2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #define pr_fmt(fmt) "%s: " fmt, __func__
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/regulator.h>
37 #define rdev_crit(rdev, fmt, ...) \
38 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_err(rdev, fmt, ...) \
40 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_warn(rdev, fmt, ...) \
42 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_info(rdev, fmt, ...) \
44 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_dbg(rdev, fmt, ...) \
46 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 static DEFINE_MUTEX(regulator_list_mutex
);
49 static LIST_HEAD(regulator_list
);
50 static LIST_HEAD(regulator_map_list
);
51 static bool has_full_constraints
;
52 static bool board_wants_dummy_regulator
;
54 #ifdef CONFIG_DEBUG_FS
55 static struct dentry
*debugfs_root
;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map
{
64 struct list_head list
;
65 const char *dev_name
; /* The dev_name() for the consumer */
67 struct regulator_dev
*regulator
;
73 * One for each consumer device.
77 struct list_head list
;
82 struct device_attribute dev_attr
;
83 struct regulator_dev
*rdev
;
84 #ifdef CONFIG_DEBUG_FS
85 struct dentry
*debugfs
;
89 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
90 static int _regulator_disable(struct regulator_dev
*rdev
);
91 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
92 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
93 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
94 static void _notifier_call_chain(struct regulator_dev
*rdev
,
95 unsigned long event
, void *data
);
96 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
97 int min_uV
, int max_uV
);
98 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
100 const char *supply_name
);
102 static const char *rdev_get_name(struct regulator_dev
*rdev
)
104 if (rdev
->constraints
&& rdev
->constraints
->name
)
105 return rdev
->constraints
->name
;
106 else if (rdev
->desc
->name
)
107 return rdev
->desc
->name
;
112 /* gets the regulator for a given consumer device */
113 static struct regulator
*get_device_regulator(struct device
*dev
)
115 struct regulator
*regulator
= NULL
;
116 struct regulator_dev
*rdev
;
118 mutex_lock(®ulator_list_mutex
);
119 list_for_each_entry(rdev
, ®ulator_list
, list
) {
120 mutex_lock(&rdev
->mutex
);
121 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
122 if (regulator
->dev
== dev
) {
123 mutex_unlock(&rdev
->mutex
);
124 mutex_unlock(®ulator_list_mutex
);
128 mutex_unlock(&rdev
->mutex
);
130 mutex_unlock(®ulator_list_mutex
);
134 /* Platform voltage constraint check */
135 static int regulator_check_voltage(struct regulator_dev
*rdev
,
136 int *min_uV
, int *max_uV
)
138 BUG_ON(*min_uV
> *max_uV
);
140 if (!rdev
->constraints
) {
141 rdev_err(rdev
, "no constraints\n");
144 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
145 rdev_err(rdev
, "operation not allowed\n");
149 if (*max_uV
> rdev
->constraints
->max_uV
)
150 *max_uV
= rdev
->constraints
->max_uV
;
151 if (*min_uV
< rdev
->constraints
->min_uV
)
152 *min_uV
= rdev
->constraints
->min_uV
;
154 if (*min_uV
> *max_uV
) {
155 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
163 /* Make sure we select a voltage that suits the needs of all
164 * regulator consumers
166 static int regulator_check_consumers(struct regulator_dev
*rdev
,
167 int *min_uV
, int *max_uV
)
169 struct regulator
*regulator
;
171 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
173 * Assume consumers that didn't say anything are OK
174 * with anything in the constraint range.
176 if (!regulator
->min_uV
&& !regulator
->max_uV
)
179 if (*max_uV
> regulator
->max_uV
)
180 *max_uV
= regulator
->max_uV
;
181 if (*min_uV
< regulator
->min_uV
)
182 *min_uV
= regulator
->min_uV
;
185 if (*min_uV
> *max_uV
)
191 /* current constraint check */
192 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
193 int *min_uA
, int *max_uA
)
195 BUG_ON(*min_uA
> *max_uA
);
197 if (!rdev
->constraints
) {
198 rdev_err(rdev
, "no constraints\n");
201 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
202 rdev_err(rdev
, "operation not allowed\n");
206 if (*max_uA
> rdev
->constraints
->max_uA
)
207 *max_uA
= rdev
->constraints
->max_uA
;
208 if (*min_uA
< rdev
->constraints
->min_uA
)
209 *min_uA
= rdev
->constraints
->min_uA
;
211 if (*min_uA
> *max_uA
) {
212 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
220 /* operating mode constraint check */
221 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
224 case REGULATOR_MODE_FAST
:
225 case REGULATOR_MODE_NORMAL
:
226 case REGULATOR_MODE_IDLE
:
227 case REGULATOR_MODE_STANDBY
:
230 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
234 if (!rdev
->constraints
) {
235 rdev_err(rdev
, "no constraints\n");
238 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
239 rdev_err(rdev
, "operation not allowed\n");
243 /* The modes are bitmasks, the most power hungry modes having
244 * the lowest values. If the requested mode isn't supported
245 * try higher modes. */
247 if (rdev
->constraints
->valid_modes_mask
& *mode
)
255 /* dynamic regulator mode switching constraint check */
256 static int regulator_check_drms(struct regulator_dev
*rdev
)
258 if (!rdev
->constraints
) {
259 rdev_err(rdev
, "no constraints\n");
262 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
263 rdev_err(rdev
, "operation not allowed\n");
269 static ssize_t
device_requested_uA_show(struct device
*dev
,
270 struct device_attribute
*attr
, char *buf
)
272 struct regulator
*regulator
;
274 regulator
= get_device_regulator(dev
);
275 if (regulator
== NULL
)
278 return sprintf(buf
, "%d\n", regulator
->uA_load
);
281 static ssize_t
regulator_uV_show(struct device
*dev
,
282 struct device_attribute
*attr
, char *buf
)
284 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
287 mutex_lock(&rdev
->mutex
);
288 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
289 mutex_unlock(&rdev
->mutex
);
293 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
295 static ssize_t
regulator_uA_show(struct device
*dev
,
296 struct device_attribute
*attr
, char *buf
)
298 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
300 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
302 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
304 static ssize_t
regulator_name_show(struct device
*dev
,
305 struct device_attribute
*attr
, char *buf
)
307 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
309 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
312 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
315 case REGULATOR_MODE_FAST
:
316 return sprintf(buf
, "fast\n");
317 case REGULATOR_MODE_NORMAL
:
318 return sprintf(buf
, "normal\n");
319 case REGULATOR_MODE_IDLE
:
320 return sprintf(buf
, "idle\n");
321 case REGULATOR_MODE_STANDBY
:
322 return sprintf(buf
, "standby\n");
324 return sprintf(buf
, "unknown\n");
327 static ssize_t
regulator_opmode_show(struct device
*dev
,
328 struct device_attribute
*attr
, char *buf
)
330 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
332 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
334 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
336 static ssize_t
regulator_print_state(char *buf
, int state
)
339 return sprintf(buf
, "enabled\n");
341 return sprintf(buf
, "disabled\n");
343 return sprintf(buf
, "unknown\n");
346 static ssize_t
regulator_state_show(struct device
*dev
,
347 struct device_attribute
*attr
, char *buf
)
349 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
352 mutex_lock(&rdev
->mutex
);
353 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
354 mutex_unlock(&rdev
->mutex
);
358 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
360 static ssize_t
regulator_status_show(struct device
*dev
,
361 struct device_attribute
*attr
, char *buf
)
363 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
367 status
= rdev
->desc
->ops
->get_status(rdev
);
372 case REGULATOR_STATUS_OFF
:
375 case REGULATOR_STATUS_ON
:
378 case REGULATOR_STATUS_ERROR
:
381 case REGULATOR_STATUS_FAST
:
384 case REGULATOR_STATUS_NORMAL
:
387 case REGULATOR_STATUS_IDLE
:
390 case REGULATOR_STATUS_STANDBY
:
397 return sprintf(buf
, "%s\n", label
);
399 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
401 static ssize_t
regulator_min_uA_show(struct device
*dev
,
402 struct device_attribute
*attr
, char *buf
)
404 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
406 if (!rdev
->constraints
)
407 return sprintf(buf
, "constraint not defined\n");
409 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
411 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
413 static ssize_t
regulator_max_uA_show(struct device
*dev
,
414 struct device_attribute
*attr
, char *buf
)
416 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
418 if (!rdev
->constraints
)
419 return sprintf(buf
, "constraint not defined\n");
421 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
423 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
425 static ssize_t
regulator_min_uV_show(struct device
*dev
,
426 struct device_attribute
*attr
, char *buf
)
428 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
430 if (!rdev
->constraints
)
431 return sprintf(buf
, "constraint not defined\n");
433 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
435 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
437 static ssize_t
regulator_max_uV_show(struct device
*dev
,
438 struct device_attribute
*attr
, char *buf
)
440 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
442 if (!rdev
->constraints
)
443 return sprintf(buf
, "constraint not defined\n");
445 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
447 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
449 static ssize_t
regulator_total_uA_show(struct device
*dev
,
450 struct device_attribute
*attr
, char *buf
)
452 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
453 struct regulator
*regulator
;
456 mutex_lock(&rdev
->mutex
);
457 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
458 uA
+= regulator
->uA_load
;
459 mutex_unlock(&rdev
->mutex
);
460 return sprintf(buf
, "%d\n", uA
);
462 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
464 static ssize_t
regulator_num_users_show(struct device
*dev
,
465 struct device_attribute
*attr
, char *buf
)
467 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
468 return sprintf(buf
, "%d\n", rdev
->use_count
);
471 static ssize_t
regulator_type_show(struct device
*dev
,
472 struct device_attribute
*attr
, char *buf
)
474 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
476 switch (rdev
->desc
->type
) {
477 case REGULATOR_VOLTAGE
:
478 return sprintf(buf
, "voltage\n");
479 case REGULATOR_CURRENT
:
480 return sprintf(buf
, "current\n");
482 return sprintf(buf
, "unknown\n");
485 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
486 struct device_attribute
*attr
, char *buf
)
488 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
490 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
492 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
493 regulator_suspend_mem_uV_show
, NULL
);
495 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
496 struct device_attribute
*attr
, char *buf
)
498 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
500 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
502 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
503 regulator_suspend_disk_uV_show
, NULL
);
505 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
506 struct device_attribute
*attr
, char *buf
)
508 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
510 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
512 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
513 regulator_suspend_standby_uV_show
, NULL
);
515 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
516 struct device_attribute
*attr
, char *buf
)
518 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
520 return regulator_print_opmode(buf
,
521 rdev
->constraints
->state_mem
.mode
);
523 static DEVICE_ATTR(suspend_mem_mode
, 0444,
524 regulator_suspend_mem_mode_show
, NULL
);
526 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
527 struct device_attribute
*attr
, char *buf
)
529 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
531 return regulator_print_opmode(buf
,
532 rdev
->constraints
->state_disk
.mode
);
534 static DEVICE_ATTR(suspend_disk_mode
, 0444,
535 regulator_suspend_disk_mode_show
, NULL
);
537 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
538 struct device_attribute
*attr
, char *buf
)
540 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
542 return regulator_print_opmode(buf
,
543 rdev
->constraints
->state_standby
.mode
);
545 static DEVICE_ATTR(suspend_standby_mode
, 0444,
546 regulator_suspend_standby_mode_show
, NULL
);
548 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
549 struct device_attribute
*attr
, char *buf
)
551 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
553 return regulator_print_state(buf
,
554 rdev
->constraints
->state_mem
.enabled
);
556 static DEVICE_ATTR(suspend_mem_state
, 0444,
557 regulator_suspend_mem_state_show
, NULL
);
559 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
560 struct device_attribute
*attr
, char *buf
)
562 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
564 return regulator_print_state(buf
,
565 rdev
->constraints
->state_disk
.enabled
);
567 static DEVICE_ATTR(suspend_disk_state
, 0444,
568 regulator_suspend_disk_state_show
, NULL
);
570 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
571 struct device_attribute
*attr
, char *buf
)
573 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
575 return regulator_print_state(buf
,
576 rdev
->constraints
->state_standby
.enabled
);
578 static DEVICE_ATTR(suspend_standby_state
, 0444,
579 regulator_suspend_standby_state_show
, NULL
);
583 * These are the only attributes are present for all regulators.
584 * Other attributes are a function of regulator functionality.
586 static struct device_attribute regulator_dev_attrs
[] = {
587 __ATTR(name
, 0444, regulator_name_show
, NULL
),
588 __ATTR(num_users
, 0444, regulator_num_users_show
, NULL
),
589 __ATTR(type
, 0444, regulator_type_show
, NULL
),
593 static void regulator_dev_release(struct device
*dev
)
595 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
599 static struct class regulator_class
= {
601 .dev_release
= regulator_dev_release
,
602 .dev_attrs
= regulator_dev_attrs
,
605 /* Calculate the new optimum regulator operating mode based on the new total
606 * consumer load. All locks held by caller */
607 static void drms_uA_update(struct regulator_dev
*rdev
)
609 struct regulator
*sibling
;
610 int current_uA
= 0, output_uV
, input_uV
, err
;
613 err
= regulator_check_drms(rdev
);
614 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
615 (!rdev
->desc
->ops
->get_voltage
&&
616 !rdev
->desc
->ops
->get_voltage_sel
) ||
617 !rdev
->desc
->ops
->set_mode
)
620 /* get output voltage */
621 output_uV
= _regulator_get_voltage(rdev
);
625 /* get input voltage */
628 input_uV
= _regulator_get_voltage(rdev
);
630 input_uV
= rdev
->constraints
->input_uV
;
634 /* calc total requested load */
635 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
636 current_uA
+= sibling
->uA_load
;
638 /* now get the optimum mode for our new total regulator load */
639 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
640 output_uV
, current_uA
);
642 /* check the new mode is allowed */
643 err
= regulator_mode_constrain(rdev
, &mode
);
645 rdev
->desc
->ops
->set_mode(rdev
, mode
);
648 static int suspend_set_state(struct regulator_dev
*rdev
,
649 struct regulator_state
*rstate
)
654 can_set_state
= rdev
->desc
->ops
->set_suspend_enable
&&
655 rdev
->desc
->ops
->set_suspend_disable
;
657 /* If we have no suspend mode configration don't set anything;
658 * only warn if the driver actually makes the suspend mode
661 if (!rstate
->enabled
&& !rstate
->disabled
) {
663 rdev_warn(rdev
, "No configuration\n");
667 if (rstate
->enabled
&& rstate
->disabled
) {
668 rdev_err(rdev
, "invalid configuration\n");
672 if (!can_set_state
) {
673 rdev_err(rdev
, "no way to set suspend state\n");
678 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
680 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
682 rdev_err(rdev
, "failed to enabled/disable\n");
686 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
687 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
689 rdev_err(rdev
, "failed to set voltage\n");
694 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
695 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
697 rdev_err(rdev
, "failed to set mode\n");
704 /* locks held by caller */
705 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
707 if (!rdev
->constraints
)
711 case PM_SUSPEND_STANDBY
:
712 return suspend_set_state(rdev
,
713 &rdev
->constraints
->state_standby
);
715 return suspend_set_state(rdev
,
716 &rdev
->constraints
->state_mem
);
718 return suspend_set_state(rdev
,
719 &rdev
->constraints
->state_disk
);
725 static void print_constraints(struct regulator_dev
*rdev
)
727 struct regulation_constraints
*constraints
= rdev
->constraints
;
732 if (constraints
->min_uV
&& constraints
->max_uV
) {
733 if (constraints
->min_uV
== constraints
->max_uV
)
734 count
+= sprintf(buf
+ count
, "%d mV ",
735 constraints
->min_uV
/ 1000);
737 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
738 constraints
->min_uV
/ 1000,
739 constraints
->max_uV
/ 1000);
742 if (!constraints
->min_uV
||
743 constraints
->min_uV
!= constraints
->max_uV
) {
744 ret
= _regulator_get_voltage(rdev
);
746 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
749 if (constraints
->uV_offset
)
750 count
+= sprintf(buf
, "%dmV offset ",
751 constraints
->uV_offset
/ 1000);
753 if (constraints
->min_uA
&& constraints
->max_uA
) {
754 if (constraints
->min_uA
== constraints
->max_uA
)
755 count
+= sprintf(buf
+ count
, "%d mA ",
756 constraints
->min_uA
/ 1000);
758 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
759 constraints
->min_uA
/ 1000,
760 constraints
->max_uA
/ 1000);
763 if (!constraints
->min_uA
||
764 constraints
->min_uA
!= constraints
->max_uA
) {
765 ret
= _regulator_get_current_limit(rdev
);
767 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
770 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
771 count
+= sprintf(buf
+ count
, "fast ");
772 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
773 count
+= sprintf(buf
+ count
, "normal ");
774 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
775 count
+= sprintf(buf
+ count
, "idle ");
776 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
777 count
+= sprintf(buf
+ count
, "standby");
779 rdev_info(rdev
, "%s\n", buf
);
782 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
783 struct regulation_constraints
*constraints
)
785 struct regulator_ops
*ops
= rdev
->desc
->ops
;
788 /* do we need to apply the constraint voltage */
789 if (rdev
->constraints
->apply_uV
&&
790 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
791 ret
= _regulator_do_set_voltage(rdev
,
792 rdev
->constraints
->min_uV
,
793 rdev
->constraints
->max_uV
);
795 rdev_err(rdev
, "failed to apply %duV constraint\n",
796 rdev
->constraints
->min_uV
);
801 /* constrain machine-level voltage specs to fit
802 * the actual range supported by this regulator.
804 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
805 int count
= rdev
->desc
->n_voltages
;
807 int min_uV
= INT_MAX
;
808 int max_uV
= INT_MIN
;
809 int cmin
= constraints
->min_uV
;
810 int cmax
= constraints
->max_uV
;
812 /* it's safe to autoconfigure fixed-voltage supplies
813 and the constraints are used by list_voltage. */
814 if (count
== 1 && !cmin
) {
817 constraints
->min_uV
= cmin
;
818 constraints
->max_uV
= cmax
;
821 /* voltage constraints are optional */
822 if ((cmin
== 0) && (cmax
== 0))
825 /* else require explicit machine-level constraints */
826 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
827 rdev_err(rdev
, "invalid voltage constraints\n");
831 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832 for (i
= 0; i
< count
; i
++) {
835 value
= ops
->list_voltage(rdev
, i
);
839 /* maybe adjust [min_uV..max_uV] */
840 if (value
>= cmin
&& value
< min_uV
)
842 if (value
<= cmax
&& value
> max_uV
)
846 /* final: [min_uV..max_uV] valid iff constraints valid */
847 if (max_uV
< min_uV
) {
848 rdev_err(rdev
, "unsupportable voltage constraints\n");
852 /* use regulator's subset of machine constraints */
853 if (constraints
->min_uV
< min_uV
) {
854 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
855 constraints
->min_uV
, min_uV
);
856 constraints
->min_uV
= min_uV
;
858 if (constraints
->max_uV
> max_uV
) {
859 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
860 constraints
->max_uV
, max_uV
);
861 constraints
->max_uV
= max_uV
;
869 * set_machine_constraints - sets regulator constraints
870 * @rdev: regulator source
871 * @constraints: constraints to apply
873 * Allows platform initialisation code to define and constrain
874 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
875 * Constraints *must* be set by platform code in order for some
876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
879 static int set_machine_constraints(struct regulator_dev
*rdev
,
880 const struct regulation_constraints
*constraints
)
883 struct regulator_ops
*ops
= rdev
->desc
->ops
;
885 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
887 if (!rdev
->constraints
)
890 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
894 /* do we need to setup our suspend state */
895 if (constraints
->initial_state
) {
896 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
898 rdev_err(rdev
, "failed to set suspend state\n");
903 if (constraints
->initial_mode
) {
904 if (!ops
->set_mode
) {
905 rdev_err(rdev
, "no set_mode operation\n");
910 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
912 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
917 /* If the constraints say the regulator should be on at this point
918 * and we have control then make sure it is enabled.
920 if ((rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) &&
922 ret
= ops
->enable(rdev
);
924 rdev_err(rdev
, "failed to enable\n");
929 print_constraints(rdev
);
932 kfree(rdev
->constraints
);
933 rdev
->constraints
= NULL
;
938 * set_supply - set regulator supply regulator
939 * @rdev: regulator name
940 * @supply_rdev: supply regulator name
942 * Called by platform initialisation code to set the supply regulator for this
943 * regulator. This ensures that a regulators supply will also be enabled by the
944 * core if it's child is enabled.
946 static int set_supply(struct regulator_dev
*rdev
,
947 struct regulator_dev
*supply_rdev
)
951 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
953 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
954 if (IS_ERR(rdev
->supply
)) {
955 err
= PTR_ERR(rdev
->supply
);
964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
965 * @rdev: regulator source
966 * @consumer_dev: device the supply applies to
967 * @consumer_dev_name: dev_name() string for device supply applies to
968 * @supply: symbolic name for supply
970 * Allows platform initialisation code to map physical regulator
971 * sources to symbolic names for supplies for use by devices. Devices
972 * should use these symbolic names to request regulators, avoiding the
973 * need to provide board-specific regulator names as platform data.
975 * Only one of consumer_dev and consumer_dev_name may be specified.
977 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
978 struct device
*consumer_dev
, const char *consumer_dev_name
,
981 struct regulator_map
*node
;
984 if (consumer_dev
&& consumer_dev_name
)
987 if (!consumer_dev_name
&& consumer_dev
)
988 consumer_dev_name
= dev_name(consumer_dev
);
993 if (consumer_dev_name
!= NULL
)
998 list_for_each_entry(node
, ®ulator_map_list
, list
) {
999 if (node
->dev_name
&& consumer_dev_name
) {
1000 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1002 } else if (node
->dev_name
|| consumer_dev_name
) {
1006 if (strcmp(node
->supply
, supply
) != 0)
1009 dev_dbg(consumer_dev
, "%s/%s is '%s' supply; fail %s/%s\n",
1010 dev_name(&node
->regulator
->dev
),
1011 node
->regulator
->desc
->name
,
1013 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1017 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1021 node
->regulator
= rdev
;
1022 node
->supply
= supply
;
1025 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1026 if (node
->dev_name
== NULL
) {
1032 list_add(&node
->list
, ®ulator_map_list
);
1036 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1038 struct regulator_map
*node
, *n
;
1040 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1041 if (rdev
== node
->regulator
) {
1042 list_del(&node
->list
);
1043 kfree(node
->dev_name
);
1049 #define REG_STR_SIZE 64
1051 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1053 const char *supply_name
)
1055 struct regulator
*regulator
;
1056 char buf
[REG_STR_SIZE
];
1059 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1060 if (regulator
== NULL
)
1063 mutex_lock(&rdev
->mutex
);
1064 regulator
->rdev
= rdev
;
1065 list_add(®ulator
->list
, &rdev
->consumer_list
);
1068 /* create a 'requested_microamps_name' sysfs entry */
1069 size
= scnprintf(buf
, REG_STR_SIZE
,
1070 "microamps_requested_%s-%s",
1071 dev_name(dev
), supply_name
);
1072 if (size
>= REG_STR_SIZE
)
1075 regulator
->dev
= dev
;
1076 sysfs_attr_init(®ulator
->dev_attr
.attr
);
1077 regulator
->dev_attr
.attr
.name
= kstrdup(buf
, GFP_KERNEL
);
1078 if (regulator
->dev_attr
.attr
.name
== NULL
)
1081 regulator
->dev_attr
.attr
.mode
= 0444;
1082 regulator
->dev_attr
.show
= device_requested_uA_show
;
1083 err
= device_create_file(dev
, ®ulator
->dev_attr
);
1085 rdev_warn(rdev
, "could not add regulator_dev requested microamps sysfs entry\n");
1089 /* also add a link to the device sysfs entry */
1090 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1091 dev
->kobj
.name
, supply_name
);
1092 if (size
>= REG_STR_SIZE
)
1095 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1096 if (regulator
->supply_name
== NULL
)
1099 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1102 rdev_warn(rdev
, "could not add device link %s err %d\n",
1103 dev
->kobj
.name
, err
);
1107 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1108 if (regulator
->supply_name
== NULL
)
1112 #ifdef CONFIG_DEBUG_FS
1113 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1115 if (IS_ERR_OR_NULL(regulator
->debugfs
)) {
1116 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1117 regulator
->debugfs
= NULL
;
1119 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1120 ®ulator
->uA_load
);
1121 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1122 ®ulator
->min_uV
);
1123 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1124 ®ulator
->max_uV
);
1128 mutex_unlock(&rdev
->mutex
);
1131 kfree(regulator
->supply_name
);
1133 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1135 kfree(regulator
->dev_attr
.attr
.name
);
1137 list_del(®ulator
->list
);
1139 mutex_unlock(&rdev
->mutex
);
1143 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1145 if (!rdev
->desc
->ops
->enable_time
)
1147 return rdev
->desc
->ops
->enable_time(rdev
);
1150 /* Internal regulator request function */
1151 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1154 struct regulator_dev
*rdev
;
1155 struct regulator_map
*map
;
1156 struct regulator
*regulator
= ERR_PTR(-ENODEV
);
1157 const char *devname
= NULL
;
1161 pr_err("get() with no identifier\n");
1166 devname
= dev_name(dev
);
1168 mutex_lock(®ulator_list_mutex
);
1170 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1171 /* If the mapping has a device set up it must match */
1172 if (map
->dev_name
&&
1173 (!devname
|| strcmp(map
->dev_name
, devname
)))
1176 if (strcmp(map
->supply
, id
) == 0) {
1177 rdev
= map
->regulator
;
1182 if (board_wants_dummy_regulator
) {
1183 rdev
= dummy_regulator_rdev
;
1187 #ifdef CONFIG_REGULATOR_DUMMY
1189 devname
= "deviceless";
1191 /* If the board didn't flag that it was fully constrained then
1192 * substitute in a dummy regulator so consumers can continue.
1194 if (!has_full_constraints
) {
1195 pr_warn("%s supply %s not found, using dummy regulator\n",
1197 rdev
= dummy_regulator_rdev
;
1202 mutex_unlock(®ulator_list_mutex
);
1206 if (rdev
->exclusive
) {
1207 regulator
= ERR_PTR(-EPERM
);
1211 if (exclusive
&& rdev
->open_count
) {
1212 regulator
= ERR_PTR(-EBUSY
);
1216 if (!try_module_get(rdev
->owner
))
1219 regulator
= create_regulator(rdev
, dev
, id
);
1220 if (regulator
== NULL
) {
1221 regulator
= ERR_PTR(-ENOMEM
);
1222 module_put(rdev
->owner
);
1227 rdev
->exclusive
= 1;
1229 ret
= _regulator_is_enabled(rdev
);
1231 rdev
->use_count
= 1;
1233 rdev
->use_count
= 0;
1237 mutex_unlock(®ulator_list_mutex
);
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged. It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1255 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1257 return _regulator_get(dev
, id
, 0);
1259 EXPORT_SYMBOL_GPL(regulator_get
);
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno. Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged. It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1282 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1284 return _regulator_get(dev
, id
, 1);
1286 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1296 void regulator_put(struct regulator
*regulator
)
1298 struct regulator_dev
*rdev
;
1300 if (regulator
== NULL
|| IS_ERR(regulator
))
1303 mutex_lock(®ulator_list_mutex
);
1304 rdev
= regulator
->rdev
;
1306 #ifdef CONFIG_DEBUG_FS
1307 debugfs_remove_recursive(regulator
->debugfs
);
1310 /* remove any sysfs entries */
1311 if (regulator
->dev
) {
1312 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1313 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1314 kfree(regulator
->dev_attr
.attr
.name
);
1316 kfree(regulator
->supply_name
);
1317 list_del(®ulator
->list
);
1321 rdev
->exclusive
= 0;
1323 module_put(rdev
->owner
);
1324 mutex_unlock(®ulator_list_mutex
);
1326 EXPORT_SYMBOL_GPL(regulator_put
);
1328 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
1330 if (!rdev
->constraints
)
1333 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
1339 /* locks held by regulator_enable() */
1340 static int _regulator_enable(struct regulator_dev
*rdev
)
1344 /* check voltage and requested load before enabling */
1345 if (rdev
->constraints
&&
1346 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1347 drms_uA_update(rdev
);
1349 if (rdev
->use_count
== 0) {
1350 /* The regulator may on if it's not switchable or left on */
1351 ret
= _regulator_is_enabled(rdev
);
1352 if (ret
== -EINVAL
|| ret
== 0) {
1353 if (!_regulator_can_change_status(rdev
))
1356 if (!rdev
->desc
->ops
->enable
)
1359 /* Query before enabling in case configuration
1361 ret
= _regulator_get_enable_time(rdev
);
1365 rdev_warn(rdev
, "enable_time() failed: %d\n",
1370 trace_regulator_enable(rdev_get_name(rdev
));
1372 /* Allow the regulator to ramp; it would be useful
1373 * to extend this for bulk operations so that the
1374 * regulators can ramp together. */
1375 ret
= rdev
->desc
->ops
->enable(rdev
);
1379 trace_regulator_enable_delay(rdev_get_name(rdev
));
1381 if (delay
>= 1000) {
1382 mdelay(delay
/ 1000);
1383 udelay(delay
% 1000);
1388 trace_regulator_enable_complete(rdev_get_name(rdev
));
1390 } else if (ret
< 0) {
1391 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1394 /* Fallthrough on positive return values - already enabled */
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value. Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1413 int regulator_enable(struct regulator
*regulator
)
1415 struct regulator_dev
*rdev
= regulator
->rdev
;
1419 ret
= regulator_enable(rdev
->supply
);
1424 mutex_lock(&rdev
->mutex
);
1425 ret
= _regulator_enable(rdev
);
1426 mutex_unlock(&rdev
->mutex
);
1429 regulator_disable(rdev
->supply
);
1433 EXPORT_SYMBOL_GPL(regulator_enable
);
1435 /* locks held by regulator_disable() */
1436 static int _regulator_disable(struct regulator_dev
*rdev
)
1440 if (WARN(rdev
->use_count
<= 0,
1441 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1444 /* are we the last user and permitted to disable ? */
1445 if (rdev
->use_count
== 1 &&
1446 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1448 /* we are last user */
1449 if (_regulator_can_change_status(rdev
) &&
1450 rdev
->desc
->ops
->disable
) {
1451 trace_regulator_disable(rdev_get_name(rdev
));
1453 ret
= rdev
->desc
->ops
->disable(rdev
);
1455 rdev_err(rdev
, "failed to disable\n");
1459 trace_regulator_disable_complete(rdev_get_name(rdev
));
1461 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1465 rdev
->use_count
= 0;
1466 } else if (rdev
->use_count
> 1) {
1468 if (rdev
->constraints
&&
1469 (rdev
->constraints
->valid_ops_mask
&
1470 REGULATOR_CHANGE_DRMS
))
1471 drms_uA_update(rdev
);
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1483 * Disable the regulator output voltage or current. Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1491 int regulator_disable(struct regulator
*regulator
)
1493 struct regulator_dev
*rdev
= regulator
->rdev
;
1496 mutex_lock(&rdev
->mutex
);
1497 ret
= _regulator_disable(rdev
);
1498 mutex_unlock(&rdev
->mutex
);
1500 if (ret
== 0 && rdev
->supply
)
1501 regulator_disable(rdev
->supply
);
1505 EXPORT_SYMBOL_GPL(regulator_disable
);
1507 /* locks held by regulator_force_disable() */
1508 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1513 if (rdev
->desc
->ops
->disable
) {
1514 /* ah well, who wants to live forever... */
1515 ret
= rdev
->desc
->ops
->disable(rdev
);
1517 rdev_err(rdev
, "failed to force disable\n");
1520 /* notify other consumers that power has been forced off */
1521 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1522 REGULATOR_EVENT_DISABLE
, NULL
);
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1537 int regulator_force_disable(struct regulator
*regulator
)
1539 struct regulator_dev
*rdev
= regulator
->rdev
;
1542 mutex_lock(&rdev
->mutex
);
1543 regulator
->uA_load
= 0;
1544 ret
= _regulator_force_disable(regulator
->rdev
);
1545 mutex_unlock(&rdev
->mutex
);
1548 while (rdev
->open_count
--)
1549 regulator_disable(rdev
->supply
);
1553 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1555 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1557 /* If we don't know then assume that the regulator is always on */
1558 if (!rdev
->desc
->ops
->is_enabled
)
1561 return rdev
->desc
->ops
->is_enabled(rdev
);
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1576 int regulator_is_enabled(struct regulator
*regulator
)
1580 mutex_lock(®ulator
->rdev
->mutex
);
1581 ret
= _regulator_is_enabled(regulator
->rdev
);
1582 mutex_unlock(®ulator
->rdev
->mutex
);
1586 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1592 * Returns number of selectors, or negative errno. Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1596 int regulator_count_voltages(struct regulator
*regulator
)
1598 struct regulator_dev
*rdev
= regulator
->rdev
;
1600 return rdev
->desc
->n_voltages
? : -EINVAL
;
1602 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1614 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
1616 struct regulator_dev
*rdev
= regulator
->rdev
;
1617 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1620 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
1623 mutex_lock(&rdev
->mutex
);
1624 ret
= ops
->list_voltage(rdev
, selector
);
1625 mutex_unlock(&rdev
->mutex
);
1628 if (ret
< rdev
->constraints
->min_uV
)
1630 else if (ret
> rdev
->constraints
->max_uV
)
1636 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1645 * Returns a boolean or a negative error code.
1647 int regulator_is_supported_voltage(struct regulator
*regulator
,
1648 int min_uV
, int max_uV
)
1650 int i
, voltages
, ret
;
1652 ret
= regulator_count_voltages(regulator
);
1657 for (i
= 0; i
< voltages
; i
++) {
1658 ret
= regulator_list_voltage(regulator
, i
);
1660 if (ret
>= min_uV
&& ret
<= max_uV
)
1667 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
1668 int min_uV
, int max_uV
)
1672 unsigned int selector
;
1674 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
1676 min_uV
+= rdev
->constraints
->uV_offset
;
1677 max_uV
+= rdev
->constraints
->uV_offset
;
1679 if (rdev
->desc
->ops
->set_voltage
) {
1680 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
1683 if (rdev
->desc
->ops
->list_voltage
)
1684 selector
= rdev
->desc
->ops
->list_voltage(rdev
,
1688 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
1689 int best_val
= INT_MAX
;
1694 /* Find the smallest voltage that falls within the specified
1697 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
1698 ret
= rdev
->desc
->ops
->list_voltage(rdev
, i
);
1702 if (ret
< best_val
&& ret
>= min_uV
&& ret
<= max_uV
) {
1709 * If we can't obtain the old selector there is not enough
1710 * info to call set_voltage_time_sel().
1712 if (rdev
->desc
->ops
->set_voltage_time_sel
&&
1713 rdev
->desc
->ops
->get_voltage_sel
) {
1714 unsigned int old_selector
= 0;
1716 ret
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
1720 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
1721 old_selector
, selector
);
1724 if (best_val
!= INT_MAX
) {
1725 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
1726 selector
= best_val
;
1734 /* Insert any necessary delays */
1735 if (delay
>= 1000) {
1736 mdelay(delay
/ 1000);
1737 udelay(delay
% 1000);
1743 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
1746 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), selector
);
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1769 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
1771 struct regulator_dev
*rdev
= regulator
->rdev
;
1774 mutex_lock(&rdev
->mutex
);
1776 /* If we're setting the same range as last time the change
1777 * should be a noop (some cpufreq implementations use the same
1778 * voltage for multiple frequencies, for example).
1780 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
1784 if (!rdev
->desc
->ops
->set_voltage
&&
1785 !rdev
->desc
->ops
->set_voltage_sel
) {
1790 /* constraints check */
1791 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1794 regulator
->min_uV
= min_uV
;
1795 regulator
->max_uV
= max_uV
;
1797 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
1801 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
1804 mutex_unlock(&rdev
->mutex
);
1807 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1819 int regulator_set_voltage_time(struct regulator
*regulator
,
1820 int old_uV
, int new_uV
)
1822 struct regulator_dev
*rdev
= regulator
->rdev
;
1823 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1829 /* Currently requires operations to do this */
1830 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
1831 || !rdev
->desc
->n_voltages
)
1834 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
1835 /* We only look for exact voltage matches here */
1836 voltage
= regulator_list_voltage(regulator
, i
);
1841 if (voltage
== old_uV
)
1843 if (voltage
== new_uV
)
1847 if (old_sel
< 0 || new_sel
< 0)
1850 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
1852 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1858 * Re-apply the last configured voltage. This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1862 int regulator_sync_voltage(struct regulator
*regulator
)
1864 struct regulator_dev
*rdev
= regulator
->rdev
;
1865 int ret
, min_uV
, max_uV
;
1867 mutex_lock(&rdev
->mutex
);
1869 if (!rdev
->desc
->ops
->set_voltage
&&
1870 !rdev
->desc
->ops
->set_voltage_sel
) {
1875 /* This is only going to work if we've had a voltage configured. */
1876 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
1881 min_uV
= regulator
->min_uV
;
1882 max_uV
= regulator
->max_uV
;
1884 /* This should be a paranoia check... */
1885 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1889 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
1893 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
1896 mutex_unlock(&rdev
->mutex
);
1899 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
1901 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
1905 if (rdev
->desc
->ops
->get_voltage_sel
) {
1906 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
1909 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
1910 } else if (rdev
->desc
->ops
->get_voltage
) {
1911 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
1918 return ret
- rdev
->constraints
->uV_offset
;
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1925 * This returns the current regulator voltage in uV.
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1930 int regulator_get_voltage(struct regulator
*regulator
)
1934 mutex_lock(®ulator
->rdev
->mutex
);
1936 ret
= _regulator_get_voltage(regulator
->rdev
);
1938 mutex_unlock(®ulator
->rdev
->mutex
);
1942 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1960 int regulator_set_current_limit(struct regulator
*regulator
,
1961 int min_uA
, int max_uA
)
1963 struct regulator_dev
*rdev
= regulator
->rdev
;
1966 mutex_lock(&rdev
->mutex
);
1969 if (!rdev
->desc
->ops
->set_current_limit
) {
1974 /* constraints check */
1975 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
1979 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
1981 mutex_unlock(&rdev
->mutex
);
1984 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
1986 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
1990 mutex_lock(&rdev
->mutex
);
1993 if (!rdev
->desc
->ops
->get_current_limit
) {
1998 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2000 mutex_unlock(&rdev
->mutex
);
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2008 * This returns the current supplied by the specified current sink in uA.
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2013 int regulator_get_current_limit(struct regulator
*regulator
)
2015 return _regulator_get_current_limit(regulator
->rdev
);
2017 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2030 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2032 struct regulator_dev
*rdev
= regulator
->rdev
;
2034 int regulator_curr_mode
;
2036 mutex_lock(&rdev
->mutex
);
2039 if (!rdev
->desc
->ops
->set_mode
) {
2044 /* return if the same mode is requested */
2045 if (rdev
->desc
->ops
->get_mode
) {
2046 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2047 if (regulator_curr_mode
== mode
) {
2053 /* constraints check */
2054 ret
= regulator_mode_constrain(rdev
, &mode
);
2058 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2060 mutex_unlock(&rdev
->mutex
);
2063 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2065 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2069 mutex_lock(&rdev
->mutex
);
2072 if (!rdev
->desc
->ops
->get_mode
) {
2077 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2079 mutex_unlock(&rdev
->mutex
);
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2087 * Get the current regulator operating mode.
2089 unsigned int regulator_get_mode(struct regulator
*regulator
)
2091 return _regulator_get_mode(regulator
->rdev
);
2093 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2110 * o Device is opened / closed.
2111 * o Device I/O is about to begin or has just finished.
2112 * o Device is idling in between work.
2114 * This information is also exported via sysfs to userspace.
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2119 * Returns the new regulator mode or error.
2121 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2123 struct regulator_dev
*rdev
= regulator
->rdev
;
2124 struct regulator
*consumer
;
2125 int ret
, output_uV
, input_uV
, total_uA_load
= 0;
2128 mutex_lock(&rdev
->mutex
);
2131 * first check to see if we can set modes at all, otherwise just
2132 * tell the consumer everything is OK.
2134 regulator
->uA_load
= uA_load
;
2135 ret
= regulator_check_drms(rdev
);
2141 if (!rdev
->desc
->ops
->get_optimum_mode
)
2145 * we can actually do this so any errors are indicators of
2146 * potential real failure.
2150 /* get output voltage */
2151 output_uV
= _regulator_get_voltage(rdev
);
2152 if (output_uV
<= 0) {
2153 rdev_err(rdev
, "invalid output voltage found\n");
2157 /* get input voltage */
2160 input_uV
= regulator_get_voltage(rdev
->supply
);
2162 input_uV
= rdev
->constraints
->input_uV
;
2163 if (input_uV
<= 0) {
2164 rdev_err(rdev
, "invalid input voltage found\n");
2168 /* calc total requested load for this regulator */
2169 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2170 total_uA_load
+= consumer
->uA_load
;
2172 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2173 input_uV
, output_uV
,
2175 ret
= regulator_mode_constrain(rdev
, &mode
);
2177 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178 total_uA_load
, input_uV
, output_uV
);
2182 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2184 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2189 mutex_unlock(&rdev
->mutex
);
2192 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2199 * Register notifier block to receive regulator events.
2201 int regulator_register_notifier(struct regulator
*regulator
,
2202 struct notifier_block
*nb
)
2204 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2207 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2214 * Unregister regulator event notifier block.
2216 int regulator_unregister_notifier(struct regulator
*regulator
,
2217 struct notifier_block
*nb
)
2219 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2222 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2224 /* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2227 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2228 unsigned long event
, void *data
)
2230 /* call rdev chain first */
2231 blocking_notifier_call_chain(&rdev
->notifier
, event
, NULL
);
2235 * regulator_bulk_get - get multiple regulator consumers
2237 * @dev: Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers: Configuration of consumers; clients are stored here.
2241 * @return 0 on success, an errno on failure.
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation. If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2248 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
2249 struct regulator_bulk_data
*consumers
)
2254 for (i
= 0; i
< num_consumers
; i
++)
2255 consumers
[i
].consumer
= NULL
;
2257 for (i
= 0; i
< num_consumers
; i
++) {
2258 consumers
[i
].consumer
= regulator_get(dev
,
2259 consumers
[i
].supply
);
2260 if (IS_ERR(consumers
[i
].consumer
)) {
2261 ret
= PTR_ERR(consumers
[i
].consumer
);
2262 dev_err(dev
, "Failed to get supply '%s': %d\n",
2263 consumers
[i
].supply
, ret
);
2264 consumers
[i
].consumer
= NULL
;
2272 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
2273 regulator_put(consumers
[i
].consumer
);
2277 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
2279 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
2281 struct regulator_bulk_data
*bulk
= data
;
2283 bulk
->ret
= regulator_enable(bulk
->consumer
);
2287 * regulator_bulk_enable - enable multiple regulator consumers
2289 * @num_consumers: Number of consumers
2290 * @consumers: Consumer data; clients are stored here.
2291 * @return 0 on success, an errno on failure
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call. If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2298 int regulator_bulk_enable(int num_consumers
,
2299 struct regulator_bulk_data
*consumers
)
2301 LIST_HEAD(async_domain
);
2305 for (i
= 0; i
< num_consumers
; i
++)
2306 async_schedule_domain(regulator_bulk_enable_async
,
2307 &consumers
[i
], &async_domain
);
2309 async_synchronize_full_domain(&async_domain
);
2311 /* If any consumer failed we need to unwind any that succeeded */
2312 for (i
= 0; i
< num_consumers
; i
++) {
2313 if (consumers
[i
].ret
!= 0) {
2314 ret
= consumers
[i
].ret
;
2322 for (i
= 0; i
< num_consumers
; i
++)
2323 if (consumers
[i
].ret
== 0)
2324 regulator_disable(consumers
[i
].consumer
);
2326 pr_err("Failed to enable %s: %d\n",
2327 consumers
[i
].supply
, consumers
[i
].ret
);
2331 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
2334 * regulator_bulk_disable - disable multiple regulator consumers
2336 * @num_consumers: Number of consumers
2337 * @consumers: Consumer data; clients are stored here.
2338 * @return 0 on success, an errno on failure
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call. If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2345 int regulator_bulk_disable(int num_consumers
,
2346 struct regulator_bulk_data
*consumers
)
2351 for (i
= 0; i
< num_consumers
; i
++) {
2352 ret
= regulator_disable(consumers
[i
].consumer
);
2360 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
2361 for (--i
; i
>= 0; --i
)
2362 regulator_enable(consumers
[i
].consumer
);
2366 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
2369 * regulator_bulk_free - free multiple regulator consumers
2371 * @num_consumers: Number of consumers
2372 * @consumers: Consumer data; clients are stored here.
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2377 void regulator_bulk_free(int num_consumers
,
2378 struct regulator_bulk_data
*consumers
)
2382 for (i
= 0; i
< num_consumers
; i
++) {
2383 regulator_put(consumers
[i
].consumer
);
2384 consumers
[i
].consumer
= NULL
;
2387 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2399 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
2400 unsigned long event
, void *data
)
2402 _notifier_call_chain(rdev
, event
, data
);
2406 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
2409 * regulator_mode_to_status - convert a regulator mode into a status
2411 * @mode: Mode to convert
2413 * Convert a regulator mode into a status.
2415 int regulator_mode_to_status(unsigned int mode
)
2418 case REGULATOR_MODE_FAST
:
2419 return REGULATOR_STATUS_FAST
;
2420 case REGULATOR_MODE_NORMAL
:
2421 return REGULATOR_STATUS_NORMAL
;
2422 case REGULATOR_MODE_IDLE
:
2423 return REGULATOR_STATUS_IDLE
;
2424 case REGULATOR_STATUS_STANDBY
:
2425 return REGULATOR_STATUS_STANDBY
;
2430 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2436 static int add_regulator_attributes(struct regulator_dev
*rdev
)
2438 struct device
*dev
= &rdev
->dev
;
2439 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2442 /* some attributes need specific methods to be displayed */
2443 if (ops
->get_voltage
|| ops
->get_voltage_sel
) {
2444 status
= device_create_file(dev
, &dev_attr_microvolts
);
2448 if (ops
->get_current_limit
) {
2449 status
= device_create_file(dev
, &dev_attr_microamps
);
2453 if (ops
->get_mode
) {
2454 status
= device_create_file(dev
, &dev_attr_opmode
);
2458 if (ops
->is_enabled
) {
2459 status
= device_create_file(dev
, &dev_attr_state
);
2463 if (ops
->get_status
) {
2464 status
= device_create_file(dev
, &dev_attr_status
);
2469 /* some attributes are type-specific */
2470 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
2471 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
2476 /* all the other attributes exist to support constraints;
2477 * don't show them if there are no constraints, or if the
2478 * relevant supporting methods are missing.
2480 if (!rdev
->constraints
)
2483 /* constraints need specific supporting methods */
2484 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
2485 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
2488 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
2492 if (ops
->set_current_limit
) {
2493 status
= device_create_file(dev
, &dev_attr_min_microamps
);
2496 status
= device_create_file(dev
, &dev_attr_max_microamps
);
2501 /* suspend mode constraints need multiple supporting methods */
2502 if (!(ops
->set_suspend_enable
&& ops
->set_suspend_disable
))
2505 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
2508 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
2511 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
2515 if (ops
->set_suspend_voltage
) {
2516 status
= device_create_file(dev
,
2517 &dev_attr_suspend_standby_microvolts
);
2520 status
= device_create_file(dev
,
2521 &dev_attr_suspend_mem_microvolts
);
2524 status
= device_create_file(dev
,
2525 &dev_attr_suspend_disk_microvolts
);
2530 if (ops
->set_suspend_mode
) {
2531 status
= device_create_file(dev
,
2532 &dev_attr_suspend_standby_mode
);
2535 status
= device_create_file(dev
,
2536 &dev_attr_suspend_mem_mode
);
2539 status
= device_create_file(dev
,
2540 &dev_attr_suspend_disk_mode
);
2548 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
2550 #ifdef CONFIG_DEBUG_FS
2551 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
2552 if (IS_ERR(rdev
->debugfs
) || !rdev
->debugfs
) {
2553 rdev_warn(rdev
, "Failed to create debugfs directory\n");
2554 rdev
->debugfs
= NULL
;
2558 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
2560 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
2575 struct regulator_dev
*regulator_register(struct regulator_desc
*regulator_desc
,
2576 struct device
*dev
, const struct regulator_init_data
*init_data
,
2579 static atomic_t regulator_no
= ATOMIC_INIT(0);
2580 struct regulator_dev
*rdev
;
2583 if (regulator_desc
== NULL
)
2584 return ERR_PTR(-EINVAL
);
2586 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
2587 return ERR_PTR(-EINVAL
);
2589 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
2590 regulator_desc
->type
!= REGULATOR_CURRENT
)
2591 return ERR_PTR(-EINVAL
);
2594 return ERR_PTR(-EINVAL
);
2596 /* Only one of each should be implemented */
2597 WARN_ON(regulator_desc
->ops
->get_voltage
&&
2598 regulator_desc
->ops
->get_voltage_sel
);
2599 WARN_ON(regulator_desc
->ops
->set_voltage
&&
2600 regulator_desc
->ops
->set_voltage_sel
);
2602 /* If we're using selectors we must implement list_voltage. */
2603 if (regulator_desc
->ops
->get_voltage_sel
&&
2604 !regulator_desc
->ops
->list_voltage
) {
2605 return ERR_PTR(-EINVAL
);
2607 if (regulator_desc
->ops
->set_voltage_sel
&&
2608 !regulator_desc
->ops
->list_voltage
) {
2609 return ERR_PTR(-EINVAL
);
2612 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
2614 return ERR_PTR(-ENOMEM
);
2616 mutex_lock(®ulator_list_mutex
);
2618 mutex_init(&rdev
->mutex
);
2619 rdev
->reg_data
= driver_data
;
2620 rdev
->owner
= regulator_desc
->owner
;
2621 rdev
->desc
= regulator_desc
;
2622 INIT_LIST_HEAD(&rdev
->consumer_list
);
2623 INIT_LIST_HEAD(&rdev
->list
);
2624 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
2626 /* preform any regulator specific init */
2627 if (init_data
->regulator_init
) {
2628 ret
= init_data
->regulator_init(rdev
->reg_data
);
2633 /* register with sysfs */
2634 rdev
->dev
.class = ®ulator_class
;
2635 rdev
->dev
.parent
= dev
;
2636 dev_set_name(&rdev
->dev
, "regulator.%d",
2637 atomic_inc_return(®ulator_no
) - 1);
2638 ret
= device_register(&rdev
->dev
);
2640 put_device(&rdev
->dev
);
2644 dev_set_drvdata(&rdev
->dev
, rdev
);
2646 /* set regulator constraints */
2647 ret
= set_machine_constraints(rdev
, &init_data
->constraints
);
2651 /* add attributes supported by this regulator */
2652 ret
= add_regulator_attributes(rdev
);
2656 if (init_data
->supply_regulator
) {
2657 struct regulator_dev
*r
;
2660 list_for_each_entry(r
, ®ulator_list
, list
) {
2661 if (strcmp(rdev_get_name(r
),
2662 init_data
->supply_regulator
) == 0) {
2669 dev_err(dev
, "Failed to find supply %s\n",
2670 init_data
->supply_regulator
);
2675 ret
= set_supply(rdev
, r
);
2680 /* add consumers devices */
2681 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
2682 ret
= set_consumer_device_supply(rdev
,
2683 init_data
->consumer_supplies
[i
].dev
,
2684 init_data
->consumer_supplies
[i
].dev_name
,
2685 init_data
->consumer_supplies
[i
].supply
);
2687 dev_err(dev
, "Failed to set supply %s\n",
2688 init_data
->consumer_supplies
[i
].supply
);
2689 goto unset_supplies
;
2693 list_add(&rdev
->list
, ®ulator_list
);
2695 rdev_init_debugfs(rdev
);
2697 mutex_unlock(®ulator_list_mutex
);
2701 unset_regulator_supplies(rdev
);
2704 kfree(rdev
->constraints
);
2705 device_unregister(&rdev
->dev
);
2706 /* device core frees rdev */
2707 rdev
= ERR_PTR(ret
);
2712 rdev
= ERR_PTR(ret
);
2715 EXPORT_SYMBOL_GPL(regulator_register
);
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2721 * Called by regulator drivers to unregister a regulator.
2723 void regulator_unregister(struct regulator_dev
*rdev
)
2728 mutex_lock(®ulator_list_mutex
);
2729 #ifdef CONFIG_DEBUG_FS
2730 debugfs_remove_recursive(rdev
->debugfs
);
2732 WARN_ON(rdev
->open_count
);
2733 unset_regulator_supplies(rdev
);
2734 list_del(&rdev
->list
);
2736 regulator_put(rdev
->supply
);
2737 device_unregister(&rdev
->dev
);
2738 kfree(rdev
->constraints
);
2739 mutex_unlock(®ulator_list_mutex
);
2741 EXPORT_SYMBOL_GPL(regulator_unregister
);
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2750 int regulator_suspend_prepare(suspend_state_t state
)
2752 struct regulator_dev
*rdev
;
2755 /* ON is handled by regulator active state */
2756 if (state
== PM_SUSPEND_ON
)
2759 mutex_lock(®ulator_list_mutex
);
2760 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2762 mutex_lock(&rdev
->mutex
);
2763 ret
= suspend_prepare(rdev
, state
);
2764 mutex_unlock(&rdev
->mutex
);
2767 rdev_err(rdev
, "failed to prepare\n");
2772 mutex_unlock(®ulator_list_mutex
);
2775 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2783 int regulator_suspend_finish(void)
2785 struct regulator_dev
*rdev
;
2788 mutex_lock(®ulator_list_mutex
);
2789 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2790 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2792 mutex_lock(&rdev
->mutex
);
2793 if ((rdev
->use_count
> 0 || rdev
->constraints
->always_on
) &&
2795 error
= ops
->enable(rdev
);
2799 if (!has_full_constraints
)
2803 if (ops
->is_enabled
&& !ops
->is_enabled(rdev
))
2806 error
= ops
->disable(rdev
);
2811 mutex_unlock(&rdev
->mutex
);
2813 mutex_unlock(®ulator_list_mutex
);
2816 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
2819 * regulator_has_full_constraints - the system has fully specified constraints
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2829 void regulator_has_full_constraints(void)
2831 has_full_constraints
= 1;
2833 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured. This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2845 void regulator_use_dummy_regulator(void)
2847 board_wants_dummy_regulator
= true;
2849 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator
);
2852 * rdev_get_drvdata - get rdev regulator driver data
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2858 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
2860 return rdev
->reg_data
;
2862 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2871 void *regulator_get_drvdata(struct regulator
*regulator
)
2873 return regulator
->rdev
->reg_data
;
2875 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2882 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
2884 regulator
->rdev
->reg_data
= data
;
2886 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
2889 * regulator_get_id - get regulator ID
2892 int rdev_get_id(struct regulator_dev
*rdev
)
2894 return rdev
->desc
->id
;
2896 EXPORT_SYMBOL_GPL(rdev_get_id
);
2898 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
2902 EXPORT_SYMBOL_GPL(rdev_get_dev
);
2904 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
2906 return reg_init_data
->driver_data
;
2908 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
2910 #ifdef CONFIG_DEBUG_FS
2911 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
2912 size_t count
, loff_t
*ppos
)
2914 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2915 ssize_t len
, ret
= 0;
2916 struct regulator_map
*map
;
2921 list_for_each_entry(map
, ®ulator_map_list
, list
) {
2922 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
2924 rdev_get_name(map
->regulator
), map
->dev_name
,
2928 if (ret
> PAGE_SIZE
) {
2934 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
2941 static const struct file_operations supply_map_fops
= {
2942 .read
= supply_map_read_file
,
2943 .llseek
= default_llseek
,
2947 static int __init
regulator_init(void)
2951 ret
= class_register(®ulator_class
);
2953 #ifdef CONFIG_DEBUG_FS
2954 debugfs_root
= debugfs_create_dir("regulator", NULL
);
2955 if (IS_ERR(debugfs_root
) || !debugfs_root
) {
2956 pr_warn("regulator: Failed to create debugfs directory\n");
2957 debugfs_root
= NULL
;
2960 if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root
,
2961 NULL
, &supply_map_fops
)))
2962 pr_warn("regulator: Failed to create supplies debugfs\n");
2965 regulator_dummy_init();
2970 /* init early to allow our consumers to complete system booting */
2971 core_initcall(regulator_init
);
2973 static int __init
regulator_init_complete(void)
2975 struct regulator_dev
*rdev
;
2976 struct regulator_ops
*ops
;
2977 struct regulation_constraints
*c
;
2980 mutex_lock(®ulator_list_mutex
);
2982 /* If we have a full configuration then disable any regulators
2983 * which are not in use or always_on. This will become the
2984 * default behaviour in the future.
2986 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2987 ops
= rdev
->desc
->ops
;
2988 c
= rdev
->constraints
;
2990 if (!ops
->disable
|| (c
&& c
->always_on
))
2993 mutex_lock(&rdev
->mutex
);
2995 if (rdev
->use_count
)
2998 /* If we can't read the status assume it's on. */
2999 if (ops
->is_enabled
)
3000 enabled
= ops
->is_enabled(rdev
);
3007 if (has_full_constraints
) {
3008 /* We log since this may kill the system if it
3010 rdev_info(rdev
, "disabling\n");
3011 ret
= ops
->disable(rdev
);
3013 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3016 /* The intention is that in future we will
3017 * assume that full constraints are provided
3018 * so warn even if we aren't going to do
3021 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3025 mutex_unlock(&rdev
->mutex
);
3028 mutex_unlock(®ulator_list_mutex
);
3032 late_initcall(regulator_init_complete
);