This client driver allows you to use a GPIO pin as a source for PPS
[linux-2.6/next.git] / drivers / usb / host / xhci-ring.c
blob58a6e26648ea47ba5050e47b103757b401966076
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
82 unsigned long segment_offset;
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 bool consumer, bool more_trbs_coming)
190 u32 chain;
191 union xhci_trb *next;
192 unsigned long long addr;
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 next = ++(ring->enqueue);
197 ring->enq_updates++;
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
201 while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 if (!consumer) {
203 if (ring != xhci->event_ring) {
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
212 if (!chain && !more_trbs_coming)
213 break;
215 /* If we're not dealing with 0.95 hardware,
216 * carry over the chain bit of the previous TRB
217 * (which may mean the chain bit is cleared).
219 if (!xhci_link_trb_quirk(xhci)) {
220 next->link.control &=
221 cpu_to_le32(~TRB_CHAIN);
222 next->link.control |=
223 cpu_to_le32(chain);
225 /* Give this link TRB to the hardware */
226 wmb();
227 next->link.control ^= cpu_to_le32(TRB_CYCLE);
229 /* Toggle the cycle bit after the last ring segment. */
230 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
231 ring->cycle_state = (ring->cycle_state ? 0 : 1);
232 if (!in_interrupt())
233 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
234 ring,
235 (unsigned int) ring->cycle_state);
238 ring->enq_seg = ring->enq_seg->next;
239 ring->enqueue = ring->enq_seg->trbs;
240 next = ring->enqueue;
242 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
246 * Check to see if there's room to enqueue num_trbs on the ring. See rules
247 * above.
248 * FIXME: this would be simpler and faster if we just kept track of the number
249 * of free TRBs in a ring.
251 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
252 unsigned int num_trbs)
254 int i;
255 union xhci_trb *enq = ring->enqueue;
256 struct xhci_segment *enq_seg = ring->enq_seg;
257 struct xhci_segment *cur_seg;
258 unsigned int left_on_ring;
260 /* If we are currently pointing to a link TRB, advance the
261 * enqueue pointer before checking for space */
262 while (last_trb(xhci, ring, enq_seg, enq)) {
263 enq_seg = enq_seg->next;
264 enq = enq_seg->trbs;
267 /* Check if ring is empty */
268 if (enq == ring->dequeue) {
269 /* Can't use link trbs */
270 left_on_ring = TRBS_PER_SEGMENT - 1;
271 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
272 cur_seg = cur_seg->next)
273 left_on_ring += TRBS_PER_SEGMENT - 1;
275 /* Always need one TRB free in the ring. */
276 left_on_ring -= 1;
277 if (num_trbs > left_on_ring) {
278 xhci_warn(xhci, "Not enough room on ring; "
279 "need %u TRBs, %u TRBs left\n",
280 num_trbs, left_on_ring);
281 return 0;
283 return 1;
285 /* Make sure there's an extra empty TRB available */
286 for (i = 0; i <= num_trbs; ++i) {
287 if (enq == ring->dequeue)
288 return 0;
289 enq++;
290 while (last_trb(xhci, ring, enq_seg, enq)) {
291 enq_seg = enq_seg->next;
292 enq = enq_seg->trbs;
295 return 1;
298 /* Ring the host controller doorbell after placing a command on the ring */
299 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
301 xhci_dbg(xhci, "// Ding dong!\n");
302 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
303 /* Flush PCI posted writes */
304 xhci_readl(xhci, &xhci->dba->doorbell[0]);
307 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
308 unsigned int slot_id,
309 unsigned int ep_index,
310 unsigned int stream_id)
312 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
313 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
314 unsigned int ep_state = ep->ep_state;
316 /* Don't ring the doorbell for this endpoint if there are pending
317 * cancellations because we don't want to interrupt processing.
318 * We don't want to restart any stream rings if there's a set dequeue
319 * pointer command pending because the device can choose to start any
320 * stream once the endpoint is on the HW schedule.
321 * FIXME - check all the stream rings for pending cancellations.
323 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
324 (ep_state & EP_HALTED))
325 return;
326 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
327 /* The CPU has better things to do at this point than wait for a
328 * write-posting flush. It'll get there soon enough.
332 /* Ring the doorbell for any rings with pending URBs */
333 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
334 unsigned int slot_id,
335 unsigned int ep_index)
337 unsigned int stream_id;
338 struct xhci_virt_ep *ep;
340 ep = &xhci->devs[slot_id]->eps[ep_index];
342 /* A ring has pending URBs if its TD list is not empty */
343 if (!(ep->ep_state & EP_HAS_STREAMS)) {
344 if (!(list_empty(&ep->ring->td_list)))
345 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
346 return;
349 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
350 stream_id++) {
351 struct xhci_stream_info *stream_info = ep->stream_info;
352 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
353 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
354 stream_id);
359 * Find the segment that trb is in. Start searching in start_seg.
360 * If we must move past a segment that has a link TRB with a toggle cycle state
361 * bit set, then we will toggle the value pointed at by cycle_state.
363 static struct xhci_segment *find_trb_seg(
364 struct xhci_segment *start_seg,
365 union xhci_trb *trb, int *cycle_state)
367 struct xhci_segment *cur_seg = start_seg;
368 struct xhci_generic_trb *generic_trb;
370 while (cur_seg->trbs > trb ||
371 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
372 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
373 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
374 *cycle_state ^= 0x1;
375 cur_seg = cur_seg->next;
376 if (cur_seg == start_seg)
377 /* Looped over the entire list. Oops! */
378 return NULL;
380 return cur_seg;
384 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
385 unsigned int slot_id, unsigned int ep_index,
386 unsigned int stream_id)
388 struct xhci_virt_ep *ep;
390 ep = &xhci->devs[slot_id]->eps[ep_index];
391 /* Common case: no streams */
392 if (!(ep->ep_state & EP_HAS_STREAMS))
393 return ep->ring;
395 if (stream_id == 0) {
396 xhci_warn(xhci,
397 "WARN: Slot ID %u, ep index %u has streams, "
398 "but URB has no stream ID.\n",
399 slot_id, ep_index);
400 return NULL;
403 if (stream_id < ep->stream_info->num_streams)
404 return ep->stream_info->stream_rings[stream_id];
406 xhci_warn(xhci,
407 "WARN: Slot ID %u, ep index %u has "
408 "stream IDs 1 to %u allocated, "
409 "but stream ID %u is requested.\n",
410 slot_id, ep_index,
411 ep->stream_info->num_streams - 1,
412 stream_id);
413 return NULL;
416 /* Get the right ring for the given URB.
417 * If the endpoint supports streams, boundary check the URB's stream ID.
418 * If the endpoint doesn't support streams, return the singular endpoint ring.
420 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
421 struct urb *urb)
423 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
424 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
428 * Move the xHC's endpoint ring dequeue pointer past cur_td.
429 * Record the new state of the xHC's endpoint ring dequeue segment,
430 * dequeue pointer, and new consumer cycle state in state.
431 * Update our internal representation of the ring's dequeue pointer.
433 * We do this in three jumps:
434 * - First we update our new ring state to be the same as when the xHC stopped.
435 * - Then we traverse the ring to find the segment that contains
436 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
437 * any link TRBs with the toggle cycle bit set.
438 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
439 * if we've moved it past a link TRB with the toggle cycle bit set.
441 * Some of the uses of xhci_generic_trb are grotty, but if they're done
442 * with correct __le32 accesses they should work fine. Only users of this are
443 * in here.
445 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
446 unsigned int slot_id, unsigned int ep_index,
447 unsigned int stream_id, struct xhci_td *cur_td,
448 struct xhci_dequeue_state *state)
450 struct xhci_virt_device *dev = xhci->devs[slot_id];
451 struct xhci_ring *ep_ring;
452 struct xhci_generic_trb *trb;
453 struct xhci_ep_ctx *ep_ctx;
454 dma_addr_t addr;
456 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
457 ep_index, stream_id);
458 if (!ep_ring) {
459 xhci_warn(xhci, "WARN can't find new dequeue state "
460 "for invalid stream ID %u.\n",
461 stream_id);
462 return;
464 state->new_cycle_state = 0;
465 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
466 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
467 dev->eps[ep_index].stopped_trb,
468 &state->new_cycle_state);
469 if (!state->new_deq_seg) {
470 WARN_ON(1);
471 return;
474 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
475 xhci_dbg(xhci, "Finding endpoint context\n");
476 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
477 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
479 state->new_deq_ptr = cur_td->last_trb;
480 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
481 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
482 state->new_deq_ptr,
483 &state->new_cycle_state);
484 if (!state->new_deq_seg) {
485 WARN_ON(1);
486 return;
489 trb = &state->new_deq_ptr->generic;
490 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
491 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
492 state->new_cycle_state ^= 0x1;
493 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
496 * If there is only one segment in a ring, find_trb_seg()'s while loop
497 * will not run, and it will return before it has a chance to see if it
498 * needs to toggle the cycle bit. It can't tell if the stalled transfer
499 * ended just before the link TRB on a one-segment ring, or if the TD
500 * wrapped around the top of the ring, because it doesn't have the TD in
501 * question. Look for the one-segment case where stalled TRB's address
502 * is greater than the new dequeue pointer address.
504 if (ep_ring->first_seg == ep_ring->first_seg->next &&
505 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
506 state->new_cycle_state ^= 0x1;
507 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
509 /* Don't update the ring cycle state for the producer (us). */
510 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
511 state->new_deq_seg);
512 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
513 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
514 (unsigned long long) addr);
517 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
518 * (The last TRB actually points to the ring enqueue pointer, which is not part
519 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
521 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
522 struct xhci_td *cur_td, bool flip_cycle)
524 struct xhci_segment *cur_seg;
525 union xhci_trb *cur_trb;
527 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
528 true;
529 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
530 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
531 /* Unchain any chained Link TRBs, but
532 * leave the pointers intact.
534 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
535 /* Flip the cycle bit (link TRBs can't be the first
536 * or last TRB).
538 if (flip_cycle)
539 cur_trb->generic.field[3] ^=
540 cpu_to_le32(TRB_CYCLE);
541 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
542 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
543 "in seg %p (0x%llx dma)\n",
544 cur_trb,
545 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
546 cur_seg,
547 (unsigned long long)cur_seg->dma);
548 } else {
549 cur_trb->generic.field[0] = 0;
550 cur_trb->generic.field[1] = 0;
551 cur_trb->generic.field[2] = 0;
552 /* Preserve only the cycle bit of this TRB */
553 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
554 /* Flip the cycle bit except on the first or last TRB */
555 if (flip_cycle && cur_trb != cur_td->first_trb &&
556 cur_trb != cur_td->last_trb)
557 cur_trb->generic.field[3] ^=
558 cpu_to_le32(TRB_CYCLE);
559 cur_trb->generic.field[3] |= cpu_to_le32(
560 TRB_TYPE(TRB_TR_NOOP));
561 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
562 "in seg %p (0x%llx dma)\n",
563 cur_trb,
564 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
565 cur_seg,
566 (unsigned long long)cur_seg->dma);
568 if (cur_trb == cur_td->last_trb)
569 break;
573 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
574 unsigned int ep_index, unsigned int stream_id,
575 struct xhci_segment *deq_seg,
576 union xhci_trb *deq_ptr, u32 cycle_state);
578 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
579 unsigned int slot_id, unsigned int ep_index,
580 unsigned int stream_id,
581 struct xhci_dequeue_state *deq_state)
583 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
585 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
586 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
587 deq_state->new_deq_seg,
588 (unsigned long long)deq_state->new_deq_seg->dma,
589 deq_state->new_deq_ptr,
590 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
591 deq_state->new_cycle_state);
592 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
593 deq_state->new_deq_seg,
594 deq_state->new_deq_ptr,
595 (u32) deq_state->new_cycle_state);
596 /* Stop the TD queueing code from ringing the doorbell until
597 * this command completes. The HC won't set the dequeue pointer
598 * if the ring is running, and ringing the doorbell starts the
599 * ring running.
601 ep->ep_state |= SET_DEQ_PENDING;
604 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
605 struct xhci_virt_ep *ep)
607 ep->ep_state &= ~EP_HALT_PENDING;
608 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
609 * timer is running on another CPU, we don't decrement stop_cmds_pending
610 * (since we didn't successfully stop the watchdog timer).
612 if (del_timer(&ep->stop_cmd_timer))
613 ep->stop_cmds_pending--;
616 /* Must be called with xhci->lock held in interrupt context */
617 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
618 struct xhci_td *cur_td, int status, char *adjective)
620 struct usb_hcd *hcd;
621 struct urb *urb;
622 struct urb_priv *urb_priv;
624 urb = cur_td->urb;
625 urb_priv = urb->hcpriv;
626 urb_priv->td_cnt++;
627 hcd = bus_to_hcd(urb->dev->bus);
629 /* Only giveback urb when this is the last td in urb */
630 if (urb_priv->td_cnt == urb_priv->length) {
631 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
632 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
633 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
634 if (xhci->quirks & XHCI_AMD_PLL_FIX)
635 usb_amd_quirk_pll_enable();
638 usb_hcd_unlink_urb_from_ep(hcd, urb);
640 spin_unlock(&xhci->lock);
641 usb_hcd_giveback_urb(hcd, urb, status);
642 xhci_urb_free_priv(xhci, urb_priv);
643 spin_lock(&xhci->lock);
648 * When we get a command completion for a Stop Endpoint Command, we need to
649 * unlink any cancelled TDs from the ring. There are two ways to do that:
651 * 1. If the HW was in the middle of processing the TD that needs to be
652 * cancelled, then we must move the ring's dequeue pointer past the last TRB
653 * in the TD with a Set Dequeue Pointer Command.
654 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
655 * bit cleared) so that the HW will skip over them.
657 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
658 union xhci_trb *trb, struct xhci_event_cmd *event)
660 unsigned int slot_id;
661 unsigned int ep_index;
662 struct xhci_virt_device *virt_dev;
663 struct xhci_ring *ep_ring;
664 struct xhci_virt_ep *ep;
665 struct list_head *entry;
666 struct xhci_td *cur_td = NULL;
667 struct xhci_td *last_unlinked_td;
669 struct xhci_dequeue_state deq_state;
671 if (unlikely(TRB_TO_SUSPEND_PORT(
672 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
673 slot_id = TRB_TO_SLOT_ID(
674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
675 virt_dev = xhci->devs[slot_id];
676 if (virt_dev)
677 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
678 event);
679 else
680 xhci_warn(xhci, "Stop endpoint command "
681 "completion for disabled slot %u\n",
682 slot_id);
683 return;
686 memset(&deq_state, 0, sizeof(deq_state));
687 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
688 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
689 ep = &xhci->devs[slot_id]->eps[ep_index];
691 if (list_empty(&ep->cancelled_td_list)) {
692 xhci_stop_watchdog_timer_in_irq(xhci, ep);
693 ep->stopped_td = NULL;
694 ep->stopped_trb = NULL;
695 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
696 return;
699 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
700 * We have the xHCI lock, so nothing can modify this list until we drop
701 * it. We're also in the event handler, so we can't get re-interrupted
702 * if another Stop Endpoint command completes
704 list_for_each(entry, &ep->cancelled_td_list) {
705 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
706 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
707 cur_td->first_trb,
708 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
709 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
710 if (!ep_ring) {
711 /* This shouldn't happen unless a driver is mucking
712 * with the stream ID after submission. This will
713 * leave the TD on the hardware ring, and the hardware
714 * will try to execute it, and may access a buffer
715 * that has already been freed. In the best case, the
716 * hardware will execute it, and the event handler will
717 * ignore the completion event for that TD, since it was
718 * removed from the td_list for that endpoint. In
719 * short, don't muck with the stream ID after
720 * submission.
722 xhci_warn(xhci, "WARN Cancelled URB %p "
723 "has invalid stream ID %u.\n",
724 cur_td->urb,
725 cur_td->urb->stream_id);
726 goto remove_finished_td;
729 * If we stopped on the TD we need to cancel, then we have to
730 * move the xHC endpoint ring dequeue pointer past this TD.
732 if (cur_td == ep->stopped_td)
733 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
734 cur_td->urb->stream_id,
735 cur_td, &deq_state);
736 else
737 td_to_noop(xhci, ep_ring, cur_td, false);
738 remove_finished_td:
740 * The event handler won't see a completion for this TD anymore,
741 * so remove it from the endpoint ring's TD list. Keep it in
742 * the cancelled TD list for URB completion later.
744 list_del_init(&cur_td->td_list);
746 last_unlinked_td = cur_td;
747 xhci_stop_watchdog_timer_in_irq(xhci, ep);
749 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
750 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
751 xhci_queue_new_dequeue_state(xhci,
752 slot_id, ep_index,
753 ep->stopped_td->urb->stream_id,
754 &deq_state);
755 xhci_ring_cmd_db(xhci);
756 } else {
757 /* Otherwise ring the doorbell(s) to restart queued transfers */
758 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
760 ep->stopped_td = NULL;
761 ep->stopped_trb = NULL;
764 * Drop the lock and complete the URBs in the cancelled TD list.
765 * New TDs to be cancelled might be added to the end of the list before
766 * we can complete all the URBs for the TDs we already unlinked.
767 * So stop when we've completed the URB for the last TD we unlinked.
769 do {
770 cur_td = list_entry(ep->cancelled_td_list.next,
771 struct xhci_td, cancelled_td_list);
772 list_del_init(&cur_td->cancelled_td_list);
774 /* Clean up the cancelled URB */
775 /* Doesn't matter what we pass for status, since the core will
776 * just overwrite it (because the URB has been unlinked).
778 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
780 /* Stop processing the cancelled list if the watchdog timer is
781 * running.
783 if (xhci->xhc_state & XHCI_STATE_DYING)
784 return;
785 } while (cur_td != last_unlinked_td);
787 /* Return to the event handler with xhci->lock re-acquired */
790 /* Watchdog timer function for when a stop endpoint command fails to complete.
791 * In this case, we assume the host controller is broken or dying or dead. The
792 * host may still be completing some other events, so we have to be careful to
793 * let the event ring handler and the URB dequeueing/enqueueing functions know
794 * through xhci->state.
796 * The timer may also fire if the host takes a very long time to respond to the
797 * command, and the stop endpoint command completion handler cannot delete the
798 * timer before the timer function is called. Another endpoint cancellation may
799 * sneak in before the timer function can grab the lock, and that may queue
800 * another stop endpoint command and add the timer back. So we cannot use a
801 * simple flag to say whether there is a pending stop endpoint command for a
802 * particular endpoint.
804 * Instead we use a combination of that flag and a counter for the number of
805 * pending stop endpoint commands. If the timer is the tail end of the last
806 * stop endpoint command, and the endpoint's command is still pending, we assume
807 * the host is dying.
809 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
811 struct xhci_hcd *xhci;
812 struct xhci_virt_ep *ep;
813 struct xhci_virt_ep *temp_ep;
814 struct xhci_ring *ring;
815 struct xhci_td *cur_td;
816 int ret, i, j;
818 ep = (struct xhci_virt_ep *) arg;
819 xhci = ep->xhci;
821 spin_lock(&xhci->lock);
823 ep->stop_cmds_pending--;
824 if (xhci->xhc_state & XHCI_STATE_DYING) {
825 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
826 "xHCI as DYING, exiting.\n");
827 spin_unlock(&xhci->lock);
828 return;
830 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
831 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
832 "exiting.\n");
833 spin_unlock(&xhci->lock);
834 return;
837 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
838 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
839 /* Oops, HC is dead or dying or at least not responding to the stop
840 * endpoint command.
842 xhci->xhc_state |= XHCI_STATE_DYING;
843 /* Disable interrupts from the host controller and start halting it */
844 xhci_quiesce(xhci);
845 spin_unlock(&xhci->lock);
847 ret = xhci_halt(xhci);
849 spin_lock(&xhci->lock);
850 if (ret < 0) {
851 /* This is bad; the host is not responding to commands and it's
852 * not allowing itself to be halted. At least interrupts are
853 * disabled. If we call usb_hc_died(), it will attempt to
854 * disconnect all device drivers under this host. Those
855 * disconnect() methods will wait for all URBs to be unlinked,
856 * so we must complete them.
858 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
859 xhci_warn(xhci, "Completing active URBs anyway.\n");
860 /* We could turn all TDs on the rings to no-ops. This won't
861 * help if the host has cached part of the ring, and is slow if
862 * we want to preserve the cycle bit. Skip it and hope the host
863 * doesn't touch the memory.
866 for (i = 0; i < MAX_HC_SLOTS; i++) {
867 if (!xhci->devs[i])
868 continue;
869 for (j = 0; j < 31; j++) {
870 temp_ep = &xhci->devs[i]->eps[j];
871 ring = temp_ep->ring;
872 if (!ring)
873 continue;
874 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
875 "ep index %u\n", i, j);
876 while (!list_empty(&ring->td_list)) {
877 cur_td = list_first_entry(&ring->td_list,
878 struct xhci_td,
879 td_list);
880 list_del_init(&cur_td->td_list);
881 if (!list_empty(&cur_td->cancelled_td_list))
882 list_del_init(&cur_td->cancelled_td_list);
883 xhci_giveback_urb_in_irq(xhci, cur_td,
884 -ESHUTDOWN, "killed");
886 while (!list_empty(&temp_ep->cancelled_td_list)) {
887 cur_td = list_first_entry(
888 &temp_ep->cancelled_td_list,
889 struct xhci_td,
890 cancelled_td_list);
891 list_del_init(&cur_td->cancelled_td_list);
892 xhci_giveback_urb_in_irq(xhci, cur_td,
893 -ESHUTDOWN, "killed");
897 spin_unlock(&xhci->lock);
898 xhci_dbg(xhci, "Calling usb_hc_died()\n");
899 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
900 xhci_dbg(xhci, "xHCI host controller is dead.\n");
904 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
905 * we need to clear the set deq pending flag in the endpoint ring state, so that
906 * the TD queueing code can ring the doorbell again. We also need to ring the
907 * endpoint doorbell to restart the ring, but only if there aren't more
908 * cancellations pending.
910 static void handle_set_deq_completion(struct xhci_hcd *xhci,
911 struct xhci_event_cmd *event,
912 union xhci_trb *trb)
914 unsigned int slot_id;
915 unsigned int ep_index;
916 unsigned int stream_id;
917 struct xhci_ring *ep_ring;
918 struct xhci_virt_device *dev;
919 struct xhci_ep_ctx *ep_ctx;
920 struct xhci_slot_ctx *slot_ctx;
922 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
923 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
924 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
925 dev = xhci->devs[slot_id];
927 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
928 if (!ep_ring) {
929 xhci_warn(xhci, "WARN Set TR deq ptr command for "
930 "freed stream ID %u\n",
931 stream_id);
932 /* XXX: Harmless??? */
933 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
934 return;
937 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
938 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
940 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
941 unsigned int ep_state;
942 unsigned int slot_state;
944 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
945 case COMP_TRB_ERR:
946 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
947 "of stream ID configuration\n");
948 break;
949 case COMP_CTX_STATE:
950 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
951 "to incorrect slot or ep state.\n");
952 ep_state = le32_to_cpu(ep_ctx->ep_info);
953 ep_state &= EP_STATE_MASK;
954 slot_state = le32_to_cpu(slot_ctx->dev_state);
955 slot_state = GET_SLOT_STATE(slot_state);
956 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
957 slot_state, ep_state);
958 break;
959 case COMP_EBADSLT:
960 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
961 "slot %u was not enabled.\n", slot_id);
962 break;
963 default:
964 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
965 "completion code of %u.\n",
966 GET_COMP_CODE(le32_to_cpu(event->status)));
967 break;
969 /* OK what do we do now? The endpoint state is hosed, and we
970 * should never get to this point if the synchronization between
971 * queueing, and endpoint state are correct. This might happen
972 * if the device gets disconnected after we've finished
973 * cancelling URBs, which might not be an error...
975 } else {
976 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
977 le64_to_cpu(ep_ctx->deq));
978 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
979 dev->eps[ep_index].queued_deq_ptr) ==
980 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
981 /* Update the ring's dequeue segment and dequeue pointer
982 * to reflect the new position.
984 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
985 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
986 } else {
987 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
988 "Ptr command & xHCI internal state.\n");
989 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
990 dev->eps[ep_index].queued_deq_seg,
991 dev->eps[ep_index].queued_deq_ptr);
995 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
996 dev->eps[ep_index].queued_deq_seg = NULL;
997 dev->eps[ep_index].queued_deq_ptr = NULL;
998 /* Restart any rings with pending URBs */
999 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1002 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1003 struct xhci_event_cmd *event,
1004 union xhci_trb *trb)
1006 int slot_id;
1007 unsigned int ep_index;
1009 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1010 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1011 /* This command will only fail if the endpoint wasn't halted,
1012 * but we don't care.
1014 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1015 GET_COMP_CODE(le32_to_cpu(event->status)));
1017 /* HW with the reset endpoint quirk needs to have a configure endpoint
1018 * command complete before the endpoint can be used. Queue that here
1019 * because the HW can't handle two commands being queued in a row.
1021 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1022 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1023 xhci_queue_configure_endpoint(xhci,
1024 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1025 false);
1026 xhci_ring_cmd_db(xhci);
1027 } else {
1028 /* Clear our internal halted state and restart the ring(s) */
1029 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1030 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1034 /* Check to see if a command in the device's command queue matches this one.
1035 * Signal the completion or free the command, and return 1. Return 0 if the
1036 * completed command isn't at the head of the command list.
1038 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1039 struct xhci_virt_device *virt_dev,
1040 struct xhci_event_cmd *event)
1042 struct xhci_command *command;
1044 if (list_empty(&virt_dev->cmd_list))
1045 return 0;
1047 command = list_entry(virt_dev->cmd_list.next,
1048 struct xhci_command, cmd_list);
1049 if (xhci->cmd_ring->dequeue != command->command_trb)
1050 return 0;
1052 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1053 list_del(&command->cmd_list);
1054 if (command->completion)
1055 complete(command->completion);
1056 else
1057 xhci_free_command(xhci, command);
1058 return 1;
1061 static void handle_cmd_completion(struct xhci_hcd *xhci,
1062 struct xhci_event_cmd *event)
1064 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1065 u64 cmd_dma;
1066 dma_addr_t cmd_dequeue_dma;
1067 struct xhci_input_control_ctx *ctrl_ctx;
1068 struct xhci_virt_device *virt_dev;
1069 unsigned int ep_index;
1070 struct xhci_ring *ep_ring;
1071 unsigned int ep_state;
1073 cmd_dma = le64_to_cpu(event->cmd_trb);
1074 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1075 xhci->cmd_ring->dequeue);
1076 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1077 if (cmd_dequeue_dma == 0) {
1078 xhci->error_bitmask |= 1 << 4;
1079 return;
1081 /* Does the DMA address match our internal dequeue pointer address? */
1082 if (cmd_dma != (u64) cmd_dequeue_dma) {
1083 xhci->error_bitmask |= 1 << 5;
1084 return;
1086 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1087 & TRB_TYPE_BITMASK) {
1088 case TRB_TYPE(TRB_ENABLE_SLOT):
1089 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1090 xhci->slot_id = slot_id;
1091 else
1092 xhci->slot_id = 0;
1093 complete(&xhci->addr_dev);
1094 break;
1095 case TRB_TYPE(TRB_DISABLE_SLOT):
1096 if (xhci->devs[slot_id]) {
1097 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1098 /* Delete default control endpoint resources */
1099 xhci_free_device_endpoint_resources(xhci,
1100 xhci->devs[slot_id], true);
1101 xhci_free_virt_device(xhci, slot_id);
1103 break;
1104 case TRB_TYPE(TRB_CONFIG_EP):
1105 virt_dev = xhci->devs[slot_id];
1106 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1107 break;
1109 * Configure endpoint commands can come from the USB core
1110 * configuration or alt setting changes, or because the HW
1111 * needed an extra configure endpoint command after a reset
1112 * endpoint command or streams were being configured.
1113 * If the command was for a halted endpoint, the xHCI driver
1114 * is not waiting on the configure endpoint command.
1116 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1117 virt_dev->in_ctx);
1118 /* Input ctx add_flags are the endpoint index plus one */
1119 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1120 /* A usb_set_interface() call directly after clearing a halted
1121 * condition may race on this quirky hardware. Not worth
1122 * worrying about, since this is prototype hardware. Not sure
1123 * if this will work for streams, but streams support was
1124 * untested on this prototype.
1126 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1127 ep_index != (unsigned int) -1 &&
1128 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1129 le32_to_cpu(ctrl_ctx->drop_flags)) {
1130 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1131 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1132 if (!(ep_state & EP_HALTED))
1133 goto bandwidth_change;
1134 xhci_dbg(xhci, "Completed config ep cmd - "
1135 "last ep index = %d, state = %d\n",
1136 ep_index, ep_state);
1137 /* Clear internal halted state and restart ring(s) */
1138 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1139 ~EP_HALTED;
1140 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1141 break;
1143 bandwidth_change:
1144 xhci_dbg(xhci, "Completed config ep cmd\n");
1145 xhci->devs[slot_id]->cmd_status =
1146 GET_COMP_CODE(le32_to_cpu(event->status));
1147 complete(&xhci->devs[slot_id]->cmd_completion);
1148 break;
1149 case TRB_TYPE(TRB_EVAL_CONTEXT):
1150 virt_dev = xhci->devs[slot_id];
1151 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1152 break;
1153 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1154 complete(&xhci->devs[slot_id]->cmd_completion);
1155 break;
1156 case TRB_TYPE(TRB_ADDR_DEV):
1157 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1158 complete(&xhci->addr_dev);
1159 break;
1160 case TRB_TYPE(TRB_STOP_RING):
1161 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1162 break;
1163 case TRB_TYPE(TRB_SET_DEQ):
1164 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1165 break;
1166 case TRB_TYPE(TRB_CMD_NOOP):
1167 break;
1168 case TRB_TYPE(TRB_RESET_EP):
1169 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1170 break;
1171 case TRB_TYPE(TRB_RESET_DEV):
1172 xhci_dbg(xhci, "Completed reset device command.\n");
1173 slot_id = TRB_TO_SLOT_ID(
1174 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1175 virt_dev = xhci->devs[slot_id];
1176 if (virt_dev)
1177 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1178 else
1179 xhci_warn(xhci, "Reset device command completion "
1180 "for disabled slot %u\n", slot_id);
1181 break;
1182 case TRB_TYPE(TRB_NEC_GET_FW):
1183 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1184 xhci->error_bitmask |= 1 << 6;
1185 break;
1187 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1188 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1189 NEC_FW_MINOR(le32_to_cpu(event->status)));
1190 break;
1191 default:
1192 /* Skip over unknown commands on the event ring */
1193 xhci->error_bitmask |= 1 << 6;
1194 break;
1196 inc_deq(xhci, xhci->cmd_ring, false);
1199 static void handle_vendor_event(struct xhci_hcd *xhci,
1200 union xhci_trb *event)
1202 u32 trb_type;
1204 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1205 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1206 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1207 handle_cmd_completion(xhci, &event->event_cmd);
1210 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1211 * port registers -- USB 3.0 and USB 2.0).
1213 * Returns a zero-based port number, which is suitable for indexing into each of
1214 * the split roothubs' port arrays and bus state arrays.
1216 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1217 struct xhci_hcd *xhci, u32 port_id)
1219 unsigned int i;
1220 unsigned int num_similar_speed_ports = 0;
1222 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1223 * and usb2_ports are 0-based indexes. Count the number of similar
1224 * speed ports, up to 1 port before this port.
1226 for (i = 0; i < (port_id - 1); i++) {
1227 u8 port_speed = xhci->port_array[i];
1230 * Skip ports that don't have known speeds, or have duplicate
1231 * Extended Capabilities port speed entries.
1233 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1234 continue;
1237 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1238 * 1.1 ports are under the USB 2.0 hub. If the port speed
1239 * matches the device speed, it's a similar speed port.
1241 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1242 num_similar_speed_ports++;
1244 return num_similar_speed_ports;
1247 static void handle_port_status(struct xhci_hcd *xhci,
1248 union xhci_trb *event)
1250 struct usb_hcd *hcd;
1251 u32 port_id;
1252 u32 temp, temp1;
1253 int max_ports;
1254 int slot_id;
1255 unsigned int faked_port_index;
1256 u8 major_revision;
1257 struct xhci_bus_state *bus_state;
1258 __le32 __iomem **port_array;
1259 bool bogus_port_status = false;
1261 /* Port status change events always have a successful completion code */
1262 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1263 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1264 xhci->error_bitmask |= 1 << 8;
1266 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1267 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1269 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1270 if ((port_id <= 0) || (port_id > max_ports)) {
1271 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1272 bogus_port_status = true;
1273 goto cleanup;
1276 /* Figure out which usb_hcd this port is attached to:
1277 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1279 major_revision = xhci->port_array[port_id - 1];
1280 if (major_revision == 0) {
1281 xhci_warn(xhci, "Event for port %u not in "
1282 "Extended Capabilities, ignoring.\n",
1283 port_id);
1284 bogus_port_status = true;
1285 goto cleanup;
1287 if (major_revision == DUPLICATE_ENTRY) {
1288 xhci_warn(xhci, "Event for port %u duplicated in"
1289 "Extended Capabilities, ignoring.\n",
1290 port_id);
1291 bogus_port_status = true;
1292 goto cleanup;
1296 * Hardware port IDs reported by a Port Status Change Event include USB
1297 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1298 * resume event, but we first need to translate the hardware port ID
1299 * into the index into the ports on the correct split roothub, and the
1300 * correct bus_state structure.
1302 /* Find the right roothub. */
1303 hcd = xhci_to_hcd(xhci);
1304 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1305 hcd = xhci->shared_hcd;
1306 bus_state = &xhci->bus_state[hcd_index(hcd)];
1307 if (hcd->speed == HCD_USB3)
1308 port_array = xhci->usb3_ports;
1309 else
1310 port_array = xhci->usb2_ports;
1311 /* Find the faked port hub number */
1312 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1313 port_id);
1315 temp = xhci_readl(xhci, port_array[faked_port_index]);
1316 if (hcd->state == HC_STATE_SUSPENDED) {
1317 xhci_dbg(xhci, "resume root hub\n");
1318 usb_hcd_resume_root_hub(hcd);
1321 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1322 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1324 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1325 if (!(temp1 & CMD_RUN)) {
1326 xhci_warn(xhci, "xHC is not running.\n");
1327 goto cleanup;
1330 if (DEV_SUPERSPEED(temp)) {
1331 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1332 temp = xhci_port_state_to_neutral(temp);
1333 temp &= ~PORT_PLS_MASK;
1334 temp |= PORT_LINK_STROBE | XDEV_U0;
1335 xhci_writel(xhci, temp, port_array[faked_port_index]);
1336 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1337 faked_port_index);
1338 if (!slot_id) {
1339 xhci_dbg(xhci, "slot_id is zero\n");
1340 goto cleanup;
1342 xhci_ring_device(xhci, slot_id);
1343 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1344 /* Clear PORT_PLC */
1345 temp = xhci_readl(xhci, port_array[faked_port_index]);
1346 temp = xhci_port_state_to_neutral(temp);
1347 temp |= PORT_PLC;
1348 xhci_writel(xhci, temp, port_array[faked_port_index]);
1349 } else {
1350 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1351 bus_state->resume_done[faked_port_index] = jiffies +
1352 msecs_to_jiffies(20);
1353 mod_timer(&hcd->rh_timer,
1354 bus_state->resume_done[faked_port_index]);
1355 /* Do the rest in GetPortStatus */
1359 cleanup:
1360 /* Update event ring dequeue pointer before dropping the lock */
1361 inc_deq(xhci, xhci->event_ring, true);
1363 /* Don't make the USB core poll the roothub if we got a bad port status
1364 * change event. Besides, at that point we can't tell which roothub
1365 * (USB 2.0 or USB 3.0) to kick.
1367 if (bogus_port_status)
1368 return;
1370 spin_unlock(&xhci->lock);
1371 /* Pass this up to the core */
1372 usb_hcd_poll_rh_status(hcd);
1373 spin_lock(&xhci->lock);
1377 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1378 * at end_trb, which may be in another segment. If the suspect DMA address is a
1379 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1380 * returns 0.
1382 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1383 union xhci_trb *start_trb,
1384 union xhci_trb *end_trb,
1385 dma_addr_t suspect_dma)
1387 dma_addr_t start_dma;
1388 dma_addr_t end_seg_dma;
1389 dma_addr_t end_trb_dma;
1390 struct xhci_segment *cur_seg;
1392 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1393 cur_seg = start_seg;
1395 do {
1396 if (start_dma == 0)
1397 return NULL;
1398 /* We may get an event for a Link TRB in the middle of a TD */
1399 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1400 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1401 /* If the end TRB isn't in this segment, this is set to 0 */
1402 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1404 if (end_trb_dma > 0) {
1405 /* The end TRB is in this segment, so suspect should be here */
1406 if (start_dma <= end_trb_dma) {
1407 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1408 return cur_seg;
1409 } else {
1410 /* Case for one segment with
1411 * a TD wrapped around to the top
1413 if ((suspect_dma >= start_dma &&
1414 suspect_dma <= end_seg_dma) ||
1415 (suspect_dma >= cur_seg->dma &&
1416 suspect_dma <= end_trb_dma))
1417 return cur_seg;
1419 return NULL;
1420 } else {
1421 /* Might still be somewhere in this segment */
1422 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1423 return cur_seg;
1425 cur_seg = cur_seg->next;
1426 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1427 } while (cur_seg != start_seg);
1429 return NULL;
1432 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1433 unsigned int slot_id, unsigned int ep_index,
1434 unsigned int stream_id,
1435 struct xhci_td *td, union xhci_trb *event_trb)
1437 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1438 ep->ep_state |= EP_HALTED;
1439 ep->stopped_td = td;
1440 ep->stopped_trb = event_trb;
1441 ep->stopped_stream = stream_id;
1443 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1444 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1446 ep->stopped_td = NULL;
1447 ep->stopped_trb = NULL;
1448 ep->stopped_stream = 0;
1450 xhci_ring_cmd_db(xhci);
1453 /* Check if an error has halted the endpoint ring. The class driver will
1454 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1455 * However, a babble and other errors also halt the endpoint ring, and the class
1456 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1457 * Ring Dequeue Pointer command manually.
1459 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1460 struct xhci_ep_ctx *ep_ctx,
1461 unsigned int trb_comp_code)
1463 /* TRB completion codes that may require a manual halt cleanup */
1464 if (trb_comp_code == COMP_TX_ERR ||
1465 trb_comp_code == COMP_BABBLE ||
1466 trb_comp_code == COMP_SPLIT_ERR)
1467 /* The 0.96 spec says a babbling control endpoint
1468 * is not halted. The 0.96 spec says it is. Some HW
1469 * claims to be 0.95 compliant, but it halts the control
1470 * endpoint anyway. Check if a babble halted the
1471 * endpoint.
1473 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1474 cpu_to_le32(EP_STATE_HALTED))
1475 return 1;
1477 return 0;
1480 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1482 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1483 /* Vendor defined "informational" completion code,
1484 * treat as not-an-error.
1486 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1487 trb_comp_code);
1488 xhci_dbg(xhci, "Treating code as success.\n");
1489 return 1;
1491 return 0;
1495 * Finish the td processing, remove the td from td list;
1496 * Return 1 if the urb can be given back.
1498 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1499 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1500 struct xhci_virt_ep *ep, int *status, bool skip)
1502 struct xhci_virt_device *xdev;
1503 struct xhci_ring *ep_ring;
1504 unsigned int slot_id;
1505 int ep_index;
1506 struct urb *urb = NULL;
1507 struct xhci_ep_ctx *ep_ctx;
1508 int ret = 0;
1509 struct urb_priv *urb_priv;
1510 u32 trb_comp_code;
1512 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1513 xdev = xhci->devs[slot_id];
1514 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1515 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1516 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1517 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1519 if (skip)
1520 goto td_cleanup;
1522 if (trb_comp_code == COMP_STOP_INVAL ||
1523 trb_comp_code == COMP_STOP) {
1524 /* The Endpoint Stop Command completion will take care of any
1525 * stopped TDs. A stopped TD may be restarted, so don't update
1526 * the ring dequeue pointer or take this TD off any lists yet.
1528 ep->stopped_td = td;
1529 ep->stopped_trb = event_trb;
1530 return 0;
1531 } else {
1532 if (trb_comp_code == COMP_STALL) {
1533 /* The transfer is completed from the driver's
1534 * perspective, but we need to issue a set dequeue
1535 * command for this stalled endpoint to move the dequeue
1536 * pointer past the TD. We can't do that here because
1537 * the halt condition must be cleared first. Let the
1538 * USB class driver clear the stall later.
1540 ep->stopped_td = td;
1541 ep->stopped_trb = event_trb;
1542 ep->stopped_stream = ep_ring->stream_id;
1543 } else if (xhci_requires_manual_halt_cleanup(xhci,
1544 ep_ctx, trb_comp_code)) {
1545 /* Other types of errors halt the endpoint, but the
1546 * class driver doesn't call usb_reset_endpoint() unless
1547 * the error is -EPIPE. Clear the halted status in the
1548 * xHCI hardware manually.
1550 xhci_cleanup_halted_endpoint(xhci,
1551 slot_id, ep_index, ep_ring->stream_id,
1552 td, event_trb);
1553 } else {
1554 /* Update ring dequeue pointer */
1555 while (ep_ring->dequeue != td->last_trb)
1556 inc_deq(xhci, ep_ring, false);
1557 inc_deq(xhci, ep_ring, false);
1560 td_cleanup:
1561 /* Clean up the endpoint's TD list */
1562 urb = td->urb;
1563 urb_priv = urb->hcpriv;
1565 /* Do one last check of the actual transfer length.
1566 * If the host controller said we transferred more data than
1567 * the buffer length, urb->actual_length will be a very big
1568 * number (since it's unsigned). Play it safe and say we didn't
1569 * transfer anything.
1571 if (urb->actual_length > urb->transfer_buffer_length) {
1572 xhci_warn(xhci, "URB transfer length is wrong, "
1573 "xHC issue? req. len = %u, "
1574 "act. len = %u\n",
1575 urb->transfer_buffer_length,
1576 urb->actual_length);
1577 urb->actual_length = 0;
1578 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1579 *status = -EREMOTEIO;
1580 else
1581 *status = 0;
1583 list_del_init(&td->td_list);
1584 /* Was this TD slated to be cancelled but completed anyway? */
1585 if (!list_empty(&td->cancelled_td_list))
1586 list_del_init(&td->cancelled_td_list);
1588 urb_priv->td_cnt++;
1589 /* Giveback the urb when all the tds are completed */
1590 if (urb_priv->td_cnt == urb_priv->length) {
1591 ret = 1;
1592 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1593 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1594 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1595 == 0) {
1596 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1597 usb_amd_quirk_pll_enable();
1603 return ret;
1607 * Process control tds, update urb status and actual_length.
1609 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1610 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1611 struct xhci_virt_ep *ep, int *status)
1613 struct xhci_virt_device *xdev;
1614 struct xhci_ring *ep_ring;
1615 unsigned int slot_id;
1616 int ep_index;
1617 struct xhci_ep_ctx *ep_ctx;
1618 u32 trb_comp_code;
1620 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1621 xdev = xhci->devs[slot_id];
1622 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1623 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1624 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1625 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1627 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1628 switch (trb_comp_code) {
1629 case COMP_SUCCESS:
1630 if (event_trb == ep_ring->dequeue) {
1631 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1632 "without IOC set??\n");
1633 *status = -ESHUTDOWN;
1634 } else if (event_trb != td->last_trb) {
1635 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1636 "without IOC set??\n");
1637 *status = -ESHUTDOWN;
1638 } else {
1639 *status = 0;
1641 break;
1642 case COMP_SHORT_TX:
1643 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1644 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1645 *status = -EREMOTEIO;
1646 else
1647 *status = 0;
1648 break;
1649 case COMP_STOP_INVAL:
1650 case COMP_STOP:
1651 return finish_td(xhci, td, event_trb, event, ep, status, false);
1652 default:
1653 if (!xhci_requires_manual_halt_cleanup(xhci,
1654 ep_ctx, trb_comp_code))
1655 break;
1656 xhci_dbg(xhci, "TRB error code %u, "
1657 "halted endpoint index = %u\n",
1658 trb_comp_code, ep_index);
1659 /* else fall through */
1660 case COMP_STALL:
1661 /* Did we transfer part of the data (middle) phase? */
1662 if (event_trb != ep_ring->dequeue &&
1663 event_trb != td->last_trb)
1664 td->urb->actual_length =
1665 td->urb->transfer_buffer_length
1666 - TRB_LEN(le32_to_cpu(event->transfer_len));
1667 else
1668 td->urb->actual_length = 0;
1670 xhci_cleanup_halted_endpoint(xhci,
1671 slot_id, ep_index, 0, td, event_trb);
1672 return finish_td(xhci, td, event_trb, event, ep, status, true);
1675 * Did we transfer any data, despite the errors that might have
1676 * happened? I.e. did we get past the setup stage?
1678 if (event_trb != ep_ring->dequeue) {
1679 /* The event was for the status stage */
1680 if (event_trb == td->last_trb) {
1681 if (td->urb->actual_length != 0) {
1682 /* Don't overwrite a previously set error code
1684 if ((*status == -EINPROGRESS || *status == 0) &&
1685 (td->urb->transfer_flags
1686 & URB_SHORT_NOT_OK))
1687 /* Did we already see a short data
1688 * stage? */
1689 *status = -EREMOTEIO;
1690 } else {
1691 td->urb->actual_length =
1692 td->urb->transfer_buffer_length;
1694 } else {
1695 /* Maybe the event was for the data stage? */
1696 td->urb->actual_length =
1697 td->urb->transfer_buffer_length -
1698 TRB_LEN(le32_to_cpu(event->transfer_len));
1699 xhci_dbg(xhci, "Waiting for status "
1700 "stage event\n");
1701 return 0;
1705 return finish_td(xhci, td, event_trb, event, ep, status, false);
1709 * Process isochronous tds, update urb packet status and actual_length.
1711 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1712 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1713 struct xhci_virt_ep *ep, int *status)
1715 struct xhci_ring *ep_ring;
1716 struct urb_priv *urb_priv;
1717 int idx;
1718 int len = 0;
1719 union xhci_trb *cur_trb;
1720 struct xhci_segment *cur_seg;
1721 struct usb_iso_packet_descriptor *frame;
1722 u32 trb_comp_code;
1723 bool skip_td = false;
1725 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1726 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1727 urb_priv = td->urb->hcpriv;
1728 idx = urb_priv->td_cnt;
1729 frame = &td->urb->iso_frame_desc[idx];
1731 /* handle completion code */
1732 switch (trb_comp_code) {
1733 case COMP_SUCCESS:
1734 frame->status = 0;
1735 break;
1736 case COMP_SHORT_TX:
1737 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1738 -EREMOTEIO : 0;
1739 break;
1740 case COMP_BW_OVER:
1741 frame->status = -ECOMM;
1742 skip_td = true;
1743 break;
1744 case COMP_BUFF_OVER:
1745 case COMP_BABBLE:
1746 frame->status = -EOVERFLOW;
1747 skip_td = true;
1748 break;
1749 case COMP_DEV_ERR:
1750 case COMP_STALL:
1751 frame->status = -EPROTO;
1752 skip_td = true;
1753 break;
1754 case COMP_STOP:
1755 case COMP_STOP_INVAL:
1756 break;
1757 default:
1758 frame->status = -1;
1759 break;
1762 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1763 frame->actual_length = frame->length;
1764 td->urb->actual_length += frame->length;
1765 } else {
1766 for (cur_trb = ep_ring->dequeue,
1767 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1768 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1769 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1770 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1771 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1773 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1774 TRB_LEN(le32_to_cpu(event->transfer_len));
1776 if (trb_comp_code != COMP_STOP_INVAL) {
1777 frame->actual_length = len;
1778 td->urb->actual_length += len;
1782 return finish_td(xhci, td, event_trb, event, ep, status, false);
1785 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1786 struct xhci_transfer_event *event,
1787 struct xhci_virt_ep *ep, int *status)
1789 struct xhci_ring *ep_ring;
1790 struct urb_priv *urb_priv;
1791 struct usb_iso_packet_descriptor *frame;
1792 int idx;
1794 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1795 urb_priv = td->urb->hcpriv;
1796 idx = urb_priv->td_cnt;
1797 frame = &td->urb->iso_frame_desc[idx];
1799 /* The transfer is partly done. */
1800 frame->status = -EXDEV;
1802 /* calc actual length */
1803 frame->actual_length = 0;
1805 /* Update ring dequeue pointer */
1806 while (ep_ring->dequeue != td->last_trb)
1807 inc_deq(xhci, ep_ring, false);
1808 inc_deq(xhci, ep_ring, false);
1810 return finish_td(xhci, td, NULL, event, ep, status, true);
1814 * Process bulk and interrupt tds, update urb status and actual_length.
1816 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1817 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1818 struct xhci_virt_ep *ep, int *status)
1820 struct xhci_ring *ep_ring;
1821 union xhci_trb *cur_trb;
1822 struct xhci_segment *cur_seg;
1823 u32 trb_comp_code;
1825 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1826 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1828 switch (trb_comp_code) {
1829 case COMP_SUCCESS:
1830 /* Double check that the HW transferred everything. */
1831 if (event_trb != td->last_trb) {
1832 xhci_warn(xhci, "WARN Successful completion "
1833 "on short TX\n");
1834 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1835 *status = -EREMOTEIO;
1836 else
1837 *status = 0;
1838 } else {
1839 *status = 0;
1841 break;
1842 case COMP_SHORT_TX:
1843 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1844 *status = -EREMOTEIO;
1845 else
1846 *status = 0;
1847 break;
1848 default:
1849 /* Others already handled above */
1850 break;
1852 if (trb_comp_code == COMP_SHORT_TX)
1853 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1854 "%d bytes untransferred\n",
1855 td->urb->ep->desc.bEndpointAddress,
1856 td->urb->transfer_buffer_length,
1857 TRB_LEN(le32_to_cpu(event->transfer_len)));
1858 /* Fast path - was this the last TRB in the TD for this URB? */
1859 if (event_trb == td->last_trb) {
1860 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1861 td->urb->actual_length =
1862 td->urb->transfer_buffer_length -
1863 TRB_LEN(le32_to_cpu(event->transfer_len));
1864 if (td->urb->transfer_buffer_length <
1865 td->urb->actual_length) {
1866 xhci_warn(xhci, "HC gave bad length "
1867 "of %d bytes left\n",
1868 TRB_LEN(le32_to_cpu(event->transfer_len)));
1869 td->urb->actual_length = 0;
1870 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1871 *status = -EREMOTEIO;
1872 else
1873 *status = 0;
1875 /* Don't overwrite a previously set error code */
1876 if (*status == -EINPROGRESS) {
1877 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1878 *status = -EREMOTEIO;
1879 else
1880 *status = 0;
1882 } else {
1883 td->urb->actual_length =
1884 td->urb->transfer_buffer_length;
1885 /* Ignore a short packet completion if the
1886 * untransferred length was zero.
1888 if (*status == -EREMOTEIO)
1889 *status = 0;
1891 } else {
1892 /* Slow path - walk the list, starting from the dequeue
1893 * pointer, to get the actual length transferred.
1895 td->urb->actual_length = 0;
1896 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1897 cur_trb != event_trb;
1898 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1899 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1900 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1901 td->urb->actual_length +=
1902 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1904 /* If the ring didn't stop on a Link or No-op TRB, add
1905 * in the actual bytes transferred from the Normal TRB
1907 if (trb_comp_code != COMP_STOP_INVAL)
1908 td->urb->actual_length +=
1909 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1910 TRB_LEN(le32_to_cpu(event->transfer_len));
1913 return finish_td(xhci, td, event_trb, event, ep, status, false);
1917 * If this function returns an error condition, it means it got a Transfer
1918 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1919 * At this point, the host controller is probably hosed and should be reset.
1921 static int handle_tx_event(struct xhci_hcd *xhci,
1922 struct xhci_transfer_event *event)
1924 struct xhci_virt_device *xdev;
1925 struct xhci_virt_ep *ep;
1926 struct xhci_ring *ep_ring;
1927 unsigned int slot_id;
1928 int ep_index;
1929 struct xhci_td *td = NULL;
1930 dma_addr_t event_dma;
1931 struct xhci_segment *event_seg;
1932 union xhci_trb *event_trb;
1933 struct urb *urb = NULL;
1934 int status = -EINPROGRESS;
1935 struct urb_priv *urb_priv;
1936 struct xhci_ep_ctx *ep_ctx;
1937 u32 trb_comp_code;
1938 int ret = 0;
1940 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1941 xdev = xhci->devs[slot_id];
1942 if (!xdev) {
1943 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1944 return -ENODEV;
1947 /* Endpoint ID is 1 based, our index is zero based */
1948 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1949 ep = &xdev->eps[ep_index];
1950 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1951 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1952 if (!ep_ring ||
1953 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1954 EP_STATE_DISABLED) {
1955 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1956 "or incorrect stream ring\n");
1957 return -ENODEV;
1960 event_dma = le64_to_cpu(event->buffer);
1961 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1962 /* Look for common error cases */
1963 switch (trb_comp_code) {
1964 /* Skip codes that require special handling depending on
1965 * transfer type
1967 case COMP_SUCCESS:
1968 case COMP_SHORT_TX:
1969 break;
1970 case COMP_STOP:
1971 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1972 break;
1973 case COMP_STOP_INVAL:
1974 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1975 break;
1976 case COMP_STALL:
1977 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1978 ep->ep_state |= EP_HALTED;
1979 status = -EPIPE;
1980 break;
1981 case COMP_TRB_ERR:
1982 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1983 status = -EILSEQ;
1984 break;
1985 case COMP_SPLIT_ERR:
1986 case COMP_TX_ERR:
1987 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1988 status = -EPROTO;
1989 break;
1990 case COMP_BABBLE:
1991 xhci_warn(xhci, "WARN: babble error on endpoint\n");
1992 status = -EOVERFLOW;
1993 break;
1994 case COMP_DB_ERR:
1995 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
1996 status = -ENOSR;
1997 break;
1998 case COMP_BW_OVER:
1999 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2000 break;
2001 case COMP_BUFF_OVER:
2002 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2003 break;
2004 case COMP_UNDERRUN:
2006 * When the Isoch ring is empty, the xHC will generate
2007 * a Ring Overrun Event for IN Isoch endpoint or Ring
2008 * Underrun Event for OUT Isoch endpoint.
2010 xhci_dbg(xhci, "underrun event on endpoint\n");
2011 if (!list_empty(&ep_ring->td_list))
2012 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2013 "still with TDs queued?\n",
2014 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2015 ep_index);
2016 goto cleanup;
2017 case COMP_OVERRUN:
2018 xhci_dbg(xhci, "overrun event on endpoint\n");
2019 if (!list_empty(&ep_ring->td_list))
2020 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2021 "still with TDs queued?\n",
2022 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2023 ep_index);
2024 goto cleanup;
2025 case COMP_DEV_ERR:
2026 xhci_warn(xhci, "WARN: detect an incompatible device");
2027 status = -EPROTO;
2028 break;
2029 case COMP_MISSED_INT:
2031 * When encounter missed service error, one or more isoc tds
2032 * may be missed by xHC.
2033 * Set skip flag of the ep_ring; Complete the missed tds as
2034 * short transfer when process the ep_ring next time.
2036 ep->skip = true;
2037 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2038 goto cleanup;
2039 default:
2040 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2041 status = 0;
2042 break;
2044 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2045 "busted\n");
2046 goto cleanup;
2049 do {
2050 /* This TRB should be in the TD at the head of this ring's
2051 * TD list.
2053 if (list_empty(&ep_ring->td_list)) {
2054 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2055 "with no TDs queued?\n",
2056 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2057 ep_index);
2058 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2059 (le32_to_cpu(event->flags) &
2060 TRB_TYPE_BITMASK)>>10);
2061 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2062 if (ep->skip) {
2063 ep->skip = false;
2064 xhci_dbg(xhci, "td_list is empty while skip "
2065 "flag set. Clear skip flag.\n");
2067 ret = 0;
2068 goto cleanup;
2071 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2073 /* Is this a TRB in the currently executing TD? */
2074 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2075 td->last_trb, event_dma);
2078 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2079 * is not in the current TD pointed by ep_ring->dequeue because
2080 * that the hardware dequeue pointer still at the previous TRB
2081 * of the current TD. The previous TRB maybe a Link TD or the
2082 * last TRB of the previous TD. The command completion handle
2083 * will take care the rest.
2085 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2086 ret = 0;
2087 goto cleanup;
2090 if (!event_seg) {
2091 if (!ep->skip ||
2092 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2093 /* Some host controllers give a spurious
2094 * successful event after a short transfer.
2095 * Ignore it.
2097 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2098 ep_ring->last_td_was_short) {
2099 ep_ring->last_td_was_short = false;
2100 ret = 0;
2101 goto cleanup;
2103 /* HC is busted, give up! */
2104 xhci_err(xhci,
2105 "ERROR Transfer event TRB DMA ptr not "
2106 "part of current TD\n");
2107 return -ESHUTDOWN;
2110 ret = skip_isoc_td(xhci, td, event, ep, &status);
2111 goto cleanup;
2113 if (trb_comp_code == COMP_SHORT_TX)
2114 ep_ring->last_td_was_short = true;
2115 else
2116 ep_ring->last_td_was_short = false;
2118 if (ep->skip) {
2119 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2120 ep->skip = false;
2123 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2124 sizeof(*event_trb)];
2126 * No-op TRB should not trigger interrupts.
2127 * If event_trb is a no-op TRB, it means the
2128 * corresponding TD has been cancelled. Just ignore
2129 * the TD.
2131 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2132 xhci_dbg(xhci,
2133 "event_trb is a no-op TRB. Skip it\n");
2134 goto cleanup;
2137 /* Now update the urb's actual_length and give back to
2138 * the core
2140 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2141 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2142 &status);
2143 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2144 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2145 &status);
2146 else
2147 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2148 ep, &status);
2150 cleanup:
2152 * Do not update event ring dequeue pointer if ep->skip is set.
2153 * Will roll back to continue process missed tds.
2155 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2156 inc_deq(xhci, xhci->event_ring, true);
2159 if (ret) {
2160 urb = td->urb;
2161 urb_priv = urb->hcpriv;
2162 /* Leave the TD around for the reset endpoint function
2163 * to use(but only if it's not a control endpoint,
2164 * since we already queued the Set TR dequeue pointer
2165 * command for stalled control endpoints).
2167 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2168 (trb_comp_code != COMP_STALL &&
2169 trb_comp_code != COMP_BABBLE))
2170 xhci_urb_free_priv(xhci, urb_priv);
2172 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2173 if ((urb->actual_length != urb->transfer_buffer_length &&
2174 (urb->transfer_flags &
2175 URB_SHORT_NOT_OK)) ||
2176 status != 0)
2177 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2178 "expected = %x, status = %d\n",
2179 urb, urb->actual_length,
2180 urb->transfer_buffer_length,
2181 status);
2182 spin_unlock(&xhci->lock);
2183 /* EHCI, UHCI, and OHCI always unconditionally set the
2184 * urb->status of an isochronous endpoint to 0.
2186 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2187 status = 0;
2188 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2189 spin_lock(&xhci->lock);
2193 * If ep->skip is set, it means there are missed tds on the
2194 * endpoint ring need to take care of.
2195 * Process them as short transfer until reach the td pointed by
2196 * the event.
2198 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2200 return 0;
2204 * This function handles all OS-owned events on the event ring. It may drop
2205 * xhci->lock between event processing (e.g. to pass up port status changes).
2206 * Returns >0 for "possibly more events to process" (caller should call again),
2207 * otherwise 0 if done. In future, <0 returns should indicate error code.
2209 static int xhci_handle_event(struct xhci_hcd *xhci)
2211 union xhci_trb *event;
2212 int update_ptrs = 1;
2213 int ret;
2215 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2216 xhci->error_bitmask |= 1 << 1;
2217 return 0;
2220 event = xhci->event_ring->dequeue;
2221 /* Does the HC or OS own the TRB? */
2222 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2223 xhci->event_ring->cycle_state) {
2224 xhci->error_bitmask |= 1 << 2;
2225 return 0;
2229 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2230 * speculative reads of the event's flags/data below.
2232 rmb();
2233 /* FIXME: Handle more event types. */
2234 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2235 case TRB_TYPE(TRB_COMPLETION):
2236 handle_cmd_completion(xhci, &event->event_cmd);
2237 break;
2238 case TRB_TYPE(TRB_PORT_STATUS):
2239 handle_port_status(xhci, event);
2240 update_ptrs = 0;
2241 break;
2242 case TRB_TYPE(TRB_TRANSFER):
2243 ret = handle_tx_event(xhci, &event->trans_event);
2244 if (ret < 0)
2245 xhci->error_bitmask |= 1 << 9;
2246 else
2247 update_ptrs = 0;
2248 break;
2249 default:
2250 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2251 TRB_TYPE(48))
2252 handle_vendor_event(xhci, event);
2253 else
2254 xhci->error_bitmask |= 1 << 3;
2256 /* Any of the above functions may drop and re-acquire the lock, so check
2257 * to make sure a watchdog timer didn't mark the host as non-responsive.
2259 if (xhci->xhc_state & XHCI_STATE_DYING) {
2260 xhci_dbg(xhci, "xHCI host dying, returning from "
2261 "event handler.\n");
2262 return 0;
2265 if (update_ptrs)
2266 /* Update SW event ring dequeue pointer */
2267 inc_deq(xhci, xhci->event_ring, true);
2269 /* Are there more items on the event ring? Caller will call us again to
2270 * check.
2272 return 1;
2276 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2277 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2278 * indicators of an event TRB error, but we check the status *first* to be safe.
2280 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2282 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2283 u32 status;
2284 union xhci_trb *trb;
2285 u64 temp_64;
2286 union xhci_trb *event_ring_deq;
2287 dma_addr_t deq;
2289 spin_lock(&xhci->lock);
2290 trb = xhci->event_ring->dequeue;
2291 /* Check if the xHC generated the interrupt, or the irq is shared */
2292 status = xhci_readl(xhci, &xhci->op_regs->status);
2293 if (status == 0xffffffff)
2294 goto hw_died;
2296 if (!(status & STS_EINT)) {
2297 spin_unlock(&xhci->lock);
2298 return IRQ_NONE;
2300 if (status & STS_FATAL) {
2301 xhci_warn(xhci, "WARNING: Host System Error\n");
2302 xhci_halt(xhci);
2303 hw_died:
2304 spin_unlock(&xhci->lock);
2305 return -ESHUTDOWN;
2309 * Clear the op reg interrupt status first,
2310 * so we can receive interrupts from other MSI-X interrupters.
2311 * Write 1 to clear the interrupt status.
2313 status |= STS_EINT;
2314 xhci_writel(xhci, status, &xhci->op_regs->status);
2315 /* FIXME when MSI-X is supported and there are multiple vectors */
2316 /* Clear the MSI-X event interrupt status */
2318 if (hcd->irq != -1) {
2319 u32 irq_pending;
2320 /* Acknowledge the PCI interrupt */
2321 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2322 irq_pending |= 0x3;
2323 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2326 if (xhci->xhc_state & XHCI_STATE_DYING) {
2327 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2328 "Shouldn't IRQs be disabled?\n");
2329 /* Clear the event handler busy flag (RW1C);
2330 * the event ring should be empty.
2332 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2333 xhci_write_64(xhci, temp_64 | ERST_EHB,
2334 &xhci->ir_set->erst_dequeue);
2335 spin_unlock(&xhci->lock);
2337 return IRQ_HANDLED;
2340 event_ring_deq = xhci->event_ring->dequeue;
2341 /* FIXME this should be a delayed service routine
2342 * that clears the EHB.
2344 while (xhci_handle_event(xhci) > 0) {}
2346 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2347 /* If necessary, update the HW's version of the event ring deq ptr. */
2348 if (event_ring_deq != xhci->event_ring->dequeue) {
2349 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2350 xhci->event_ring->dequeue);
2351 if (deq == 0)
2352 xhci_warn(xhci, "WARN something wrong with SW event "
2353 "ring dequeue ptr.\n");
2354 /* Update HC event ring dequeue pointer */
2355 temp_64 &= ERST_PTR_MASK;
2356 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2359 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2360 temp_64 |= ERST_EHB;
2361 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2363 spin_unlock(&xhci->lock);
2365 return IRQ_HANDLED;
2368 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2370 irqreturn_t ret;
2371 struct xhci_hcd *xhci;
2373 xhci = hcd_to_xhci(hcd);
2374 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2375 if (xhci->shared_hcd)
2376 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2378 ret = xhci_irq(hcd);
2380 return ret;
2383 /**** Endpoint Ring Operations ****/
2386 * Generic function for queueing a TRB on a ring.
2387 * The caller must have checked to make sure there's room on the ring.
2389 * @more_trbs_coming: Will you enqueue more TRBs before calling
2390 * prepare_transfer()?
2392 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2393 bool consumer, bool more_trbs_coming,
2394 u32 field1, u32 field2, u32 field3, u32 field4)
2396 struct xhci_generic_trb *trb;
2398 trb = &ring->enqueue->generic;
2399 trb->field[0] = cpu_to_le32(field1);
2400 trb->field[1] = cpu_to_le32(field2);
2401 trb->field[2] = cpu_to_le32(field3);
2402 trb->field[3] = cpu_to_le32(field4);
2403 inc_enq(xhci, ring, consumer, more_trbs_coming);
2407 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2408 * FIXME allocate segments if the ring is full.
2410 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2411 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2413 /* Make sure the endpoint has been added to xHC schedule */
2414 switch (ep_state) {
2415 case EP_STATE_DISABLED:
2417 * USB core changed config/interfaces without notifying us,
2418 * or hardware is reporting the wrong state.
2420 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2421 return -ENOENT;
2422 case EP_STATE_ERROR:
2423 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2424 /* FIXME event handling code for error needs to clear it */
2425 /* XXX not sure if this should be -ENOENT or not */
2426 return -EINVAL;
2427 case EP_STATE_HALTED:
2428 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2429 case EP_STATE_STOPPED:
2430 case EP_STATE_RUNNING:
2431 break;
2432 default:
2433 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2435 * FIXME issue Configure Endpoint command to try to get the HC
2436 * back into a known state.
2438 return -EINVAL;
2440 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2441 /* FIXME allocate more room */
2442 xhci_err(xhci, "ERROR no room on ep ring\n");
2443 return -ENOMEM;
2446 if (enqueue_is_link_trb(ep_ring)) {
2447 struct xhci_ring *ring = ep_ring;
2448 union xhci_trb *next;
2450 next = ring->enqueue;
2452 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2453 /* If we're not dealing with 0.95 hardware,
2454 * clear the chain bit.
2456 if (!xhci_link_trb_quirk(xhci))
2457 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2458 else
2459 next->link.control |= cpu_to_le32(TRB_CHAIN);
2461 wmb();
2462 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2464 /* Toggle the cycle bit after the last ring segment. */
2465 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2466 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2467 if (!in_interrupt()) {
2468 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2469 "state for ring %p = %i\n",
2470 ring, (unsigned int)ring->cycle_state);
2473 ring->enq_seg = ring->enq_seg->next;
2474 ring->enqueue = ring->enq_seg->trbs;
2475 next = ring->enqueue;
2479 return 0;
2482 static int prepare_transfer(struct xhci_hcd *xhci,
2483 struct xhci_virt_device *xdev,
2484 unsigned int ep_index,
2485 unsigned int stream_id,
2486 unsigned int num_trbs,
2487 struct urb *urb,
2488 unsigned int td_index,
2489 gfp_t mem_flags)
2491 int ret;
2492 struct urb_priv *urb_priv;
2493 struct xhci_td *td;
2494 struct xhci_ring *ep_ring;
2495 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2497 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2498 if (!ep_ring) {
2499 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2500 stream_id);
2501 return -EINVAL;
2504 ret = prepare_ring(xhci, ep_ring,
2505 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2506 num_trbs, mem_flags);
2507 if (ret)
2508 return ret;
2510 urb_priv = urb->hcpriv;
2511 td = urb_priv->td[td_index];
2513 INIT_LIST_HEAD(&td->td_list);
2514 INIT_LIST_HEAD(&td->cancelled_td_list);
2516 if (td_index == 0) {
2517 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2518 if (unlikely(ret))
2519 return ret;
2522 td->urb = urb;
2523 /* Add this TD to the tail of the endpoint ring's TD list */
2524 list_add_tail(&td->td_list, &ep_ring->td_list);
2525 td->start_seg = ep_ring->enq_seg;
2526 td->first_trb = ep_ring->enqueue;
2528 urb_priv->td[td_index] = td;
2530 return 0;
2533 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2535 int num_sgs, num_trbs, running_total, temp, i;
2536 struct scatterlist *sg;
2538 sg = NULL;
2539 num_sgs = urb->num_sgs;
2540 temp = urb->transfer_buffer_length;
2542 xhci_dbg(xhci, "count sg list trbs: \n");
2543 num_trbs = 0;
2544 for_each_sg(urb->sg, sg, num_sgs, i) {
2545 unsigned int previous_total_trbs = num_trbs;
2546 unsigned int len = sg_dma_len(sg);
2548 /* Scatter gather list entries may cross 64KB boundaries */
2549 running_total = TRB_MAX_BUFF_SIZE -
2550 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2551 running_total &= TRB_MAX_BUFF_SIZE - 1;
2552 if (running_total != 0)
2553 num_trbs++;
2555 /* How many more 64KB chunks to transfer, how many more TRBs? */
2556 while (running_total < sg_dma_len(sg) && running_total < temp) {
2557 num_trbs++;
2558 running_total += TRB_MAX_BUFF_SIZE;
2560 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2561 i, (unsigned long long)sg_dma_address(sg),
2562 len, len, num_trbs - previous_total_trbs);
2564 len = min_t(int, len, temp);
2565 temp -= len;
2566 if (temp == 0)
2567 break;
2569 xhci_dbg(xhci, "\n");
2570 if (!in_interrupt())
2571 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2572 "num_trbs = %d\n",
2573 urb->ep->desc.bEndpointAddress,
2574 urb->transfer_buffer_length,
2575 num_trbs);
2576 return num_trbs;
2579 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2581 if (num_trbs != 0)
2582 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2583 "TRBs, %d left\n", __func__,
2584 urb->ep->desc.bEndpointAddress, num_trbs);
2585 if (running_total != urb->transfer_buffer_length)
2586 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2587 "queued %#x (%d), asked for %#x (%d)\n",
2588 __func__,
2589 urb->ep->desc.bEndpointAddress,
2590 running_total, running_total,
2591 urb->transfer_buffer_length,
2592 urb->transfer_buffer_length);
2595 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2596 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2597 struct xhci_generic_trb *start_trb)
2600 * Pass all the TRBs to the hardware at once and make sure this write
2601 * isn't reordered.
2603 wmb();
2604 if (start_cycle)
2605 start_trb->field[3] |= cpu_to_le32(start_cycle);
2606 else
2607 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2608 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2612 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2613 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2614 * (comprised of sg list entries) can take several service intervals to
2615 * transmit.
2617 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2618 struct urb *urb, int slot_id, unsigned int ep_index)
2620 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2621 xhci->devs[slot_id]->out_ctx, ep_index);
2622 int xhci_interval;
2623 int ep_interval;
2625 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2626 ep_interval = urb->interval;
2627 /* Convert to microframes */
2628 if (urb->dev->speed == USB_SPEED_LOW ||
2629 urb->dev->speed == USB_SPEED_FULL)
2630 ep_interval *= 8;
2631 /* FIXME change this to a warning and a suggestion to use the new API
2632 * to set the polling interval (once the API is added).
2634 if (xhci_interval != ep_interval) {
2635 if (printk_ratelimit())
2636 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2637 " (%d microframe%s) than xHCI "
2638 "(%d microframe%s)\n",
2639 ep_interval,
2640 ep_interval == 1 ? "" : "s",
2641 xhci_interval,
2642 xhci_interval == 1 ? "" : "s");
2643 urb->interval = xhci_interval;
2644 /* Convert back to frames for LS/FS devices */
2645 if (urb->dev->speed == USB_SPEED_LOW ||
2646 urb->dev->speed == USB_SPEED_FULL)
2647 urb->interval /= 8;
2649 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2653 * The TD size is the number of bytes remaining in the TD (including this TRB),
2654 * right shifted by 10.
2655 * It must fit in bits 21:17, so it can't be bigger than 31.
2657 static u32 xhci_td_remainder(unsigned int remainder)
2659 u32 max = (1 << (21 - 17 + 1)) - 1;
2661 if ((remainder >> 10) >= max)
2662 return max << 17;
2663 else
2664 return (remainder >> 10) << 17;
2668 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2669 * the TD (*not* including this TRB).
2671 * Total TD packet count = total_packet_count =
2672 * roundup(TD size in bytes / wMaxPacketSize)
2674 * Packets transferred up to and including this TRB = packets_transferred =
2675 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2677 * TD size = total_packet_count - packets_transferred
2679 * It must fit in bits 21:17, so it can't be bigger than 31.
2682 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2683 unsigned int total_packet_count, struct urb *urb)
2685 int packets_transferred;
2687 /* One TRB with a zero-length data packet. */
2688 if (running_total == 0 && trb_buff_len == 0)
2689 return 0;
2691 /* All the TRB queueing functions don't count the current TRB in
2692 * running_total.
2694 packets_transferred = (running_total + trb_buff_len) /
2695 usb_endpoint_maxp(&urb->ep->desc);
2697 return xhci_td_remainder(total_packet_count - packets_transferred);
2700 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2701 struct urb *urb, int slot_id, unsigned int ep_index)
2703 struct xhci_ring *ep_ring;
2704 unsigned int num_trbs;
2705 struct urb_priv *urb_priv;
2706 struct xhci_td *td;
2707 struct scatterlist *sg;
2708 int num_sgs;
2709 int trb_buff_len, this_sg_len, running_total;
2710 unsigned int total_packet_count;
2711 bool first_trb;
2712 u64 addr;
2713 bool more_trbs_coming;
2715 struct xhci_generic_trb *start_trb;
2716 int start_cycle;
2718 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2719 if (!ep_ring)
2720 return -EINVAL;
2722 num_trbs = count_sg_trbs_needed(xhci, urb);
2723 num_sgs = urb->num_sgs;
2724 total_packet_count = roundup(urb->transfer_buffer_length,
2725 usb_endpoint_maxp(&urb->ep->desc));
2727 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2728 ep_index, urb->stream_id,
2729 num_trbs, urb, 0, mem_flags);
2730 if (trb_buff_len < 0)
2731 return trb_buff_len;
2733 urb_priv = urb->hcpriv;
2734 td = urb_priv->td[0];
2737 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2738 * until we've finished creating all the other TRBs. The ring's cycle
2739 * state may change as we enqueue the other TRBs, so save it too.
2741 start_trb = &ep_ring->enqueue->generic;
2742 start_cycle = ep_ring->cycle_state;
2744 running_total = 0;
2746 * How much data is in the first TRB?
2748 * There are three forces at work for TRB buffer pointers and lengths:
2749 * 1. We don't want to walk off the end of this sg-list entry buffer.
2750 * 2. The transfer length that the driver requested may be smaller than
2751 * the amount of memory allocated for this scatter-gather list.
2752 * 3. TRBs buffers can't cross 64KB boundaries.
2754 sg = urb->sg;
2755 addr = (u64) sg_dma_address(sg);
2756 this_sg_len = sg_dma_len(sg);
2757 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2758 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2759 if (trb_buff_len > urb->transfer_buffer_length)
2760 trb_buff_len = urb->transfer_buffer_length;
2761 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2762 trb_buff_len);
2764 first_trb = true;
2765 /* Queue the first TRB, even if it's zero-length */
2766 do {
2767 u32 field = 0;
2768 u32 length_field = 0;
2769 u32 remainder = 0;
2771 /* Don't change the cycle bit of the first TRB until later */
2772 if (first_trb) {
2773 first_trb = false;
2774 if (start_cycle == 0)
2775 field |= 0x1;
2776 } else
2777 field |= ep_ring->cycle_state;
2779 /* Chain all the TRBs together; clear the chain bit in the last
2780 * TRB to indicate it's the last TRB in the chain.
2782 if (num_trbs > 1) {
2783 field |= TRB_CHAIN;
2784 } else {
2785 /* FIXME - add check for ZERO_PACKET flag before this */
2786 td->last_trb = ep_ring->enqueue;
2787 field |= TRB_IOC;
2790 /* Only set interrupt on short packet for IN endpoints */
2791 if (usb_urb_dir_in(urb))
2792 field |= TRB_ISP;
2794 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2795 "64KB boundary at %#x, end dma = %#x\n",
2796 (unsigned int) addr, trb_buff_len, trb_buff_len,
2797 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2798 (unsigned int) addr + trb_buff_len);
2799 if (TRB_MAX_BUFF_SIZE -
2800 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2801 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2802 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2803 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2804 (unsigned int) addr + trb_buff_len);
2807 /* Set the TRB length, TD size, and interrupter fields. */
2808 if (xhci->hci_version < 0x100) {
2809 remainder = xhci_td_remainder(
2810 urb->transfer_buffer_length -
2811 running_total);
2812 } else {
2813 remainder = xhci_v1_0_td_remainder(running_total,
2814 trb_buff_len, total_packet_count, urb);
2816 length_field = TRB_LEN(trb_buff_len) |
2817 remainder |
2818 TRB_INTR_TARGET(0);
2820 if (num_trbs > 1)
2821 more_trbs_coming = true;
2822 else
2823 more_trbs_coming = false;
2824 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2825 lower_32_bits(addr),
2826 upper_32_bits(addr),
2827 length_field,
2828 field | TRB_TYPE(TRB_NORMAL));
2829 --num_trbs;
2830 running_total += trb_buff_len;
2832 /* Calculate length for next transfer --
2833 * Are we done queueing all the TRBs for this sg entry?
2835 this_sg_len -= trb_buff_len;
2836 if (this_sg_len == 0) {
2837 --num_sgs;
2838 if (num_sgs == 0)
2839 break;
2840 sg = sg_next(sg);
2841 addr = (u64) sg_dma_address(sg);
2842 this_sg_len = sg_dma_len(sg);
2843 } else {
2844 addr += trb_buff_len;
2847 trb_buff_len = TRB_MAX_BUFF_SIZE -
2848 (addr & (TRB_MAX_BUFF_SIZE - 1));
2849 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2850 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2851 trb_buff_len =
2852 urb->transfer_buffer_length - running_total;
2853 } while (running_total < urb->transfer_buffer_length);
2855 check_trb_math(urb, num_trbs, running_total);
2856 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2857 start_cycle, start_trb);
2858 return 0;
2861 /* This is very similar to what ehci-q.c qtd_fill() does */
2862 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2863 struct urb *urb, int slot_id, unsigned int ep_index)
2865 struct xhci_ring *ep_ring;
2866 struct urb_priv *urb_priv;
2867 struct xhci_td *td;
2868 int num_trbs;
2869 struct xhci_generic_trb *start_trb;
2870 bool first_trb;
2871 bool more_trbs_coming;
2872 int start_cycle;
2873 u32 field, length_field;
2875 int running_total, trb_buff_len, ret;
2876 unsigned int total_packet_count;
2877 u64 addr;
2879 if (urb->num_sgs)
2880 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2882 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2883 if (!ep_ring)
2884 return -EINVAL;
2886 num_trbs = 0;
2887 /* How much data is (potentially) left before the 64KB boundary? */
2888 running_total = TRB_MAX_BUFF_SIZE -
2889 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2890 running_total &= TRB_MAX_BUFF_SIZE - 1;
2892 /* If there's some data on this 64KB chunk, or we have to send a
2893 * zero-length transfer, we need at least one TRB
2895 if (running_total != 0 || urb->transfer_buffer_length == 0)
2896 num_trbs++;
2897 /* How many more 64KB chunks to transfer, how many more TRBs? */
2898 while (running_total < urb->transfer_buffer_length) {
2899 num_trbs++;
2900 running_total += TRB_MAX_BUFF_SIZE;
2902 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2904 if (!in_interrupt())
2905 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2906 "addr = %#llx, num_trbs = %d\n",
2907 urb->ep->desc.bEndpointAddress,
2908 urb->transfer_buffer_length,
2909 urb->transfer_buffer_length,
2910 (unsigned long long)urb->transfer_dma,
2911 num_trbs);
2913 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2914 ep_index, urb->stream_id,
2915 num_trbs, urb, 0, mem_flags);
2916 if (ret < 0)
2917 return ret;
2919 urb_priv = urb->hcpriv;
2920 td = urb_priv->td[0];
2923 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2924 * until we've finished creating all the other TRBs. The ring's cycle
2925 * state may change as we enqueue the other TRBs, so save it too.
2927 start_trb = &ep_ring->enqueue->generic;
2928 start_cycle = ep_ring->cycle_state;
2930 running_total = 0;
2931 total_packet_count = roundup(urb->transfer_buffer_length,
2932 usb_endpoint_maxp(&urb->ep->desc));
2933 /* How much data is in the first TRB? */
2934 addr = (u64) urb->transfer_dma;
2935 trb_buff_len = TRB_MAX_BUFF_SIZE -
2936 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2937 if (trb_buff_len > urb->transfer_buffer_length)
2938 trb_buff_len = urb->transfer_buffer_length;
2940 first_trb = true;
2942 /* Queue the first TRB, even if it's zero-length */
2943 do {
2944 u32 remainder = 0;
2945 field = 0;
2947 /* Don't change the cycle bit of the first TRB until later */
2948 if (first_trb) {
2949 first_trb = false;
2950 if (start_cycle == 0)
2951 field |= 0x1;
2952 } else
2953 field |= ep_ring->cycle_state;
2955 /* Chain all the TRBs together; clear the chain bit in the last
2956 * TRB to indicate it's the last TRB in the chain.
2958 if (num_trbs > 1) {
2959 field |= TRB_CHAIN;
2960 } else {
2961 /* FIXME - add check for ZERO_PACKET flag before this */
2962 td->last_trb = ep_ring->enqueue;
2963 field |= TRB_IOC;
2966 /* Only set interrupt on short packet for IN endpoints */
2967 if (usb_urb_dir_in(urb))
2968 field |= TRB_ISP;
2970 /* Set the TRB length, TD size, and interrupter fields. */
2971 if (xhci->hci_version < 0x100) {
2972 remainder = xhci_td_remainder(
2973 urb->transfer_buffer_length -
2974 running_total);
2975 } else {
2976 remainder = xhci_v1_0_td_remainder(running_total,
2977 trb_buff_len, total_packet_count, urb);
2979 length_field = TRB_LEN(trb_buff_len) |
2980 remainder |
2981 TRB_INTR_TARGET(0);
2983 if (num_trbs > 1)
2984 more_trbs_coming = true;
2985 else
2986 more_trbs_coming = false;
2987 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2988 lower_32_bits(addr),
2989 upper_32_bits(addr),
2990 length_field,
2991 field | TRB_TYPE(TRB_NORMAL));
2992 --num_trbs;
2993 running_total += trb_buff_len;
2995 /* Calculate length for next transfer */
2996 addr += trb_buff_len;
2997 trb_buff_len = urb->transfer_buffer_length - running_total;
2998 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2999 trb_buff_len = TRB_MAX_BUFF_SIZE;
3000 } while (running_total < urb->transfer_buffer_length);
3002 check_trb_math(urb, num_trbs, running_total);
3003 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3004 start_cycle, start_trb);
3005 return 0;
3008 /* Caller must have locked xhci->lock */
3009 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3010 struct urb *urb, int slot_id, unsigned int ep_index)
3012 struct xhci_ring *ep_ring;
3013 int num_trbs;
3014 int ret;
3015 struct usb_ctrlrequest *setup;
3016 struct xhci_generic_trb *start_trb;
3017 int start_cycle;
3018 u32 field, length_field;
3019 struct urb_priv *urb_priv;
3020 struct xhci_td *td;
3022 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3023 if (!ep_ring)
3024 return -EINVAL;
3027 * Need to copy setup packet into setup TRB, so we can't use the setup
3028 * DMA address.
3030 if (!urb->setup_packet)
3031 return -EINVAL;
3033 if (!in_interrupt())
3034 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3035 slot_id, ep_index);
3036 /* 1 TRB for setup, 1 for status */
3037 num_trbs = 2;
3039 * Don't need to check if we need additional event data and normal TRBs,
3040 * since data in control transfers will never get bigger than 16MB
3041 * XXX: can we get a buffer that crosses 64KB boundaries?
3043 if (urb->transfer_buffer_length > 0)
3044 num_trbs++;
3045 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3046 ep_index, urb->stream_id,
3047 num_trbs, urb, 0, mem_flags);
3048 if (ret < 0)
3049 return ret;
3051 urb_priv = urb->hcpriv;
3052 td = urb_priv->td[0];
3055 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3056 * until we've finished creating all the other TRBs. The ring's cycle
3057 * state may change as we enqueue the other TRBs, so save it too.
3059 start_trb = &ep_ring->enqueue->generic;
3060 start_cycle = ep_ring->cycle_state;
3062 /* Queue setup TRB - see section 6.4.1.2.1 */
3063 /* FIXME better way to translate setup_packet into two u32 fields? */
3064 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3065 field = 0;
3066 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3067 if (start_cycle == 0)
3068 field |= 0x1;
3070 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3071 if (xhci->hci_version == 0x100) {
3072 if (urb->transfer_buffer_length > 0) {
3073 if (setup->bRequestType & USB_DIR_IN)
3074 field |= TRB_TX_TYPE(TRB_DATA_IN);
3075 else
3076 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3080 queue_trb(xhci, ep_ring, false, true,
3081 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3082 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3083 TRB_LEN(8) | TRB_INTR_TARGET(0),
3084 /* Immediate data in pointer */
3085 field);
3087 /* If there's data, queue data TRBs */
3088 /* Only set interrupt on short packet for IN endpoints */
3089 if (usb_urb_dir_in(urb))
3090 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3091 else
3092 field = TRB_TYPE(TRB_DATA);
3094 length_field = TRB_LEN(urb->transfer_buffer_length) |
3095 xhci_td_remainder(urb->transfer_buffer_length) |
3096 TRB_INTR_TARGET(0);
3097 if (urb->transfer_buffer_length > 0) {
3098 if (setup->bRequestType & USB_DIR_IN)
3099 field |= TRB_DIR_IN;
3100 queue_trb(xhci, ep_ring, false, true,
3101 lower_32_bits(urb->transfer_dma),
3102 upper_32_bits(urb->transfer_dma),
3103 length_field,
3104 field | ep_ring->cycle_state);
3107 /* Save the DMA address of the last TRB in the TD */
3108 td->last_trb = ep_ring->enqueue;
3110 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3111 /* If the device sent data, the status stage is an OUT transfer */
3112 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3113 field = 0;
3114 else
3115 field = TRB_DIR_IN;
3116 queue_trb(xhci, ep_ring, false, false,
3119 TRB_INTR_TARGET(0),
3120 /* Event on completion */
3121 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3123 giveback_first_trb(xhci, slot_id, ep_index, 0,
3124 start_cycle, start_trb);
3125 return 0;
3128 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3129 struct urb *urb, int i)
3131 int num_trbs = 0;
3132 u64 addr, td_len;
3134 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3135 td_len = urb->iso_frame_desc[i].length;
3137 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3138 TRB_MAX_BUFF_SIZE);
3139 if (num_trbs == 0)
3140 num_trbs++;
3142 return num_trbs;
3146 * The transfer burst count field of the isochronous TRB defines the number of
3147 * bursts that are required to move all packets in this TD. Only SuperSpeed
3148 * devices can burst up to bMaxBurst number of packets per service interval.
3149 * This field is zero based, meaning a value of zero in the field means one
3150 * burst. Basically, for everything but SuperSpeed devices, this field will be
3151 * zero. Only xHCI 1.0 host controllers support this field.
3153 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3154 struct usb_device *udev,
3155 struct urb *urb, unsigned int total_packet_count)
3157 unsigned int max_burst;
3159 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3160 return 0;
3162 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3163 return roundup(total_packet_count, max_burst + 1) - 1;
3167 * Returns the number of packets in the last "burst" of packets. This field is
3168 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3169 * the last burst packet count is equal to the total number of packets in the
3170 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3171 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3172 * contain 1 to (bMaxBurst + 1) packets.
3174 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3175 struct usb_device *udev,
3176 struct urb *urb, unsigned int total_packet_count)
3178 unsigned int max_burst;
3179 unsigned int residue;
3181 if (xhci->hci_version < 0x100)
3182 return 0;
3184 switch (udev->speed) {
3185 case USB_SPEED_SUPER:
3186 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3187 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3188 residue = total_packet_count % (max_burst + 1);
3189 /* If residue is zero, the last burst contains (max_burst + 1)
3190 * number of packets, but the TLBPC field is zero-based.
3192 if (residue == 0)
3193 return max_burst;
3194 return residue - 1;
3195 default:
3196 if (total_packet_count == 0)
3197 return 0;
3198 return total_packet_count - 1;
3202 /* This is for isoc transfer */
3203 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3204 struct urb *urb, int slot_id, unsigned int ep_index)
3206 struct xhci_ring *ep_ring;
3207 struct urb_priv *urb_priv;
3208 struct xhci_td *td;
3209 int num_tds, trbs_per_td;
3210 struct xhci_generic_trb *start_trb;
3211 bool first_trb;
3212 int start_cycle;
3213 u32 field, length_field;
3214 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3215 u64 start_addr, addr;
3216 int i, j;
3217 bool more_trbs_coming;
3219 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3221 num_tds = urb->number_of_packets;
3222 if (num_tds < 1) {
3223 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3224 return -EINVAL;
3227 if (!in_interrupt())
3228 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3229 " addr = %#llx, num_tds = %d\n",
3230 urb->ep->desc.bEndpointAddress,
3231 urb->transfer_buffer_length,
3232 urb->transfer_buffer_length,
3233 (unsigned long long)urb->transfer_dma,
3234 num_tds);
3236 start_addr = (u64) urb->transfer_dma;
3237 start_trb = &ep_ring->enqueue->generic;
3238 start_cycle = ep_ring->cycle_state;
3240 urb_priv = urb->hcpriv;
3241 /* Queue the first TRB, even if it's zero-length */
3242 for (i = 0; i < num_tds; i++) {
3243 unsigned int total_packet_count;
3244 unsigned int burst_count;
3245 unsigned int residue;
3247 first_trb = true;
3248 running_total = 0;
3249 addr = start_addr + urb->iso_frame_desc[i].offset;
3250 td_len = urb->iso_frame_desc[i].length;
3251 td_remain_len = td_len;
3252 total_packet_count = roundup(td_len,
3253 usb_endpoint_maxp(&urb->ep->desc));
3254 /* A zero-length transfer still involves at least one packet. */
3255 if (total_packet_count == 0)
3256 total_packet_count++;
3257 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3258 total_packet_count);
3259 residue = xhci_get_last_burst_packet_count(xhci,
3260 urb->dev, urb, total_packet_count);
3262 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3264 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3265 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3266 if (ret < 0) {
3267 if (i == 0)
3268 return ret;
3269 goto cleanup;
3272 td = urb_priv->td[i];
3273 for (j = 0; j < trbs_per_td; j++) {
3274 u32 remainder = 0;
3275 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3277 if (first_trb) {
3278 /* Queue the isoc TRB */
3279 field |= TRB_TYPE(TRB_ISOC);
3280 /* Assume URB_ISO_ASAP is set */
3281 field |= TRB_SIA;
3282 if (i == 0) {
3283 if (start_cycle == 0)
3284 field |= 0x1;
3285 } else
3286 field |= ep_ring->cycle_state;
3287 first_trb = false;
3288 } else {
3289 /* Queue other normal TRBs */
3290 field |= TRB_TYPE(TRB_NORMAL);
3291 field |= ep_ring->cycle_state;
3294 /* Only set interrupt on short packet for IN EPs */
3295 if (usb_urb_dir_in(urb))
3296 field |= TRB_ISP;
3298 /* Chain all the TRBs together; clear the chain bit in
3299 * the last TRB to indicate it's the last TRB in the
3300 * chain.
3302 if (j < trbs_per_td - 1) {
3303 field |= TRB_CHAIN;
3304 more_trbs_coming = true;
3305 } else {
3306 td->last_trb = ep_ring->enqueue;
3307 field |= TRB_IOC;
3308 if (xhci->hci_version == 0x100) {
3309 /* Set BEI bit except for the last td */
3310 if (i < num_tds - 1)
3311 field |= TRB_BEI;
3313 more_trbs_coming = false;
3316 /* Calculate TRB length */
3317 trb_buff_len = TRB_MAX_BUFF_SIZE -
3318 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3319 if (trb_buff_len > td_remain_len)
3320 trb_buff_len = td_remain_len;
3322 /* Set the TRB length, TD size, & interrupter fields. */
3323 if (xhci->hci_version < 0x100) {
3324 remainder = xhci_td_remainder(
3325 td_len - running_total);
3326 } else {
3327 remainder = xhci_v1_0_td_remainder(
3328 running_total, trb_buff_len,
3329 total_packet_count, urb);
3331 length_field = TRB_LEN(trb_buff_len) |
3332 remainder |
3333 TRB_INTR_TARGET(0);
3335 queue_trb(xhci, ep_ring, false, more_trbs_coming,
3336 lower_32_bits(addr),
3337 upper_32_bits(addr),
3338 length_field,
3339 field);
3340 running_total += trb_buff_len;
3342 addr += trb_buff_len;
3343 td_remain_len -= trb_buff_len;
3346 /* Check TD length */
3347 if (running_total != td_len) {
3348 xhci_err(xhci, "ISOC TD length unmatch\n");
3349 return -EINVAL;
3353 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3354 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3355 usb_amd_quirk_pll_disable();
3357 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3359 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3360 start_cycle, start_trb);
3361 return 0;
3362 cleanup:
3363 /* Clean up a partially enqueued isoc transfer. */
3365 for (i--; i >= 0; i--)
3366 list_del_init(&urb_priv->td[i]->td_list);
3368 /* Use the first TD as a temporary variable to turn the TDs we've queued
3369 * into No-ops with a software-owned cycle bit. That way the hardware
3370 * won't accidentally start executing bogus TDs when we partially
3371 * overwrite them. td->first_trb and td->start_seg are already set.
3373 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3374 /* Every TRB except the first & last will have its cycle bit flipped. */
3375 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3377 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3378 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3379 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3380 ep_ring->cycle_state = start_cycle;
3381 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3382 return ret;
3386 * Check transfer ring to guarantee there is enough room for the urb.
3387 * Update ISO URB start_frame and interval.
3388 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3389 * update the urb->start_frame by now.
3390 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3392 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3393 struct urb *urb, int slot_id, unsigned int ep_index)
3395 struct xhci_virt_device *xdev;
3396 struct xhci_ring *ep_ring;
3397 struct xhci_ep_ctx *ep_ctx;
3398 int start_frame;
3399 int xhci_interval;
3400 int ep_interval;
3401 int num_tds, num_trbs, i;
3402 int ret;
3404 xdev = xhci->devs[slot_id];
3405 ep_ring = xdev->eps[ep_index].ring;
3406 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3408 num_trbs = 0;
3409 num_tds = urb->number_of_packets;
3410 for (i = 0; i < num_tds; i++)
3411 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3413 /* Check the ring to guarantee there is enough room for the whole urb.
3414 * Do not insert any td of the urb to the ring if the check failed.
3416 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3417 num_trbs, mem_flags);
3418 if (ret)
3419 return ret;
3421 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3422 start_frame &= 0x3fff;
3424 urb->start_frame = start_frame;
3425 if (urb->dev->speed == USB_SPEED_LOW ||
3426 urb->dev->speed == USB_SPEED_FULL)
3427 urb->start_frame >>= 3;
3429 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3430 ep_interval = urb->interval;
3431 /* Convert to microframes */
3432 if (urb->dev->speed == USB_SPEED_LOW ||
3433 urb->dev->speed == USB_SPEED_FULL)
3434 ep_interval *= 8;
3435 /* FIXME change this to a warning and a suggestion to use the new API
3436 * to set the polling interval (once the API is added).
3438 if (xhci_interval != ep_interval) {
3439 if (printk_ratelimit())
3440 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3441 " (%d microframe%s) than xHCI "
3442 "(%d microframe%s)\n",
3443 ep_interval,
3444 ep_interval == 1 ? "" : "s",
3445 xhci_interval,
3446 xhci_interval == 1 ? "" : "s");
3447 urb->interval = xhci_interval;
3448 /* Convert back to frames for LS/FS devices */
3449 if (urb->dev->speed == USB_SPEED_LOW ||
3450 urb->dev->speed == USB_SPEED_FULL)
3451 urb->interval /= 8;
3453 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3456 /**** Command Ring Operations ****/
3458 /* Generic function for queueing a command TRB on the command ring.
3459 * Check to make sure there's room on the command ring for one command TRB.
3460 * Also check that there's room reserved for commands that must not fail.
3461 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3462 * then only check for the number of reserved spots.
3463 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3464 * because the command event handler may want to resubmit a failed command.
3466 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3467 u32 field3, u32 field4, bool command_must_succeed)
3469 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3470 int ret;
3472 if (!command_must_succeed)
3473 reserved_trbs++;
3475 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3476 reserved_trbs, GFP_ATOMIC);
3477 if (ret < 0) {
3478 xhci_err(xhci, "ERR: No room for command on command ring\n");
3479 if (command_must_succeed)
3480 xhci_err(xhci, "ERR: Reserved TRB counting for "
3481 "unfailable commands failed.\n");
3482 return ret;
3484 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
3485 field4 | xhci->cmd_ring->cycle_state);
3486 return 0;
3489 /* Queue a slot enable or disable request on the command ring */
3490 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3492 return queue_command(xhci, 0, 0, 0,
3493 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3496 /* Queue an address device command TRB */
3497 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3498 u32 slot_id)
3500 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3501 upper_32_bits(in_ctx_ptr), 0,
3502 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3503 false);
3506 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3507 u32 field1, u32 field2, u32 field3, u32 field4)
3509 return queue_command(xhci, field1, field2, field3, field4, false);
3512 /* Queue a reset device command TRB */
3513 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3515 return queue_command(xhci, 0, 0, 0,
3516 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3517 false);
3520 /* Queue a configure endpoint command TRB */
3521 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3522 u32 slot_id, bool command_must_succeed)
3524 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3525 upper_32_bits(in_ctx_ptr), 0,
3526 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3527 command_must_succeed);
3530 /* Queue an evaluate context command TRB */
3531 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3532 u32 slot_id)
3534 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3535 upper_32_bits(in_ctx_ptr), 0,
3536 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3537 false);
3541 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3542 * activity on an endpoint that is about to be suspended.
3544 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3545 unsigned int ep_index, int suspend)
3547 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3548 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3549 u32 type = TRB_TYPE(TRB_STOP_RING);
3550 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3552 return queue_command(xhci, 0, 0, 0,
3553 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3556 /* Set Transfer Ring Dequeue Pointer command.
3557 * This should not be used for endpoints that have streams enabled.
3559 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3560 unsigned int ep_index, unsigned int stream_id,
3561 struct xhci_segment *deq_seg,
3562 union xhci_trb *deq_ptr, u32 cycle_state)
3564 dma_addr_t addr;
3565 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3566 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3567 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3568 u32 type = TRB_TYPE(TRB_SET_DEQ);
3569 struct xhci_virt_ep *ep;
3571 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3572 if (addr == 0) {
3573 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3574 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3575 deq_seg, deq_ptr);
3576 return 0;
3578 ep = &xhci->devs[slot_id]->eps[ep_index];
3579 if ((ep->ep_state & SET_DEQ_PENDING)) {
3580 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3581 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3582 return 0;
3584 ep->queued_deq_seg = deq_seg;
3585 ep->queued_deq_ptr = deq_ptr;
3586 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3587 upper_32_bits(addr), trb_stream_id,
3588 trb_slot_id | trb_ep_index | type, false);
3591 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3592 unsigned int ep_index)
3594 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3595 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3596 u32 type = TRB_TYPE(TRB_RESET_EP);
3598 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3599 false);