This client driver allows you to use a GPIO pin as a source for PPS
[linux-2.6/next.git] / drivers / usb / host / xhci.c
blobf647d918a886de0ee077ec417b385ed0776bbf9e
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
30 #include "xhci.h"
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
57 u32 result;
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
73 * Disable interrupts and begin the xHCI halting process.
75 void xhci_quiesce(struct xhci_hcd *xhci)
77 u32 halted;
78 u32 cmd;
79 u32 mask;
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 * Force HC into halt state.
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
99 int xhci_halt(struct xhci_hcd *xhci)
101 int ret;
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
105 ret = handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 if (!ret)
108 xhci->xhc_state |= XHCI_STATE_HALTED;
109 return ret;
113 * Set the run bit and wait for the host to be running.
115 static int xhci_start(struct xhci_hcd *xhci)
117 u32 temp;
118 int ret;
120 temp = xhci_readl(xhci, &xhci->op_regs->command);
121 temp |= (CMD_RUN);
122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 temp);
124 xhci_writel(xhci, temp, &xhci->op_regs->command);
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 * running.
130 ret = handshake(xhci, &xhci->op_regs->status,
131 STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 if (ret == -ETIMEDOUT)
133 xhci_err(xhci, "Host took too long to start, "
134 "waited %u microseconds.\n",
135 XHCI_MAX_HALT_USEC);
136 if (!ret)
137 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 return ret;
142 * Reset a halted HC.
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
148 int xhci_reset(struct xhci_hcd *xhci)
150 u32 command;
151 u32 state;
152 int ret;
154 state = xhci_readl(xhci, &xhci->op_regs->status);
155 if ((state & STS_HALT) == 0) {
156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 return 0;
160 xhci_dbg(xhci, "// Reset the HC\n");
161 command = xhci_readl(xhci, &xhci->op_regs->command);
162 command |= CMD_RESET;
163 xhci_writel(xhci, command, &xhci->op_regs->command);
165 ret = handshake(xhci, &xhci->op_regs->command,
166 CMD_RESET, 0, 250 * 1000);
167 if (ret)
168 return ret;
170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
179 * Free IRQs
180 * free all IRQs request
182 static void xhci_free_irq(struct xhci_hcd *xhci)
184 int i;
185 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
187 /* return if using legacy interrupt */
188 if (xhci_to_hcd(xhci)->irq >= 0)
189 return;
191 if (xhci->msix_entries) {
192 for (i = 0; i < xhci->msix_count; i++)
193 if (xhci->msix_entries[i].vector)
194 free_irq(xhci->msix_entries[i].vector,
195 xhci_to_hcd(xhci));
196 } else if (pdev->irq >= 0)
197 free_irq(pdev->irq, xhci_to_hcd(xhci));
199 return;
203 * Set up MSI
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
207 int ret;
208 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
210 ret = pci_enable_msi(pdev);
211 if (ret) {
212 xhci_err(xhci, "failed to allocate MSI entry\n");
213 return ret;
216 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217 0, "xhci_hcd", xhci_to_hcd(xhci));
218 if (ret) {
219 xhci_err(xhci, "disable MSI interrupt\n");
220 pci_disable_msi(pdev);
223 return ret;
227 * Set up MSI-X
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
231 int i, ret = 0;
232 struct usb_hcd *hcd = xhci_to_hcd(xhci);
233 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
236 * calculate number of msi-x vectors supported.
237 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238 * with max number of interrupters based on the xhci HCSPARAMS1.
239 * - num_online_cpus: maximum msi-x vectors per CPUs core.
240 * Add additional 1 vector to ensure always available interrupt.
242 xhci->msix_count = min(num_online_cpus() + 1,
243 HCS_MAX_INTRS(xhci->hcs_params1));
245 xhci->msix_entries =
246 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247 GFP_KERNEL);
248 if (!xhci->msix_entries) {
249 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250 return -ENOMEM;
253 for (i = 0; i < xhci->msix_count; i++) {
254 xhci->msix_entries[i].entry = i;
255 xhci->msix_entries[i].vector = 0;
258 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259 if (ret) {
260 xhci_err(xhci, "Failed to enable MSI-X\n");
261 goto free_entries;
264 for (i = 0; i < xhci->msix_count; i++) {
265 ret = request_irq(xhci->msix_entries[i].vector,
266 (irq_handler_t)xhci_msi_irq,
267 0, "xhci_hcd", xhci_to_hcd(xhci));
268 if (ret)
269 goto disable_msix;
272 hcd->msix_enabled = 1;
273 return ret;
275 disable_msix:
276 xhci_err(xhci, "disable MSI-X interrupt\n");
277 xhci_free_irq(xhci);
278 pci_disable_msix(pdev);
279 free_entries:
280 kfree(xhci->msix_entries);
281 xhci->msix_entries = NULL;
282 return ret;
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
288 struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
291 xhci_free_irq(xhci);
293 if (xhci->msix_entries) {
294 pci_disable_msix(pdev);
295 kfree(xhci->msix_entries);
296 xhci->msix_entries = NULL;
297 } else {
298 pci_disable_msi(pdev);
301 hcd->msix_enabled = 0;
302 return;
306 * Initialize memory for HCD and xHC (one-time init).
308 * Program the PAGESIZE register, initialize the device context array, create
309 * device contexts (?), set up a command ring segment (or two?), create event
310 * ring (one for now).
312 int xhci_init(struct usb_hcd *hcd)
314 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315 int retval = 0;
317 xhci_dbg(xhci, "xhci_init\n");
318 spin_lock_init(&xhci->lock);
319 if (link_quirk) {
320 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322 } else {
323 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
325 retval = xhci_mem_init(xhci, GFP_KERNEL);
326 xhci_dbg(xhci, "Finished xhci_init\n");
328 return retval;
331 /*-------------------------------------------------------------------------*/
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
337 unsigned long flags;
338 int temp;
339 u64 temp_64;
340 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341 int i, j;
343 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
345 spin_lock_irqsave(&xhci->lock, flags);
346 temp = xhci_readl(xhci, &xhci->op_regs->status);
347 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
349 (xhci->xhc_state & XHCI_STATE_HALTED)) {
350 xhci_dbg(xhci, "HW died, polling stopped.\n");
351 spin_unlock_irqrestore(&xhci->lock, flags);
352 return;
355 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
356 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
357 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
358 xhci->error_bitmask = 0;
359 xhci_dbg(xhci, "Event ring:\n");
360 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
361 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
362 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
363 temp_64 &= ~ERST_PTR_MASK;
364 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
365 xhci_dbg(xhci, "Command ring:\n");
366 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
367 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
368 xhci_dbg_cmd_ptrs(xhci);
369 for (i = 0; i < MAX_HC_SLOTS; ++i) {
370 if (!xhci->devs[i])
371 continue;
372 for (j = 0; j < 31; ++j) {
373 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
376 spin_unlock_irqrestore(&xhci->lock, flags);
378 if (!xhci->zombie)
379 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
380 else
381 xhci_dbg(xhci, "Quit polling the event ring.\n");
383 #endif
385 static int xhci_run_finished(struct xhci_hcd *xhci)
387 if (xhci_start(xhci)) {
388 xhci_halt(xhci);
389 return -ENODEV;
391 xhci->shared_hcd->state = HC_STATE_RUNNING;
393 if (xhci->quirks & XHCI_NEC_HOST)
394 xhci_ring_cmd_db(xhci);
396 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
397 return 0;
401 * Start the HC after it was halted.
403 * This function is called by the USB core when the HC driver is added.
404 * Its opposite is xhci_stop().
406 * xhci_init() must be called once before this function can be called.
407 * Reset the HC, enable device slot contexts, program DCBAAP, and
408 * set command ring pointer and event ring pointer.
410 * Setup MSI-X vectors and enable interrupts.
412 int xhci_run(struct usb_hcd *hcd)
414 u32 temp;
415 u64 temp_64;
416 u32 ret;
417 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
418 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420 /* Start the xHCI host controller running only after the USB 2.0 roothub
421 * is setup.
424 hcd->uses_new_polling = 1;
425 if (!usb_hcd_is_primary_hcd(hcd))
426 return xhci_run_finished(xhci);
428 xhci_dbg(xhci, "xhci_run\n");
429 /* unregister the legacy interrupt */
430 if (hcd->irq)
431 free_irq(hcd->irq, hcd);
432 hcd->irq = -1;
434 /* Some Fresco Logic host controllers advertise MSI, but fail to
435 * generate interrupts. Don't even try to enable MSI.
437 if (xhci->quirks & XHCI_BROKEN_MSI)
438 goto legacy_irq;
440 ret = xhci_setup_msix(xhci);
441 if (ret)
442 /* fall back to msi*/
443 ret = xhci_setup_msi(xhci);
445 if (ret) {
446 legacy_irq:
447 /* fall back to legacy interrupt*/
448 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449 hcd->irq_descr, hcd);
450 if (ret) {
451 xhci_err(xhci, "request interrupt %d failed\n",
452 pdev->irq);
453 return ret;
455 hcd->irq = pdev->irq;
458 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
459 init_timer(&xhci->event_ring_timer);
460 xhci->event_ring_timer.data = (unsigned long) xhci;
461 xhci->event_ring_timer.function = xhci_event_ring_work;
462 /* Poll the event ring */
463 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
464 xhci->zombie = 0;
465 xhci_dbg(xhci, "Setting event ring polling timer\n");
466 add_timer(&xhci->event_ring_timer);
467 #endif
469 xhci_dbg(xhci, "Command ring memory map follows:\n");
470 xhci_debug_ring(xhci, xhci->cmd_ring);
471 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
472 xhci_dbg_cmd_ptrs(xhci);
474 xhci_dbg(xhci, "ERST memory map follows:\n");
475 xhci_dbg_erst(xhci, &xhci->erst);
476 xhci_dbg(xhci, "Event ring:\n");
477 xhci_debug_ring(xhci, xhci->event_ring);
478 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
479 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
480 temp_64 &= ~ERST_PTR_MASK;
481 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
483 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
484 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
485 temp &= ~ER_IRQ_INTERVAL_MASK;
486 temp |= (u32) 160;
487 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
489 /* Set the HCD state before we enable the irqs */
490 temp = xhci_readl(xhci, &xhci->op_regs->command);
491 temp |= (CMD_EIE);
492 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
493 temp);
494 xhci_writel(xhci, temp, &xhci->op_regs->command);
496 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
497 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
498 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
499 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
500 &xhci->ir_set->irq_pending);
501 xhci_print_ir_set(xhci, 0);
503 if (xhci->quirks & XHCI_NEC_HOST)
504 xhci_queue_vendor_command(xhci, 0, 0, 0,
505 TRB_TYPE(TRB_NEC_GET_FW));
507 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
508 return 0;
511 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
513 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
515 spin_lock_irq(&xhci->lock);
516 xhci_halt(xhci);
518 /* The shared_hcd is going to be deallocated shortly (the USB core only
519 * calls this function when allocation fails in usb_add_hcd(), or
520 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
522 xhci->shared_hcd = NULL;
523 spin_unlock_irq(&xhci->lock);
527 * Stop xHCI driver.
529 * This function is called by the USB core when the HC driver is removed.
530 * Its opposite is xhci_run().
532 * Disable device contexts, disable IRQs, and quiesce the HC.
533 * Reset the HC, finish any completed transactions, and cleanup memory.
535 void xhci_stop(struct usb_hcd *hcd)
537 u32 temp;
538 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
540 if (!usb_hcd_is_primary_hcd(hcd)) {
541 xhci_only_stop_hcd(xhci->shared_hcd);
542 return;
545 spin_lock_irq(&xhci->lock);
546 /* Make sure the xHC is halted for a USB3 roothub
547 * (xhci_stop() could be called as part of failed init).
549 xhci_halt(xhci);
550 xhci_reset(xhci);
551 spin_unlock_irq(&xhci->lock);
553 xhci_cleanup_msix(xhci);
555 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
556 /* Tell the event ring poll function not to reschedule */
557 xhci->zombie = 1;
558 del_timer_sync(&xhci->event_ring_timer);
559 #endif
561 if (xhci->quirks & XHCI_AMD_PLL_FIX)
562 usb_amd_dev_put();
564 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
565 temp = xhci_readl(xhci, &xhci->op_regs->status);
566 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
567 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
569 &xhci->ir_set->irq_pending);
570 xhci_print_ir_set(xhci, 0);
572 xhci_dbg(xhci, "cleaning up memory\n");
573 xhci_mem_cleanup(xhci);
574 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
575 xhci_readl(xhci, &xhci->op_regs->status));
579 * Shutdown HC (not bus-specific)
581 * This is called when the machine is rebooting or halting. We assume that the
582 * machine will be powered off, and the HC's internal state will be reset.
583 * Don't bother to free memory.
585 * This will only ever be called with the main usb_hcd (the USB3 roothub).
587 void xhci_shutdown(struct usb_hcd *hcd)
589 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
591 spin_lock_irq(&xhci->lock);
592 xhci_halt(xhci);
593 spin_unlock_irq(&xhci->lock);
595 xhci_cleanup_msix(xhci);
597 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
598 xhci_readl(xhci, &xhci->op_regs->status));
601 #ifdef CONFIG_PM
602 static void xhci_save_registers(struct xhci_hcd *xhci)
604 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
605 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
606 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
607 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
608 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
609 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
610 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
611 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
612 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
615 static void xhci_restore_registers(struct xhci_hcd *xhci)
617 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
618 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
619 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
620 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
621 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
622 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
623 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
624 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
627 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
629 u64 val_64;
631 /* step 2: initialize command ring buffer */
632 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
633 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
634 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
635 xhci->cmd_ring->dequeue) &
636 (u64) ~CMD_RING_RSVD_BITS) |
637 xhci->cmd_ring->cycle_state;
638 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
639 (long unsigned long) val_64);
640 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
644 * The whole command ring must be cleared to zero when we suspend the host.
646 * The host doesn't save the command ring pointer in the suspend well, so we
647 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
648 * aligned, because of the reserved bits in the command ring dequeue pointer
649 * register. Therefore, we can't just set the dequeue pointer back in the
650 * middle of the ring (TRBs are 16-byte aligned).
652 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
654 struct xhci_ring *ring;
655 struct xhci_segment *seg;
657 ring = xhci->cmd_ring;
658 seg = ring->deq_seg;
659 do {
660 memset(seg->trbs, 0, SEGMENT_SIZE);
661 seg = seg->next;
662 } while (seg != ring->deq_seg);
664 /* Reset the software enqueue and dequeue pointers */
665 ring->deq_seg = ring->first_seg;
666 ring->dequeue = ring->first_seg->trbs;
667 ring->enq_seg = ring->deq_seg;
668 ring->enqueue = ring->dequeue;
671 * Ring is now zeroed, so the HW should look for change of ownership
672 * when the cycle bit is set to 1.
674 ring->cycle_state = 1;
677 * Reset the hardware dequeue pointer.
678 * Yes, this will need to be re-written after resume, but we're paranoid
679 * and want to make sure the hardware doesn't access bogus memory
680 * because, say, the BIOS or an SMI started the host without changing
681 * the command ring pointers.
683 xhci_set_cmd_ring_deq(xhci);
687 * Stop HC (not bus-specific)
689 * This is called when the machine transition into S3/S4 mode.
692 int xhci_suspend(struct xhci_hcd *xhci)
694 int rc = 0;
695 struct usb_hcd *hcd = xhci_to_hcd(xhci);
696 u32 command;
697 int i;
699 spin_lock_irq(&xhci->lock);
700 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
701 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
702 /* step 1: stop endpoint */
703 /* skipped assuming that port suspend has done */
705 /* step 2: clear Run/Stop bit */
706 command = xhci_readl(xhci, &xhci->op_regs->command);
707 command &= ~CMD_RUN;
708 xhci_writel(xhci, command, &xhci->op_regs->command);
709 if (handshake(xhci, &xhci->op_regs->status,
710 STS_HALT, STS_HALT, 100*100)) {
711 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
712 spin_unlock_irq(&xhci->lock);
713 return -ETIMEDOUT;
715 xhci_clear_command_ring(xhci);
717 /* step 3: save registers */
718 xhci_save_registers(xhci);
720 /* step 4: set CSS flag */
721 command = xhci_readl(xhci, &xhci->op_regs->command);
722 command |= CMD_CSS;
723 xhci_writel(xhci, command, &xhci->op_regs->command);
724 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
725 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
726 spin_unlock_irq(&xhci->lock);
727 return -ETIMEDOUT;
729 spin_unlock_irq(&xhci->lock);
731 /* step 5: remove core well power */
732 /* synchronize irq when using MSI-X */
733 if (xhci->msix_entries) {
734 for (i = 0; i < xhci->msix_count; i++)
735 synchronize_irq(xhci->msix_entries[i].vector);
738 return rc;
742 * start xHC (not bus-specific)
744 * This is called when the machine transition from S3/S4 mode.
747 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
749 u32 command, temp = 0;
750 struct usb_hcd *hcd = xhci_to_hcd(xhci);
751 struct usb_hcd *secondary_hcd;
752 int retval;
754 /* Wait a bit if either of the roothubs need to settle from the
755 * transition into bus suspend.
757 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
758 time_before(jiffies,
759 xhci->bus_state[1].next_statechange))
760 msleep(100);
762 spin_lock_irq(&xhci->lock);
763 if (xhci->quirks & XHCI_RESET_ON_RESUME)
764 hibernated = true;
766 if (!hibernated) {
767 /* step 1: restore register */
768 xhci_restore_registers(xhci);
769 /* step 2: initialize command ring buffer */
770 xhci_set_cmd_ring_deq(xhci);
771 /* step 3: restore state and start state*/
772 /* step 3: set CRS flag */
773 command = xhci_readl(xhci, &xhci->op_regs->command);
774 command |= CMD_CRS;
775 xhci_writel(xhci, command, &xhci->op_regs->command);
776 if (handshake(xhci, &xhci->op_regs->status,
777 STS_RESTORE, 0, 10*100)) {
778 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
779 spin_unlock_irq(&xhci->lock);
780 return -ETIMEDOUT;
782 temp = xhci_readl(xhci, &xhci->op_regs->status);
785 /* If restore operation fails, re-initialize the HC during resume */
786 if ((temp & STS_SRE) || hibernated) {
787 /* Let the USB core know _both_ roothubs lost power. */
788 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
789 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
791 xhci_dbg(xhci, "Stop HCD\n");
792 xhci_halt(xhci);
793 xhci_reset(xhci);
794 spin_unlock_irq(&xhci->lock);
795 xhci_cleanup_msix(xhci);
797 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
798 /* Tell the event ring poll function not to reschedule */
799 xhci->zombie = 1;
800 del_timer_sync(&xhci->event_ring_timer);
801 #endif
803 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
804 temp = xhci_readl(xhci, &xhci->op_regs->status);
805 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
806 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
807 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
808 &xhci->ir_set->irq_pending);
809 xhci_print_ir_set(xhci, 0);
811 xhci_dbg(xhci, "cleaning up memory\n");
812 xhci_mem_cleanup(xhci);
813 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
814 xhci_readl(xhci, &xhci->op_regs->status));
816 /* USB core calls the PCI reinit and start functions twice:
817 * first with the primary HCD, and then with the secondary HCD.
818 * If we don't do the same, the host will never be started.
820 if (!usb_hcd_is_primary_hcd(hcd))
821 secondary_hcd = hcd;
822 else
823 secondary_hcd = xhci->shared_hcd;
825 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
826 retval = xhci_init(hcd->primary_hcd);
827 if (retval)
828 return retval;
829 xhci_dbg(xhci, "Start the primary HCD\n");
830 retval = xhci_run(hcd->primary_hcd);
831 if (retval)
832 goto failed_restart;
834 xhci_dbg(xhci, "Start the secondary HCD\n");
835 retval = xhci_run(secondary_hcd);
836 if (!retval) {
837 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
838 set_bit(HCD_FLAG_HW_ACCESSIBLE,
839 &xhci->shared_hcd->flags);
841 failed_restart:
842 hcd->state = HC_STATE_SUSPENDED;
843 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
844 return retval;
847 /* step 4: set Run/Stop bit */
848 command = xhci_readl(xhci, &xhci->op_regs->command);
849 command |= CMD_RUN;
850 xhci_writel(xhci, command, &xhci->op_regs->command);
851 handshake(xhci, &xhci->op_regs->status, STS_HALT,
852 0, 250 * 1000);
854 /* step 5: walk topology and initialize portsc,
855 * portpmsc and portli
857 /* this is done in bus_resume */
859 /* step 6: restart each of the previously
860 * Running endpoints by ringing their doorbells
863 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
866 spin_unlock_irq(&xhci->lock);
867 return 0;
869 #endif /* CONFIG_PM */
871 /*-------------------------------------------------------------------------*/
874 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
875 * HCDs. Find the index for an endpoint given its descriptor. Use the return
876 * value to right shift 1 for the bitmask.
878 * Index = (epnum * 2) + direction - 1,
879 * where direction = 0 for OUT, 1 for IN.
880 * For control endpoints, the IN index is used (OUT index is unused), so
881 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
883 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
885 unsigned int index;
886 if (usb_endpoint_xfer_control(desc))
887 index = (unsigned int) (usb_endpoint_num(desc)*2);
888 else
889 index = (unsigned int) (usb_endpoint_num(desc)*2) +
890 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
891 return index;
894 /* Find the flag for this endpoint (for use in the control context). Use the
895 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
896 * bit 1, etc.
898 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
900 return 1 << (xhci_get_endpoint_index(desc) + 1);
903 /* Find the flag for this endpoint (for use in the control context). Use the
904 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
905 * bit 1, etc.
907 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
909 return 1 << (ep_index + 1);
912 /* Compute the last valid endpoint context index. Basically, this is the
913 * endpoint index plus one. For slot contexts with more than valid endpoint,
914 * we find the most significant bit set in the added contexts flags.
915 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
916 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
918 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
920 return fls(added_ctxs) - 1;
923 /* Returns 1 if the arguments are OK;
924 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
926 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
927 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
928 const char *func) {
929 struct xhci_hcd *xhci;
930 struct xhci_virt_device *virt_dev;
932 if (!hcd || (check_ep && !ep) || !udev) {
933 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
934 func);
935 return -EINVAL;
937 if (!udev->parent) {
938 printk(KERN_DEBUG "xHCI %s called for root hub\n",
939 func);
940 return 0;
943 xhci = hcd_to_xhci(hcd);
944 if (xhci->xhc_state & XHCI_STATE_HALTED)
945 return -ENODEV;
947 if (check_virt_dev) {
948 if (!udev->slot_id || !xhci->devs
949 || !xhci->devs[udev->slot_id]) {
950 printk(KERN_DEBUG "xHCI %s called with unaddressed "
951 "device\n", func);
952 return -EINVAL;
955 virt_dev = xhci->devs[udev->slot_id];
956 if (virt_dev->udev != udev) {
957 printk(KERN_DEBUG "xHCI %s called with udev and "
958 "virt_dev does not match\n", func);
959 return -EINVAL;
963 return 1;
966 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
967 struct usb_device *udev, struct xhci_command *command,
968 bool ctx_change, bool must_succeed);
971 * Full speed devices may have a max packet size greater than 8 bytes, but the
972 * USB core doesn't know that until it reads the first 8 bytes of the
973 * descriptor. If the usb_device's max packet size changes after that point,
974 * we need to issue an evaluate context command and wait on it.
976 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
977 unsigned int ep_index, struct urb *urb)
979 struct xhci_container_ctx *in_ctx;
980 struct xhci_container_ctx *out_ctx;
981 struct xhci_input_control_ctx *ctrl_ctx;
982 struct xhci_ep_ctx *ep_ctx;
983 int max_packet_size;
984 int hw_max_packet_size;
985 int ret = 0;
987 out_ctx = xhci->devs[slot_id]->out_ctx;
988 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
989 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
990 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
991 if (hw_max_packet_size != max_packet_size) {
992 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
993 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
994 max_packet_size);
995 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
996 hw_max_packet_size);
997 xhci_dbg(xhci, "Issuing evaluate context command.\n");
999 /* Set up the modified control endpoint 0 */
1000 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1001 xhci->devs[slot_id]->out_ctx, ep_index);
1002 in_ctx = xhci->devs[slot_id]->in_ctx;
1003 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1004 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1005 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1007 /* Set up the input context flags for the command */
1008 /* FIXME: This won't work if a non-default control endpoint
1009 * changes max packet sizes.
1011 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1012 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1013 ctrl_ctx->drop_flags = 0;
1015 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1016 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1017 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1018 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1020 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1021 true, false);
1023 /* Clean up the input context for later use by bandwidth
1024 * functions.
1026 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1028 return ret;
1032 * non-error returns are a promise to giveback() the urb later
1033 * we drop ownership so next owner (or urb unlink) can get it
1035 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1037 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1038 unsigned long flags;
1039 int ret = 0;
1040 unsigned int slot_id, ep_index;
1041 struct urb_priv *urb_priv;
1042 int size, i;
1044 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045 true, true, __func__) <= 0)
1046 return -EINVAL;
1048 slot_id = urb->dev->slot_id;
1049 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1051 if (!HCD_HW_ACCESSIBLE(hcd)) {
1052 if (!in_interrupt())
1053 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054 ret = -ESHUTDOWN;
1055 goto exit;
1058 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059 size = urb->number_of_packets;
1060 else
1061 size = 1;
1063 urb_priv = kzalloc(sizeof(struct urb_priv) +
1064 size * sizeof(struct xhci_td *), mem_flags);
1065 if (!urb_priv)
1066 return -ENOMEM;
1068 for (i = 0; i < size; i++) {
1069 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1070 if (!urb_priv->td[i]) {
1071 urb_priv->length = i;
1072 xhci_urb_free_priv(xhci, urb_priv);
1073 return -ENOMEM;
1077 urb_priv->length = size;
1078 urb_priv->td_cnt = 0;
1079 urb->hcpriv = urb_priv;
1081 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1082 /* Check to see if the max packet size for the default control
1083 * endpoint changed during FS device enumeration
1085 if (urb->dev->speed == USB_SPEED_FULL) {
1086 ret = xhci_check_maxpacket(xhci, slot_id,
1087 ep_index, urb);
1088 if (ret < 0) {
1089 xhci_urb_free_priv(xhci, urb_priv);
1090 urb->hcpriv = NULL;
1091 return ret;
1095 /* We have a spinlock and interrupts disabled, so we must pass
1096 * atomic context to this function, which may allocate memory.
1098 spin_lock_irqsave(&xhci->lock, flags);
1099 if (xhci->xhc_state & XHCI_STATE_DYING)
1100 goto dying;
1101 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1102 slot_id, ep_index);
1103 if (ret)
1104 goto free_priv;
1105 spin_unlock_irqrestore(&xhci->lock, flags);
1106 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1107 spin_lock_irqsave(&xhci->lock, flags);
1108 if (xhci->xhc_state & XHCI_STATE_DYING)
1109 goto dying;
1110 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1111 EP_GETTING_STREAMS) {
1112 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1113 "is transitioning to using streams.\n");
1114 ret = -EINVAL;
1115 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1116 EP_GETTING_NO_STREAMS) {
1117 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1118 "is transitioning to "
1119 "not having streams.\n");
1120 ret = -EINVAL;
1121 } else {
1122 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1123 slot_id, ep_index);
1125 if (ret)
1126 goto free_priv;
1127 spin_unlock_irqrestore(&xhci->lock, flags);
1128 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1129 spin_lock_irqsave(&xhci->lock, flags);
1130 if (xhci->xhc_state & XHCI_STATE_DYING)
1131 goto dying;
1132 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1133 slot_id, ep_index);
1134 if (ret)
1135 goto free_priv;
1136 spin_unlock_irqrestore(&xhci->lock, flags);
1137 } else {
1138 spin_lock_irqsave(&xhci->lock, flags);
1139 if (xhci->xhc_state & XHCI_STATE_DYING)
1140 goto dying;
1141 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1142 slot_id, ep_index);
1143 if (ret)
1144 goto free_priv;
1145 spin_unlock_irqrestore(&xhci->lock, flags);
1147 exit:
1148 return ret;
1149 dying:
1150 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1151 "non-responsive xHCI host.\n",
1152 urb->ep->desc.bEndpointAddress, urb);
1153 ret = -ESHUTDOWN;
1154 free_priv:
1155 xhci_urb_free_priv(xhci, urb_priv);
1156 urb->hcpriv = NULL;
1157 spin_unlock_irqrestore(&xhci->lock, flags);
1158 return ret;
1161 /* Get the right ring for the given URB.
1162 * If the endpoint supports streams, boundary check the URB's stream ID.
1163 * If the endpoint doesn't support streams, return the singular endpoint ring.
1165 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1166 struct urb *urb)
1168 unsigned int slot_id;
1169 unsigned int ep_index;
1170 unsigned int stream_id;
1171 struct xhci_virt_ep *ep;
1173 slot_id = urb->dev->slot_id;
1174 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1175 stream_id = urb->stream_id;
1176 ep = &xhci->devs[slot_id]->eps[ep_index];
1177 /* Common case: no streams */
1178 if (!(ep->ep_state & EP_HAS_STREAMS))
1179 return ep->ring;
1181 if (stream_id == 0) {
1182 xhci_warn(xhci,
1183 "WARN: Slot ID %u, ep index %u has streams, "
1184 "but URB has no stream ID.\n",
1185 slot_id, ep_index);
1186 return NULL;
1189 if (stream_id < ep->stream_info->num_streams)
1190 return ep->stream_info->stream_rings[stream_id];
1192 xhci_warn(xhci,
1193 "WARN: Slot ID %u, ep index %u has "
1194 "stream IDs 1 to %u allocated, "
1195 "but stream ID %u is requested.\n",
1196 slot_id, ep_index,
1197 ep->stream_info->num_streams - 1,
1198 stream_id);
1199 return NULL;
1203 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1204 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1205 * should pick up where it left off in the TD, unless a Set Transfer Ring
1206 * Dequeue Pointer is issued.
1208 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1209 * the ring. Since the ring is a contiguous structure, they can't be physically
1210 * removed. Instead, there are two options:
1212 * 1) If the HC is in the middle of processing the URB to be canceled, we
1213 * simply move the ring's dequeue pointer past those TRBs using the Set
1214 * Transfer Ring Dequeue Pointer command. This will be the common case,
1215 * when drivers timeout on the last submitted URB and attempt to cancel.
1217 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1218 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1219 * HC will need to invalidate the any TRBs it has cached after the stop
1220 * endpoint command, as noted in the xHCI 0.95 errata.
1222 * 3) The TD may have completed by the time the Stop Endpoint Command
1223 * completes, so software needs to handle that case too.
1225 * This function should protect against the TD enqueueing code ringing the
1226 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1227 * It also needs to account for multiple cancellations on happening at the same
1228 * time for the same endpoint.
1230 * Note that this function can be called in any context, or so says
1231 * usb_hcd_unlink_urb()
1233 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1235 unsigned long flags;
1236 int ret, i;
1237 u32 temp;
1238 struct xhci_hcd *xhci;
1239 struct urb_priv *urb_priv;
1240 struct xhci_td *td;
1241 unsigned int ep_index;
1242 struct xhci_ring *ep_ring;
1243 struct xhci_virt_ep *ep;
1245 xhci = hcd_to_xhci(hcd);
1246 spin_lock_irqsave(&xhci->lock, flags);
1247 /* Make sure the URB hasn't completed or been unlinked already */
1248 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1249 if (ret || !urb->hcpriv)
1250 goto done;
1251 temp = xhci_readl(xhci, &xhci->op_regs->status);
1252 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1253 xhci_dbg(xhci, "HW died, freeing TD.\n");
1254 urb_priv = urb->hcpriv;
1255 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1256 td = urb_priv->td[i];
1257 if (!list_empty(&td->td_list))
1258 list_del_init(&td->td_list);
1259 if (!list_empty(&td->cancelled_td_list))
1260 list_del_init(&td->cancelled_td_list);
1263 usb_hcd_unlink_urb_from_ep(hcd, urb);
1264 spin_unlock_irqrestore(&xhci->lock, flags);
1265 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1266 xhci_urb_free_priv(xhci, urb_priv);
1267 return ret;
1269 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1270 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1271 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1272 "non-responsive xHCI host.\n",
1273 urb->ep->desc.bEndpointAddress, urb);
1274 /* Let the stop endpoint command watchdog timer (which set this
1275 * state) finish cleaning up the endpoint TD lists. We must
1276 * have caught it in the middle of dropping a lock and giving
1277 * back an URB.
1279 goto done;
1282 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1283 xhci_dbg(xhci, "Event ring:\n");
1284 xhci_debug_ring(xhci, xhci->event_ring);
1285 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1286 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1287 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1288 if (!ep_ring) {
1289 ret = -EINVAL;
1290 goto done;
1293 xhci_dbg(xhci, "Endpoint ring:\n");
1294 xhci_debug_ring(xhci, ep_ring);
1296 urb_priv = urb->hcpriv;
1298 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1299 td = urb_priv->td[i];
1300 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1303 /* Queue a stop endpoint command, but only if this is
1304 * the first cancellation to be handled.
1306 if (!(ep->ep_state & EP_HALT_PENDING)) {
1307 ep->ep_state |= EP_HALT_PENDING;
1308 ep->stop_cmds_pending++;
1309 ep->stop_cmd_timer.expires = jiffies +
1310 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1311 add_timer(&ep->stop_cmd_timer);
1312 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1313 xhci_ring_cmd_db(xhci);
1315 done:
1316 spin_unlock_irqrestore(&xhci->lock, flags);
1317 return ret;
1320 /* Drop an endpoint from a new bandwidth configuration for this device.
1321 * Only one call to this function is allowed per endpoint before
1322 * check_bandwidth() or reset_bandwidth() must be called.
1323 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1324 * add the endpoint to the schedule with possibly new parameters denoted by a
1325 * different endpoint descriptor in usb_host_endpoint.
1326 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1327 * not allowed.
1329 * The USB core will not allow URBs to be queued to an endpoint that is being
1330 * disabled, so there's no need for mutual exclusion to protect
1331 * the xhci->devs[slot_id] structure.
1333 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1334 struct usb_host_endpoint *ep)
1336 struct xhci_hcd *xhci;
1337 struct xhci_container_ctx *in_ctx, *out_ctx;
1338 struct xhci_input_control_ctx *ctrl_ctx;
1339 struct xhci_slot_ctx *slot_ctx;
1340 unsigned int last_ctx;
1341 unsigned int ep_index;
1342 struct xhci_ep_ctx *ep_ctx;
1343 u32 drop_flag;
1344 u32 new_add_flags, new_drop_flags, new_slot_info;
1345 int ret;
1347 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1348 if (ret <= 0)
1349 return ret;
1350 xhci = hcd_to_xhci(hcd);
1351 if (xhci->xhc_state & XHCI_STATE_DYING)
1352 return -ENODEV;
1354 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1355 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1356 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1357 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1358 __func__, drop_flag);
1359 return 0;
1362 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1363 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1364 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1365 ep_index = xhci_get_endpoint_index(&ep->desc);
1366 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1367 /* If the HC already knows the endpoint is disabled,
1368 * or the HCD has noted it is disabled, ignore this request
1370 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1371 cpu_to_le32(EP_STATE_DISABLED)) ||
1372 le32_to_cpu(ctrl_ctx->drop_flags) &
1373 xhci_get_endpoint_flag(&ep->desc)) {
1374 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1375 __func__, ep);
1376 return 0;
1379 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1380 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1382 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1383 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1385 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1386 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1387 /* Update the last valid endpoint context, if we deleted the last one */
1388 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1389 LAST_CTX(last_ctx)) {
1390 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1391 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1393 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1395 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1397 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1398 (unsigned int) ep->desc.bEndpointAddress,
1399 udev->slot_id,
1400 (unsigned int) new_drop_flags,
1401 (unsigned int) new_add_flags,
1402 (unsigned int) new_slot_info);
1403 return 0;
1406 /* Add an endpoint to a new possible bandwidth configuration for this device.
1407 * Only one call to this function is allowed per endpoint before
1408 * check_bandwidth() or reset_bandwidth() must be called.
1409 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1410 * add the endpoint to the schedule with possibly new parameters denoted by a
1411 * different endpoint descriptor in usb_host_endpoint.
1412 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1413 * not allowed.
1415 * The USB core will not allow URBs to be queued to an endpoint until the
1416 * configuration or alt setting is installed in the device, so there's no need
1417 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1419 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1420 struct usb_host_endpoint *ep)
1422 struct xhci_hcd *xhci;
1423 struct xhci_container_ctx *in_ctx, *out_ctx;
1424 unsigned int ep_index;
1425 struct xhci_ep_ctx *ep_ctx;
1426 struct xhci_slot_ctx *slot_ctx;
1427 struct xhci_input_control_ctx *ctrl_ctx;
1428 u32 added_ctxs;
1429 unsigned int last_ctx;
1430 u32 new_add_flags, new_drop_flags, new_slot_info;
1431 struct xhci_virt_device *virt_dev;
1432 int ret = 0;
1434 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1435 if (ret <= 0) {
1436 /* So we won't queue a reset ep command for a root hub */
1437 ep->hcpriv = NULL;
1438 return ret;
1440 xhci = hcd_to_xhci(hcd);
1441 if (xhci->xhc_state & XHCI_STATE_DYING)
1442 return -ENODEV;
1444 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1445 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1446 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1447 /* FIXME when we have to issue an evaluate endpoint command to
1448 * deal with ep0 max packet size changing once we get the
1449 * descriptors
1451 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1452 __func__, added_ctxs);
1453 return 0;
1456 virt_dev = xhci->devs[udev->slot_id];
1457 in_ctx = virt_dev->in_ctx;
1458 out_ctx = virt_dev->out_ctx;
1459 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1460 ep_index = xhci_get_endpoint_index(&ep->desc);
1461 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1463 /* If this endpoint is already in use, and the upper layers are trying
1464 * to add it again without dropping it, reject the addition.
1466 if (virt_dev->eps[ep_index].ring &&
1467 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1468 xhci_get_endpoint_flag(&ep->desc))) {
1469 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1470 "without dropping it.\n",
1471 (unsigned int) ep->desc.bEndpointAddress);
1472 return -EINVAL;
1475 /* If the HCD has already noted the endpoint is enabled,
1476 * ignore this request.
1478 if (le32_to_cpu(ctrl_ctx->add_flags) &
1479 xhci_get_endpoint_flag(&ep->desc)) {
1480 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1481 __func__, ep);
1482 return 0;
1486 * Configuration and alternate setting changes must be done in
1487 * process context, not interrupt context (or so documenation
1488 * for usb_set_interface() and usb_set_configuration() claim).
1490 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1491 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1492 __func__, ep->desc.bEndpointAddress);
1493 return -ENOMEM;
1496 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1497 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1499 /* If xhci_endpoint_disable() was called for this endpoint, but the
1500 * xHC hasn't been notified yet through the check_bandwidth() call,
1501 * this re-adds a new state for the endpoint from the new endpoint
1502 * descriptors. We must drop and re-add this endpoint, so we leave the
1503 * drop flags alone.
1505 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1507 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1508 /* Update the last valid endpoint context, if we just added one past */
1509 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1510 LAST_CTX(last_ctx)) {
1511 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1512 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1514 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1516 /* Store the usb_device pointer for later use */
1517 ep->hcpriv = udev;
1519 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1520 (unsigned int) ep->desc.bEndpointAddress,
1521 udev->slot_id,
1522 (unsigned int) new_drop_flags,
1523 (unsigned int) new_add_flags,
1524 (unsigned int) new_slot_info);
1525 return 0;
1528 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1530 struct xhci_input_control_ctx *ctrl_ctx;
1531 struct xhci_ep_ctx *ep_ctx;
1532 struct xhci_slot_ctx *slot_ctx;
1533 int i;
1535 /* When a device's add flag and drop flag are zero, any subsequent
1536 * configure endpoint command will leave that endpoint's state
1537 * untouched. Make sure we don't leave any old state in the input
1538 * endpoint contexts.
1540 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1541 ctrl_ctx->drop_flags = 0;
1542 ctrl_ctx->add_flags = 0;
1543 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1544 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1545 /* Endpoint 0 is always valid */
1546 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1547 for (i = 1; i < 31; ++i) {
1548 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1549 ep_ctx->ep_info = 0;
1550 ep_ctx->ep_info2 = 0;
1551 ep_ctx->deq = 0;
1552 ep_ctx->tx_info = 0;
1556 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1557 struct usb_device *udev, u32 *cmd_status)
1559 int ret;
1561 switch (*cmd_status) {
1562 case COMP_ENOMEM:
1563 dev_warn(&udev->dev, "Not enough host controller resources "
1564 "for new device state.\n");
1565 ret = -ENOMEM;
1566 /* FIXME: can we allocate more resources for the HC? */
1567 break;
1568 case COMP_BW_ERR:
1569 dev_warn(&udev->dev, "Not enough bandwidth "
1570 "for new device state.\n");
1571 ret = -ENOSPC;
1572 /* FIXME: can we go back to the old state? */
1573 break;
1574 case COMP_TRB_ERR:
1575 /* the HCD set up something wrong */
1576 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1577 "add flag = 1, "
1578 "and endpoint is not disabled.\n");
1579 ret = -EINVAL;
1580 break;
1581 case COMP_DEV_ERR:
1582 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1583 "configure command.\n");
1584 ret = -ENODEV;
1585 break;
1586 case COMP_SUCCESS:
1587 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1588 ret = 0;
1589 break;
1590 default:
1591 xhci_err(xhci, "ERROR: unexpected command completion "
1592 "code 0x%x.\n", *cmd_status);
1593 ret = -EINVAL;
1594 break;
1596 return ret;
1599 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1600 struct usb_device *udev, u32 *cmd_status)
1602 int ret;
1603 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1605 switch (*cmd_status) {
1606 case COMP_EINVAL:
1607 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1608 "context command.\n");
1609 ret = -EINVAL;
1610 break;
1611 case COMP_EBADSLT:
1612 dev_warn(&udev->dev, "WARN: slot not enabled for"
1613 "evaluate context command.\n");
1614 case COMP_CTX_STATE:
1615 dev_warn(&udev->dev, "WARN: invalid context state for "
1616 "evaluate context command.\n");
1617 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1618 ret = -EINVAL;
1619 break;
1620 case COMP_DEV_ERR:
1621 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1622 "context command.\n");
1623 ret = -ENODEV;
1624 break;
1625 case COMP_MEL_ERR:
1626 /* Max Exit Latency too large error */
1627 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1628 ret = -EINVAL;
1629 break;
1630 case COMP_SUCCESS:
1631 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1632 ret = 0;
1633 break;
1634 default:
1635 xhci_err(xhci, "ERROR: unexpected command completion "
1636 "code 0x%x.\n", *cmd_status);
1637 ret = -EINVAL;
1638 break;
1640 return ret;
1643 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1644 struct xhci_container_ctx *in_ctx)
1646 struct xhci_input_control_ctx *ctrl_ctx;
1647 u32 valid_add_flags;
1648 u32 valid_drop_flags;
1650 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1651 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1652 * (bit 1). The default control endpoint is added during the Address
1653 * Device command and is never removed until the slot is disabled.
1655 valid_add_flags = ctrl_ctx->add_flags >> 2;
1656 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1658 /* Use hweight32 to count the number of ones in the add flags, or
1659 * number of endpoints added. Don't count endpoints that are changed
1660 * (both added and dropped).
1662 return hweight32(valid_add_flags) -
1663 hweight32(valid_add_flags & valid_drop_flags);
1666 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1667 struct xhci_container_ctx *in_ctx)
1669 struct xhci_input_control_ctx *ctrl_ctx;
1670 u32 valid_add_flags;
1671 u32 valid_drop_flags;
1673 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1674 valid_add_flags = ctrl_ctx->add_flags >> 2;
1675 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1677 return hweight32(valid_drop_flags) -
1678 hweight32(valid_add_flags & valid_drop_flags);
1682 * We need to reserve the new number of endpoints before the configure endpoint
1683 * command completes. We can't subtract the dropped endpoints from the number
1684 * of active endpoints until the command completes because we can oversubscribe
1685 * the host in this case:
1687 * - the first configure endpoint command drops more endpoints than it adds
1688 * - a second configure endpoint command that adds more endpoints is queued
1689 * - the first configure endpoint command fails, so the config is unchanged
1690 * - the second command may succeed, even though there isn't enough resources
1692 * Must be called with xhci->lock held.
1694 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1695 struct xhci_container_ctx *in_ctx)
1697 u32 added_eps;
1699 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1701 xhci_dbg(xhci, "Not enough ep ctxs: "
1702 "%u active, need to add %u, limit is %u.\n",
1703 xhci->num_active_eps, added_eps,
1704 xhci->limit_active_eps);
1705 return -ENOMEM;
1707 xhci->num_active_eps += added_eps;
1708 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1709 xhci->num_active_eps);
1710 return 0;
1714 * The configure endpoint was failed by the xHC for some other reason, so we
1715 * need to revert the resources that failed configuration would have used.
1717 * Must be called with xhci->lock held.
1719 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1720 struct xhci_container_ctx *in_ctx)
1722 u32 num_failed_eps;
1724 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1725 xhci->num_active_eps -= num_failed_eps;
1726 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1727 num_failed_eps,
1728 xhci->num_active_eps);
1732 * Now that the command has completed, clean up the active endpoint count by
1733 * subtracting out the endpoints that were dropped (but not changed).
1735 * Must be called with xhci->lock held.
1737 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1738 struct xhci_container_ctx *in_ctx)
1740 u32 num_dropped_eps;
1742 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1743 xhci->num_active_eps -= num_dropped_eps;
1744 if (num_dropped_eps)
1745 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1746 num_dropped_eps,
1747 xhci->num_active_eps);
1750 /* Issue a configure endpoint command or evaluate context command
1751 * and wait for it to finish.
1753 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1754 struct usb_device *udev,
1755 struct xhci_command *command,
1756 bool ctx_change, bool must_succeed)
1758 int ret;
1759 int timeleft;
1760 unsigned long flags;
1761 struct xhci_container_ctx *in_ctx;
1762 struct completion *cmd_completion;
1763 u32 *cmd_status;
1764 struct xhci_virt_device *virt_dev;
1766 spin_lock_irqsave(&xhci->lock, flags);
1767 virt_dev = xhci->devs[udev->slot_id];
1768 if (command) {
1769 in_ctx = command->in_ctx;
1770 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1771 xhci_reserve_host_resources(xhci, in_ctx)) {
1772 spin_unlock_irqrestore(&xhci->lock, flags);
1773 xhci_warn(xhci, "Not enough host resources, "
1774 "active endpoint contexts = %u\n",
1775 xhci->num_active_eps);
1776 return -ENOMEM;
1779 cmd_completion = command->completion;
1780 cmd_status = &command->status;
1781 command->command_trb = xhci->cmd_ring->enqueue;
1783 /* Enqueue pointer can be left pointing to the link TRB,
1784 * we must handle that
1786 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
1787 command->command_trb =
1788 xhci->cmd_ring->enq_seg->next->trbs;
1790 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1791 } else {
1792 in_ctx = virt_dev->in_ctx;
1793 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1794 xhci_reserve_host_resources(xhci, in_ctx)) {
1795 spin_unlock_irqrestore(&xhci->lock, flags);
1796 xhci_warn(xhci, "Not enough host resources, "
1797 "active endpoint contexts = %u\n",
1798 xhci->num_active_eps);
1799 return -ENOMEM;
1801 cmd_completion = &virt_dev->cmd_completion;
1802 cmd_status = &virt_dev->cmd_status;
1804 init_completion(cmd_completion);
1806 if (!ctx_change)
1807 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1808 udev->slot_id, must_succeed);
1809 else
1810 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1811 udev->slot_id);
1812 if (ret < 0) {
1813 if (command)
1814 list_del(&command->cmd_list);
1815 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1816 xhci_free_host_resources(xhci, in_ctx);
1817 spin_unlock_irqrestore(&xhci->lock, flags);
1818 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1819 return -ENOMEM;
1821 xhci_ring_cmd_db(xhci);
1822 spin_unlock_irqrestore(&xhci->lock, flags);
1824 /* Wait for the configure endpoint command to complete */
1825 timeleft = wait_for_completion_interruptible_timeout(
1826 cmd_completion,
1827 USB_CTRL_SET_TIMEOUT);
1828 if (timeleft <= 0) {
1829 xhci_warn(xhci, "%s while waiting for %s command\n",
1830 timeleft == 0 ? "Timeout" : "Signal",
1831 ctx_change == 0 ?
1832 "configure endpoint" :
1833 "evaluate context");
1834 /* FIXME cancel the configure endpoint command */
1835 return -ETIME;
1838 if (!ctx_change)
1839 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1840 else
1841 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1843 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1844 spin_lock_irqsave(&xhci->lock, flags);
1845 /* If the command failed, remove the reserved resources.
1846 * Otherwise, clean up the estimate to include dropped eps.
1848 if (ret)
1849 xhci_free_host_resources(xhci, in_ctx);
1850 else
1851 xhci_finish_resource_reservation(xhci, in_ctx);
1852 spin_unlock_irqrestore(&xhci->lock, flags);
1854 return ret;
1857 /* Called after one or more calls to xhci_add_endpoint() or
1858 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1859 * to call xhci_reset_bandwidth().
1861 * Since we are in the middle of changing either configuration or
1862 * installing a new alt setting, the USB core won't allow URBs to be
1863 * enqueued for any endpoint on the old config or interface. Nothing
1864 * else should be touching the xhci->devs[slot_id] structure, so we
1865 * don't need to take the xhci->lock for manipulating that.
1867 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1869 int i;
1870 int ret = 0;
1871 struct xhci_hcd *xhci;
1872 struct xhci_virt_device *virt_dev;
1873 struct xhci_input_control_ctx *ctrl_ctx;
1874 struct xhci_slot_ctx *slot_ctx;
1876 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1877 if (ret <= 0)
1878 return ret;
1879 xhci = hcd_to_xhci(hcd);
1880 if (xhci->xhc_state & XHCI_STATE_DYING)
1881 return -ENODEV;
1883 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1884 virt_dev = xhci->devs[udev->slot_id];
1886 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1887 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1888 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1889 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1890 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1891 xhci_dbg(xhci, "New Input Control Context:\n");
1892 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1893 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1894 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1896 ret = xhci_configure_endpoint(xhci, udev, NULL,
1897 false, false);
1898 if (ret) {
1899 /* Callee should call reset_bandwidth() */
1900 return ret;
1903 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1904 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1905 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1907 /* Free any rings that were dropped, but not changed. */
1908 for (i = 1; i < 31; ++i) {
1909 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1910 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1911 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1913 xhci_zero_in_ctx(xhci, virt_dev);
1915 * Install any rings for completely new endpoints or changed endpoints,
1916 * and free or cache any old rings from changed endpoints.
1918 for (i = 1; i < 31; ++i) {
1919 if (!virt_dev->eps[i].new_ring)
1920 continue;
1921 /* Only cache or free the old ring if it exists.
1922 * It may not if this is the first add of an endpoint.
1924 if (virt_dev->eps[i].ring) {
1925 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1927 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1928 virt_dev->eps[i].new_ring = NULL;
1931 return ret;
1934 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1936 struct xhci_hcd *xhci;
1937 struct xhci_virt_device *virt_dev;
1938 int i, ret;
1940 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1941 if (ret <= 0)
1942 return;
1943 xhci = hcd_to_xhci(hcd);
1945 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1946 virt_dev = xhci->devs[udev->slot_id];
1947 /* Free any rings allocated for added endpoints */
1948 for (i = 0; i < 31; ++i) {
1949 if (virt_dev->eps[i].new_ring) {
1950 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1951 virt_dev->eps[i].new_ring = NULL;
1954 xhci_zero_in_ctx(xhci, virt_dev);
1957 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1958 struct xhci_container_ctx *in_ctx,
1959 struct xhci_container_ctx *out_ctx,
1960 u32 add_flags, u32 drop_flags)
1962 struct xhci_input_control_ctx *ctrl_ctx;
1963 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1964 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1965 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1966 xhci_slot_copy(xhci, in_ctx, out_ctx);
1967 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1969 xhci_dbg(xhci, "Input Context:\n");
1970 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1973 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1974 unsigned int slot_id, unsigned int ep_index,
1975 struct xhci_dequeue_state *deq_state)
1977 struct xhci_container_ctx *in_ctx;
1978 struct xhci_ep_ctx *ep_ctx;
1979 u32 added_ctxs;
1980 dma_addr_t addr;
1982 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1983 xhci->devs[slot_id]->out_ctx, ep_index);
1984 in_ctx = xhci->devs[slot_id]->in_ctx;
1985 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1986 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1987 deq_state->new_deq_ptr);
1988 if (addr == 0) {
1989 xhci_warn(xhci, "WARN Cannot submit config ep after "
1990 "reset ep command\n");
1991 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1992 deq_state->new_deq_seg,
1993 deq_state->new_deq_ptr);
1994 return;
1996 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1998 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1999 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2000 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2003 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2004 struct usb_device *udev, unsigned int ep_index)
2006 struct xhci_dequeue_state deq_state;
2007 struct xhci_virt_ep *ep;
2009 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2010 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2011 /* We need to move the HW's dequeue pointer past this TD,
2012 * or it will attempt to resend it on the next doorbell ring.
2014 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2015 ep_index, ep->stopped_stream, ep->stopped_td,
2016 &deq_state);
2018 /* HW with the reset endpoint quirk will use the saved dequeue state to
2019 * issue a configure endpoint command later.
2021 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2022 xhci_dbg(xhci, "Queueing new dequeue state\n");
2023 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2024 ep_index, ep->stopped_stream, &deq_state);
2025 } else {
2026 /* Better hope no one uses the input context between now and the
2027 * reset endpoint completion!
2028 * XXX: No idea how this hardware will react when stream rings
2029 * are enabled.
2031 xhci_dbg(xhci, "Setting up input context for "
2032 "configure endpoint command\n");
2033 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2034 ep_index, &deq_state);
2038 /* Deal with stalled endpoints. The core should have sent the control message
2039 * to clear the halt condition. However, we need to make the xHCI hardware
2040 * reset its sequence number, since a device will expect a sequence number of
2041 * zero after the halt condition is cleared.
2042 * Context: in_interrupt
2044 void xhci_endpoint_reset(struct usb_hcd *hcd,
2045 struct usb_host_endpoint *ep)
2047 struct xhci_hcd *xhci;
2048 struct usb_device *udev;
2049 unsigned int ep_index;
2050 unsigned long flags;
2051 int ret;
2052 struct xhci_virt_ep *virt_ep;
2054 xhci = hcd_to_xhci(hcd);
2055 udev = (struct usb_device *) ep->hcpriv;
2056 /* Called with a root hub endpoint (or an endpoint that wasn't added
2057 * with xhci_add_endpoint()
2059 if (!ep->hcpriv)
2060 return;
2061 ep_index = xhci_get_endpoint_index(&ep->desc);
2062 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2063 if (!virt_ep->stopped_td) {
2064 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2065 ep->desc.bEndpointAddress);
2066 return;
2068 if (usb_endpoint_xfer_control(&ep->desc)) {
2069 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2070 return;
2073 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2074 spin_lock_irqsave(&xhci->lock, flags);
2075 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2077 * Can't change the ring dequeue pointer until it's transitioned to the
2078 * stopped state, which is only upon a successful reset endpoint
2079 * command. Better hope that last command worked!
2081 if (!ret) {
2082 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2083 kfree(virt_ep->stopped_td);
2084 xhci_ring_cmd_db(xhci);
2086 virt_ep->stopped_td = NULL;
2087 virt_ep->stopped_trb = NULL;
2088 virt_ep->stopped_stream = 0;
2089 spin_unlock_irqrestore(&xhci->lock, flags);
2091 if (ret)
2092 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2095 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2096 struct usb_device *udev, struct usb_host_endpoint *ep,
2097 unsigned int slot_id)
2099 int ret;
2100 unsigned int ep_index;
2101 unsigned int ep_state;
2103 if (!ep)
2104 return -EINVAL;
2105 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2106 if (ret <= 0)
2107 return -EINVAL;
2108 if (ep->ss_ep_comp.bmAttributes == 0) {
2109 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2110 " descriptor for ep 0x%x does not support streams\n",
2111 ep->desc.bEndpointAddress);
2112 return -EINVAL;
2115 ep_index = xhci_get_endpoint_index(&ep->desc);
2116 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2117 if (ep_state & EP_HAS_STREAMS ||
2118 ep_state & EP_GETTING_STREAMS) {
2119 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2120 "already has streams set up.\n",
2121 ep->desc.bEndpointAddress);
2122 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2123 "dynamic stream context array reallocation.\n");
2124 return -EINVAL;
2126 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2127 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2128 "endpoint 0x%x; URBs are pending.\n",
2129 ep->desc.bEndpointAddress);
2130 return -EINVAL;
2132 return 0;
2135 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2136 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2138 unsigned int max_streams;
2140 /* The stream context array size must be a power of two */
2141 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2143 * Find out how many primary stream array entries the host controller
2144 * supports. Later we may use secondary stream arrays (similar to 2nd
2145 * level page entries), but that's an optional feature for xHCI host
2146 * controllers. xHCs must support at least 4 stream IDs.
2148 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2149 if (*num_stream_ctxs > max_streams) {
2150 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2151 max_streams);
2152 *num_stream_ctxs = max_streams;
2153 *num_streams = max_streams;
2157 /* Returns an error code if one of the endpoint already has streams.
2158 * This does not change any data structures, it only checks and gathers
2159 * information.
2161 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2162 struct usb_device *udev,
2163 struct usb_host_endpoint **eps, unsigned int num_eps,
2164 unsigned int *num_streams, u32 *changed_ep_bitmask)
2166 unsigned int max_streams;
2167 unsigned int endpoint_flag;
2168 int i;
2169 int ret;
2171 for (i = 0; i < num_eps; i++) {
2172 ret = xhci_check_streams_endpoint(xhci, udev,
2173 eps[i], udev->slot_id);
2174 if (ret < 0)
2175 return ret;
2177 max_streams = USB_SS_MAX_STREAMS(
2178 eps[i]->ss_ep_comp.bmAttributes);
2179 if (max_streams < (*num_streams - 1)) {
2180 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2181 eps[i]->desc.bEndpointAddress,
2182 max_streams);
2183 *num_streams = max_streams+1;
2186 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2187 if (*changed_ep_bitmask & endpoint_flag)
2188 return -EINVAL;
2189 *changed_ep_bitmask |= endpoint_flag;
2191 return 0;
2194 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2195 struct usb_device *udev,
2196 struct usb_host_endpoint **eps, unsigned int num_eps)
2198 u32 changed_ep_bitmask = 0;
2199 unsigned int slot_id;
2200 unsigned int ep_index;
2201 unsigned int ep_state;
2202 int i;
2204 slot_id = udev->slot_id;
2205 if (!xhci->devs[slot_id])
2206 return 0;
2208 for (i = 0; i < num_eps; i++) {
2209 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2210 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2211 /* Are streams already being freed for the endpoint? */
2212 if (ep_state & EP_GETTING_NO_STREAMS) {
2213 xhci_warn(xhci, "WARN Can't disable streams for "
2214 "endpoint 0x%x\n, "
2215 "streams are being disabled already.",
2216 eps[i]->desc.bEndpointAddress);
2217 return 0;
2219 /* Are there actually any streams to free? */
2220 if (!(ep_state & EP_HAS_STREAMS) &&
2221 !(ep_state & EP_GETTING_STREAMS)) {
2222 xhci_warn(xhci, "WARN Can't disable streams for "
2223 "endpoint 0x%x\n, "
2224 "streams are already disabled!",
2225 eps[i]->desc.bEndpointAddress);
2226 xhci_warn(xhci, "WARN xhci_free_streams() called "
2227 "with non-streams endpoint\n");
2228 return 0;
2230 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2232 return changed_ep_bitmask;
2236 * The USB device drivers use this function (though the HCD interface in USB
2237 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2238 * coordinate mass storage command queueing across multiple endpoints (basically
2239 * a stream ID == a task ID).
2241 * Setting up streams involves allocating the same size stream context array
2242 * for each endpoint and issuing a configure endpoint command for all endpoints.
2244 * Don't allow the call to succeed if one endpoint only supports one stream
2245 * (which means it doesn't support streams at all).
2247 * Drivers may get less stream IDs than they asked for, if the host controller
2248 * hardware or endpoints claim they can't support the number of requested
2249 * stream IDs.
2251 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2252 struct usb_host_endpoint **eps, unsigned int num_eps,
2253 unsigned int num_streams, gfp_t mem_flags)
2255 int i, ret;
2256 struct xhci_hcd *xhci;
2257 struct xhci_virt_device *vdev;
2258 struct xhci_command *config_cmd;
2259 unsigned int ep_index;
2260 unsigned int num_stream_ctxs;
2261 unsigned long flags;
2262 u32 changed_ep_bitmask = 0;
2264 if (!eps)
2265 return -EINVAL;
2267 /* Add one to the number of streams requested to account for
2268 * stream 0 that is reserved for xHCI usage.
2270 num_streams += 1;
2271 xhci = hcd_to_xhci(hcd);
2272 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2273 num_streams);
2275 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2276 if (!config_cmd) {
2277 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2278 return -ENOMEM;
2281 /* Check to make sure all endpoints are not already configured for
2282 * streams. While we're at it, find the maximum number of streams that
2283 * all the endpoints will support and check for duplicate endpoints.
2285 spin_lock_irqsave(&xhci->lock, flags);
2286 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2287 num_eps, &num_streams, &changed_ep_bitmask);
2288 if (ret < 0) {
2289 xhci_free_command(xhci, config_cmd);
2290 spin_unlock_irqrestore(&xhci->lock, flags);
2291 return ret;
2293 if (num_streams <= 1) {
2294 xhci_warn(xhci, "WARN: endpoints can't handle "
2295 "more than one stream.\n");
2296 xhci_free_command(xhci, config_cmd);
2297 spin_unlock_irqrestore(&xhci->lock, flags);
2298 return -EINVAL;
2300 vdev = xhci->devs[udev->slot_id];
2301 /* Mark each endpoint as being in transition, so
2302 * xhci_urb_enqueue() will reject all URBs.
2304 for (i = 0; i < num_eps; i++) {
2305 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2306 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2308 spin_unlock_irqrestore(&xhci->lock, flags);
2310 /* Setup internal data structures and allocate HW data structures for
2311 * streams (but don't install the HW structures in the input context
2312 * until we're sure all memory allocation succeeded).
2314 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2315 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2316 num_stream_ctxs, num_streams);
2318 for (i = 0; i < num_eps; i++) {
2319 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2320 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2321 num_stream_ctxs,
2322 num_streams, mem_flags);
2323 if (!vdev->eps[ep_index].stream_info)
2324 goto cleanup;
2325 /* Set maxPstreams in endpoint context and update deq ptr to
2326 * point to stream context array. FIXME
2330 /* Set up the input context for a configure endpoint command. */
2331 for (i = 0; i < num_eps; i++) {
2332 struct xhci_ep_ctx *ep_ctx;
2334 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2335 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2337 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2338 vdev->out_ctx, ep_index);
2339 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2340 vdev->eps[ep_index].stream_info);
2342 /* Tell the HW to drop its old copy of the endpoint context info
2343 * and add the updated copy from the input context.
2345 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2346 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2348 /* Issue and wait for the configure endpoint command */
2349 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2350 false, false);
2352 /* xHC rejected the configure endpoint command for some reason, so we
2353 * leave the old ring intact and free our internal streams data
2354 * structure.
2356 if (ret < 0)
2357 goto cleanup;
2359 spin_lock_irqsave(&xhci->lock, flags);
2360 for (i = 0; i < num_eps; i++) {
2361 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2362 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2363 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2364 udev->slot_id, ep_index);
2365 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2367 xhci_free_command(xhci, config_cmd);
2368 spin_unlock_irqrestore(&xhci->lock, flags);
2370 /* Subtract 1 for stream 0, which drivers can't use */
2371 return num_streams - 1;
2373 cleanup:
2374 /* If it didn't work, free the streams! */
2375 for (i = 0; i < num_eps; i++) {
2376 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2377 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2378 vdev->eps[ep_index].stream_info = NULL;
2379 /* FIXME Unset maxPstreams in endpoint context and
2380 * update deq ptr to point to normal string ring.
2382 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2383 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2384 xhci_endpoint_zero(xhci, vdev, eps[i]);
2386 xhci_free_command(xhci, config_cmd);
2387 return -ENOMEM;
2390 /* Transition the endpoint from using streams to being a "normal" endpoint
2391 * without streams.
2393 * Modify the endpoint context state, submit a configure endpoint command,
2394 * and free all endpoint rings for streams if that completes successfully.
2396 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2397 struct usb_host_endpoint **eps, unsigned int num_eps,
2398 gfp_t mem_flags)
2400 int i, ret;
2401 struct xhci_hcd *xhci;
2402 struct xhci_virt_device *vdev;
2403 struct xhci_command *command;
2404 unsigned int ep_index;
2405 unsigned long flags;
2406 u32 changed_ep_bitmask;
2408 xhci = hcd_to_xhci(hcd);
2409 vdev = xhci->devs[udev->slot_id];
2411 /* Set up a configure endpoint command to remove the streams rings */
2412 spin_lock_irqsave(&xhci->lock, flags);
2413 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2414 udev, eps, num_eps);
2415 if (changed_ep_bitmask == 0) {
2416 spin_unlock_irqrestore(&xhci->lock, flags);
2417 return -EINVAL;
2420 /* Use the xhci_command structure from the first endpoint. We may have
2421 * allocated too many, but the driver may call xhci_free_streams() for
2422 * each endpoint it grouped into one call to xhci_alloc_streams().
2424 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2425 command = vdev->eps[ep_index].stream_info->free_streams_command;
2426 for (i = 0; i < num_eps; i++) {
2427 struct xhci_ep_ctx *ep_ctx;
2429 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2430 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2431 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2432 EP_GETTING_NO_STREAMS;
2434 xhci_endpoint_copy(xhci, command->in_ctx,
2435 vdev->out_ctx, ep_index);
2436 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2437 &vdev->eps[ep_index]);
2439 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2440 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2441 spin_unlock_irqrestore(&xhci->lock, flags);
2443 /* Issue and wait for the configure endpoint command,
2444 * which must succeed.
2446 ret = xhci_configure_endpoint(xhci, udev, command,
2447 false, true);
2449 /* xHC rejected the configure endpoint command for some reason, so we
2450 * leave the streams rings intact.
2452 if (ret < 0)
2453 return ret;
2455 spin_lock_irqsave(&xhci->lock, flags);
2456 for (i = 0; i < num_eps; i++) {
2457 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2458 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2459 vdev->eps[ep_index].stream_info = NULL;
2460 /* FIXME Unset maxPstreams in endpoint context and
2461 * update deq ptr to point to normal string ring.
2463 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2464 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2466 spin_unlock_irqrestore(&xhci->lock, flags);
2468 return 0;
2472 * Deletes endpoint resources for endpoints that were active before a Reset
2473 * Device command, or a Disable Slot command. The Reset Device command leaves
2474 * the control endpoint intact, whereas the Disable Slot command deletes it.
2476 * Must be called with xhci->lock held.
2478 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2479 struct xhci_virt_device *virt_dev, bool drop_control_ep)
2481 int i;
2482 unsigned int num_dropped_eps = 0;
2483 unsigned int drop_flags = 0;
2485 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2486 if (virt_dev->eps[i].ring) {
2487 drop_flags |= 1 << i;
2488 num_dropped_eps++;
2491 xhci->num_active_eps -= num_dropped_eps;
2492 if (num_dropped_eps)
2493 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2494 "%u now active.\n",
2495 num_dropped_eps, drop_flags,
2496 xhci->num_active_eps);
2500 * This submits a Reset Device Command, which will set the device state to 0,
2501 * set the device address to 0, and disable all the endpoints except the default
2502 * control endpoint. The USB core should come back and call
2503 * xhci_address_device(), and then re-set up the configuration. If this is
2504 * called because of a usb_reset_and_verify_device(), then the old alternate
2505 * settings will be re-installed through the normal bandwidth allocation
2506 * functions.
2508 * Wait for the Reset Device command to finish. Remove all structures
2509 * associated with the endpoints that were disabled. Clear the input device
2510 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
2512 * If the virt_dev to be reset does not exist or does not match the udev,
2513 * it means the device is lost, possibly due to the xHC restore error and
2514 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2515 * re-allocate the device.
2517 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2519 int ret, i;
2520 unsigned long flags;
2521 struct xhci_hcd *xhci;
2522 unsigned int slot_id;
2523 struct xhci_virt_device *virt_dev;
2524 struct xhci_command *reset_device_cmd;
2525 int timeleft;
2526 int last_freed_endpoint;
2527 struct xhci_slot_ctx *slot_ctx;
2529 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2530 if (ret <= 0)
2531 return ret;
2532 xhci = hcd_to_xhci(hcd);
2533 slot_id = udev->slot_id;
2534 virt_dev = xhci->devs[slot_id];
2535 if (!virt_dev) {
2536 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2537 "not exist. Re-allocate the device\n", slot_id);
2538 ret = xhci_alloc_dev(hcd, udev);
2539 if (ret == 1)
2540 return 0;
2541 else
2542 return -EINVAL;
2545 if (virt_dev->udev != udev) {
2546 /* If the virt_dev and the udev does not match, this virt_dev
2547 * may belong to another udev.
2548 * Re-allocate the device.
2550 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2551 "not match the udev. Re-allocate the device\n",
2552 slot_id);
2553 ret = xhci_alloc_dev(hcd, udev);
2554 if (ret == 1)
2555 return 0;
2556 else
2557 return -EINVAL;
2560 /* If device is not setup, there is no point in resetting it */
2561 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2562 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2563 SLOT_STATE_DISABLED)
2564 return 0;
2566 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2567 /* Allocate the command structure that holds the struct completion.
2568 * Assume we're in process context, since the normal device reset
2569 * process has to wait for the device anyway. Storage devices are
2570 * reset as part of error handling, so use GFP_NOIO instead of
2571 * GFP_KERNEL.
2573 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2574 if (!reset_device_cmd) {
2575 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2576 return -ENOMEM;
2579 /* Attempt to submit the Reset Device command to the command ring */
2580 spin_lock_irqsave(&xhci->lock, flags);
2581 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2583 /* Enqueue pointer can be left pointing to the link TRB,
2584 * we must handle that
2586 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
2587 reset_device_cmd->command_trb =
2588 xhci->cmd_ring->enq_seg->next->trbs;
2590 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2591 ret = xhci_queue_reset_device(xhci, slot_id);
2592 if (ret) {
2593 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2594 list_del(&reset_device_cmd->cmd_list);
2595 spin_unlock_irqrestore(&xhci->lock, flags);
2596 goto command_cleanup;
2598 xhci_ring_cmd_db(xhci);
2599 spin_unlock_irqrestore(&xhci->lock, flags);
2601 /* Wait for the Reset Device command to finish */
2602 timeleft = wait_for_completion_interruptible_timeout(
2603 reset_device_cmd->completion,
2604 USB_CTRL_SET_TIMEOUT);
2605 if (timeleft <= 0) {
2606 xhci_warn(xhci, "%s while waiting for reset device command\n",
2607 timeleft == 0 ? "Timeout" : "Signal");
2608 spin_lock_irqsave(&xhci->lock, flags);
2609 /* The timeout might have raced with the event ring handler, so
2610 * only delete from the list if the item isn't poisoned.
2612 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2613 list_del(&reset_device_cmd->cmd_list);
2614 spin_unlock_irqrestore(&xhci->lock, flags);
2615 ret = -ETIME;
2616 goto command_cleanup;
2619 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2620 * unless we tried to reset a slot ID that wasn't enabled,
2621 * or the device wasn't in the addressed or configured state.
2623 ret = reset_device_cmd->status;
2624 switch (ret) {
2625 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2626 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2627 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2628 slot_id,
2629 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2630 xhci_info(xhci, "Not freeing device rings.\n");
2631 /* Don't treat this as an error. May change my mind later. */
2632 ret = 0;
2633 goto command_cleanup;
2634 case COMP_SUCCESS:
2635 xhci_dbg(xhci, "Successful reset device command.\n");
2636 break;
2637 default:
2638 if (xhci_is_vendor_info_code(xhci, ret))
2639 break;
2640 xhci_warn(xhci, "Unknown completion code %u for "
2641 "reset device command.\n", ret);
2642 ret = -EINVAL;
2643 goto command_cleanup;
2646 /* Free up host controller endpoint resources */
2647 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648 spin_lock_irqsave(&xhci->lock, flags);
2649 /* Don't delete the default control endpoint resources */
2650 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2651 spin_unlock_irqrestore(&xhci->lock, flags);
2654 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2655 last_freed_endpoint = 1;
2656 for (i = 1; i < 31; ++i) {
2657 struct xhci_virt_ep *ep = &virt_dev->eps[i];
2659 if (ep->ep_state & EP_HAS_STREAMS) {
2660 xhci_free_stream_info(xhci, ep->stream_info);
2661 ep->stream_info = NULL;
2662 ep->ep_state &= ~EP_HAS_STREAMS;
2665 if (ep->ring) {
2666 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2667 last_freed_endpoint = i;
2670 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2671 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2672 ret = 0;
2674 command_cleanup:
2675 xhci_free_command(xhci, reset_device_cmd);
2676 return ret;
2680 * At this point, the struct usb_device is about to go away, the device has
2681 * disconnected, and all traffic has been stopped and the endpoints have been
2682 * disabled. Free any HC data structures associated with that device.
2684 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2686 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2687 struct xhci_virt_device *virt_dev;
2688 unsigned long flags;
2689 u32 state;
2690 int i, ret;
2692 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693 /* If the host is halted due to driver unload, we still need to free the
2694 * device.
2696 if (ret <= 0 && ret != -ENODEV)
2697 return;
2699 virt_dev = xhci->devs[udev->slot_id];
2701 /* Stop any wayward timer functions (which may grab the lock) */
2702 for (i = 0; i < 31; ++i) {
2703 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2704 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2707 spin_lock_irqsave(&xhci->lock, flags);
2708 /* Don't disable the slot if the host controller is dead. */
2709 state = xhci_readl(xhci, &xhci->op_regs->status);
2710 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
2711 (xhci->xhc_state & XHCI_STATE_HALTED)) {
2712 xhci_free_virt_device(xhci, udev->slot_id);
2713 spin_unlock_irqrestore(&xhci->lock, flags);
2714 return;
2717 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2718 spin_unlock_irqrestore(&xhci->lock, flags);
2719 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2720 return;
2722 xhci_ring_cmd_db(xhci);
2723 spin_unlock_irqrestore(&xhci->lock, flags);
2725 * Event command completion handler will free any data structures
2726 * associated with the slot. XXX Can free sleep?
2731 * Checks if we have enough host controller resources for the default control
2732 * endpoint.
2734 * Must be called with xhci->lock held.
2736 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2738 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2739 xhci_dbg(xhci, "Not enough ep ctxs: "
2740 "%u active, need to add 1, limit is %u.\n",
2741 xhci->num_active_eps, xhci->limit_active_eps);
2742 return -ENOMEM;
2744 xhci->num_active_eps += 1;
2745 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
2746 xhci->num_active_eps);
2747 return 0;
2752 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2753 * timed out, or allocating memory failed. Returns 1 on success.
2755 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2757 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2758 unsigned long flags;
2759 int timeleft;
2760 int ret;
2762 spin_lock_irqsave(&xhci->lock, flags);
2763 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2764 if (ret) {
2765 spin_unlock_irqrestore(&xhci->lock, flags);
2766 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2767 return 0;
2769 xhci_ring_cmd_db(xhci);
2770 spin_unlock_irqrestore(&xhci->lock, flags);
2772 /* XXX: how much time for xHC slot assignment? */
2773 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2774 USB_CTRL_SET_TIMEOUT);
2775 if (timeleft <= 0) {
2776 xhci_warn(xhci, "%s while waiting for a slot\n",
2777 timeleft == 0 ? "Timeout" : "Signal");
2778 /* FIXME cancel the enable slot request */
2779 return 0;
2782 if (!xhci->slot_id) {
2783 xhci_err(xhci, "Error while assigning device slot ID\n");
2784 return 0;
2787 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2788 spin_lock_irqsave(&xhci->lock, flags);
2789 ret = xhci_reserve_host_control_ep_resources(xhci);
2790 if (ret) {
2791 spin_unlock_irqrestore(&xhci->lock, flags);
2792 xhci_warn(xhci, "Not enough host resources, "
2793 "active endpoint contexts = %u\n",
2794 xhci->num_active_eps);
2795 goto disable_slot;
2797 spin_unlock_irqrestore(&xhci->lock, flags);
2799 /* Use GFP_NOIO, since this function can be called from
2800 * xhci_discover_or_reset_device(), which may be called as part of
2801 * mass storage driver error handling.
2803 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2804 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2805 goto disable_slot;
2807 udev->slot_id = xhci->slot_id;
2808 /* Is this a LS or FS device under a HS hub? */
2809 /* Hub or peripherial? */
2810 return 1;
2812 disable_slot:
2813 /* Disable slot, if we can do it without mem alloc */
2814 spin_lock_irqsave(&xhci->lock, flags);
2815 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2816 xhci_ring_cmd_db(xhci);
2817 spin_unlock_irqrestore(&xhci->lock, flags);
2818 return 0;
2822 * Issue an Address Device command (which will issue a SetAddress request to
2823 * the device).
2824 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2825 * we should only issue and wait on one address command at the same time.
2827 * We add one to the device address issued by the hardware because the USB core
2828 * uses address 1 for the root hubs (even though they're not really devices).
2830 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2832 unsigned long flags;
2833 int timeleft;
2834 struct xhci_virt_device *virt_dev;
2835 int ret = 0;
2836 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2837 struct xhci_slot_ctx *slot_ctx;
2838 struct xhci_input_control_ctx *ctrl_ctx;
2839 u64 temp_64;
2841 if (!udev->slot_id) {
2842 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2843 return -EINVAL;
2846 virt_dev = xhci->devs[udev->slot_id];
2848 if (WARN_ON(!virt_dev)) {
2850 * In plug/unplug torture test with an NEC controller,
2851 * a zero-dereference was observed once due to virt_dev = 0.
2852 * Print useful debug rather than crash if it is observed again!
2854 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2855 udev->slot_id);
2856 return -EINVAL;
2859 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2861 * If this is the first Set Address since device plug-in or
2862 * virt_device realloaction after a resume with an xHCI power loss,
2863 * then set up the slot context.
2865 if (!slot_ctx->dev_info)
2866 xhci_setup_addressable_virt_dev(xhci, udev);
2867 /* Otherwise, update the control endpoint ring enqueue pointer. */
2868 else
2869 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2870 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2871 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2873 spin_lock_irqsave(&xhci->lock, flags);
2874 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2875 udev->slot_id);
2876 if (ret) {
2877 spin_unlock_irqrestore(&xhci->lock, flags);
2878 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2879 return ret;
2881 xhci_ring_cmd_db(xhci);
2882 spin_unlock_irqrestore(&xhci->lock, flags);
2884 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2885 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2886 USB_CTRL_SET_TIMEOUT);
2887 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2888 * the SetAddress() "recovery interval" required by USB and aborting the
2889 * command on a timeout.
2891 if (timeleft <= 0) {
2892 xhci_warn(xhci, "%s while waiting for a slot\n",
2893 timeleft == 0 ? "Timeout" : "Signal");
2894 /* FIXME cancel the address device command */
2895 return -ETIME;
2898 switch (virt_dev->cmd_status) {
2899 case COMP_CTX_STATE:
2900 case COMP_EBADSLT:
2901 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2902 udev->slot_id);
2903 ret = -EINVAL;
2904 break;
2905 case COMP_TX_ERR:
2906 dev_warn(&udev->dev, "Device not responding to set address.\n");
2907 ret = -EPROTO;
2908 break;
2909 case COMP_DEV_ERR:
2910 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2911 "device command.\n");
2912 ret = -ENODEV;
2913 break;
2914 case COMP_SUCCESS:
2915 xhci_dbg(xhci, "Successful Address Device command\n");
2916 break;
2917 default:
2918 xhci_err(xhci, "ERROR: unexpected command completion "
2919 "code 0x%x.\n", virt_dev->cmd_status);
2920 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2921 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2922 ret = -EINVAL;
2923 break;
2925 if (ret) {
2926 return ret;
2928 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2929 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2930 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2931 udev->slot_id,
2932 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2933 (unsigned long long)
2934 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2935 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2936 (unsigned long long)virt_dev->out_ctx->dma);
2937 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2938 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2939 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2940 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2942 * USB core uses address 1 for the roothubs, so we add one to the
2943 * address given back to us by the HC.
2945 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2946 /* Use kernel assigned address for devices; store xHC assigned
2947 * address locally. */
2948 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2949 + 1;
2950 /* Zero the input context control for later use */
2951 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2952 ctrl_ctx->add_flags = 0;
2953 ctrl_ctx->drop_flags = 0;
2955 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2957 return 0;
2960 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2961 * internal data structures for the device.
2963 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2964 struct usb_tt *tt, gfp_t mem_flags)
2966 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2967 struct xhci_virt_device *vdev;
2968 struct xhci_command *config_cmd;
2969 struct xhci_input_control_ctx *ctrl_ctx;
2970 struct xhci_slot_ctx *slot_ctx;
2971 unsigned long flags;
2972 unsigned think_time;
2973 int ret;
2975 /* Ignore root hubs */
2976 if (!hdev->parent)
2977 return 0;
2979 vdev = xhci->devs[hdev->slot_id];
2980 if (!vdev) {
2981 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2982 return -EINVAL;
2984 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2985 if (!config_cmd) {
2986 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2987 return -ENOMEM;
2990 spin_lock_irqsave(&xhci->lock, flags);
2991 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2992 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2993 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2995 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2996 if (tt->multi)
2997 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2998 if (xhci->hci_version > 0x95) {
2999 xhci_dbg(xhci, "xHCI version %x needs hub "
3000 "TT think time and number of ports\n",
3001 (unsigned int) xhci->hci_version);
3002 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3003 /* Set TT think time - convert from ns to FS bit times.
3004 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3005 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3007 * xHCI 1.0: this field shall be 0 if the device is not a
3008 * High-spped hub.
3010 think_time = tt->think_time;
3011 if (think_time != 0)
3012 think_time = (think_time / 666) - 1;
3013 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3014 slot_ctx->tt_info |=
3015 cpu_to_le32(TT_THINK_TIME(think_time));
3016 } else {
3017 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3018 "TT think time or number of ports\n",
3019 (unsigned int) xhci->hci_version);
3021 slot_ctx->dev_state = 0;
3022 spin_unlock_irqrestore(&xhci->lock, flags);
3024 xhci_dbg(xhci, "Set up %s for hub device.\n",
3025 (xhci->hci_version > 0x95) ?
3026 "configure endpoint" : "evaluate context");
3027 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3028 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3030 /* Issue and wait for the configure endpoint or
3031 * evaluate context command.
3033 if (xhci->hci_version > 0x95)
3034 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3035 false, false);
3036 else
3037 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3038 true, false);
3040 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3041 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3043 xhci_free_command(xhci, config_cmd);
3044 return ret;
3047 int xhci_get_frame(struct usb_hcd *hcd)
3049 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3050 /* EHCI mods by the periodic size. Why? */
3051 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3054 MODULE_DESCRIPTION(DRIVER_DESC);
3055 MODULE_AUTHOR(DRIVER_AUTHOR);
3056 MODULE_LICENSE("GPL");
3058 static int __init xhci_hcd_init(void)
3060 #ifdef CONFIG_PCI
3061 int retval = 0;
3063 retval = xhci_register_pci();
3065 if (retval < 0) {
3066 printk(KERN_DEBUG "Problem registering PCI driver.");
3067 return retval;
3069 #endif
3071 * Check the compiler generated sizes of structures that must be laid
3072 * out in specific ways for hardware access.
3074 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3075 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3076 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3077 /* xhci_device_control has eight fields, and also
3078 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3080 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3081 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3082 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3083 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3084 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3085 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3086 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3087 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3088 return 0;
3090 module_init(xhci_hcd_init);
3092 static void __exit xhci_hcd_cleanup(void)
3094 #ifdef CONFIG_PCI
3095 xhci_unregister_pci();
3096 #endif
3098 module_exit(xhci_hcd_cleanup);