716 ret = rdev->desc->ops->get_voltage_sel(rdev);
1717 if (ret < 0)
1718 return ret;
1719 old_selector = ret;
1720 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721 old_selector, selector);
1724 if (best_val != INT_MAX) {
1725 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726 selector = best_val;
1727 } else {
1728 ret = -EINVAL;
1730 } else {
1731 ret = -EINVAL;
1734 /* Insert any necessary delays */
1735 if (delay >= 1000) {
1736 mdelay(delay / 1000);
1737 udelay(delay % 1000);
1738 } else if (delay) {
1739 udelay(delay);
1742 if (ret == 0)
1743 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744 NULL);
1746 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1748 return ret;
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1769 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1771 struct regulator_dev *rdev = regulator->rdev;
1772 int ret = 0;
1774 mutex_lock(&rdev->mutex);
1776 /* If we're setting the same range as last time the change
1777 * should be a noop (some cpufreq implementations use the same
1778 * voltage for multiple frequencies, for example).
1780 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781 goto out;
1783 /* sanity check */
1784 if (!rdev->desc->ops->set_voltage &&
1785 !rdev->desc->ops->set_voltage_sel) {
1786 ret = -EINVAL;
1787 goto out;
1790 /* constraints check */
1791 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792 if (ret < 0)
1793 goto out;
1794 regulator->min_uV = min_uV;
1795 regulator->max_uV = max_uV;
1797 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798 if (ret < 0)
1799 goto out;
1801 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1803 out:
1804 mutex_unlock(&rdev->mutex);
1805 return ret;
1807 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1819 int regulator_set_voltage_time(struct regulator *regulator,
1820 int old_uV, int new_uV)
1822 struct regulator_dev *rdev = regulator->rdev;
1823 struct regulator_ops *ops = rdev->desc->ops;
1824 int old_sel = -1;
1825 int new_sel = -1;
1826 int voltage;
1827 int i;
1829 /* Currently requires operations to do this */
1830 if (!ops->list_voltage || !ops->set_voltage_time_sel
1831 || !rdev->desc->n_voltages)
1832 return -EINVAL;
1834 for (i = 0; i < rdev->desc->n_voltages; i++) {
1835 /* We only look for exact voltage matches here */
1836 voltage = regulator_list_voltage(regulator, i);
1837 if (voltage < 0)
1838 return -EINVAL;
1839 if (voltage == 0)
1840 continue;
1841 if (voltage == old_uV)
1842 old_sel = i;
1843 if (voltage == new_uV)
1844 new_sel = i;
1847 if (old_sel < 0 || new_sel < 0)
1848 return -EINVAL;
1850 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1852 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1858 * Re-apply the last configured voltage. This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1862 int regulator_sync_voltage(struct regulator *regulator)
1864 struct regulator_dev *rdev = regulator->rdev;
1865 int ret, min_uV, max_uV;
1867 mutex_lock(&rdev->mutex);
1869 if (!rdev->desc->ops->set_voltage &&
1870 !rdev->desc->ops->set_voltage_sel) {
1871 ret = -EINVAL;
1872 goto out;
1875 /* This is only going to work if we've had a voltage configured. */
1876 if (!regulator->min_uV && !regulator->max_uV) {
1877 ret = -EINVAL;
1878 goto out;
1881 min_uV = regulator->min_uV;
1882 max_uV = regulator->max_uV;
1884 /* This should be a paranoia check... */
1885 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886 if (ret < 0)
1887 goto out;
1889 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890 if (ret < 0)
1891 goto out;
1893 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1895 out:
1896 mutex_unlock(&rdev->mutex);
1897 return ret;
1899 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1901 static int _regulator_get_voltage(struct regulator_dev *rdev)
1903 int sel, ret;
1905 if (rdev->desc->ops->get_voltage_sel) {
1906 sel = rdev->desc->ops->get_voltage_sel(rdev);
1907 if (sel < 0)
1908 return sel;
1909 ret = rdev->desc->ops->list_voltage(rdev, sel);
1910 } else if (rdev->desc->ops->get_voltage) {
1911 ret = rdev->desc->ops->get_voltage(rdev);
1912 } else {
1913 return -EINVAL;
1916 if (ret < 0)
1917 return ret;
1918 return ret - rdev->constraints->uV_offset;
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1925 * This returns the current regulator voltage in uV.
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1930 int regulator_get_voltage(struct regulator *regulator)
1932 int ret;
1934 mutex_lock(&regulator->rdev->mutex);
1936 ret = _regulator_get_voltage(regulator->rdev);
1938 mutex_unlock(&regulator->rdev->mutex);
1940 return ret;
1942 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1960 int regulator_set_current_limit(struct regulator *regulator,
1961 int min_uA, int max_uA)
1963 struct regulator_dev *rdev = regulator->rdev;
1964 int ret;
1966 mutex_lock(&rdev->mutex);
1968 /* sanity check */
1969 if (!rdev->desc->ops->set_current_limit) {
1970 ret = -EINVAL;
1971 goto out;
1974 /* constraints check */
1975 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976 if (ret < 0)
1977 goto out;
1979 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980 out:
1981 mutex_unlock(&rdev->mutex);
1982 return ret;
1984 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1986 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1988 int ret;
1990 mutex_lock(&rdev->mutex);
1992 /* sanity check */
1993 if (!rdev->desc->ops->get_current_limit) {
1994 ret = -EINVAL;
1995 goto out;
1998 ret = rdev->desc->ops->get_current_limit(rdev);
1999 out:
2000 mutex_unlock(&rdev->mutex);
2001 return ret;
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2008 * This returns the current supplied by the specified current sink in uA.
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2013 int regulator_get_current_limit(struct regulator *regulator)
2015 return _regulator_get_current_limit(regulator->rdev);
2017 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2030 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2032 struct regulator_dev *rdev = regulator->rdev;
2033 int ret;
2034 int regulator_curr_mode;
2036 mutex_lock(&rdev->mutex);
2038 /* sanity check */
2039 if (!rdev->desc->ops->set_mode) {
2040 ret = -EINVAL;
2041 goto out;
2044 /* return if the same mode is requested */
2045 if (rdev->desc->ops->get_mode) {
2046 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047 if (regulator_curr_mode == mode) {
2048 ret = 0;
2049 goto out;
2053 /* constraints check */
2054 ret = regulator_mode_constrain(rdev, &mode);
2055 if (ret < 0)
2056 goto out;
2058 ret = rdev->desc->ops->set_mode(rdev, mode);
2059 out:
2060 mutex_unlock(&rdev->mutex);
2061 return ret;
2063 EXPORT_SYMBOL_GPL(regulator_set_mode);
2065 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2067 int ret;
2069 mutex_lock(&rdev->mutex);
2071 /* sanity check */
2072 if (!rdev->desc->ops->get_mode) {
2073 ret = -EINVAL;
2074 goto out;
2077 ret = rdev->desc->ops->get_mode(rdev);
2078 out:
2079 mutex_unlock(&rdev->mutex);
2080 return ret;
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2087 * Get the current regulator operating mode.
2089 unsigned int regulator_get_mode(struct regulator *regulator)
2091 return _regulator_get_mode(regulator->rdev);
2093 EXPORT_SYMBOL_GPL(regulator_get_mode);
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2110 * o Device is opened / closed.
2111 * o Device I/O is about to begin or has just finished.
2112 * o Device is idling in between work.
2114 * This information is also exported via sysfs to userspace.
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2119 * Returns the new regulator mode or error.
2121 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2123 struct regulator_dev *rdev = regulator->rdev;
2124 struct regulator *consumer;
2125 int ret, output_uV, input_uV, total_uA_load = 0;
2126 unsigned int mode;
2128 mutex_lock(&rdev->mutex);
2131 * first check to see if we can set modes at all, otherwise just
2132 * tell the consumer everything is OK.
2134 regulator->uA_load = uA_load;
2135 ret = regulator_check_drms(rdev);
2136 if (ret < 0) {
2137 ret = 0;
2138 goto out;
2141 if (!rdev->desc->ops->get_optimum_mode)
2142 goto out;
2145 * we can actually do this so any errors are indicators of
2146 * potential real failure.
2148 ret = -EINVAL;
2150 /* get output voltage */
2151 output_uV = _regulator_get_voltage(rdev);
2152 if (output_uV <= 0) {
2153 rdev_err(rdev, "invalid output voltage found\n");
2154 goto out;
2157 /* get input voltage */
2158 input_uV = 0;
2159 if (rdev->supply)
2160 input_uV = regulator_get_voltage(rdev->supply);
2161 if (input_uV <= 0)
2162 input_uV = rdev->constraints->input_uV;
2163 if (input_uV <= 0) {
2164 rdev_err(rdev, "invalid input voltage found\n");
2165 goto out;
2168 /* calc total requested load for this regulator */
2169 list_for_each_entry(consumer, &rdev->consumer_list, list)
2170 total_uA_load += consumer->uA_load;
2172 mode = rdev->desc->ops->get_optimum_mode(rdev,
2173 input_uV, output_uV,
2174 total_uA_load);
2175 ret = regulator_mode_constrain(rdev, &mode);
2176 if (ret < 0) {
2177 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178 total_uA_load, input_uV, output_uV);
2179 goto out;
2182 ret = rdev->desc->ops->set_mode(rdev, mode);
2183 if (ret < 0) {
2184 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185 goto out;
2187 ret = mode;
2188 out:
2189 mutex_unlock(&rdev->mutex);
2190 return ret;
2192 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2199 * Register notifier block to receive regulator events.
2201 int regulator_register_notifier(struct regulator *regulator,
2202 struct notifier_block *nb)
2204 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205 nb);
2207 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2214 * Unregister regulator event notifier block.
2216 int regulator_unregister_notifier(struct regulator *regulator,
2217 struct notifier_block *nb)
2219 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220 nb);
2222 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2224 /* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2227 static void _notifier_call_chain(struct regulator_dev *rdev,
2228 unsigned long event, void *data)
2230 /* call rdev chain first */
2231 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2235 * regulator_bulk_get - get multiple regulator consumers
2237 * @dev: Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers: Configuration of consumers; clients are stored here.
2241 * @return 0 on success, an errno on failure.
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation. If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2248 int regulator_bulk_get(struct device *dev, int num_consumers,
2249 struct regulator_bulk_data *consumers)
2251 int i;
2252 int ret;
2254 for (i = 0; i < num_consumers; i++)
2255 consumers[i].consumer = NULL;
2257 for (i = 0; i < num_consumers; i++) {
2258 consumers[i].consumer = regulator_get(dev,
2259 consumers[i].supply);
2260 if (IS_ERR(consumers[i].consumer)) {
2261 ret = PTR_ERR(consumers[i].consumer);
2262 dev_err(dev, "Failed to get supply '%s': %d\n",
2263 consumers[i].supply, ret);
2264 consumers[i].consumer = NULL;
2265 goto err;
2269 return 0;
2271 err:
2272 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273 regulator_put(consumers[i].consumer);
2275 return ret;
2277 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2279 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2281 struct regulator_bulk_data *bulk = data;
2283 bulk->ret = regulator_enable(bulk->consumer);
2287 * regulator_bulk_enable - enable multiple regulator consumers
2289 * @num_consumers: Number of consumers
2290 * @consumers: Consumer data; clients are stored here.
2291 * @return 0 on success, an errno on failure
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call. If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2298 int regulator_bulk_enable(int num_consumers,
2299 struct regulator_bulk_data *consumers)
2301 LIST_HEAD(async_domain);
2302 int i;
2303 int ret = 0;
2305 for (i = 0; i < num_consumers; i++)
2306 async_schedule_domain(regulator_bulk_enable_async,
2307 &consumers[i], &async_domain);
2309 async_synchronize_full_domain(&async_domain);
2311 /* If any consumer failed we need to unwind any that succeeded */
2312 for (i = 0; i < num_consumers; i++) {
2313 if (consumers[i].ret != 0) {
2314 ret = consumers[i].ret;
2315 goto err;
2319 return 0;
2321 err:
2322 for (i = 0; i < num_consumers; i++)
2323 if (consumers[i].ret == 0)
2324 regulator_disable(consumers[i].consumer);
2325 else
2326 pr_err("Failed to enable %s: %d\n",
2327 consumers[i].supply, consumers[i].ret);
2329 return ret;
2331 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2334 * regulator_bulk_disable - disable multiple regulator consumers
2336 * @num_consumers: Number of consumers
2337 * @consumers: Consumer data; clients are stored here.
2338 * @return 0 on success, an errno on failure
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call. If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2345 int regulator_bulk_disable(int num_consumers,
2346 struct regulator_bulk_data *consumers)
2348 int i;
2349 int ret;
2351 for (i = 0; i < num_consumers; i++) {
2352 ret = regulator_disable(consumers[i].consumer);
2353 if (ret != 0)
2354 goto err;
2357 return 0;
2359 err:
2360 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361 for (--i; i >= 0; --i)
2362 regulator_enable(consumers[i].consumer);
2364 return ret;
2366 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2369 * regulator_bulk_free - free multiple regulator consumers
2371 * @num_consumers: Number of consumers
2372 * @consumers: Consumer data; clients are stored here.
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2377 void regulator_bulk_free(int num_consumers,
2378 struct regulator_bulk_data *consumers)
2380 int i;
2382 for (i = 0; i < num_consumers; i++) {
2383 regulator_put(consumers[i].consumer);
2384 consumers[i].consumer = NULL;
2387 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2399 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400 unsigned long event, void *data)
2402 _notifier_call_chain(rdev, event, data);
2403 return NOTIFY_DONE;
2406 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2409 * regulator_mode_to_status - convert a regulator mode into a status
2411 * @mode: Mode to convert
2413 * Convert a regulator mode into a status.
2415 int regulator_mode_to_status(unsigned int mode)
2417 switch (mode) {
2418 case REGULATOR_MODE_FAST:
2419 return REGULATOR_STATUS_FAST;
2420 case REGULATOR_MODE_NORMAL:
2421 return REGULATOR_STATUS_NORMAL;
2422 case REGULATOR_MODE_IDLE:
2423 return REGULATOR_STATUS_IDLE;
2424 case REGULATOR_STATUS_STANDBY:
2425 return REGULATOR_STATUS_STANDBY;
2426 default:
2427 return 0;
2430 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2436 static int add_regulator_attributes(struct regulator_dev *rdev)
2438 struct device *dev = &rdev->dev;
2439 struct regulator_ops *ops = rdev->desc->ops;
2440 int status = 0;
2442 /* some attributes need specific methods to be displayed */
2443 if (ops->get_voltage || ops->get_voltage_sel) {
2444 status = device_create_file(dev, &dev_attr_microvolts);
2445 if (status < 0)
2446 return status;
2448 if (ops->get_current_limit) {
2449 status = device_create_file(dev, &dev_attr_microamps);
2450 if (status < 0)
2451 return status;
2453 if (ops->get_mode) {
2454 status = device_create_file(dev, &dev_attr_opmode);
2455 if (status < 0)
2456 return status;
2458 if (ops->is_enabled) {
2459 status = device_create_file(dev, &dev_attr_state);
2460 if (status < 0)
2461 return status;
2463 if (ops->get_status) {
2464 status = device_create_file(dev, &dev_attr_status);
2465 if (status < 0)
2466 return status;
2469 /* some attributes are type-specific */
2470 if (rdev->desc->type == REGULATOR_CURRENT) {
2471 status = device_create_file(dev, &dev_attr_requested_microamps);
2472 if (status < 0)
2473 return status;
2476 /* all the other attributes exist to support constraints;
2477 * don't show them if there are no constraints, or if the
2478 * relevant supporting methods are missing.
2480 if (!rdev->constraints)
2481 return status;
2483 /* constraints need specific supporting methods */
2484 if (ops->set_voltage || ops->set_voltage_sel) {
2485 status = device_create_file(dev, &dev_attr_min_microvolts);
2486 if (status < 0)
2487 return status;
2488 status = device_create_file(dev, &dev_attr_max_microvolts);
2489 if (status < 0)
2490 return status;
2492 if (ops->set_current_limit) {
2493 status = device_create_file(dev, &dev_attr_min_microamps);
2494 if (status < 0)
2495 return status;
2496 status = device_create_file(dev, &dev_attr_max_microamps);
2497 if (status < 0)
2498 return status;
2501 /* suspend mode constraints need multiple supporting methods */
2502 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503 return status;
2505 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506 if (status < 0)
2507 return status;
2508 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509 if (status < 0)
2510 return status;
2511 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512 if (status < 0)
2513 return status;
2515 if (ops->set_suspend_voltage) {
2516 status = device_create_file(dev,
2517 &dev_attr_suspend_standby_microvolts);
2518 if (status < 0)
2519 return status;
2520 status = device_create_file(dev,
2521 &dev_attr_suspend_mem_microvolts);
2522 if (status < 0)
2523 return status;
2524 status = device_create_file(dev,
2525 &dev_attr_suspend_disk_microvolts);
2526 if (status < 0)
2527 return status;
2530 if (ops->set_suspend_mode) {
2531 status = device_create_file(dev,
2532 &dev_attr_suspend_standby_mode);
2533 if (status < 0)
2534 return status;
2535 status = device_create_file(dev,
2536 &dev_attr_suspend_mem_mode);
2537 if (status < 0)
2538 return status;
2539 status = device_create_file(dev,
2540 &dev_attr_suspend_disk_mode);
2541 if (status < 0)
2542 return status;
2545 return status;
2548 static void rdev_init_debugfs(struct regulator_dev *rdev)
2550 #ifdef CONFIG_DEBUG_FS
2551 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553 rdev_warn(rdev, "Failed to create debugfs directory\n");
2554 rdev->debugfs = NULL;
2555 return;
2558 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559 &rdev->use_count);
2560 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561 &rdev->open_count);
2562 #endif
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
2575 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576 struct device *dev, const struct regulator_init_data *init_data,
2577 void *driver_data)
2579 static atomic_t regulator_no = ATOMIC_INIT(0);
2580 struct regulator_dev *rdev;
2581 int ret, i;
2583 if (regulator_desc == NULL)
2584 return ERR_PTR(-EINVAL);
2586 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587 return ERR_PTR(-EINVAL);
2589 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590 regulator_desc->type != REGULATOR_CURRENT)
2591 return ERR_PTR(-EINVAL);
2593 if (!init_data)
2594 return ERR_PTR(-EINVAL);
2596 /* Only one of each should be implemented */
2597 WARN_ON(regulator_desc->ops->get_voltage &&
2598 regulator_desc->ops->get_voltage_sel);
2599 WARN_ON(regulator_desc->ops->set_voltage &&
2600 regulator_desc->ops->set_voltage_sel);
2602 /* If we're using selectors we must implement list_voltage. */
2603 if (regulator_desc->ops->get_voltage_sel &&
2604 !regulator_desc->ops->list_voltage) {
2605 return ERR_PTR(-EINVAL);
2607 if (regulator_desc->ops->set_voltage_sel &&
2608 !regulator_desc->ops->list_voltage) {
2609 return ERR_PTR(-EINVAL);
2612 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613 if (rdev == NULL)
2614 return ERR_PTR(-ENOMEM);
2616 mutex_lock(&regulator_list_mutex);
2618 mutex_init(&rdev->mutex);
2619 rdev->reg_data = driver_data;
2620 rdev->owner = regulator_desc->owner;
2621 rdev->desc = regulator_desc;
2622 INIT_LIST_HEAD(&rdev->consumer_list);
2623 INIT_LIST_HEAD(&rdev->list);
2624 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2626 /* preform any regulator specific init */
2627 if (init_data->regulator_init) {
2628 ret = init_data->regulator_init(rdev->reg_data);
2629 if (ret < 0)
2630 goto clean;
2633 /* register with sysfs */
2634 rdev->dev.class = &regulator_class;
2635 rdev->dev.parent = dev;
2636 dev_set_name(&rdev->dev, "regulator.%d",
2637 atomic_inc_return(&regulator_no) - 1);
2638 ret = device_register(&rdev->dev);
2639 if (ret != 0) {
2640 put_device(&rdev->dev);
2641 goto clean;
2644 dev_set_drvdata(&rdev->dev, rdev);
2646 /* set regulator constraints */
2647 ret = set_machine_constraints(rdev, &init_data->constraints);
2648 if (ret < 0)
2649 goto scrub;
2651 /* add attributes supported by this regulator */
2652 ret = add_regulator_attributes(rdev);
2653 if (ret < 0)
2654 goto scrub;
2656 if (init_data->supply_regulator) {
2657 struct regulator_dev *r;
2658 int found = 0;
2660 list_for_each_entry(r, &regulator_list, list) {
2661 if (strcmp(rdev_get_name(r),
2662 init_data->supply_regulator) == 0) {
2663 found = 1;
2664 break;
2668 if (!found) {
2669 dev_err(dev, "Failed to find supply %s\n",
2670 init_data->supply_regulator);
2671 ret = -ENODEV;
2672 goto scrub;
2675 ret = set_supply(rdev, r);
2676 if (ret < 0)
2677 goto scrub;
2680 /* add consumers devices */
2681 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682 ret = set_consumer_device_supply(rdev,
2683 init_data->consumer_supplies[i].dev,
2684 init_data->consumer_supplies[i].dev_name,
2685 init_data->consumer_supplies[i].supply);
2686 if (ret < 0) {
2687 dev_err(dev, "Failed to set supply %s\n",
2688 init_data->consumer_supplies[i].supply);
2689 goto unset_supplies;
2693 list_add(&rdev->list, &regulator_list);
2695 rdev_init_debugfs(rdev);
2696 out:
2697 mutex_unlock(&regulator_list_mutex);
2698 return rdev;
2700 unset_supplies:
2701 unset_regulator_supplies(rdev);
2703 scrub:
2704 kfree(rdev->constraints);
2705 device_unregister(&rdev->dev);
2706 /* device core frees rdev */
2707 rdev = ERR_PTR(ret);
2708 goto out;
2710 clean:
2711 kfree(rdev);
2712 rdev = ERR_PTR(ret);
2713 goto out;
2715 EXPORT_SYMBOL_GPL(regulator_register);
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2721 * Called by regulator drivers to unregister a regulator.
2723 void regulator_unregister(struct regulator_dev *rdev)
2725 if (rdev == NULL)
2726 return;
2728 mutex_lock(&regulator_list_mutex);
2729 #ifdef CONFIG_DEBUG_FS
2730 debugfs_remove_recursive(rdev->debugfs);
2731 #endif
2732 WARN_ON(rdev->open_count);
2733 unset_regulator_supplies(rdev);
2734 list_del(&rdev->list);
2735 if (rdev->supply)
2736 regulator_put(rdev->supply);
2737 device_unregister(&rdev->dev);
2738 kfree(rdev->constraints);
2739 mutex_unlock(&regulator_list_mutex);
2741 EXPORT_SYMBOL_GPL(regulator_unregister);
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2750 int regulator_suspend_prepare(suspend_state_t state)
2752 struct regulator_dev *rdev;
2753 int ret = 0;
2755 /* ON is handled by regulator active state */
2756 if (state == PM_SUSPEND_ON)
2757 return -EINVAL;
2759 mutex_lock(&regulator_list_mutex);
2760 list_for_each_entry(rdev, &regulator_list, list) {
2762 mutex_lock(&rdev->mutex);
2763 ret = suspend_prepare(rdev, state);
2764 mutex_unlock(&rdev->mutex);
2766 if (ret < 0) {
2767 rdev_err(rdev, "failed to prepare\n");
2768 goto out;
2771 out:
2772 mutex_unlock(&regulator_list_mutex);
2773 return ret;
2775 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2783 int regulator_suspend_finish(void)
2785 struct regulator_dev *rdev;
2786 int ret = 0, error;
2788 mutex_lock(&regulator_list_mutex);
2789 list_for_each_entry(rdev, &regulator_list, list) {
2790 struct regulator_ops *ops = rdev->desc->ops;
2792 mutex_lock(&rdev->mutex);
2793 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2794 ops->enable) {
2795 error = ops->enable(rdev);
2796 if (error)
2797 ret = error;
2798 } else {
2799 if (!has_full_constraints)
2800 goto unlock;
2801 if (!ops->disable)
2802 goto unlock;
2803 if (ops->is_enabled && !ops->is_enabled(rdev))
2804 goto unlock;
2806 error = ops->disable(rdev);
2807 if (error)
2808 ret = error;
2810 unlock:
2811 mutex_unlock(&rdev->mutex);
2813 mutex_unlock(&regulator_list_mutex);
2814 return ret;
2816 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2819 * regulator_has_full_constraints - the system has fully specified constraints
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2829 void regulator_has_full_constraints(void)
2831 has_full_constraints = 1;
2833 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured. This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2845 void regulator_use_dummy_regulator(void)
2847 board_wants_dummy_regulator = true;
2849 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2858 void *rdev_get_drvdata(struct regulator_dev *rdev)
2860 return rdev->reg_data;
2862 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2871 void *regulator_get_drvdata(struct regulator *regulator)
2873 return regulator->rdev->reg_data;
2875 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2882 void regulator_set_drvdata(struct regulator *regulator, void *data)
2884 regulator->rdev->reg_data = data;
2886 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2892 int rdev_get_id(struct regulator_dev *rdev)
2894 return rdev->desc->id;
2896 EXPORT_SYMBOL_GPL(rdev_get_id);
2898 struct device *rdev_get_dev(struct regulator_dev *rdev)
2900 return &rdev->dev;
2902 EXPORT_SYMBOL_GPL(rdev_get_dev);
2904 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2906 return reg_init_data->driver_data;
2908 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2910 #ifdef CONFIG_DEBUG_FS
2911 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
2912 size_t count, loff_t *ppos)
2914 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2915 ssize_t len, ret = 0;
2916 struct regulator_map *map;
2918 if (!buf)
2919 return -ENOMEM;
2921 list_for_each_entry(map, &regulator_map_list, list) {
2922 len = snprintf(buf + ret, PAGE_SIZE - ret,
2923 "%s -> %s.%s\n",
2924 rdev_get_name(map->regulator), map->dev_name,
2925 map->supply);
2926 if (len >= 0)
2927 ret += len;
2928 if (ret > PAGE_SIZE) {
2929 ret = PAGE_SIZE;
2930 break;
2934 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
2936 kfree(buf);
2938 return ret;
2941 static const struct file_operations supply_map_fops = {
2942 .read = supply_map_read_file,
2943 .llseek = default_llseek,
2945 #endif
2947 static int __init regulator_init(void)
2949 int ret;
2951 ret = class_register(&regulator_class);
2953 #ifdef CONFIG_DEBUG_FS
2954 debugfs_root = debugfs_create_dir("regulator", NULL);
2955 if (IS_ERR(debugfs_root) || !debugfs_root) {
2956 pr_warn("regulator: Failed to create debugfs directory\n");
2957 debugfs_root = NULL;
2960 if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
2961 NULL, &supply_map_fops)))
2962 pr_warn("regulator: Failed to create supplies debugfs\n");
2963 #endif
2965 regulator_dummy_init();
2967 return ret;
2970 /* init early to allow our consumers to complete system booting */
2971 core_initcall(regulator_init);
2973 static int __init regulator_init_complete(void)
2975 struct regulator_dev *rdev;
2976 struct regulator_ops *ops;
2977 struct regulation_constraints *c;
2978 int enabled, ret;
2980 mutex_lock(&regulator_list_mutex);
2982 /* If we have a full configuration then disable any regulators
2983 * which are not in use or always_on. This will become the
2984 * default behaviour in the future.
2986 list_for_each_entry(rdev, &regulator_list, list) {
2987 ops = rdev->desc->ops;
2988 c = rdev->constraints;
2990 if (!ops->disable || (c && c->always_on))
2991 continue;
2993 mutex_lock(&rdev->mutex);
2995 if (rdev->use_count)
2996 goto unlock;
2998 /* If we can't read the status assume it's on. */
2999 if (ops->is_enabled)
3000 enabled = ops->is_enabled(rdev);
3001 else
3002 enabled = 1;
3004 if (!enabled)
3005 goto unlock;
3007 if (has_full_constraints) {
3008 /* We log since this may kill the system if it
3009 * goes wrong. */
3010 rdev_info(rdev, "disabling\n");
3011 ret = ops->disable(rdev);
3012 if (ret != 0) {
3013 rdev_err(rdev, "couldn't disable: %d\n", ret);
3015 } else {
3016 /* The intention is that in future we will
3017 * assume that full constraints are provided
3018 * so warn even if we aren't going to do
3019 * anything here.
3021 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3024 unlock:
3025 mutex_unlock(&rdev->mutex);
3028 mutex_unlock(&regulator_list_mutex);
3030 return 0;
3032 late_initcall(regulator_init_complete);