2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
43 #define dprintk printk
45 #define dprintk(x...) do { ; } while (0)
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock
);
50 unsigned long aio_nr
; /* current system wide number of aio requests */
51 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
54 static struct kmem_cache
*kiocb_cachep
;
55 static struct kmem_cache
*kioctx_cachep
;
57 static struct workqueue_struct
*aio_wq
;
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct
*);
61 static DECLARE_WORK(fput_work
, aio_fput_routine
);
63 static DEFINE_SPINLOCK(fput_lock
);
64 static LIST_HEAD(fput_head
);
66 static void aio_kick_handler(struct work_struct
*);
67 static void aio_queue_work(struct kioctx
*);
70 * Creates the slab caches used by the aio routines, panic on
71 * failure as this is done early during the boot sequence.
73 static int __init
aio_setup(void)
75 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
76 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
78 aio_wq
= alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
81 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
85 __initcall(aio_setup
);
87 static void aio_free_ring(struct kioctx
*ctx
)
89 struct aio_ring_info
*info
= &ctx
->ring_info
;
92 for (i
=0; i
<info
->nr_pages
; i
++)
93 put_page(info
->ring_pages
[i
]);
95 if (info
->mmap_size
) {
96 down_write(&ctx
->mm
->mmap_sem
);
97 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
98 up_write(&ctx
->mm
->mmap_sem
);
101 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
102 kfree(info
->ring_pages
);
103 info
->ring_pages
= NULL
;
107 static int aio_setup_ring(struct kioctx
*ctx
)
109 struct aio_ring
*ring
;
110 struct aio_ring_info
*info
= &ctx
->ring_info
;
111 unsigned nr_events
= ctx
->max_reqs
;
115 /* Compensate for the ring buffer's head/tail overlap entry */
116 nr_events
+= 2; /* 1 is required, 2 for good luck */
118 size
= sizeof(struct aio_ring
);
119 size
+= sizeof(struct io_event
) * nr_events
;
120 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
125 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
128 info
->ring_pages
= info
->internal_pages
;
129 if (nr_pages
> AIO_RING_PAGES
) {
130 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
131 if (!info
->ring_pages
)
135 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
136 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
137 down_write(&ctx
->mm
->mmap_sem
);
138 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
139 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
141 if (IS_ERR((void *)info
->mmap_base
)) {
142 up_write(&ctx
->mm
->mmap_sem
);
148 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
149 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
150 info
->mmap_base
, nr_pages
,
151 1, 0, info
->ring_pages
, NULL
);
152 up_write(&ctx
->mm
->mmap_sem
);
154 if (unlikely(info
->nr_pages
!= nr_pages
)) {
159 ctx
->user_id
= info
->mmap_base
;
161 info
->nr
= nr_events
; /* trusted copy */
163 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
164 ring
->nr
= nr_events
; /* user copy */
165 ring
->id
= ctx
->user_id
;
166 ring
->head
= ring
->tail
= 0;
167 ring
->magic
= AIO_RING_MAGIC
;
168 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
169 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
170 ring
->header_length
= sizeof(struct aio_ring
);
171 kunmap_atomic(ring
, KM_USER0
);
177 /* aio_ring_event: returns a pointer to the event at the given index from
178 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
180 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
181 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
184 #define aio_ring_event(info, nr, km) ({ \
185 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
186 struct io_event *__event; \
187 __event = kmap_atomic( \
188 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
189 __event += pos % AIO_EVENTS_PER_PAGE; \
193 #define put_aio_ring_event(event, km) do { \
194 struct io_event *__event = (event); \
196 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
199 static void ctx_rcu_free(struct rcu_head
*head
)
201 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
202 unsigned nr_events
= ctx
->max_reqs
;
204 kmem_cache_free(kioctx_cachep
, ctx
);
207 spin_lock(&aio_nr_lock
);
208 BUG_ON(aio_nr
- nr_events
> aio_nr
);
210 spin_unlock(&aio_nr_lock
);
215 * Called when the last user of an aio context has gone away,
216 * and the struct needs to be freed.
218 static void __put_ioctx(struct kioctx
*ctx
)
220 BUG_ON(ctx
->reqs_active
);
222 cancel_delayed_work(&ctx
->wq
);
223 cancel_work_sync(&ctx
->wq
.work
);
227 pr_debug("__put_ioctx: freeing %p\n", ctx
);
228 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
231 static inline void get_ioctx(struct kioctx
*kioctx
)
233 BUG_ON(atomic_read(&kioctx
->users
) <= 0);
234 atomic_inc(&kioctx
->users
);
237 static inline int try_get_ioctx(struct kioctx
*kioctx
)
239 return atomic_inc_not_zero(&kioctx
->users
);
242 static inline void put_ioctx(struct kioctx
*kioctx
)
244 BUG_ON(atomic_read(&kioctx
->users
) <= 0);
245 if (unlikely(atomic_dec_and_test(&kioctx
->users
)))
250 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
252 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
254 struct mm_struct
*mm
;
258 /* Prevent overflows */
259 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
260 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
261 pr_debug("ENOMEM: nr_events too high\n");
262 return ERR_PTR(-EINVAL
);
265 if ((unsigned long)nr_events
> aio_max_nr
)
266 return ERR_PTR(-EAGAIN
);
268 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
270 return ERR_PTR(-ENOMEM
);
272 ctx
->max_reqs
= nr_events
;
273 mm
= ctx
->mm
= current
->mm
;
274 atomic_inc(&mm
->mm_count
);
276 atomic_set(&ctx
->users
, 1);
277 spin_lock_init(&ctx
->ctx_lock
);
278 spin_lock_init(&ctx
->ring_info
.ring_lock
);
279 init_waitqueue_head(&ctx
->wait
);
281 INIT_LIST_HEAD(&ctx
->active_reqs
);
282 INIT_LIST_HEAD(&ctx
->run_list
);
283 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
285 if (aio_setup_ring(ctx
) < 0)
288 /* limit the number of system wide aios */
290 spin_lock_bh(&aio_nr_lock
);
291 if (aio_nr
+ nr_events
> aio_max_nr
||
292 aio_nr
+ nr_events
< aio_nr
)
295 aio_nr
+= ctx
->max_reqs
;
296 spin_unlock_bh(&aio_nr_lock
);
297 if (ctx
->max_reqs
|| did_sync
)
300 /* wait for rcu callbacks to have completed before giving up */
303 ctx
->max_reqs
= nr_events
;
306 if (ctx
->max_reqs
== 0)
309 /* now link into global list. */
310 spin_lock(&mm
->ioctx_lock
);
311 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
312 spin_unlock(&mm
->ioctx_lock
);
314 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
315 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
320 return ERR_PTR(-EAGAIN
);
324 kmem_cache_free(kioctx_cachep
, ctx
);
325 ctx
= ERR_PTR(-ENOMEM
);
327 dprintk("aio: error allocating ioctx %p\n", ctx
);
332 * Cancels all outstanding aio requests on an aio context. Used
333 * when the processes owning a context have all exited to encourage
334 * the rapid destruction of the kioctx.
336 static void aio_cancel_all(struct kioctx
*ctx
)
338 int (*cancel
)(struct kiocb
*, struct io_event
*);
340 spin_lock_irq(&ctx
->ctx_lock
);
342 while (!list_empty(&ctx
->active_reqs
)) {
343 struct list_head
*pos
= ctx
->active_reqs
.next
;
344 struct kiocb
*iocb
= list_kiocb(pos
);
345 list_del_init(&iocb
->ki_list
);
346 cancel
= iocb
->ki_cancel
;
347 kiocbSetCancelled(iocb
);
350 spin_unlock_irq(&ctx
->ctx_lock
);
352 spin_lock_irq(&ctx
->ctx_lock
);
355 spin_unlock_irq(&ctx
->ctx_lock
);
358 static void wait_for_all_aios(struct kioctx
*ctx
)
360 struct task_struct
*tsk
= current
;
361 DECLARE_WAITQUEUE(wait
, tsk
);
363 spin_lock_irq(&ctx
->ctx_lock
);
364 if (!ctx
->reqs_active
)
367 add_wait_queue(&ctx
->wait
, &wait
);
368 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
369 while (ctx
->reqs_active
) {
370 spin_unlock_irq(&ctx
->ctx_lock
);
372 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
373 spin_lock_irq(&ctx
->ctx_lock
);
375 __set_task_state(tsk
, TASK_RUNNING
);
376 remove_wait_queue(&ctx
->wait
, &wait
);
379 spin_unlock_irq(&ctx
->ctx_lock
);
382 /* wait_on_sync_kiocb:
383 * Waits on the given sync kiocb to complete.
385 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
387 while (iocb
->ki_users
) {
388 set_current_state(TASK_UNINTERRUPTIBLE
);
393 __set_current_state(TASK_RUNNING
);
394 return iocb
->ki_user_data
;
396 EXPORT_SYMBOL(wait_on_sync_kiocb
);
398 /* exit_aio: called when the last user of mm goes away. At this point,
399 * there is no way for any new requests to be submited or any of the
400 * io_* syscalls to be called on the context. However, there may be
401 * outstanding requests which hold references to the context; as they
402 * go away, they will call put_ioctx and release any pinned memory
403 * associated with the request (held via struct page * references).
405 void exit_aio(struct mm_struct
*mm
)
409 while (!hlist_empty(&mm
->ioctx_list
)) {
410 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
411 hlist_del_rcu(&ctx
->list
);
415 wait_for_all_aios(ctx
);
417 * Ensure we don't leave the ctx on the aio_wq
419 cancel_work_sync(&ctx
->wq
.work
);
421 if (1 != atomic_read(&ctx
->users
))
423 "exit_aio:ioctx still alive: %d %d %d\n",
424 atomic_read(&ctx
->users
), ctx
->dead
,
431 * Allocate a slot for an aio request. Increments the users count
432 * of the kioctx so that the kioctx stays around until all requests are
433 * complete. Returns NULL if no requests are free.
435 * Returns with kiocb->users set to 2. The io submit code path holds
436 * an extra reference while submitting the i/o.
437 * This prevents races between the aio code path referencing the
438 * req (after submitting it) and aio_complete() freeing the req.
440 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
442 struct kiocb
*req
= NULL
;
443 struct aio_ring
*ring
;
446 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
454 req
->ki_cancel
= NULL
;
455 req
->ki_retry
= NULL
;
458 req
->ki_iovec
= NULL
;
459 INIT_LIST_HEAD(&req
->ki_run_list
);
460 req
->ki_eventfd
= NULL
;
462 /* Check if the completion queue has enough free space to
463 * accept an event from this io.
465 spin_lock_irq(&ctx
->ctx_lock
);
466 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
467 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
468 list_add(&req
->ki_list
, &ctx
->active_reqs
);
472 kunmap_atomic(ring
, KM_USER0
);
473 spin_unlock_irq(&ctx
->ctx_lock
);
476 kmem_cache_free(kiocb_cachep
, req
);
483 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
486 /* Handle a potential starvation case -- should be exceedingly rare as
487 * requests will be stuck on fput_head only if the aio_fput_routine is
488 * delayed and the requests were the last user of the struct file.
490 req
= __aio_get_req(ctx
);
491 if (unlikely(NULL
== req
)) {
492 aio_fput_routine(NULL
);
493 req
= __aio_get_req(ctx
);
498 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
500 assert_spin_locked(&ctx
->ctx_lock
);
502 if (req
->ki_eventfd
!= NULL
)
503 eventfd_ctx_put(req
->ki_eventfd
);
506 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
507 kfree(req
->ki_iovec
);
508 kmem_cache_free(kiocb_cachep
, req
);
511 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
512 wake_up_all(&ctx
->wait
);
515 static void aio_fput_routine(struct work_struct
*data
)
517 spin_lock_irq(&fput_lock
);
518 while (likely(!list_empty(&fput_head
))) {
519 struct kiocb
*req
= list_kiocb(fput_head
.next
);
520 struct kioctx
*ctx
= req
->ki_ctx
;
522 list_del(&req
->ki_list
);
523 spin_unlock_irq(&fput_lock
);
525 /* Complete the fput(s) */
526 if (req
->ki_filp
!= NULL
)
529 /* Link the iocb into the context's free list */
530 spin_lock_irq(&ctx
->ctx_lock
);
531 really_put_req(ctx
, req
);
532 spin_unlock_irq(&ctx
->ctx_lock
);
535 spin_lock_irq(&fput_lock
);
537 spin_unlock_irq(&fput_lock
);
541 * Returns true if this put was the last user of the request.
543 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
545 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
546 req
, atomic_long_read(&req
->ki_filp
->f_count
));
548 assert_spin_locked(&ctx
->ctx_lock
);
551 BUG_ON(req
->ki_users
< 0);
552 if (likely(req
->ki_users
))
554 list_del(&req
->ki_list
); /* remove from active_reqs */
555 req
->ki_cancel
= NULL
;
556 req
->ki_retry
= NULL
;
559 * Try to optimize the aio and eventfd file* puts, by avoiding to
560 * schedule work in case it is not final fput() time. In normal cases,
561 * we would not be holding the last reference to the file*, so
562 * this function will be executed w/out any aio kthread wakeup.
564 if (unlikely(!fput_atomic(req
->ki_filp
))) {
566 spin_lock(&fput_lock
);
567 list_add(&req
->ki_list
, &fput_head
);
568 spin_unlock(&fput_lock
);
569 schedule_work(&fput_work
);
572 really_put_req(ctx
, req
);
578 * Returns true if this put was the last user of the kiocb,
579 * false if the request is still in use.
581 int aio_put_req(struct kiocb
*req
)
583 struct kioctx
*ctx
= req
->ki_ctx
;
585 spin_lock_irq(&ctx
->ctx_lock
);
586 ret
= __aio_put_req(ctx
, req
);
587 spin_unlock_irq(&ctx
->ctx_lock
);
590 EXPORT_SYMBOL(aio_put_req
);
592 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
594 struct mm_struct
*mm
= current
->mm
;
595 struct kioctx
*ctx
, *ret
= NULL
;
596 struct hlist_node
*n
;
600 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
602 * RCU protects us against accessing freed memory but
603 * we have to be careful not to get a reference when the
604 * reference count already dropped to 0 (ctx->dead test
605 * is unreliable because of races).
607 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
&& try_get_ioctx(ctx
)){
618 * Queue up a kiocb to be retried. Assumes that the kiocb
619 * has already been marked as kicked, and places it on
620 * the retry run list for the corresponding ioctx, if it
621 * isn't already queued. Returns 1 if it actually queued
622 * the kiocb (to tell the caller to activate the work
623 * queue to process it), or 0, if it found that it was
626 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
628 struct kioctx
*ctx
= iocb
->ki_ctx
;
630 assert_spin_locked(&ctx
->ctx_lock
);
632 if (list_empty(&iocb
->ki_run_list
)) {
633 list_add_tail(&iocb
->ki_run_list
,
641 * This is the core aio execution routine. It is
642 * invoked both for initial i/o submission and
643 * subsequent retries via the aio_kick_handler.
644 * Expects to be invoked with iocb->ki_ctx->lock
645 * already held. The lock is released and reacquired
646 * as needed during processing.
648 * Calls the iocb retry method (already setup for the
649 * iocb on initial submission) for operation specific
650 * handling, but takes care of most of common retry
651 * execution details for a given iocb. The retry method
652 * needs to be non-blocking as far as possible, to avoid
653 * holding up other iocbs waiting to be serviced by the
654 * retry kernel thread.
656 * The trickier parts in this code have to do with
657 * ensuring that only one retry instance is in progress
658 * for a given iocb at any time. Providing that guarantee
659 * simplifies the coding of individual aio operations as
660 * it avoids various potential races.
662 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
664 struct kioctx
*ctx
= iocb
->ki_ctx
;
665 ssize_t (*retry
)(struct kiocb
*);
668 if (!(retry
= iocb
->ki_retry
)) {
669 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
674 * We don't want the next retry iteration for this
675 * operation to start until this one has returned and
676 * updated the iocb state. However, wait_queue functions
677 * can trigger a kick_iocb from interrupt context in the
678 * meantime, indicating that data is available for the next
679 * iteration. We want to remember that and enable the
680 * next retry iteration _after_ we are through with
683 * So, in order to be able to register a "kick", but
684 * prevent it from being queued now, we clear the kick
685 * flag, but make the kick code *think* that the iocb is
686 * still on the run list until we are actually done.
687 * When we are done with this iteration, we check if
688 * the iocb was kicked in the meantime and if so, queue
692 kiocbClearKicked(iocb
);
695 * This is so that aio_complete knows it doesn't need to
696 * pull the iocb off the run list (We can't just call
697 * INIT_LIST_HEAD because we don't want a kick_iocb to
698 * queue this on the run list yet)
700 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
701 spin_unlock_irq(&ctx
->ctx_lock
);
703 /* Quit retrying if the i/o has been cancelled */
704 if (kiocbIsCancelled(iocb
)) {
706 aio_complete(iocb
, ret
, 0);
707 /* must not access the iocb after this */
712 * Now we are all set to call the retry method in async
717 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
719 * There's no easy way to restart the syscall since other AIO's
720 * may be already running. Just fail this IO with EINTR.
722 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
723 ret
== -ERESTARTNOHAND
|| ret
== -ERESTART_RESTARTBLOCK
))
725 aio_complete(iocb
, ret
, 0);
728 spin_lock_irq(&ctx
->ctx_lock
);
730 if (-EIOCBRETRY
== ret
) {
732 * OK, now that we are done with this iteration
733 * and know that there is more left to go,
734 * this is where we let go so that a subsequent
735 * "kick" can start the next iteration
738 /* will make __queue_kicked_iocb succeed from here on */
739 INIT_LIST_HEAD(&iocb
->ki_run_list
);
740 /* we must queue the next iteration ourselves, if it
741 * has already been kicked */
742 if (kiocbIsKicked(iocb
)) {
743 __queue_kicked_iocb(iocb
);
746 * __queue_kicked_iocb will always return 1 here, because
747 * iocb->ki_run_list is empty at this point so it should
748 * be safe to unconditionally queue the context into the
759 * Process all pending retries queued on the ioctx
761 * Assumes it is operating within the aio issuer's mm
764 static int __aio_run_iocbs(struct kioctx
*ctx
)
767 struct list_head run_list
;
769 assert_spin_locked(&ctx
->ctx_lock
);
771 list_replace_init(&ctx
->run_list
, &run_list
);
772 while (!list_empty(&run_list
)) {
773 iocb
= list_entry(run_list
.next
, struct kiocb
,
775 list_del(&iocb
->ki_run_list
);
777 * Hold an extra reference while retrying i/o.
779 iocb
->ki_users
++; /* grab extra reference */
781 __aio_put_req(ctx
, iocb
);
783 if (!list_empty(&ctx
->run_list
))
788 static void aio_queue_work(struct kioctx
* ctx
)
790 unsigned long timeout
;
792 * if someone is waiting, get the work started right
793 * away, otherwise, use a longer delay
796 if (waitqueue_active(&ctx
->wait
))
800 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
805 * Process all pending retries queued on the ioctx
806 * run list, and keep running them until the list
808 * Assumes it is operating within the aio issuer's mm context.
810 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
812 spin_lock_irq(&ctx
->ctx_lock
);
813 while (__aio_run_iocbs(ctx
))
815 spin_unlock_irq(&ctx
->ctx_lock
);
820 * Work queue handler triggered to process pending
821 * retries on an ioctx. Takes on the aio issuer's
822 * mm context before running the iocbs, so that
823 * copy_xxx_user operates on the issuer's address
825 * Run on aiod's context.
827 static void aio_kick_handler(struct work_struct
*work
)
829 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
830 mm_segment_t oldfs
= get_fs();
831 struct mm_struct
*mm
;
836 spin_lock_irq(&ctx
->ctx_lock
);
837 requeue
=__aio_run_iocbs(ctx
);
839 spin_unlock_irq(&ctx
->ctx_lock
);
843 * we're in a worker thread already, don't use queue_delayed_work,
846 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
851 * Called by kick_iocb to queue the kiocb for retry
852 * and if required activate the aio work queue to process
855 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
857 struct kioctx
*ctx
= iocb
->ki_ctx
;
861 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
862 /* set this inside the lock so that we can't race with aio_run_iocb()
863 * testing it and putting the iocb on the run list under the lock */
864 if (!kiocbTryKick(iocb
))
865 run
= __queue_kicked_iocb(iocb
);
866 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
873 * Called typically from a wait queue callback context
874 * to trigger a retry of the iocb.
875 * The retry is usually executed by aio workqueue
876 * threads (See aio_kick_handler).
878 void kick_iocb(struct kiocb
*iocb
)
880 /* sync iocbs are easy: they can only ever be executing from a
882 if (is_sync_kiocb(iocb
)) {
883 kiocbSetKicked(iocb
);
884 wake_up_process(iocb
->ki_obj
.tsk
);
888 try_queue_kicked_iocb(iocb
);
890 EXPORT_SYMBOL(kick_iocb
);
893 * Called when the io request on the given iocb is complete.
894 * Returns true if this is the last user of the request. The
895 * only other user of the request can be the cancellation code.
897 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
899 struct kioctx
*ctx
= iocb
->ki_ctx
;
900 struct aio_ring_info
*info
;
901 struct aio_ring
*ring
;
902 struct io_event
*event
;
908 * Special case handling for sync iocbs:
909 * - events go directly into the iocb for fast handling
910 * - the sync task with the iocb in its stack holds the single iocb
911 * ref, no other paths have a way to get another ref
912 * - the sync task helpfully left a reference to itself in the iocb
914 if (is_sync_kiocb(iocb
)) {
915 BUG_ON(iocb
->ki_users
!= 1);
916 iocb
->ki_user_data
= res
;
918 wake_up_process(iocb
->ki_obj
.tsk
);
922 info
= &ctx
->ring_info
;
924 /* add a completion event to the ring buffer.
925 * must be done holding ctx->ctx_lock to prevent
926 * other code from messing with the tail
927 * pointer since we might be called from irq
930 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
932 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
933 list_del_init(&iocb
->ki_run_list
);
936 * cancelled requests don't get events, userland was given one
937 * when the event got cancelled.
939 if (kiocbIsCancelled(iocb
))
942 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
945 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
946 if (++tail
>= info
->nr
)
949 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
950 event
->data
= iocb
->ki_user_data
;
954 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
955 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
958 /* after flagging the request as done, we
959 * must never even look at it again
961 smp_wmb(); /* make event visible before updating tail */
966 put_aio_ring_event(event
, KM_IRQ0
);
967 kunmap_atomic(ring
, KM_IRQ1
);
969 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
972 * Check if the user asked us to deliver the result through an
973 * eventfd. The eventfd_signal() function is safe to be called
976 if (iocb
->ki_eventfd
!= NULL
)
977 eventfd_signal(iocb
->ki_eventfd
, 1);
980 /* everything turned out well, dispose of the aiocb. */
981 ret
= __aio_put_req(ctx
, iocb
);
984 * We have to order our ring_info tail store above and test
985 * of the wait list below outside the wait lock. This is
986 * like in wake_up_bit() where clearing a bit has to be
987 * ordered with the unlocked test.
991 if (waitqueue_active(&ctx
->wait
))
994 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
997 EXPORT_SYMBOL(aio_complete
);
1000 * Pull an event off of the ioctx's event ring. Returns the number of
1001 * events fetched (0 or 1 ;-)
1002 * FIXME: make this use cmpxchg.
1003 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1005 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1007 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1008 struct aio_ring
*ring
;
1012 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1013 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1014 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1015 (unsigned long)ring
->nr
);
1017 if (ring
->head
== ring
->tail
)
1020 spin_lock(&info
->ring_lock
);
1022 head
= ring
->head
% info
->nr
;
1023 if (head
!= ring
->tail
) {
1024 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1026 head
= (head
+ 1) % info
->nr
;
1027 smp_mb(); /* finish reading the event before updatng the head */
1030 put_aio_ring_event(evp
, KM_USER1
);
1032 spin_unlock(&info
->ring_lock
);
1035 kunmap_atomic(ring
, KM_USER0
);
1036 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1037 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1041 struct aio_timeout
{
1042 struct timer_list timer
;
1044 struct task_struct
*p
;
1047 static void timeout_func(unsigned long data
)
1049 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1052 wake_up_process(to
->p
);
1055 static inline void init_timeout(struct aio_timeout
*to
)
1057 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1062 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1063 const struct timespec
*ts
)
1065 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1066 if (time_after(to
->timer
.expires
, jiffies
))
1067 add_timer(&to
->timer
);
1072 static inline void clear_timeout(struct aio_timeout
*to
)
1074 del_singleshot_timer_sync(&to
->timer
);
1077 static int read_events(struct kioctx
*ctx
,
1078 long min_nr
, long nr
,
1079 struct io_event __user
*event
,
1080 struct timespec __user
*timeout
)
1082 long start_jiffies
= jiffies
;
1083 struct task_struct
*tsk
= current
;
1084 DECLARE_WAITQUEUE(wait
, tsk
);
1087 struct io_event ent
;
1088 struct aio_timeout to
;
1091 /* needed to zero any padding within an entry (there shouldn't be
1092 * any, but C is fun!
1094 memset(&ent
, 0, sizeof(ent
));
1097 while (likely(i
< nr
)) {
1098 ret
= aio_read_evt(ctx
, &ent
);
1099 if (unlikely(ret
<= 0))
1102 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1103 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1105 /* Could we split the check in two? */
1107 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1108 dprintk("aio: lost an event due to EFAULT.\n");
1113 /* Good, event copied to userland, update counts. */
1125 /* racey check, but it gets redone */
1126 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1128 aio_run_all_iocbs(ctx
);
1136 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1139 set_timeout(start_jiffies
, &to
, &ts
);
1142 while (likely(i
< nr
)) {
1143 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1145 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1146 ret
= aio_read_evt(ctx
, &ent
);
1151 if (unlikely(ctx
->dead
)) {
1155 if (to
.timed_out
) /* Only check after read evt */
1157 /* Try to only show up in io wait if there are ops
1159 if (ctx
->reqs_active
)
1163 if (signal_pending(tsk
)) {
1167 /*ret = aio_read_evt(ctx, &ent);*/
1170 set_task_state(tsk
, TASK_RUNNING
);
1171 remove_wait_queue(&ctx
->wait
, &wait
);
1173 if (unlikely(ret
<= 0))
1177 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1178 dprintk("aio: lost an event due to EFAULT.\n");
1182 /* Good, event copied to userland, update counts. */
1190 destroy_timer_on_stack(&to
.timer
);
1194 /* Take an ioctx and remove it from the list of ioctx's. Protects
1195 * against races with itself via ->dead.
1197 static void io_destroy(struct kioctx
*ioctx
)
1199 struct mm_struct
*mm
= current
->mm
;
1202 /* delete the entry from the list is someone else hasn't already */
1203 spin_lock(&mm
->ioctx_lock
);
1204 was_dead
= ioctx
->dead
;
1206 hlist_del_rcu(&ioctx
->list
);
1207 spin_unlock(&mm
->ioctx_lock
);
1209 dprintk("aio_release(%p)\n", ioctx
);
1210 if (likely(!was_dead
))
1211 put_ioctx(ioctx
); /* twice for the list */
1213 aio_cancel_all(ioctx
);
1214 wait_for_all_aios(ioctx
);
1217 * Wake up any waiters. The setting of ctx->dead must be seen
1218 * by other CPUs at this point. Right now, we rely on the
1219 * locking done by the above calls to ensure this consistency.
1221 wake_up_all(&ioctx
->wait
);
1222 put_ioctx(ioctx
); /* once for the lookup */
1226 * Create an aio_context capable of receiving at least nr_events.
1227 * ctxp must not point to an aio_context that already exists, and
1228 * must be initialized to 0 prior to the call. On successful
1229 * creation of the aio_context, *ctxp is filled in with the resulting
1230 * handle. May fail with -EINVAL if *ctxp is not initialized,
1231 * if the specified nr_events exceeds internal limits. May fail
1232 * with -EAGAIN if the specified nr_events exceeds the user's limit
1233 * of available events. May fail with -ENOMEM if insufficient kernel
1234 * resources are available. May fail with -EFAULT if an invalid
1235 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1238 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1240 struct kioctx
*ioctx
= NULL
;
1244 ret
= get_user(ctx
, ctxp
);
1249 if (unlikely(ctx
|| nr_events
== 0)) {
1250 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1255 ioctx
= ioctx_alloc(nr_events
);
1256 ret
= PTR_ERR(ioctx
);
1257 if (!IS_ERR(ioctx
)) {
1258 ret
= put_user(ioctx
->user_id
, ctxp
);
1262 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1271 * Destroy the aio_context specified. May cancel any outstanding
1272 * AIOs and block on completion. Will fail with -ENOSYS if not
1273 * implemented. May fail with -EINVAL if the context pointed to
1276 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1278 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1279 if (likely(NULL
!= ioctx
)) {
1283 pr_debug("EINVAL: io_destroy: invalid context id\n");
1287 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1289 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1293 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1294 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1295 iov
->iov_base
+= this;
1296 iov
->iov_len
-= this;
1297 iocb
->ki_left
-= this;
1299 if (iov
->iov_len
== 0) {
1305 /* the caller should not have done more io than what fit in
1306 * the remaining iovecs */
1307 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1310 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1312 struct file
*file
= iocb
->ki_filp
;
1313 struct address_space
*mapping
= file
->f_mapping
;
1314 struct inode
*inode
= mapping
->host
;
1315 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1316 unsigned long, loff_t
);
1318 unsigned short opcode
;
1320 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1321 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1322 rw_op
= file
->f_op
->aio_read
;
1323 opcode
= IOCB_CMD_PREADV
;
1325 rw_op
= file
->f_op
->aio_write
;
1326 opcode
= IOCB_CMD_PWRITEV
;
1329 /* This matches the pread()/pwrite() logic */
1330 if (iocb
->ki_pos
< 0)
1334 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1335 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1338 aio_advance_iovec(iocb
, ret
);
1340 /* retry all partial writes. retry partial reads as long as its a
1342 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1343 (opcode
== IOCB_CMD_PWRITEV
||
1344 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1346 /* This means we must have transferred all that we could */
1347 /* No need to retry anymore */
1348 if ((ret
== 0) || (iocb
->ki_left
== 0))
1349 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1351 /* If we managed to write some out we return that, rather than
1352 * the eventual error. */
1353 if (opcode
== IOCB_CMD_PWRITEV
1354 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1355 && iocb
->ki_nbytes
- iocb
->ki_left
)
1356 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1361 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1363 struct file
*file
= iocb
->ki_filp
;
1364 ssize_t ret
= -EINVAL
;
1366 if (file
->f_op
->aio_fsync
)
1367 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1371 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1373 struct file
*file
= iocb
->ki_filp
;
1374 ssize_t ret
= -EINVAL
;
1376 if (file
->f_op
->aio_fsync
)
1377 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1381 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
, bool compat
)
1385 #ifdef CONFIG_COMPAT
1387 ret
= compat_rw_copy_check_uvector(type
,
1388 (struct compat_iovec __user
*)kiocb
->ki_buf
,
1389 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1390 &kiocb
->ki_iovec
, 1);
1393 ret
= rw_copy_check_uvector(type
,
1394 (struct iovec __user
*)kiocb
->ki_buf
,
1395 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1396 &kiocb
->ki_iovec
, 1);
1400 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1401 kiocb
->ki_cur_seg
= 0;
1402 /* ki_nbytes/left now reflect bytes instead of segs */
1403 kiocb
->ki_nbytes
= ret
;
1404 kiocb
->ki_left
= ret
;
1411 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1413 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1414 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1415 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1416 kiocb
->ki_nr_segs
= 1;
1417 kiocb
->ki_cur_seg
= 0;
1423 * Performs the initial checks and aio retry method
1424 * setup for the kiocb at the time of io submission.
1426 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
, bool compat
)
1428 struct file
*file
= kiocb
->ki_filp
;
1431 switch (kiocb
->ki_opcode
) {
1432 case IOCB_CMD_PREAD
:
1434 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1437 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1440 ret
= security_file_permission(file
, MAY_READ
);
1443 ret
= aio_setup_single_vector(kiocb
);
1447 if (file
->f_op
->aio_read
)
1448 kiocb
->ki_retry
= aio_rw_vect_retry
;
1450 case IOCB_CMD_PWRITE
:
1452 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1455 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1458 ret
= security_file_permission(file
, MAY_WRITE
);
1461 ret
= aio_setup_single_vector(kiocb
);
1465 if (file
->f_op
->aio_write
)
1466 kiocb
->ki_retry
= aio_rw_vect_retry
;
1468 case IOCB_CMD_PREADV
:
1470 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1472 ret
= security_file_permission(file
, MAY_READ
);
1475 ret
= aio_setup_vectored_rw(READ
, kiocb
, compat
);
1479 if (file
->f_op
->aio_read
)
1480 kiocb
->ki_retry
= aio_rw_vect_retry
;
1482 case IOCB_CMD_PWRITEV
:
1484 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1486 ret
= security_file_permission(file
, MAY_WRITE
);
1489 ret
= aio_setup_vectored_rw(WRITE
, kiocb
, compat
);
1493 if (file
->f_op
->aio_write
)
1494 kiocb
->ki_retry
= aio_rw_vect_retry
;
1496 case IOCB_CMD_FDSYNC
:
1498 if (file
->f_op
->aio_fsync
)
1499 kiocb
->ki_retry
= aio_fdsync
;
1501 case IOCB_CMD_FSYNC
:
1503 if (file
->f_op
->aio_fsync
)
1504 kiocb
->ki_retry
= aio_fsync
;
1507 dprintk("EINVAL: io_submit: no operation provided\n");
1511 if (!kiocb
->ki_retry
)
1517 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1518 struct iocb
*iocb
, bool compat
)
1524 /* enforce forwards compatibility on users */
1525 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1526 pr_debug("EINVAL: io_submit: reserve field set\n");
1530 /* prevent overflows */
1532 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1533 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1534 ((ssize_t
)iocb
->aio_nbytes
< 0)
1536 pr_debug("EINVAL: io_submit: overflow check\n");
1540 file
= fget(iocb
->aio_fildes
);
1541 if (unlikely(!file
))
1544 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1545 if (unlikely(!req
)) {
1549 req
->ki_filp
= file
;
1550 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1552 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1553 * instance of the file* now. The file descriptor must be
1554 * an eventfd() fd, and will be signaled for each completed
1555 * event using the eventfd_signal() function.
1557 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1558 if (IS_ERR(req
->ki_eventfd
)) {
1559 ret
= PTR_ERR(req
->ki_eventfd
);
1560 req
->ki_eventfd
= NULL
;
1565 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1566 if (unlikely(ret
)) {
1567 dprintk("EFAULT: aio_key\n");
1571 req
->ki_obj
.user
= user_iocb
;
1572 req
->ki_user_data
= iocb
->aio_data
;
1573 req
->ki_pos
= iocb
->aio_offset
;
1575 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1576 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1577 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1579 ret
= aio_setup_iocb(req
, compat
);
1584 spin_lock_irq(&ctx
->ctx_lock
);
1586 * We could have raced with io_destroy() and are currently holding a
1587 * reference to ctx which should be destroyed. We cannot submit IO
1588 * since ctx gets freed as soon as io_submit() puts its reference. The
1589 * check here is reliable: io_destroy() sets ctx->dead before waiting
1590 * for outstanding IO and the barrier between these two is realized by
1591 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
1592 * increment ctx->reqs_active before checking for ctx->dead and the
1593 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1594 * don't see ctx->dead set here, io_destroy() waits for our IO to
1598 spin_unlock_irq(&ctx
->ctx_lock
);
1603 if (!list_empty(&ctx
->run_list
)) {
1604 /* drain the run list */
1605 while (__aio_run_iocbs(ctx
))
1608 spin_unlock_irq(&ctx
->ctx_lock
);
1610 aio_put_req(req
); /* drop extra ref to req */
1614 aio_put_req(req
); /* drop extra ref to req */
1615 aio_put_req(req
); /* drop i/o ref to req */
1619 long do_io_submit(aio_context_t ctx_id
, long nr
,
1620 struct iocb __user
*__user
*iocbpp
, bool compat
)
1625 struct blk_plug plug
;
1627 if (unlikely(nr
< 0))
1630 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1631 nr
= LONG_MAX
/sizeof(*iocbpp
);
1633 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1636 ctx
= lookup_ioctx(ctx_id
);
1637 if (unlikely(!ctx
)) {
1638 pr_debug("EINVAL: io_submit: invalid context id\n");
1642 blk_start_plug(&plug
);
1645 * AKPM: should this return a partial result if some of the IOs were
1646 * successfully submitted?
1648 for (i
=0; i
<nr
; i
++) {
1649 struct iocb __user
*user_iocb
;
1652 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1657 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1662 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, compat
);
1666 blk_finish_plug(&plug
);
1673 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1674 * the number of iocbs queued. May return -EINVAL if the aio_context
1675 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1676 * *iocbpp[0] is not properly initialized, if the operation specified
1677 * is invalid for the file descriptor in the iocb. May fail with
1678 * -EFAULT if any of the data structures point to invalid data. May
1679 * fail with -EBADF if the file descriptor specified in the first
1680 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1681 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1682 * fail with -ENOSYS if not implemented.
1684 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1685 struct iocb __user
* __user
*, iocbpp
)
1687 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1691 * Finds a given iocb for cancellation.
1693 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1696 struct list_head
*pos
;
1698 assert_spin_locked(&ctx
->ctx_lock
);
1700 /* TODO: use a hash or array, this sucks. */
1701 list_for_each(pos
, &ctx
->active_reqs
) {
1702 struct kiocb
*kiocb
= list_kiocb(pos
);
1703 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1710 * Attempts to cancel an iocb previously passed to io_submit. If
1711 * the operation is successfully cancelled, the resulting event is
1712 * copied into the memory pointed to by result without being placed
1713 * into the completion queue and 0 is returned. May fail with
1714 * -EFAULT if any of the data structures pointed to are invalid.
1715 * May fail with -EINVAL if aio_context specified by ctx_id is
1716 * invalid. May fail with -EAGAIN if the iocb specified was not
1717 * cancelled. Will fail with -ENOSYS if not implemented.
1719 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1720 struct io_event __user
*, result
)
1722 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1724 struct kiocb
*kiocb
;
1728 ret
= get_user(key
, &iocb
->aio_key
);
1732 ctx
= lookup_ioctx(ctx_id
);
1736 spin_lock_irq(&ctx
->ctx_lock
);
1738 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1739 if (kiocb
&& kiocb
->ki_cancel
) {
1740 cancel
= kiocb
->ki_cancel
;
1742 kiocbSetCancelled(kiocb
);
1745 spin_unlock_irq(&ctx
->ctx_lock
);
1747 if (NULL
!= cancel
) {
1748 struct io_event tmp
;
1749 pr_debug("calling cancel\n");
1750 memset(&tmp
, 0, sizeof(tmp
));
1751 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1752 tmp
.data
= kiocb
->ki_user_data
;
1753 ret
= cancel(kiocb
, &tmp
);
1755 /* Cancellation succeeded -- copy the result
1756 * into the user's buffer.
1758 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1770 * Attempts to read at least min_nr events and up to nr events from
1771 * the completion queue for the aio_context specified by ctx_id. If
1772 * it succeeds, the number of read events is returned. May fail with
1773 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1774 * out of range, if timeout is out of range. May fail with -EFAULT
1775 * if any of the memory specified is invalid. May return 0 or
1776 * < min_nr if the timeout specified by timeout has elapsed
1777 * before sufficient events are available, where timeout == NULL
1778 * specifies an infinite timeout. Note that the timeout pointed to by
1779 * timeout is relative and will be updated if not NULL and the
1780 * operation blocks. Will fail with -ENOSYS if not implemented.
1782 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1785 struct io_event __user
*, events
,
1786 struct timespec __user
*, timeout
)
1788 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1791 if (likely(ioctx
)) {
1792 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1793 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1797 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);